
EINA

Universidad ZaragozaMáster Universitario enMe
áni
a Apli
ada Trabajo Fin de Máster
2D Shallow Flow Simulation
Using GPU Technologies

Asier Lacasta Soto
Grupo de Hidráulica Computacional - alacasta@unizar.es

Directora: Pilar García Navarro1

Co-Director: Javier Murillo Castarlenas1

(1) Area de Mecánica de Fluidos
Escuela de Ingeniería y Arquitectura
Universidad Zaragoza

Curso 2011/2012

2

A
knowledgements
I would like to express my appre
iation to Dra. Pilar Gar
ía Navarro for her valuable and
onstru
tive suggestions during the planning and development of this resear
h work. My grate-ful thanks are also extended to Dr. Javier Murillo for his help with the model solving my doubts.I would also like to thank the other members of the group for their advi
es and points of viewwhen ne
essary. I would like spe
ially mention to He
tor Ratia.Finally, I wish to thank nVidia for their partial support providing us with a Hardware part underthe Nvidia A
ademi
 Partnership program.This work has been developed under proje
t CENIT-TECOAGUA CEN-20091028.

i

ii

Resumen
Los modelos matemáti
os y métodos numéri
os impli
ados en la simula
ión de �ujos
on super-�
ie libre han sido estudiados durante tiempo en el Grupo de Hidráuli
a Computa
ional de laUniversidad de Zaragoza. Estos modelos son la base de nuevos desarrollos
omo el transporte desedimento, el modelado de intera

ión
on puentes o el a
oplamiento hidrológi
o. A pesar de la
alidad de estos métodos, el
oste
omputa
ional es muy alto y en gran parte esto se debe a late
nología numéri
a que requieren.Con la �nalidad de superar esta limita
ión, este trabajo estudia la implementa
ión de un
ódigo de simula
ión hidráuli
a orientada a eje
u
ión en GPU, permitiendo simular un amplio
onjunto de situa
iones transitorias en gran es
ala temporal,
on un tiempo de simula
ión ra-zonable.El
oste
omputa
ional de éste tipo de herramientas ha sido redu
ido, tradi
ionalmente,utilizando té
ni
as de paralelismo, impli
ando un alto número de pro
esadores para redu
ir eltiempo de
ál
ulo al máximo. En los últimos años, las fre
uen
ias de los pro
esadores pare
enhaber al
anzado su límite (Figura 1 extraida de [9℄) por lo que las té
ni
as de paralelismo enpro
esadores masivos son una nueva op
ión.

Figure 1: Evolu
ión de las fre
uen
ias de CPU desde 1985 hasta 2011iii

En este trabajo, se analiza el rendimiento del
ódigo implementado en GPU,
omparándolo
on su equivalente en CPU. Este segudo, viene siendo desarrollado, en su totalidad, en Fortranmientras que el primero, ha sido desarrollado utilizando el lenguaje de programa
ión C,
om-partiendo el pro
esamiento geométri
o
on la versión CPU. Las fu
ionalidades implementadasen la versión GPU,
ubre una gran parte de situa
iones de interés, tales
omo el avan
e de unainunda
ión, los
ambios de fondo y fri

ión y algunas
ondi
iones de
ontorno de entrada y desalidas. La implementa
ión del método en GPU no es trivial y requiere de un
ono
imiento enprofundidad del fun
ionamiento de esta te
nología a bajo nivel. Los bene�
ios de la versión GPUserán analizados a través de la a
elera
ión repe
to a la versión CPU en diferentes tipos de
aso.EL rendimiento del
ódigo GPU además, será medido teniendo en
uenta el uso de mallas noestru
turadas, las
uales suelen ser ne
esarias en mu
hos
odigos de CFD. Para su simula
ión,se utilizará la GPU Tesla
2075 de nVidia. Además se utilizará el estándar CUDA, que ha
e laprograma
ión más sen
illa que otros estándar en program
ión GPU, permietiendo al programadorexprimir los bene�
ios de esta te
nología.

iv

Abstra
t
The mathemati
al models and numeri
al methods implied in the resolution of free surfa
e �owshave been studied for a long time within the Computational Hydrauli
 Group at the UniversidadZaragoza. They support new developments su
h as sediment transport, bridges modeling or hy-drologi
al
oupling. Despite the quality that the numeri
al solvers proposed by the group o�er,the
omputational
ost of these methods is very high, due to the
omplexity of the numeri
altools required.In order to avoid this limitation, the present work studies the implementation of a s
ienti�
hydrauli
 simulation tool oriented to be run on GPU, allowing to simulate a wide range of sit-uations over large time s
ale problems, that otherwise
an not be
omputed at an a�ordable
ost.The
omputational
ost has been traditionally redu
ed by using parallel te
hniques, involvinga large number of pro
essors in order to redu
e the simulation time as mu
h as possible. Sin
eCPU frequen
ies seem to be rea
hing their maximum
apa
ity (Figure 2 extra
ted from [9℄),nowadays Many-Core parallel te
hniques appear to be an interesting option.

Figure 2: CPU Frequen
y evolution sin
e 1985 until 2011The performan
e of the GPU version is analyzed
omparing both CPU and GPU versionsof the same
ode. While the former was fully developed in Fortran language, the numeri
alv

kernel of the new GPU version has been written in C, sharing the geometri
al prepro
essingmodule with the CPU version. The fun
tionalities implemented in the GPU version
over awide range of situations as they in
lude all the
hara
teristi
s that are desirable in the
ontextof shallow �ow simulation: �ooding advan
e, fri
tion and bed slope sour
e-terms as weel as inletand outlet boundary
onditions. The implementation of these requirements in the
ontext ofrealisti
 simulations is not straightforward. This is explained when
onsidering that,
ontrary toother programming languages, the GPU version requires a good
omprehension of the low leveloperations, that does not allow a dire
t
onventional implementation. The bene�ts of the GPUversion will be analyzed in depth fo
using on speed-up gain in
omplex
ases.The performan
e of the GPU
ode is analyzed in depth to ensure not only the e�
ien
y butalso the possibilities of GPU programming when using unstru
tured meshes, that are often re-quired in CFD
odes. A Tesla
2075 nVidia GPU has been used in the present study. Moreover,it has been developed using nVidia-CUDA standard, whi
h makes friendly the programming forgeneral purpose appli
ations, allowing the programmer to exploit the many-
ore paradigm.

vi

Contents
1 Introdu
tion 11.1 Context and assumptions . 11.2 Stru
ture of the report . 22 Mathemati
al Model and Numeri
al Method 32.1 Approximate Riemann solution . 32.2 Appli
ation to the 2D Shallow Water equations 62.3 Numeri
al resolution . 73 CUDA Te
hnology Overview 113.1 GPU Te
hnology history . 113.2 nVidia CUDA te
hnology . 123.3 CUDA development . 133.3.1 Example of implementation in a 1D
ase 143.4 Results All that glitters is not gold . 164 Implementation 194.1 Model overview . 194.2 Memory
oales
ing . 214.3 Gathering data avoiding bottlene
k . 234.4 Writing output �les . 244.5 Compilation and other issues . 265 Results 295.1 Pre
ision: A test-
ase with analyti
al solution . 295.2 Performan
e: A large-s
ale simulation at Jú
ar River 335.3 Comparing with a distributed memory parallel implementation 396 Con
lusions and future work 45Bibliography 47vii

List of Figures
1 Evolu
ión de las fre
uen
ias de CPU desde 1985 hasta 2011 iii2 CPU Frequen
y evolution sin
e 1985 until 2011 v2.1 Riemann problem in 2D along the normal dire
tion to a
ell side. 53.1 thread, blo
k, grid s
heme
omposition . 123.2 Des
ription of our Fermi
2075 GPU based on GF100/GF110 Ar
hite
ture. . . . 133.3 Exe
ution pipeline for a Strem Multipro
essor (left) whi
h pro
ess blo
k number4 (right) . 134.1 Exe
ution tra
e and performan
e detail for a time-step using Paraver 204.2 Stru
tured mesh with Cell Numbering detail (Right) and Wall Numbering detail(Left) example . 214.3 Misaligned and Coales
ed a

ess pattern to
ompute the �ux variation for anygroup of elements following the s
heme of Right, Left, Down, Up for W data(Stored by
ell) in a mesh ordered as Figure 4.2. Light
oloured
orrespond to thepro
essed element 5, wi
h implies
ells 2, 4, 6 and 8. 224.4 Unstru
tured mesh with Cell Numbering detail (Right) andWall Numbering detail(Left) example . 224.5 Un
oales
ed a

ess pattern to get W data (Stored by
ell). Pro
essing wall 9 islight
oloured when it a

esses to
ell 8 (i=9,
1=8) 234.6 Gathering minimum ∆t for all the domain . 244.7 Asyn
hronus dumping data diagram. 254.8 Flux diagram for the appli
ation. Green-highlighted is the ported sli
e of the
ode 275.1 Left: Bed level and initial water depth state for test
ase 1. 295.2 Test
ase 1. Left: GPU Simulated results for h and Right: CPU Simulated resultsfor h at t = 42.03s. 305.3 Test
ase 1. Left: GPU Simulated result for |v| and Right: CPU Simulated resultsfor |v| at t = 42.03s. 30viii

LIST OF FIGURES5.4 Left: Initial state h0 for the
on�i
tive
ell. Center: h1 for CPU. ǫ a

ura
yinvolves wall treatment as solid edge implying an in
reasing in it water depth.Right: h1 for GPU. ǫ a

ura
y involves wall treatment as non solid edge so thatwater level de
rease at
ell i and in
rease at
ell j. 315.5 From Left to right, Top to down, h+z for t=T/4, T/2, 3T/4 and T 325.6 From Left to right, Top to down, u for t=T/4, T/2, 3T/4 and T 325.7 From Left to right, Top to down, v for t=T/4, T/2, 3T/4 and T 335.8 From Left to right, Top to down, h for t=0, T/4, T/2, 3T/4 and T 345.9 Left: Sumá
ar
el photography. Right: simulation mesh 355.10 Water depth evolution for (Left-right, Top-down) t = 5, 10, 15, 20, 25, 30h 355.11 Gauges position . 365.12 Simulated and estimated water depth in 1-11 Gauges. 405.13 Simulated and estimated water depth in 12-21 Gauges. 415.14 Tous syntheti
 hydrograph for D1 (Right) and D2 (Left) 425.15 Comparison of Left: Coarse mesh velo
ity module and Righ: Re�ned mesh velo
itymodule at t = 13h . 425.16 Initial
onditions of water depth and mesh plot 425.17 5-0 Dam-Break simulation for (Right-Left, Top-Down) t=5, 10, 15, 20, 25, 30se
onds . 43

ix

1Introdu
tionThe present work deals with of the e�
ient implementation of a s
ienti�
 purpose
ode orientedto make hydrauli
 simulations that require a very high
omputational load. These
al
ulations
ould range from a dam break simulation to the
onsequen
es of a river �ooding.The
ode is based on a numeri
al resolution of the shallow water model used to simulatewater �uxes under
ertain hypothesis. Free surfa
e �uxes of interest to Hydrauli
 Engineeringare usually formulated under the shallow water model whi
h assumes that verti
al lengths arelower than horizontal s
ales in the problem. The depth averaged system of equations resultingfrom this approa
h allows to make a temporal des
ription of the �ow �eld as a fun
tion of waterdepth and horizontal velo
ity
omponents u, v in x and y axis respe
tively.The governing system of partial di�erential equations is hyperboli
 and, in general, does nothave exa
t solution. Therefore, numeri
al methods are required to rea
h the solution or to ap-proximate it. The question of what is the most suitable method to solve it is still open but �nitevolume s
hemes are widely used.1.1 Context and assumptionsThe Computational Hydrauli
s Group at the University of Zaragoza (http://gh
.unizar.es) isinvolved with both resear
h and tea
hing a
tivities related to the topi
 of this proje
t. This re-sear
h team has been working on Computational Hydrauli
 Resear
h sin
e 1986. The results havebeen published in many international journals and have led to a
tual knowledge transfer modelsthat are nowadays used by private and publi
 bodies in Spain. The numeri
al models of freesurfa
e �ows developed by this resear
h team has led to e�
ient, robust and a

urate simulationsoftware tools. The resear
h team has extended the numeri
al s
hemes making feasible the ap-pli
ation to realisti

ases found in engineering appli
ations, where the importan
e of the sour
eterms in the equations, mainly related with the bathymetry of the bed in river �ows, requiresspe
ial numeri
al treatments. In order to involve all possible s
enarios, two di�erent modellinglines have been explored. A one-dimensional resear
h line to analyse rivers and
hannels, and atwo-dimensional resear
h line, where the transversal
omponent of the �ow is of importan
e, able1

CHAPTER 1. INTRODUCTIONto handle more
omplex situations. This approa
h may lead to very time
onsuming simulations.To study the performan
e of the GPU version, it has been
ompared to the CPU version.That has been developed for a long time. The numeri
al kernel in the GPU version has been writ-ten in C, sharing the geometri
al prepro
ess with the CPU version. Although the CPU versionhas several fun
tionalities implemented, the GPU version
overs only a few of them. In parti
u-lar, the Shallow-Water equations dis
retization using Roe solver in
luding wet/dry boundaries,fri
tion sour
e-term, and two inlet and outlet boundaries. With this implementation, the gainof the GPU version will be studied.Both the CPU and GPU versions work with the same data-stru
tures. Furthermore, the nu-meri
al kernel in both versions is optimized so that they to make more or less the same numberof operations and are
ompiled with the same options in order to apply a
orre
t analysis for the
omparison.1.2 Stru
ture of the reportThe report has been stru
tured in 5 se
tions. First the mathemati
al model and numeri
als
heme used to solve the free surfa
e �ow equations are introdu
ed. Se
ond one des
ribes theway to program a general numeri
al solver in GPU's, using as example the 1D transport equation.Furthermore, in this se
ond part the hardware
omposition of the GPU and the CUDA modelto develop to it are also des
ribed. The third part explains the main problems found in theimplementation of the model. These problems are explained as a general way to solve problemsrelated to the numeri
al solvers. The fourth part
ontains three test
ases where a

ura
y andperforman
e are studied
omparing with both, serial and parallel implementations of the method.The last part des
ribes our
on
lusions as well as the desirable future work improvements.

2

2Mathemati
al Model and Numeri
al MethodWe are interested in the simulation of a problem that
an be formulated as a system of
onser-vation laws with sour
e term as follows
∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U, x, y) (2.1)System (2.1) is time dependent and non linear. Under the hypothesis of dominant adve
tion,it
an be
lassi�ed and numeri
ally dealt with as belonging to the family of hyperboli
 systems.It in
ludes the existen
e of a Ja
obian matrix of the �ux normal to a dire
tion given by the unitve
tor n, E · n. De�ning E · n = Fnx +Gny, the Ja
obian
an be written as

Jn =
∂E · n
∂U

=
∂F

∂U
nx +

∂G

∂U
ny (2.2)The Ja
obian
an be used to form de basis of the upwind numeri
al dis
retization.2.1 Approximate Riemann solutionThe previous di�erential formulation
an be reinterpreted over a volume (or grid
ell) Ω usingthe integral formulation as follows

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ (2.3)whi
h be
omes, using the Gauss theorem
∂

∂t

∫

Ω

UdΩ +

∮

∂Ω
E · ndl =

∫

Ω

SdΩ (2.4)where n = (nx, ny) is the outward unit normal ve
tor to the volume Ω.Considering the
omplete spatial domain dis
retized in
omputational
ells Ωi and using the
onventional
ell-average notation, the solution U
n

i
inside the
ell for U(x, y, t)

U
n
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (2.5)3

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODbeing Ai the
ell area. Assuming a pie
ewise representation of the
onserved variables, (2.4)
ould be written as
∂

∂t

∫

Ωi

UdΩ +

NE∑

k=1

Ej · nklk =

∫

Ωi

SdΩ (2.6)where Ej is the value of the fun
tion E at the neighbouring
ell j
onne
ted through the edge
k, nk is the outward unit normal ve
tor to the
ell edge k, lk is the
orresponding edge lengthand NE is the number of edges around
ell i. Considering the quantity Ei uniform per
ell iand that

NE∑

k=1

nklk = 0 (2.7)equation (2.6) is written as
∂

∂t

∫

Ωi

UdΩ+

NE∑

k=1

(δE)k · nklk =

∫

Ωi

SdΩ (2.8)with δE = Ej −Ei.In the Roe approa
h [24℄, the solution of ea
h RP is obtained from the exa
t solution of alo
ally linearized problem. In the 2D framework the solution is obtained redu
ing ea
h RP atea
h k edge to a 1D Riemann problem proje
ted onto the dire
tion of n. The linearized solutionmust ful�ll the Consisten
y Condition. In the 2D
ase the integral of the approximate solution
Û(x′, t) of the k linearized RP over a suitable
ontrol volume must be equal to the integral ofthe exa
t solution U(x′, t) over the same
ontrol volume, with x′ the
oordinate normal to the
ell edge k, Figure 2.1. Then in ea
h k Riemann problem with initial values Ui,Uj , in a timeinterval [0, 1] and a spa
e interval [−X ′,X ′] , where

−X ′ ≤ λmin, X ′ ≥ λmax (2.9)and λmin, λmax the positions of the slowest and the fastest wave at t = 1, in a k egde, the solution
Û(x′, 1) at time t = 1 must satisfy the following property:

∫ +X′

−X′

Û(x′, 1) dx′ =

∫ +X′

−X′

U(x′, 1) dx′ (2.10)so using (2.8) the Consisten
y Condition be
omes:
∫ +X′

−X′

Û(x′, 1) dx′ = X ′ (Ui +Uj)− δEk · nk +

∫ 1

0

∫ +X′

−X′

S dx′ dt (2.11)Sin
e the sour
e terms are not ne
essarily
onstant in time, we assume the following timelinearization of the Consisten
y Condition:
∫ +X′

−X′

Û(x′, 1) dx′ = X (Ui +Uj)− (δE −T)knk (2.12)4

2.1. APPROXIMATE RIEMANN SOLUTION
-

-

6

?@
@

@
@

@
@

@@

�
�

�
�

�
�

��

���������

HHHHHHHHH
�

�
�

��

@
@

@
@@

x′

lk
0

U
n
i

U
n
j

nk

Figure 2.1: Riemann problem in 2D along the normal dire
tion to a
ell side.where following previous work, [28℄
∫ +X′

−X′

S(x′, 0) dx′ = (Tn)nk (2.13)where T is a suitable numeri
al sour
e matrix. This enables the following formulation of (2.8)
∂

∂t

∫

Ω

UdΩi +

NE∑

k=1

(δE −T)knklk = 0 (2.14)that is approximated by using the following linear problem
∂
∂t

∫
Ω
ÛdΩi +

∑NE
k=1

J
∗

n,kδÛklk = 0

Û(x′, 0)k =

{
Ui if x′ < 0

Uj if x′ > 0

(2.15)Integrating 2.15 over the same
ontrol volume as before the following expression is obtainedfor ea
h k edge
∫

+X′

−X′

Û(x′, 1) dx′ = X (Ui +Uj)− J
∗ (Uj −Ui) (2.16)and sin
e we want to satisfy (2.12), the
onstraint that follows is:

(δE −T)knk = J̃
∗ (Uj −Ui) (2.17)Due to the non-linear
hara
ter of the �ux matrix E, the de�nition of an approximatedJa
obian matrix, J̃n,k, allows for a lo
al linearization

δ(En)k = J̃n,kδUk (2.18)and is exploited here [24℄. This approa
h provides a set of three real eigenvalues λ̃m
k and eigenve
-tors ẽmk . Then, it is possible to de�ne two matri
es P̃ = (ẽ1, ẽ2, ẽ3) and P̃

−1 with the followingproperty
J̃n,k = P̃kΛ̃kP̃

−1

k (2.19)5

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODThe di�eren
e in ve
tor U a
ross the grid edge and the sour
e term are proje
ted onto thematrix eigenve
tors basis:
δUk = P̃kAk (Tn)k = P̃kBk (2.20)with Ak =

(
α1 α2 α3

)T
k
and Bk =

(
β1 β2 β3

)T
k
. Expressing all terms more
om-pa
tly:

δ(E · n)k − (T · n)k =

Nλ∑

m=1

(
λ̃ θαẽ

)m
k

(2.21)with
θmk =

(
1− β

λ̃α

)m

k

(2.22)Finally, it is possible to de�ne the desired matrix in (2.17)
J̃
∗

k = (P̃Λ̃
∗
P̃

−1)k (2.23)with Λ̃
∗ = Λ̃Θ, where Λ̃k is a diagonal matrix with eigenvalues λ̃m,∗

k in the main diagonal and
Θk is a diagonal matrix with θmk in the main diagonal:

Λ̃k =




λ̃1 0 0

0 λ̃2 0

0 0 λ̃3




k

Θk =




θ1 0 0

0 θ2 0

0 0 θ3




k

(2.24)2.2 Appli
ation to the 2D Shallow Water equationsThe two-dimensional shallow water equations, whi
h represent depth averaged mass and mo-mentum
onservation,
an be obtained from the Navier-Stokes equations. Negle
ting di�usionof momentum due to vis
osity and turbulen
e, wind e�e
ts and the Coriolis term, they form asystem of equations [2℄ as in (2.1), where
U = (h, qx, qy)

T (2.25)are the
onserved variables with h representing the water depth, qx = hu and qy = hv, with (u, v)the depth averaged
omponents of the velo
ity ve
tor u along the (x, y)
oordinates respe
tively.The �uxes of these variables are given by:
F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

q2y
h

+
1

2
gh2

)T (2.26)where g is the a

eleration of the gravity. The sour
e terms of the system are the bed slope andthe fri
tion terms:
S =

(
0,

pb,x
ρw

− τb,x
ρw

,
pb,y
ρw

− τb,y
ρw

)T (2.27)6

2.3. NUMERICAL RESOLUTIONwhere the bed slopes of the bottom level z are
pb,x
ρw

= −gh
∂z

∂x
,

pb,y
ρw

= −gh
∂z

∂y
(2.28)and the fri
tion losses are written in terms of the Manning's roughness
oe�
ient n:

τb,x
ρw

= ghSfx Sfx =
n2u

√
u2 + v2

h4/3
,

τb,y
ρw

= ghSfy Sfy =
n2v

√
u2 + v2

h4/3
(2.29)2.3 Numeri
al resolutionFollowing Godunov's method, the solutions of the RP's are evolved for a time equal to the timestep and the resulting solution is
ell-averaged. The volume integral in the
ell at time tn+1 leadsto the updating numeri
al s
heme as:

U
n+1
i Ai = U

n
i Ai −

NE∑

k=1

3∑

m=1

(λ̃−θαẽ)mk lk∆t (2.30)with λ̃±,m
k = 1

2
(λ̃± |λ̃|)mk .When applied to the shallow water system presented in se
tion 2.2 the approximate Ja
obian

J̃n,k for the homogeneous part is
onstru
ted with the following averaged variables [24℄
ũk =

ui
√
hi + uj

√
hj√

hi +
√

hj
, ṽk =

vi
√
hi + vj

√
hj√

hi +
√
hj

, c̃k =

√
g
hi + hj

2
(2.31)leading to

λ̃1
k = (ũn− c̃)k, λ̃2

k = (ũn)k, λ̃3
k = (ũn+ c̃)k (2.32)and

ẽ
1
k =




1

ũ− c̃nx

ṽ − c̃ny




k

, ẽ
2
k =




0

−c̃ny

c̃nx




k

, ẽ
3
k =




1

ũ+ c̃nx

ṽ + c̃ny




k

(2.33)When
ell averaging the solution in the 1D dimensional
ase the time step ∆t is taken smallenough so that there is no intera
tion of waves from neighbouring Riemann problems, attendingto a distan
e ∆x/2. In the 2D framework,
onsidering unstru
tured meshes, the equivalentdistan
e to ∆x, that will be referred to as χi in ea
h
ell i must
onsider the volume of the
elland the length of the shared k edges.
χi =

Ai

maxk=1,NE lk
(2.34)Considering that ea
h k RP is used to deliver information between ea
h pair of neighbouring
ells of di�erent size, the asso
iated distan
emin(Ai, Aj)/lk is relevant, so in
ase that ĥ(x′, t) ≥ 0in all k RP's the time step is limited by

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

maxm=1,2,3 |λ̃m|
(2.35)7

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODThe previous stability
ondition is insu�
ient in presen
e of relatively important sour
e terms.The systemati

ontrol of numeri
al stability in those
ases has been a matter of re
ent resear
hin the group as it is related with the appli
ability of the s
heme to real situations. A simplegeneralization of the CFL
ondition paying attention to the existen
e of the sour
e terms
anlead to extremely small values of ∆t various orders of magnitude smaller than the value di
tatedby the homogeneous
ondition, hen
e rendering the method impra
ti
al. This
an be avoidedby means of a re
onstru
tion of the approximate solution Û(x′, t) that is not detailed here forthe sake of
on
iseness. The strategy proposed is based on enfor
ing positive values of auxiliaryquantities h∗i
h∗i = hni + α1

k −
(
β

λ̃

)1

k

≥ 0 (2.36)and h∗∗∗j

h∗∗∗j = hnj − α3
k +

(
β

λ̃

)3

k

≥ 0 (2.37)so that, when they be
ome negative, the numeri
al sour
e term is redu
ed instead of redu
ingthe time step size. For more details, see [21, 18℄.Furthermore, following the uni�ed dis
retization in [6℄ the non-
onservative term (Tn)k in(2.13) at a
ell edge is written [20℄ as:
(Tn)k =




0(
pb
ρw

− τb
ρw

)
nx(

pb
ρw

− τb
ρw

)
ny




k

(2.38)where pb
ρw

and τb
ρw

attend to the pressure and fri
tion exerted on the bed respe
tively.In this work the following expression for the thrust term pb
ρw

is proposed:
(
pb
ρw

)

k

=





max

((
pb
ρw

)a
,
(

pb
ρw

)b)

k

if δd δz ≥ 0 and (ũn)δz > 0

(
pb
ρw

)b
k

otherwise (2.39)where d = (h+ z) and
(
pb
ρw

)a

k

= −g(h̃δz)k

(
pb
ρw

)b

k

= −g

(
hr −

|δz′|
2

)
δz′ (2.40)with

r =

{
i if δz ≥ 0

j if δz < 0
δz′ =





hi if δz ≥ 0 and di < zj
hj if δz < 0 and dj < zi
δz otherwise (2.41)The dis
retization of the fri
tion term based on [21℄ is applied

(
τb
ρw

)

k

= g(h̃Sf)kdn Sf,k =

(
n2

ũn|ũ|
max(hi, hj)4/3

)

k

(2.42)8

2.3. NUMERICAL RESOLUTIONwith dn the normal distan
e between neighbor
ell
enters.

9

10

3CUDA Te
hnology Overview
Nowadays, GPU te
hnologies start to
onquer from ordinary business appli
ations to s
ien
iti�
appli
ations. This general purpose orientation is denomined GPGPU1, allowing its developersto rea
h higher performan
e than in
oventional ar
hite
tures (Single Instru
tion Single Data)where the operations are
urre
ntly performed sequentially. In the
ase of s
ienti�

omputation,the GPGPU paradigm performs the numeri
al methods.nVidia has been working in the improvement of the GPGPU paradigm,
reating the CUDAtoolkit. CUDA toolkit is a parallel ar
hite
ture for graphi
 pro
essing whi
h implements anintru
tion-set oriented to the GPU memory a

ess and operations in C. Other more generalimplementations have been performed through open-sour
e platforms su
h as OpenCL and oth-ers like PGI-Cuda as propietary-sour
e. OpenCL has the main advantage of being hardware-independent. It implies that the same
ode
ould be exe
uted on both nVidia and ATI GPUs.The main disadvantage is that the learning-
urve is harder than for the CUDA toolkit. Theother option is PGI-Cuda. It has the main advantage in the support of CUDA primitives forFortran but the disadvantage is the
ost of it. So, as we are interested in simulating at nVidiaGPUs, the implementation of the
ode has been developed using CUDA-Toolkit.3.1 GPU Te
hnology historySin
e the advent of OpenGL, GPUs added programmable shading to their
apabilities. Ea
hpixel
ould in
oporate its pro
essing as a program to be shown on s
reen after applying it. nVidiawas the �rst to produ
e a
hip
apable of programmable shading. In 2002, ATI developed the�rst Dire
t3D 9.0 a

elerator, whi
h implemented looping and lengthy �oating point math, be-
oming as �exible as CPU and orders of magnitude faster for image-array operations.Abstra
ting the graphi
al purpose and taking a double-point array as if it were a vertex-array, the same operations were able to be applied, so with the nVidia CUDA Toolkit, a newprogramming model for GPU
omputing was stablished. After its appearan
e, OpenCL be
amebroadly supported allowing developers
oding for AMD/ATI GPUs.1General Purpose Graphi
 Pro
essor Unit 11

CHAPTER 3. CUDA TECHNOLOGY OVERVIEW3.2 nVidia CUDA te
hnologyThe present work has been developed using an nVidia Tesla GPU. The parti
ular organizationand how it works is explained below and has followed [11℄. Most of the details are
ommon withthe previous GPU generations and it is previsible that will be
ommon with future generationstoo.There are two main points of view when explaining how CUDA works. The �rst is based onthe hardware ar
hite
ture. The minimum unit is the Streaming Pro
essor (SP), where a singlethread is exe
uted. A group of SP's form the Streaming Multipro
essor (SM), tipi
ally with 32SP's. Finally, a GPU is
omposed by between 2 and 16 SM's. The se
ond point of view is basedon the way CUDA appli
ations are developed. The minimum unit is
alled Thread. Threadsare identi�ed by labels ranging between 0 and blo
kDim. The group of Threads is
alled Blo
k,and it
ontains a (re
ommended) 32 multiple number of Threads. Finally any group of Blo
ksis
alled Grid. These elements are illustrated on Figure 3.1.
Block 0 Block 1 Block 2

Thread Block GridFigure 3.1: thread, blo
k, grid s
heme
ompositionA
tual nVidia GPU's performs the threads s
heduling inside the SM in groups of 32
alledWarps (we also re
ommend [15℄ for future
onsiderations). Ea
h SM features two Warp s
hedulersand two instru
tion dispat
h units, allowing two Warps to be issued and exe
uted
on
urrently.Fermi's dual Warp s
heduler sele
ts two Warps, and issues one instru
tion from ea
h Warp to agroup of sixteen
ores, sixteen load/store units, or four SFU's. Be
ause Warps exe
ute indepen-dently, Fermi's s
heduler does not need to
he
k for dependen
ies from within the instru
tionstream. Using this elegant model of dual-issue, Fermi a
hieves near peak hardware performan
e.Most instru
tions
an be dual issued; two integer instru
tions, two �oating instru
tions, ora mix of integer, �oating point, load, store, and SFU instru
tions
an be issued
on
urrently.Double pre
ision instru
tions do not support dual dispat
h with any other operation.Figure 3.2 shows how the SP are distributed inside the SM and how the multipro
essors aredistributed inside the GPU. Furthermore, Figure 3.3 shows the temporal evolution inside the SMand how it works for a blo
k with 256 elements (warp=256/32 = 8 elements).Any Thread
an be labelled using blo
kDim, blo
kId and threadId. In an example with14 Blo
ks and 256 Threads/Blo
k (3584 elements), we �nd that for element 23 in Blo
k 4, thelabels inside the
ode are12

3.3. CUDA DEVELOPMENT
Streaming Multiprocessor

Instruction Cache

Register File
WS/DU WS/DU

Interconnected Network
Shared Memory/L1 Cache

Uniform Cache(a) GF100 StreamingMultipro
essor (SM)

Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor

Streaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming Multiprocessor

L2 Cache

Host Interface / GigaThread Engine

M
e
m
o
ry

C
o
n
tr
o
ll
e
r M

e
m
o
ry

C
o
n
tro

lle
r

(b) 14-SM based Fermi Ar
hite
ure detailFigure 3.2: Des
ription of our Fermi
2075 GPU based on GF100/GF110 Ar
hite
ture.
Warp Scheduler Warp Scheduler

Inst. Disp. Unit

Warp 8 Instruction 5

Warp 2 Instruction 1

Warp 6 Instruction 17

Warp 8 Instruction 3

Warp 2 Instruction 2

... ..
.

Block 4

Warp 5 Instruction 14

Warp 7 Instruction 5

Warp 1 Instruction 2

Warp 5 Instruction 15

Warp 1 Instruction 3

Warp 7 Instruction 6

...

Inst. Disp. Unit

T
im

e

Warp 6 Instruction 16

Figure 3.3: Exe
ution pipeline for a Strem Multipro
essor (left) whi
h pro
ess blo
k number 4 (right)
• blo
kDim=256
• blo
kId=4
• threadId=23and then, the typi
al a

ess pattern, points toi=threadId+blo
kDim*blo
kId=23+256*4=10473.3 CUDA developmentThe CUDA main fun
tions are related to the memory intera
tion between CPU and GPU, inparti
ular,
udaMem
py with the di�erent �ags to stablish the way of the transfer. It is importantto remark that these intera
tions or data transfers between GPU and CPU are extremely slowand should be minimized. Moreover, the allo
ation and memory freeing operations
ould beperformed using their equivalen
es in CUDA as shown in listing 3.1 13

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWListing 3.1: CUDA Most important fun
tions1 // GPU Memory allo
ation2
udaMallo
(...,size);3 // GPU Memory free4
udaFree(..);5 // Copy Host To devi
e6
udaMem
py(...,
udaMem
pyHostToDevi
e);7 // Copy Devi
e To Host8
udaMem
py(...,
udaMem
pyDevi
eToHost);9 // Copy Devi
e To devi
e10
udaMem
py(...,
udaMem
pyDevi
eToDevi
e);The advantage of using GPU for programming numeri
al methods,
omes from the High-Level Single Instru
tion Multiple Data (SIMD) or as nVidia
alls, Single Intru
tions MultipleThreads (SIMT) paradigm. Any operation
an be exe
uted in
on
urren
e with many othersallowing any CUDA Thread to a

ess to a parti
ular position while any other is a

essing toanother one.3.3.1 Example of implementation in a 1D
aseConsider, for example, the 1D transport equation:
∂u

∂t
+ c

∂u

∂x
= 0 (3.1)with c > 0, and its initial and boundary
onditions

u(x, 0) = f(x)

u(0, t) = U0applying the temporal dis
retization with forward Euler and the upwind s
heme:
∆ui
∆t

= −ui − ui−1

δx
(3.2)writing its as

un+1
i = uni − uni − uni−1

δx
∆t · c (3.3)and the pro
edure
ould be written in Standard C as followsListing 3.2: Simple 1D transport equation in C1 void upwindStepCPU(double *fn,double *fnmas1,double DELTAX){2 int i;3 for (i=1; i<1/DELTAX; i++) {4 fnmas1[i℄=fn[i℄+
DELTAT(fn[i-1℄-fn[i℄)/(DELTAX);5 }6 }14

3.3. CUDA DEVELOPMENTSin
e
onventional pro
essors are not-able to make this operation for any group of elementsat the same time, the result will be obtained at the end of 1/∆x
y
les. This kind of ar
hite
tureis
alled SISD (Single Instru
tion Single Data) and it is used by the most
ommon personal
om-puters. The disadvantage of this implementation is the need of pro
essing elements one-by-one,making easier the implementation of the
ode but not rea
hing good performan
e.CUDA implementation of Listing 3.2
ould be written asListing 3.3: Simple 1D transport equation in CUDA1 __global__ void upwindStepGPU(double *fn,double *fnmas1,double DELTAX)2 {3 // Point to the data4 unsigned int x = blo
kIdx.x*blo
kDim.x + threadIdx.x;5 if(i<MAX){6 fnmas1[i℄=fn[i℄+
(DELTAT(fn[i-1℄-fn[i℄)/(DELTAX);7 }8 } The fun
tion invo
ation
ould be made as followsListing 3.4: Cuda fun
tions
alling1 // CPU2 f=(double*)mallo
(sizeof(double)*MAX);3 fnmas1=(double*)mallo
(sizeof(double)*MAX);4 ...5 // Condi
iones ini
iales6 ...7 // Copia de CI a GPU8
udaMem
py(d_f, f, sizeof(double)*MAX,
udaMem
pyHostToDevi
e);9
udaMem
py(d_fnmas1, f_nmas1, sizeof(double)*MAX,
udaMem
pyHostToDevi
e);10 ...11 // Cal
ulo12 for (j=0; j<=(TFINAL/DELTAT); j++) {13 upwindStepCPU(f,fnmas1,deltax);14 reAsigna(f,fnmas1,deltax);15 }16 //GPU17 for (j=0; j<=(TFINAL/DELTAT); j++) {18 upwindStepGPU<<<blo
ks,threads>>>(d_f,d_fnmas1,d_deltax);19 reAsignaG<<<blo
ks,threads>>>(d_f,d_fnmas1);20 }21
udaMem
py(f, d_f, sizeof(double)*MAX,
udaMem
pyDevi
eToHost);The key of this implementation is based on the fa
t that all Blo
ks and Threads together
over the amount of elements to be pro
essed. The relation between Blo
ks (nb), Threads (nt)15

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWand the amount of elements (ne) must be
ne ≤ nb ∗ nt (3.4)3.4 Results All that glitters is not goldRe
ent work [7℄ [10℄ has been published reporting that it is possible to get Speed-Ups around100x and 130x using Simple Pre
ision Floating Point Data types. It is important to note thata few details must be taken into a

ount before a

epting this kind of results. Moreover, [16℄explained that
omparison tests from CPU to GPU, must be developed at the same
onditionsin order to be satisfa
tory. To take this into a

ount the
omputational resour
es where testsare going to be performed in the present work are shown in Table 3.1 showing the
omputationalfa
ilities
ommon to all the tests performed. CPU GPUCores 6 448Frequen
y (MHz) 2666.969 1150DP Rpeak (GFLOPS) 67.2 515.2Memory (GB) 48 6Mem. Bandwidth (GB/s) 32 144Table 3.1: Intel Xeon X5650 � 2.66 GHz and nVidia Tesla
2075 te
hni
al
hara
teristi
sWith 1D transport equation,
omputational times as appear in table 3.2
an be obtained.The
omputational performan
e is fun
tion of the number of elements implied in the
al
ulation,both for GPU or CPU implementations. This detail is very important when the number of op-erations in
reases and mu
h more when the a

ess to the main memory is high.1-Core 6-Core GPUn t (ms) Speed-Up t (ms) Speed-Up t (ms)1048576 143799.29 33.48 24844.87 5.78 4295.62524288 71162.12 32.65 11931.02 5.47 2179.62131072 17649.91 29.62 3034.35 5.09 597.98Table 3.2: Computational performan
e through CPU (Mono-Core and Multi-Core) and GPU for t=(0,1),x=(0.0,1000.0), δ = 1000.0/n and ∆t = 10−4The performan
e of the GPU is very high for the simplest 1D transport equation. TheSpeed-up has been measured as elapsed time at GPU divided by elapsed time at CPU. It rea
hes33.48x for the mono-
ore version and 5.78x for the multi-
ore version. It implies a performan
eof around 73% with regard to the theoreti
al in
rease (7.66x and 46x).It is widely a

epted that Simple Pre
ision has more throughput but it is not as pre
ise asthe Double Pre
ision.16

3.4. RESULTS ALL THAT GLITTERS IS NOT GOLDGPU-DP GPU-SP GPU-SP2n t (ms) ǫ Sup t (ms) ǫ SSup t (ms) ǫ Sup1048576 4293.87 -6.6437e-14 33.93 3345.54 -1.4267e-04 44.85 1904.97 -1.6645e-04 78.53524288 2175.31 2.2146e-14 32.95 1716.82 4.7558e-05 42.91 981.00 1.1889e-05 75.59131072 594.38 4.4291e-14 29.84 488.02 -1.0700e-04 37.61 293.64 -1.1889e-04 62.00Table 3.3: Simulation time, a

ura
y and performan
e for GPU performing the
al
ulations for using Double,float and a tuned version with float for t=(0,1), x=(0.0,1000.0), δ = 1000.0/n and ∆t = 10−4In Table 3.3 shows three implementations, using double and float and a tuned version offloat in order to exploit the bene�ts of the GPU when �oat is used. Hen
e, it is importantto bear in mind that the use of the simple pre
ision must be limited to those
ases where thepre
ision is not the most important aspe
t [12℄ but the performan
e is
riti
al.When quantifying the
omputational gain of GPU over CPU implementations, the followinge�
ien
y parameters are of interest:
ηCPU =

RCPU

Rpeak
CPU

ηGPU =
RGPU

Rpeak
GPU

(3.5)where R and Rpeak stand for the e�e
tive performan
e and peak performan
e of a parti
ular
on-�guration respe
tively. It is important to note that performan
e
omparisons should be evaluatedat similar individual levels of e�
ien
y in both CPU and GPU implementations and, ideally, atmaximum e�
ien
y. However, it is not always easy to rea
h the ideal values of ηCPU =1 and
ηGPU =1 of the pro
essors, nor it is to ensure that both implementations o�er ηCPU = ηGPUprior to their
omparison. On the other hand, it is worth noting that it is easier to improve thee�
ien
y when working in GPU pro
essors than in CPU implementations so that, frequently,
omparisons are made between implementations where ηGPU > ηCPU . A good implementationin both ar
hite
tures o�ers very similar results to the ones shown in the previous table.The performan
e of the CUDA version
ould be obtained as follows

γ =
Sup

STheoretical
up

=
tGPUR

peak
CPU

tCPUR
peak
GPU

(3.6)Attending to this implementation, it is obtained a relation of 73% of e�
ien
y in the imple-mentation of the GPU using Double data type and 85% using the tuned float version. Whenreading some literature, 140x is a�ordable [7℄ but we suggest that it is very important to analyzethe results and to apply some
ommon sense.[7℄ obtains gainan
es about 21x using Double Pre
ision data types. It is used a Intel XeonE5430 (2.66 GHz, 12 MB L2 Ca
he) whi
h a
hieves Rpeak
CPU = 10.689 GFLOPS/
ore (4 Cores)and a nVidia GeFor
e GTX 260, whi
h has Rpeak

CPU ≈ 71 GFLOPS. For this
on�guration, theratio of the theoreti
al maximum gainan
e, assuming ηGPU = ηCPU = 1,
Rpeak

GPU

Rpeak
CPU

= 6.64 (3.7)17

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWIn the work, 21 gainan
e has been shown, whi
h implies γ > 3, implying that ηGPU >>

ηCPU . When both CPU and GPU implementations are mostly optimized, this performan
e isoverstimated and we propose that γ ≈ 1 is a very a

eptable performan
e, showing the pro�tsof the GPU and not taking to
onfusion to developers. In this work, we have tuned bothimplementations in order to show a realisti
 performan
e of the GPU implementation.

18

4Implementation
The implementation and its di�
ulty is not the main topi
 of this work but some interestingdetails are explained that
ould be useful in any other appli
ation of a similar expli
it �nite-volume s
heme. In parti
ular, details about the importan
e of and how to obtain memory
oales
ing pro�ts, solving bottle-ne
k problems or writing output �les with the minimum penaltyare des
ribed below. They are all related with the ne
essity to avoid data transfer between theGPU and the CPU during the
al
ulation as mu
h as possible.4.1 Model overviewThe main of the implementation is shown in Listing 4.1. There it is shown the main aspe
ts ofthe programming and the general aspe
t of any similar
ode.Listing 4.1: Overview of the CUDA implementation.1 ...2 // Configuration of the parameters3 threads=512;4 wallBlo
ks=nWall/threads;5
ellBlo
ks=nCell/threads;6 while(t<tmax){7 // Cal
ulate the fluxes8
al
ulateWallFluxes<<<wallBlo
ks,threads,0,exe
utionStream>>>(...);9 // Stablish the minimum dt obtaining the ID of the10 // minimum dt11 // (*) Explained at se
tion 4.312
ublasIdamin(...,nWall,vDt,1,id);13 // And assign it14 newDt<<<1,1,0,exe
utionStream>>>(dt,vDt,id);15 // Update the elapsed time (in GPU)16 updateT<<<1,1,0,exe
utionStream>>>(
uda_t,dt);17 // Retrieves the value of t to CPU18
udaMem
py(t,
uda_t,sizeof(double),
udaMem
pyDevi
eToHost);19

CHAPTER 4. IMPLEMENTATION

Figure 4.1: Exe
ution tra
e and performan
e detail for a time-step using Paraver19 // Update the
ell values20 assignFluxes<<<
ellBlo
ks,threads,0,exe
utionStream>>>(...);21 // Verify if it is ne

essary to dump data and22 // if it is ne

essary, pro
ess it.23 // (*) Detailed in se
tion 4.424 if(t<t_dump){25 // Copy of
ell variables to a GPU26 // stored buffer27
udaMem
py(...,
udaMem
pyDevi
eToDevi
e);28 // Stablishing the barrier to ensure the
opy of the29 // data to the buffer30
udaStreamSyn
hronize(
opyStream);31 // Copy the data to the CPU buffer32
udaMem
pyAsyn
(...,
udaMem
pyDevi
eToHost,
opyStream);33 // Create another stream in order to be whi
h
ontrols34 // the disk-transfer35 pthread_
reate(&diskThread, ...);36 }37 } The details of this implementation are des
ribed below. Furthermore, the behaviour of the
ode is des
ribed in a timeline whi
h tra
e has been obtained using Paraver (www.bs
.es/
omputer-s
ien
es/performan
e-tools/paraver) in Figure 4.1.20

4.2. MEMORY COALESCING
1 3

97

2

6

8

4 11

4

1

8

5

2 3

6 7

10

14

17

21

24

20

23

19

22

18

15

12

9

13

16

5

Figure 4.2: Stru
tured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) example4.2 Memory
oales
ingMemory
oales
ing is the way the memory is ordered allowing half-Warp to a

ess global mem-ory at the same time (using only 1
y
le to perform the load operation). This means that, if aThread (The �rst one) in a Warp a

esses to a parti
ular memory address and it a

ess patternis su
h that a

ess to the next address (i, i+1, i+2....) the following 31 Threads do not needto read the memory again. Otherwise, two or more a

esses are needed to allow ea
h Thread thea

ess to data.Memory
oales
ing is one of the most important things to take into a

ount when program-ming GPU's. Re
ent works [29℄ have demonstrated the e�
ien
y of
oales
ing te
hniques, beingthis implementation better in some
ases than shared memory strategies. Although there existworks dealing with the pro�ts of using this strategy, the way to pro
eed when using unstru
-tured meshes is not
lear. This topi
 will be dis
ussed in the next May 2012 GPU Te
hnologyConferen
e [8℄ and some improvements are detailed in [25℄.In our
ase, the perfe
t memory
oales
ing te
hnique
ould be implemented, [5℄ [7℄, if usingstru
tured meshes. As it appears in Figure 4.2,
ell labelling implies that the a

ess pattern fora Blo
k of (in this
ase 9)
ells allows the programmer to make the perfe
t mat
h a

ess into aWarp. In other words, for any group of
ells within a Warp, all the variables are a

essible inonly a
oales
ed reading.Being the present work oriented to a general implementation of the �nite volume s
heme onboth stru
tured and unstru
tured grids, the memory optimization is not as easy as des
ribedabove.A

ording to the general updating formula 2.30, this s
heme works with the
ell edge �uxes orinter-
ell elements through whi
h the Rienmann Problem is solved. In the
ase of the stru
turedmesh, this �ux takes pla
e into the left, right, upside and downside
ell to a given
ell, so all theoperations
ould be performed looping by
ells. In unstru
tured grids, this
on
ept is di�erent21

CHAPTER 4. IMPLEMENTATION
......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

T
im

e

Figure 4.3: Misaligned and Coales
ed a

ess pattern to
ompute the �ux variation for any group of elementsfollowing the s
heme of Right, Left, Down, Up for W data (Stored by
ell) in a mesh ordered as Figure 4.2. Light
oloured
orrespond to the pro
essed element 5, wi
h implies
ells 2, 4, 6 and 8.
16

748

61

23

9

7 5

12

11
16

33

9

24

21

17

20

14

10

4531

87

56

8

22

18

49

2359

27

30Figure 4.4: Unstru
tured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) exampleand it is good idea to make the �ux
al
ulations by walls and then, to assign them to ea
h
ellwith the need to keep tra
e via a
onne
tivity matrix.For the general unstru
tured
ase it is important to de
ide how to stablish the order of thevariables. It
an be performed through
ells or through walls. Using as example Figure 4.2,the operations of applying the variation to the
ell (8) has no a
oales
ed pattern. There existsthe need of sear
hing the neighbouring
ells (74,61,16) and
al
ulating the �ux through walls(33,9,16). Sket
hing these operations in an example for wall 33 (i=33,
1=8,
2=74) we have:Listing 4.2: A

ess pattern for the main �ux variation operation.1
al
ulateWallFluxes(...){2 // Loop by wall3 int i = threadIdx.x+(blo
kIdx.x*blo
kDim.x);4 if(i<nWall){22

4.3. GATHERING DATA AVOIDING BOTTLENECK
...

...

...

...

...

......

32 Threads Warp

Wall Neighbouring

Vector

Cell Data Array

Figure 4.5: Un
oales
ed a

ess pattern to get W data (Stored by
ell). Pro
essing wall 9 is light
oloured whenit a

esses to
ell 8 (i=9,
1=8)5
1=wall[i℄;6
2=wall[i+1℄;7 // [COALESCED℄ A

ess to the variables of the wall8 // Normal Ve
tor9 // Length of the side10 // ...11 ...12 // [UNCOALESCED℄ A

ess to the variables of
1 and
213 // Primitives variables14 // Area of the
ells15 // ...16 ...17 // Store the value of the flux for the wall i18 }19 } Although this is the main fun
tion where the �ux is
al
ulated and it involves many un
o-ales
ed a

esses to the variables, there are some operations whose a

ess
ould be performedthrough the
ells.4.3 Gathering data avoiding bottlene
kOne of the troubles when trying to make all the operations inside the GPU is the identi�
ationof global quantities su
h as the minimum value of a ve
tor. As the Many-Core paradigm is notdesigned to share information between elements, redu
tion operations like min, max, sum...are performed at
ublas library [23℄.
ublas library has high-level fun
tions that work retrieving results to GPU or to CPU. Wheninterested in using them without taking out the data from the GPU, that must be spe
i�ed. This
ould be done through
ublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_DEVICE),stating that all results have to be returned to the GPU memory.In our
ase, it is essential that the algorithm
al
ulates the minimum ∆t following the CFL
ondition when running along all the
ell edges. Then, following Figure 4.3 s
heme, the minimumamong all of them is sele
ted. Details are shown in Listing 4.3. 23

CHAPTER 4. IMPLEMENTATION
1 2 3 n-2 n-1 n

0.13 0.45 0.05 0.62 0.78 0.11

cublasIdamin() 3

dt[1..n] Δt=dt[3]Figure 4.6: Gathering minimum ∆t for all the domainListing 4.3: Gathering ∆t operation1 __global__ void newDt(double *dt,double *vDt, int *id){2 // As
ublasIdamin returns it value following3 // 1-based indexing, we must to substrate 14 *dt=vDt[*id-1℄;5 }67
ublasIdamin(handle,*npared,vDt,1,id);8 newDt<<<1,1>>>(dt,vDt,d_id);9 ...While
al
ulation is
ontrolled by host, it is ne
essary to transfer the updated tn+1. After
δt is
al
ulated, the updating operation
an be perform as 4.4 and then, you
an transfer theupdated value of tn+1 to CPU.Listing 4.4: Updating ∆t1 __global__ void updateT(double *dt,double *t){2 int i;3 *t=*t+*dt;4 } In order to
al
ulate the global mass error, there is a sum of mass inside the mesh and thebalan
e between the inlet and outlet boundariesM = ρ

∑
hiAi (4.1)and then, it
al
ulates the error as

ǫ =
Mn+1 −Mn +Min −MoutMn+1

(4.2)The sums are performed using
ublasDasum where all elements are added within a ve
torand the results stored in a variable, working similar to
ublasIdamin.4.4 Writing output �lesThe feature of the newest CUDA models allowing for simultaneous exe
ution and
opy streams
an be used to hide delays
aused by writing data to disk.24

4.4. WRITING OUTPUT FILES

Figure 4.7: Asyn
hronus dumping data diagram.Traditional
udaMem
py performs a syn
hronous
opy, i.e., the
all does not return until the
opy is
omplete. However,
alls to the new family of asyn
hronous fun
tions like
udaMem-
pyAsyn
 may return before the
opy is
omplete. Furthermore, the
opy may be assigned to astream. In this way it is possible for the CPU host
ode to
all
udaMem
pyAsyn
 and assignit to a
opy stream, then laun
h kernels in an exe
ution stream. Both streams are pro
essedsimultaneously by the GPU.It is not possible to use
udaMem
pyAsyn
 dire
tly to
opy simulation results to Host mem-ory in the
ase of shallow �ow simulation be
ause the
on
urrent simulation would alter thevalues in the variables being
opied. It is ne
essary to make a syn
hronous
opy to a bu�er inGPU memory �rst (Figure 4.7). On
e the
opy of the results to the bu�er is
omplete, a
all to
udaMem
pyAsyn
 is made whi
h
opies the bu�er to host memory, and the simulation kernelsare laun
hed simultaneously operating on the usual variables. 25

CHAPTER 4. IMPLEMENTATIONThis s
heme requires that the CPU laun
hes kernels after the
all to the asyn
hronous
opy.It is ne
essary to introdu
e a parallel CPU thread that waits for the
opy to �nish and thenwrites the results to disk. Thus, the main CPU thread will �rst
all
udaMem
pyAsyn
, thenspawn a write thread and
ontinue laun
hing kernels to advan
e the simulation. The �rst taskfor the writing CPU thread will be to wait for the
opy stream to �nish, then pro
eed to writethe results in host memory to disk.The limitation in this s
heme is that the
omputation time between dumps to disk has to begreater than the writing time to disk itself. If that is not the
ase, gains
an still be a
hievedfrom using this s
heme but further barriers are required. One of them is that the main CPUthread has to wait for the writing thread to �nish before
alling
udaMem
pyAsyn
. Dependingon the problem, further gains
an be made e.g. using multibu�ering.4.5 Compilation and other issuesIn the original Fortran version of the
ode there are several fun
tions related to the prepro
essand postpro
ess as sket
hed on �gure 4.8. To be more e�
ient, the programming of that partof the
ode in C has been ommitted and the work has fo
used on the e�
ient programmingof the numeri
al aspe
ts. So the prepro
ess is performed through the Fortran version and the
omputing kernel is performed using C/CUDA.To work with the two
odes at the same time, they have been
ompiled together. Thete
hnique used is based on making a standard C interfa
e whi
h interoperates with CUDA andis
alled from Fortran as shown in [1℄. The most
ompli
ated and interesting detail of thisoperation is the way of
ompiling them. It is shown in Listing 4.5.Listing 4.5: Make�le S
ript12 NVCC = nv

3 FORT = gfortran45 FORTFLAGS = -w -O36 CUFLAGS = -g -w -O3 -m64 -ar
h sm_21 -Xptxas -dl
m=
a -I$(EXTRAE_HOME)/in
lude7 LDFLAGS = -L/opt/
uda/4.0/lib64 -L$(EXTRAE_HOME)/lib -l
udatra
e -l
uda -l
udart-lstd
++ -l
ublas -lrt -lm -lpthread8 OBJ =
uda_blo
ks2mf.o SFS2Dv01_64.o9 BIN = sfsGPU1011 $(BIN): $(OBJ)12 $(FORT) $(FORTFLAGS) $(OBJ) $(LDFLAGS) -o $�1314
lean:15 $(RM) $(OBJ)26

4.5. COMPILATION AND OTHER ISSUES1617
leanEx:18 $(RM) $(OBJ) $(BIN)1920
uda_a
tualiza.o:
uda_a
tualiza.
u21 $(NVCC) $(CUFLAGS) $< -
 -o $�2223
uda_blo
ks2mf.o:
uda_blo
ks2mf.
u24 $(NVCC) $(CUFLAGS) $< -
 -o $�2526 SFS2Dv01_64.o: SFS2Dv01_64.for27 $(FORT) $(FORTFLAGS) $< -
 -o $�Bearing in mind that all the stru
tures are
reated as Ve
tors in Fortran and Fortran indexingare 1-based (C uses 0-Based) an spe
ial a

ess is required (Eq (4.5), (4.5) and (4.5)). Furthermore,Fortran stores the elements following Column-Major Order while C storing is Row-Major Orderbased. These two aspe
ts imply that:
• The a

ess to the parti
ular position i of array V [M] is made, in C, as

V (i) = V [i− 1] (4.3)
• The a

ess to the parti
ular position i, j of array V [MxN] is made in C as

V (i, j) = V [(j − 1) ·M + i− 1] (4.4)
• The a

ess to the parti
ular position i, j, k of array V [MxNxO] is made in C as

V (i, j, k) = V [(k − 1) ·M ·N + (j − 1)M + i− 1] (4.5)
Load the mesh

Load Initial Conditions

Load BCs

Stablish Sim. Length

Stablish Sim. Length

Compute Results

Dump Data

Free Resources

t<tsim?

Calc. dW Calc. dt Wet/Dry Correction

Sync dtUpdate W

No

Yes

Sync dW

t
=
t
+
d
t

⊗

Figure 4.8: Flux diagram for the appli
ation. Green-highlighted is the ported sli
e of the
ode
27

28

5ResultsThe
ases
hosen to show the results are fo
used on how similar are the GPU numeri
al results tothe ones obtained from the original CPU version (pre
ision) and how e�
ient this implementation
an be (performan
e). To a
hieve this, two examples have beed sele
ted. First, an a
ademi

aseof unsteady �ow with sour
e terms with analyti
al solution and se
ond a real life inundation�ow of hydrauli
 interest. Furthermore, the GPU perfoman
e has been
ompared with that ofa distributed-parallel version of the CPU
ode at [14℄ using a dam-break �ow simulation with alarge number of
ells.5.1 Pre
ision: A test-
ase with analyti
al solutionThis
ase has been used to minimize the di�eren
es between the results provided by the CPU andthe GPU versions. The
ase simulates the evolution of a mass of water
ontained in a fri
tionlessparaboloid. Test Case 1
orresponds to zero initial velo
ity and a
urved initial free surfa
e shape(Figure 5.1). As times goes on, the potential energy transforms into kineti
 energy. It is a good
ase be
ause it has analyti
al solution [27℄ and there exists a
hallenging wet/dry boundary allthe time.

Figure 5.1: Left: Bed level and initial water depth state for test
ase 1.As shown in Figure 5.2 and Figure 5.3 there are not visible di�eren
es between both simula-tions. In order to quantify the pre
ision of the GPU implementation with respe
t to the CPU,29

CHAPTER 5. RESULTS

Figure 5.2: Test
ase 1. Left: GPU Simulated results for h and Right: CPU Simulated results for h at t = 42.03s.

Figure 5.3: Test
ase 1. Left: GPU Simulated result for |v| and Right: CPU Simulated results for |v| at
t = 42.03s.the L1, L2 and L∞ norm of the error in water depth at di�erent times has been
al
ulated. TestCase 1 shows a

eptable di�eren
es. This agrees with the error in the
al
ulation rea
hing ma-
hine pre
ission (O(−14)) in both versions of the
ode. The most sensitive region is the wet/dryboundary where both the water depth and velo
ity are very small.Test Case 2
orresponds to the same fri
tionless
ontainer but with di�erent initial data
or-responding to a �at surfa
e with velo
ity. Although the visual
omparison is also favorable, thedetailed evaluation of the L1, L2 and L∞ norm of the error in water depth at di�erent timesshows una

eptable di�eren
es whi
h
ome from the pre
ision of the double �oating point datatype, rea
hing O(L∞) = −4. Studying the pro
eden
e of the di�eren
es we �nd the problem atthe �rst time step (See Figure 5.1).Following the numeri
al s
heme, we found that:

h∗∗∗j = hnj − α1
k +

(
β

λ̃

)1

k

≥ 0 (5.1)Attending to the new state for the se
ond time-step, we found the values for
ell 65399 asappears in Table 5.230

5.1. PRECISION: A TEST-CASE WITH ANALYTICAL SOLUTION
L1 Norm L2 Norm L∞ NormTest Case 1 T/4 5.8354e-06 4.4112e-08 5.0000e-10T/2 8.0286e-06 5.1624e-08 4.9991e-103T/4 8.0451e-06 5.1698e-08 4.9995e-10T 7.9398e-06 5.1307e-08 4.9988e-10Test Case 2 T/4 1.4805e+01 2.9783e-01 5.9207e-02T/2 1.6664e+01 2.2877e-01 3.1504e-023T/4 1.7416e+01 3.3210e-01 1.1387e-01T 2.5452e+01 4.3794e-01 5.4876e-02Table 5.1: L1, L2 and L∞ for hCPU GPU

α -7.00000000000000188e-03 -7.0000000000000045e-03
β -1.83403406456914518e-03 -1.8340340645691430e-03
λ 2.62004866367020641e-01 2.6200486636702058e-01

ǫ ∝ −α1
k + (β/λ̃)1k -8.67361737988403547e-19 8.6736173798840355e-18
hn+1

i 9.7990000000000005e-06 6.7151999999999997e-05
L∞(hi) 5.7353e-05Table 5.2: Computational results in the �rst time step for α, β, λ, h and L∞ for h in the
on�i
tive
ellAlthough there are little di�eren
es, visual results appear to be the same as it is shown in�gures 5.5, Figure 5.6 and Figure 5.7In order to avoid this di�eren
es in
omputational a

ura
y and the
orresponding non-physi
al �uxes, the following restri
tion is in
luded (where hls=h∗ and hrs=h∗∗∗).Listing 5.1: A

ess pattern for the main �ux variation operation.1 ...2 if(hls<COTAMIN1_15)3 hls=0.0;4 if(hrs<COTAMIN1_15)5 hrs=0.0;

Figure 5.4: Left: Initial state h0 for the
on�i
tive
ell. Center: h1 for CPU. ǫ a

ura
y involves wall treatmentas solid edge implying an in
reasing in it water depth. Right: h1 for GPU. ǫ a

ura
y involves wall treatment asnon solid edge so that water level de
rease at
ell i and in
rease at
ell j. 31

CHAPTER 5. RESULTS
-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)Figure 5.5: From Left to right, Top to down, h+z for t=T/4, T/2, 3T/4 and T
-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)Figure 5.6: From Left to right, Top to down, u for t=T/4, T/2, 3T/4 and T6 ...32

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVER
-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)Figure 5.7: From Left to right, Top to down, v for t=T/4, T/2, 3T/4 and TWith this
orre
tion, the following norms are obtained (See Table 5.3)
L1 Norm L2 Norm L∞ NormTest Case 1 T/4 3.1995e-11 5.6889e-13 2.1316e-14T/2 3.4019e-11 5.8436e-13 1.0658e-143T/4 4.4666e-11 6.7184e-13 1.7764e-14T 3.3531e-11 5.8323e-13 1.9984e-14Test Case 2 T/4 2.0493e-11 4.5302e-13 1.0658e-14T/2 3.4429e-11 5.8694e-13 1.0658e-143T/4 3.2590e-11 5.7146e-13 1.0658e-14T 3.3222e-11 5.7687e-13 1.0658e-14Table 5.3: L1, L2 and L∞ for h before applied the
orre
tion

5.2 Performan
e: A large-s
ale simulation at Jú
ar RiverA realisti

ase with a long simulation time has been used in order to study the behaviour ofthe implementation in a large spatial and time s
ale
ase. Tous Dam is the last �ood
ontrolstru
ture of the Jú
ar River basin in the
entral part of the Mediterranean
oast of Spain. Dur-ing the 20th and the 21st O
tober 1982 a parti
ular meteorologi
al
ondition led to extremelyheavy rainfall. As a result the Jú
ar River basin su�ered �ooding all along and the Tous Damfailed with devastating e�e
ts downstream. The �rst a�e
ted town was Suma
ár
el, about 5
km downstream of Tous Dam, lying at the toe of a hill on the right bank of Jú
ar river [3℄.33

CHAPTER 5. RESULTS

Figure 5.8: From Left to right, Top to down, h for t=0, T/4, T/2, 3T/4 and TThe terrain is moderately mountainous and most of the buildings lie on a slope that partiallyprote
ted them from the �ood. The an
ient part of the village, however, is lo
ated
loser to theriver
ourse and was
ompletely �ooded, with high water marks rea
hing between 6 m and 7 m.The resolution of the available topographi
 data allow �ood modelling. The DTM modelused in this work was generated by CEDEX in 1998 [3℄. From this information two numeri
aldomains of di�erent size and grid re�nement were de�ned. The �rst domain, wi
h we will referto as D1,
overs most of the original DTM, starting just after the dam lo
ation and �nishingapproximately 1 km downstream of Suma
ár
el. More details
an be found in [3℄.34

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVER

Figure 5.9: Left: Sumá
ar
el photography. Right: simulation mesh

Figure 5.10: Water depth evolution for (Left-right, Top-down) t = 5, 10, 15, 20, 25, 30h

35

CHAPTER 5. RESULTSCPU GPUCells 563712CFL 0.9
tn 140400.0
Q0 0 m3/sComp. Load (h.) 698.52 22.31
Sup 31.31Table 5.4: Simulation time for test
ase 2

Figure 5.11: Gauges positionThe values of referen
e to evaluate the quality of the simulations are �eld data of the maxi-mum level rea
hed by the �ood wave at di�erent lo
ations within the town [3℄. The lo
ation ofthese gauging points is shown in Figure 5.11.
D1 was
onstru
ted using a triangular stru
tured mesh with side length 5 m, able to providea
orre
t representation of the village. This led to 144669 grid
ells. When doubling the
ellsize the resolution of the buildings was smeared and the village topography was poorly de�ned,providing an unrealisti
 de�nition of the problem.The se
ond dis
retization D2,
overs a small part of D1, fo
using on the representation of thevillage and was generated using a �ner stru
tured triangular mesh
hara
terized by
ell sides of2.5 m over a smaller domain (grid density in
reased by a fa
tor 4). This dis
retization involves563712
ells. Both dis
retizations D1 and D2 are able to reprodu
e the narrow streets of thevillage, although the mesh D2 provides a sharper delimitation of the buildings.Urban �ooding usually takes pla
e in unexpe
ted events and, in
onsequen
e, useful dataare not a

urately re
orded, as in this
ase. When reprodu
ing these events it is ne
essary toimagine di�erent s
enarios in order to
ompare the relative predi
tions to draw
on
lusions. Asin this work we are
on
erned about the a

ura
y of the proposed simulation model to urban�ooding, we will analyze the sensitivity of the solutions to the
ell size. The de
rease in the
ellsize leads to a large in
rement in the time of simulation. Therefore, it is also useful to
he
k36

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVERif good predi
tions
an be obtained using redu
ed domains of the study area or if, otherwise,it is preferable to de�ne large domains at the
ost of less de�nition for the topographi
 data ifextremely long
omputational times are to be avoided.This hydrograph is syntheti
 sin
e no a
tual dis
harge re
ords exist [3℄. As the numeri
aldomain D2 is lo
ated 4 km downstrean of the Tous Dam it is possible to
ompute a new dis-
harge
urve by re
ording the rate of �ow dis
harge at an appropriate se
tion in D1. Due tothe huge magnitude of the �ooding the di�eren
e between the two dis
harge
urves is merelya lag time of a few hours. Both are displayed in Figure 5.14. Considering this, and the fa
tthat no re
ords of the �ood wave arrival time exist, the same original dis
harge
urve was set asinlet boundary
ondition in domains D1 and D2 when performing numeri
al simulations. At theoulet boundary, downstream of the domains, the �ow was let to exit freely without imposing any
onditions, as no information was provided. The initial depth of water in the river rea
h prior tothe rain events is unknown. Taking into a

ount that the base �ow of Jú
ar River is roughly 50
m3s−1 whi
h is totally negligible in
omparison with the s
ale of Tous out�ow hydrograph, thevalley was assumed initially dry. Following [3℄ a Manning
oe�
ient of 0.030sm−1/3 was usedfor the whole river bed rea
h. Other zones of in
reased Manning
oe�
ient are in
luded. As theground in the town area was fully paved with
on
rete, the �ood did not erode it.Regarding re
orded hydrauli
 data of the �ooding of the town of Suma
ár
el, a range for themaximum water elevation marks was
olle
ted at 21 lo
ations within or very
lose to Suma
ár
elvillage. In both
al
ulations a total time of 39 h was simulated with a
omputational time of 5.5
h in the D1 domain and 22.3 h in the D2 domain.These gauging points are shown in Figure 5.11. Some gauges (numbers 5, 9, 15, 17, 18 and21) show no �ooding (zero or near zero maximum water depth) and
orrespond to lo
ations justbarely rea
hed by the �ooding so that they represent a sort of shore line of the �ood within thetown.Table 1
ontains a summary of probe lo
ations, estimated maximum water depths and
om-puted maximum water depths on the two
omputational domains. The values of the water depthat gauges 1 and 2, pla
ed in the lower part of the village indi
ate that the numeri
al solutionsprovided by both grids are a good predi
tion of the maximum water level rea
hed by the �oodingat both stations. Both gauges register almost the same water level surfa
e evolution, as expe
teddue to their proximity. Good agreement between maximum water elevation marks and predi
teddata is also found for gauge lo
ations 3 and 4, of similar bed level elevation, and lo
ated withinthe village.The results in table 1 show also a good agreement for gauge 5 that remains dry a

ording tothe �eld observations, despite it being
lose to the river bed. The elevation at gauge 6, withinSuma
ár
el, is overestimated in approximately 1 m. The water depth at gauge 7 agrees well withthe maximum water elevation mark, whilst water depth in gauge 8 is overestimated in approxi-mately 1 m. 37

CHAPTER 5. RESULTSGauge x(m) y(m) Est. max. h(m) Comp. max. h(m) D1 Comp. max. h(m) D21 2410 3290 17.5-19 18.613149 18.6846262 2400 3335 8.0-9.0 10.181195 9.8069113 2355 3315 7.0-8.0 7.270638 7.3861484 2345 3380 7 6.775814 6.8958015 2335 3175 0.2 0.000 0.006 2335 3420 5.0-6.0 7.464109 7.6152807 2330 3365 6 6.101556 6.1431408 2315 3450 5 6.561674 6.6795469 2310 3590 0 0.304004 0.11969810 2303 3255 4 3.887516 3.97977911 2285 3425 2 3.039008 3.19476112 2285 3500 5.0-6.0 4.772985 4.90987813 2280 3280 2.5-3.0 4.186196 4.33058014 2266 3550 2 3.549098 3.12208515 2265 3400 0 1.928118 2.13466216 2259 3530 3.0-4.0 3.698947 3.80285017 2250 3440 0 0.661666 0.90133418 2230 3525 0 1.041024 1.21563119 2205 3445 2.0-3.0 2.026697 2.25717020 2195 3440 2 1.857008 2.09682921 2190 3485 0 0.000 0.00Table 5.5: Gauges position, estimated maximum water depth and simulated water depthThe results for gauges 9 and 10 show good agreement with �eld observations. Gauge lo
ation9 remained dry along the �ooding and the simulation provides a maximum water depth in thes
ale of the
entimeters. The numeri
al results for gauge 11 indi
ate an overestimation of the�eld water depth estimation of approximately 1m, whilst very good agreement is found for gauge12. The simulations at the gauge lo
ations 13 and 14 overestimate �eld observations in approxi-mately 1m. Gauge lo
ation 15 remained dry along the �ooding whereas the numeri
al simulationdid not. On the other hand the results for gauge lo
ation 16 are in good a

ordan
e with theobserved �eld data.Gauges 17 and 18 remained dry but the simulation estimates a maximum depth of nearly 1
m. The results for gauge lo
ations 19 and 20 and 21 are in a

ordan
e with �eld observations.The evolution of the
omputed �ooding
an be seen in plan view in Figure 5.10 for times
t =5, 10, 15, 20, 25, and 30 hours. The
omputed �ow advan
es and passes around the buildingsbut always moving inside the limit given by that line.Although mesh D1 has larger
ells than D2 the numeri
al predi
tions from both grids are ingeneral in agreement with observed data. It is remarkable that for this extreme event, despitethe di�erent lo
ations of the inlet dis
harge se
tions and the di�erent size of the
ells in D1 and
D2, the water depth results for D1 are only slightly inferior than the ones obtained with D2.38

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATIONIt is very useful, when an exhaustive study is required, to re�ne the mesh in the area of in-terest. In this
ase, the main trouble is to stablish the input hydrograph. Although water depthhas no many signi�
ative di�eren
es Figure 5.12 and 5.13, velo
ity has not the same behaviour(Gauges 5 and 21 have been ommited be
ause of both have
al
ulated the dry state). In Figure5.15 is possible to appre
iate the di�eren
es where the simulation performed with the
oarsemesh makes a higher estimation of the velo
ity.As displayed by the results of the water level time evolution at the gauges, the mesh re�ne-ment in the zone of interest improves the quality of the predi
tions. The GPU simulation of the
omputation on the re�ned mesh was 22 hours and 20 minutes (more than 28 days of simulationusing CPU) and that for the
oarse mesh was 5 hours and 30 minutes. The
oarse mesh was agood aproximation of how the �ood advan
es but not always
an be used to study the details ina parti
ular area.5.3 Comparing with a distributed memory parallel implementa-tion 28-Core⋄ 1-Core GPUCells 106648CFL 0.9
tn 400.0
h0 5 - 0Comp. Load (s.) 363.2 9383.83 250.79
Sup 25.84 37.41Table 5.6: Computational load for a Dam-Break simulation (400 s.) with the mono-
ore version, the MPIparalellized version and the new CUDA version. ⋄ Ea
h
ore
omes from an Intel i7 CPU 860 � 2.80 GHzThis
ase simulates the evolution of two
onne
ted boxes where one of them
ontains 5 m.of water level and the other one is dry. The initial
onditions and geometry are shown at 5.16.The reason to in
lude this additional test
ase is that it was run previously with a CPUversion of the method paralellized through distrubuted ma
hines paradigm using Standard MPI.The simulation was run during 400 s. dumping data ea
h 200 time-steps. Furthermore, ithas been used CFL=0.9 and a manning
oe�
ient of m = 0.03.The results show that the power of
omputing of the GPU is
omparable with the power ofmore than 30
omputers working at the same time using the Distrubuted Computing paradigm.Although CUDA programming is not as easy as MPI programming and it is important to notethat not every implementations support both kind of implementations, the performan
e of the�rst te
hnique is mu
h better. 39

CHAPTER 5. RESULTS

Figure 5.12: Simulated and estimated water depth in 1-11 Gauges.40

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATION

Figure 5.13: Simulated and estimated water depth in 12-21 Gauges. 41

CHAPTER 5. RESULTS
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20000 40000 60000 80000 100000 120000 140000 160000

D
is

ch
ar

ge
 (

m
3 /s

)

t (s)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20000 40000 60000 80000 100000 120000 140000 160000

D
is

ch
ar

ge
 (

m
3 /s

)

t (s)Figure 5.14: Tous syntheti
 hydrograph for D1 (Right) and D2 (Left)

Figure 5.15: Comparison of Left: Coarse mesh velo
ity module and Righ: Re�ned mesh velo
ity module at
t = 13h

Figure 5.16: Initial
onditions of water depth and mesh plot42

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATION

Figure 5.17: 5-0 Dam-Break simulation for (Right-Left, Top-Down) t=5, 10, 15, 20, 25, 30 se
onds
43

44

6Con
lusions and future workA �rst order �nite volume s
heme to dis
retize the Shallow Water equations on unstru
turedmeshes has been implemented using GPUs. The asso
iated speed-up has been studied whensolving di�erent problems with nVidia Tesla Series
2070. The di�
ulties generated by the useof unstru
tured meshes have been identi�ed and partially over
ome so that our results show thatit is possible to solve many di�erent problems 30 times faster than a
ommon CPU version on asingle pro
essor. Furthermore, only ma
hine pre
ision di�eren
es are en
ountered between bothimplementations, so it is important to note that the speed of the simulation does not a�e
t thepre
ision of the numeri
al method.Communi
ating data between CPU and GPU has a very expensive
ost. An interestingstrategy to redu
e the impa
t of the
ommuni
ation has been proposed. The only ne
essity of
ommuni
ation is the elapsed simulation time so that the CPU s
hedules the operations.Previous work related to redu
ing the
omputational
ost by means of parallel CPU pro-gramming has been
ompared, showing that a GPU
ould be faster than 30 CPU
ores involvingless investment and less energy
onsumption. The values of 50-100x speed-up announ
ed in therelated literature have not been rea
hed in our implementation. Our interpretation is that it isnot possible to be more than 42 times faster than a CPU pro
essor when working with doublepre
ision data and serious and
areful speed-up
omparisons are required in any
ase. Althoughit is very
ompli
ated to rea
h the theori
al performan
e peak, both implementations
ould rea
ha reasonable power, so if both implementations are mostly optimized, speed ups like the relatedin this work are a

eptable.As further work, it is interesting to explore the Multi-GPU paradigms, simulating with manyGPUs and to study other implementations whi
h perform the memory a

ess pattern underunstru
tured meshes.
45

46

Bibliography
[1℄ J. C. Adams, W. S. Brainerd, R. A. Hendri
kson, R. E. Maine, J. T. Martin, and B. T. Smith.The Fortran 2003 Handbook: The Complete Syntax, Features and Pro
edures. SpringerPublishing Company, In
orporated, 1 edition, 2008.[2℄ A. A. Akanbi and N. D. Katopodes. Model for �ood propagation on initially dry land.Journal of Hydrauli
 Engineering, 114(7):689�706, 1988.[3℄ F. Al
rudo and J. Mulet. Des
ription of the tous dam break
ase study (spain). Journal ofHydrauli
 Resear
h, 45(sup1):45�57, 2007.[4℄ A. Brodtkorb, T. Hagen, and M. Saetra. Gpu programming strategies and trends in gpu
omputing. Journal of Parallel and Distributed Computing (In Press), 2012.[5℄ A. R. Brodtkorb, M. L. Sætra, and M. Altinakar. E�
ient shallow water simulations ongpus: Implementation, visualization, veri�
ation, and validation. Computers and Fluids,55(0):1 � 12, 2012.[6℄ J. Burguete and P. Gar
ía-Navarro. E�
ient
onstru
tion of high-resolution tvd
onservatives
hemes for equations with sour
e terms: appli
ation to shallow water �ows. InternationalJournal for Numeri
al Methods in Fluids, 37(2):209�248, 2001.[7℄ M. J. Castro, S. Ortega, M. de la Asun
ión, J. M. Mantas, and J. M. Gallardo. Gpu
omputing for shallow water �ow simulation based on �nite volume s
hemes. ComptesRendus Mé
anique, 339(2�3):165 � 184, 2011.[8℄ A. Corrigan and J. Dahm. Gpu te
hnology
onferen
e. In Unstru
tured Grid NumberingS
hemes for GPU Coales
ing Requirement, May 2012.[9℄ A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. Cpu db: Re
ordingmi
ropro
essor history. Queue, 10(4):10:10�10:27, Apr. 2012.[10℄ M. Dixon, J. Chong, and K. Keutzer. A

eleration of market value-at-risk estimation. InPro
eedings of the 2nd Workshop on High Performan
e Computational Finan
e, WHPCF'09, pages 5:1�5:8, New York, NY, USA, 2009. ACM.47

BIBLIOGRAPHY[11℄ P. N. Glaskowsky. Nvidia ' s fermi : The �rst
omplete gpu
omputing ar
hite
ture. A whitepaper prepared under
ontra
t with NVIDIA Corporation, (September):1�26, 2009.[12℄ D. Goldberg. What every
omputer s
ientist should know about �oating point arithmeti
.ACM Computing Surveys, 23(1):5�48, 1991.[13℄ M. Hubbard and P. Gar
ia-Navarro. Flux di�eren
e splitting and the balan
ing of sour
eterms and �ux gradients. Journal of Computational Physi
s, 165(1):89 � 125, 2000.[14℄ A. La
asta, P. Gar
ía-Navarro, J. Burguete, and J. Murillo. Prepro
ess stati
 subdomainde
omposition in pra
ti
al
ases of 2d unsteady hydrauli
 simulation. Computers and Fluids,2012.[15℄ A. Lashgar, A. Baniasadi, and A. Khonsari. "Investigating Warp Size Impa
t in GPUs".ArXiv e-prints, may 2012.[16℄ V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking the 100x gpuvs.
pu myth: an evaluation of throughput
omputing on
pu and gpu. SIGARCH Comput.Ar
hit. News, 38(3):451�460, June 2010.[17℄ W.-Y. Liang, T.-J. Hsieh, M. T. Satria, Y.-L. Chang, J.-P. Fang, C.-C. Chen, and C.-C.Han. A gpu-based simulation of tsunami propagation and inundation. In Pro
eedings ofthe 9th International Conferen
e on Algorithms and Ar
hite
tures for Parallel Pro
essing,ICA3PP '09, pages 593�603, Berlin, Heidelberg, 2009. Springer-Verlag.[18℄ J. Murillo and P. Gar
ia-Navarro. Weak solutions for partial di�erential equations withsour
e terms: Appli
ation to the shallow water equations. Journal of Computational Physi
sVolume: 229 Issue: 11 Pages: 4327-4368, 2010.[19℄ J. Murillo and P. Gar
ía-Navarro. Wave riemann des
ription of fri
tion terms in unsteadyshallow �ows: Appli
ation to water and mud/debris �oods. J. Comput. Phys., 231(4):1963�2001, Feb. 2012.[20℄ J. Murillo, P. Gar
ía-Navarro, and J. Burguete. Conservative numeri
al simulation of multi-
omponent transport in two-dimensional unsteady shallow water �ow. J. Comput. Phys.,228(15):5539�5573, Aug. 2009.[21℄ J. Murillo, P. Gar
ía-Navarro, and J. Burguete. Time step restri
tions for well-balan
ed shal-low water solutions in non-zero velo
ity steady states. International Journal for Numeri
alMethods in Fluids, 60(12):1351�1377, 2009.[22℄ J. Murillo, P. Gar
ía-Navarro, J. Burguete, and P. Brufau. The in�uen
e of sour
e termson stability, a

ura
y and
onservation in two-dimensional shallow �ow simulation usingtriangular �nite volumes. International Journal for Numeri
al Methods in Fluids, 54(5):543�590, 2007.[23℄ nVidia Corporation. CUDA CUBLAS Library, Aug. 2010.48

BIBLIOGRAPHY[24℄ P. Roe. A basis for upwind di�eren
ing of the two-dimensional unsteady euler equations.Numeri
al Methods in Fluid Dynami
s, II.[25℄ L. Solano-Quinde, Z. J. Wang, B. Bode, and A. K. Somani. Unstru
tured grid appli
ationson gpu: performan
e analysis and improvement. In Pro
eedings of the Fourth Workshopon General Purpose Pro
essing on Graphi
s Pro
essing Units, GPGPU-4, pages 13:1�13:8,New York, NY, USA, 2011. ACM.[26℄ R. Suda, T. Aoki, S. Hirasawa, A. Nukada, H. Honda, and S. Matsuoka. Aspe
ts of gpufor general purpose high performan
e
omputing. In Pro
eedings of the 2009 Asia andSouth Pa
i�
 Design Automation Conferen
e, ASP-DAC '09, pages 216�223, Pis
ataway,NJ, USA, 2009. IEEE Press.[27℄ W. C. Tha
ker. Some exa
t solutions to the nonlinear shallow-water wave equations. Journalof Fluid Me
hani
s, 107:499�508, 1981.[28℄ M. E. Vázquez-Cendón. Improved treatment of sour
e terms in upwind s
hemes for theshallow water equations in
hannels with irregular geometry. Journal of ComputationalPhysi
s, 148(2):497 � 526, 1999.[29℄ Y. Wang, M. Olano, M. K. Gobbert, and W. Gri�n. A GPU memory system
omparisonfor an ellipti
 test problem. Te
hni
al Report HPCF�2012�1, UMBC High Performan
eComputing Fa
ility, University of Maryland, Baltimore County, 2012. (HPCF ma
hinesused: tara.).

49

	Introduction
	Context and assumptions
	Structure of the report

	Mathematical Model and Numerical Method
	Approximate Riemann solution
	Application to the 2D Shallow Water equations
	Numerical resolution

	CUDA Technology Overview
	GPU Technology history
	nVidia CUDA technology
	CUDA development
	Example of implementation in a 1D case

	Results All that glitters is not gold

	Implementation
	Model overview
	Memory coalescing
	Gathering data avoiding bottleneck
	Writing output files
	Compilation and other issues

	Results
	Precision: A test-case with analytical solution
	Performance: A large-scale simulation at Júcar River
	Comparing with a distributed memory parallel implementation

	Conclusions and future work
	Bibliography

