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Los modelos mateméticos y métodos numéricos implicados en la simulaciéon de flujos con super-

ficie libre han sido estudiados durante tiempo en el Grupo de Hidraulica Computacional de la
Universidad de Zaragoza. Estos modelos son la base de nuevos desarrollos como el transporte de
sedimento, el modelado de interaccion con puentes o el acoplamiento hidroldgico. A pesar de la
calidad de estos métodos, el coste computacional es muy alto y en gran parte esto se debe a la

tecnologia numérica que requieren.

Con la finalidad de superar esta limitacion, este trabajo estudia la implementacién de un
c6digo de simulacién hidraulica orientada a ejecucion en GPU, permitiendo simular un amplio
conjunto de situaciones transitorias en gran escala temporal, con un tiempo de simulacién ra-

zonable.

El coste computacional de éste tipo de herramientas ha sido reducido, tradicionalmente,
utilizando técnicas de paralelismo, implicando un alto nimero de procesadores para reducir el
tiempo de calculo al méximo. En los ultimos anos, las frecuencias de los procesadores parecen
haber alcanzado su limite (Figura [ extraida de [9]) por lo que las técnicas de paralelismo en

procesadores masivos son una nueva opcion.
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Figure 1: Evolucién de las frecuencias de CPU desde 1985 hasta 2011
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En este trabajo, se analiza el rendimiento del c6digo implementado en GPU, comparandolo
con su equivalente en CPU. Este segudo, viene siendo desarrollado, en su totalidad, en Fortran
mientras que el primero, ha sido desarrollado utilizando el lenguaje de programacién C, com-
partiendo el procesamiento geométrico con la version CPU. Las fucionalidades implementadas
en la version GPU, cubre una gran parte de situaciones de interés, tales como el avance de una
inundacioén, los cambios de fondo y friccién y algunas condiciones de contorno de entrada y de
salidas. La implementacién del método en GPU no es trivial y requiere de un conocimiento en
profundidad del funcionamiento de esta tecnologia a bajo nivel. Los beneficios de la version GPU
serdn analizados a través de la aceleracion repecto a la version CPU en diferentes tipos de caso.

EL rendimiento del codigo GPU ademés, serd medido teniendo en cuenta el uso de mallas no
estructuradas, las cuales suelen ser necesarias en muchos codigos de CFD. Para su simulacién,
se utilizara la GPU Tesla ¢2075 de nVidia. Ademaés se utilizara el estandar CUDA, que hace la
programacion mas sencilla que otros estandar en programciéon GPU, permietiendo al programador
exprimir los beneficios de esta tecnologia.
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Abstract

The mathematical models and numerical methods implied in the resolution of free surface flows
have been studied for a long time within the Computational Hydraulic Group at the Universidad
Zaragoza. They support new developments such as sediment transport, bridges modeling or hy-
drological coupling. Despite the quality that the numerical solvers proposed by the group offer,
the computational cost of these methods is very high, due to the complexity of the numerical
tools required.

In order to avoid this limitation, the present work studies the implementation of a scientific
hydraulic simulation tool oriented to be run on GPU, allowing to simulate a wide range of sit-
uations over large time scale problems, that otherwise can not be computed at an affordable cost.

The computational cost has been traditionally reduced by using parallel techniques, involving
a large number of processors in order to reduce the simulation time as much as possible. Since
CPU frequencies seem to be reaching their maximum capacity (Figure 2] extracted from [9]),
nowadays Many-Core parallel techniques appear to be an interesting option.
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Figure 2: CPU Frequency evolution since 1985 until 2011

The performance of the GPU version is analyzed comparing both CPU and GPU versions
of the same code. While the former was fully developed in Fortran language, the numerical



kernel of the new GPU version has been written in C, sharing the geometrical preprocessing
module with the CPU version. The functionalities implemented in the GPU version cover a
wide range of situations as they include all the characteristics that are desirable in the context
of shallow flow simulation: flooding advance, friction and bed slope source-terms as weel as inlet
and outlet boundary conditions. The implementation of these requirements in the context of
realistic simulations is not straightforward. This is explained when considering that, contrary to
other programming languages, the GPU version requires a good comprehension of the low level
operations, that does not allow a direct conventional implementation. The benefits of the GPU
version will be analyzed in depth focusing on speed-up gain in complex cases.

The performance of the GPU code is analyzed in depth to ensure not only the efficiency but
also the possibilities of GPU programming when using unstructured meshes, that are often re-
quired in CFD codes. A Tesla ¢2075 nVidia GPU has been used in the present study. Moreover,
it has been developed using nVidia-CUDA standard, which makes friendly the programming for
general purpose applications, allowing the programmer to exploit the many-core paradigm.
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Introduction

The present work deals with of the efficient implementation of a scientific purpose code oriented
to make hydraulic simulations that require a very high computational load. These calculations
could range from a dam break simulation to the consequences of a river flooding.

The code is based on a numerical resolution of the shallow water model used to simulate
water fluxes under certain hypothesis. Free surface fluxes of interest to Hydraulic Engineering
are usually formulated under the shallow water model which assumes that vertical lengths are
lower than horizontal scales in the problem. The depth averaged system of equations resulting
from this approach allows to make a temporal description of the flow field as a function of water
depth and horizontal velocity components w, v in  and y axis respectively.

The governing system of partial differential equations is hyperbolic and, in general, does not
have exact solution. Therefore, numerical methods are required to reach the solution or to ap-
proximate it. The question of what is the most suitable method to solve it is still open but finite

volume schemes are widely used.

1.1 Context and assumptions

The Computational Hydraulics Group at the University of Zaragoza (http://ghc.unizar.es) is
involved with both research and teaching activities related to the topic of this project. This re-
search team has been working on Computational Hydraulic Research since 1986. The results have
been published in many international journals and have led to actual knowledge transfer models
that are nowadays used by private and public bodies in Spain. The numerical models of free
surface flows developed by this research team has led to efficient, robust and accurate simulation
software tools. The research team has extended the numerical schemes making feasible the ap-
plication to realistic cases found in engineering applications, where the importance of the source
terms in the equations, mainly related with the bathymetry of the bed in river flows, requires
special numerical treatments. In order to involve all possible scenarios, two different modelling
lines have been explored. A one-dimensional research line to analyse rivers and channels, and a
two-dimensional research line, where the transversal component of the flow is of importance, able



CHAPTER 1. INTRODUCTION

to handle more complex situations. This approach may lead to very time consuming simulations.

To study the performance of the GPU version, it has been compared to the CPU version.
That has been developed for a long time. The numerical kernel in the GPU version has been writ-
ten in C, sharing the geometrical preprocess with the CPU version. Although the CPU version
has several functionalities implemented, the GPU version covers only a few of them. In particu-
lar, the Shallow-Water equations discretization using Roe solver including wet/dry boundaries,
friction source-term, and two inlet and outlet boundaries. With this implementation, the gain
of the GPU version will be studied.

Both the CPU and GPU versions work with the same data-structures. Furthermore, the nu-
merical kernel in both versions is optimized so that they to make more or less the same number
of operations and are compiled with the same options in order to apply a correct analysis for the

comparison.

1.2 Structure of the report

The report has been structured in 5 sections. First the mathematical model and numerical
scheme used to solve the free surface flow equations are introduced. Second one describes the
way to program a general numerical solver in GPU’s, using as example the 1D transport equation.
Furthermore, in this second part the hardware composition of the GPU and the CUDA model
to develop to it are also described. The third part explains the main problems found in the
implementation of the model. These problems are explained as a general way to solve problems
related to the numerical solvers. The fourth part contains three test cases where accuracy and
performance are studied comparing with both, serial and parallel implementations of the method.
The last part describes our conclusions as well as the desirable future work improvements.



Mathematical Model and Numerical Method

We are interested in the simulation of a problem that can be formulated as a system of conser-

vation laws with source term as follows

ou N JF(U) N 0G(U)
ot ox y

System (2.0)) is time dependent and non linear. Under the hypothesis of dominant advection,

=S(U,z,y) (2.1)

it can be classified and numerically dealt with as belonging to the family of hyperbolic systems.
It includes the existence of a Jacobian matrix of the flux normal to a direction given by the unit
vector n, E - n. Defining E - n = Fn, + Gn,, the Jacobian can be written as

J _OE-n_O_F +_G
nTTHu Caur T au

The Jacobian can be used to form de basis of the upwind numerical discretization.

(2.2)

2.1 Approximate Riemann solution

The previous differential formulation can be reinterpreted over a volume (or grid cell) Q using

the integral formulation as follows

% /Q Udo + /Q (VE)dQ = / SdQ (2.3)

Q

which becomes, using the Gauss theorem

3/Udﬂ+y§ E-ndl:/SdQ (2.4)
ot Jq 90 Q

where n = (ng,ny) is the outward unit normal vector to the volume €.

Considering the complete spatial domain discretized in computational cells §2; and using the
conventional cell-average notation, the solution U} inside the cell for U(x,y,t)

L / Uz, y,t")d2 (2.5)
A Jo,

3



CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

being A; the cell area. Assuming a piecewise representation of the conserved variables, (2.4)
could be written as

9 NE
a/ﬂi UdQ+ZEj-nklk:/.SdQ (2.6)

k=1 i
where E; is the value of the function E at the neighbouring cell j connected through the edge
k, ng is the outward unit normal vector to the cell edge k, [ is the corresponding edge length
and NE is the number of edges around cell ¢. Considering the quantity E; uniform per cell ¢
and that

NE
Z nklk =0 (27)
k=1
equation (2.6]) is written as
5 NE
9 / U0+ (GE); - nyly = / Sd (2.8)
ot Jq, p o

with 0E = Ej - Ez

In the Roe approach [24], the solution of each RP is obtained from the exact solution of a
locally linearized problem. In the 2D framework the solution is obtained reducing each RP at
each k edge to a 1D Riemann problem projected onto the direction of n. The linearized solution
must fulfill the Consistency Condition. In the 2D case the integral of the approximate solution
U(z',t) of the k linearized RP over a suitable control volume must be equal to the integral of
the exact solution U(z’,t) over the same control volume, with 2’ the coordinate normal to the
cell edge k, Figure 21l Then in each k£ Riemann problem with initial values U;, Uy, in a time
interval [0,1] and a space interval [-X’, X'] | where

_X/ < )\min7 X, Z )\maar (29)

and Amin, Amaz the positions of the slowest and the fastest wave at t = 1, in a k egde, the solution
U(x/,1) at time ¢ = 1 must satisfy the following property:

+X" +X
/ U(2',1) do’ = / U(2',1) da’ (2.10)
_X _X

so using (2.8) the Consistency Condition becomes:

+ X! . 1 + X!
U(a!,1) da’ = X' (U; + U;) — 6By, - 0y, + / / S da’ dt (2.11)
0

-X' -X'

Since the source terms are not necessarily constant in time, we assume the following time

linearization of the Consistency Condition:

X
/ U/, 1) o’ = X (Ui + U;) — (OF — T)pmy (2.12)
— X!



2.1. APPROXIMATE RIEMANN SOLUTION

Figure 2.1: Riemann problem in 2D along the normal direction to a cell side.
where following previous work, [28]

+X’
/ S(z',0) dz’ = (Tn)} (2.13)
X/

where T is a suitable numerical source matrix. This enables the following formulation of (2.8))

NE

% / UdQ; + > (OE — T)pmyly =0 (2.14)
& k=1

that is approximated by using the following linear problem

& Jo 0 + 300 I5 00kl = 0
2.15
U, if <0 ( )

U2',0), =
(2", 0)x {Uj if 4 >0

Integrating [2.15] over the same control volume as before the following expression is obtained
for each k edge

+X'
/ U(.%',, 1) de' = X (Uz + Uj) - J* (Uj - Uz) (2.16)
_X/

and since we want to satisfy (2.12)), the constraint that follows is:
(0E — T)gny, = J* (U; — Uy) (2.17)

Due to the non-linear character of the flux matrix E, the definition of an approximated

Jacobian matrix, Jy j, allows for a local linearization

S(En);, = Jp, x0Uy, (2.18)

and is exploited here [24]. This approach provides a set of three real eigenvalues X;” and eigenvec-
tors e}'. Then, it is possible to define two matrices P = (e!,e2, &%) and P~! with the following
property

jn,k = f’kxkf’gl (2.19)

5



CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

The difference in vector U across the grid edge and the source term are projected onto the

matrix eigenvectors basis:

5Uk = f)kAk (Tn)k = f’kBk (2.20)
T T
with Ay = < al o? o )k and By = ( pt B2 B3 >k Expressing all terms more com-
pactly:
Ny .
S(E-n), — (T-n)y = > (X 60a8) 2.21
(B (T m= (R0 221
with

o = <1 - ﬁ)m (2.22)

k
Finally, it is possible to define the desired matrix in (2.17)
J; = (PA*PY), (2.23)

with A* = ./NX('-), where Ay is a diagonal matrix with eigenvalues XZL* in the main diagonal and
O, is a diagonal matrix with 6} in the main diagonal:

Moo oo 0l 0 0
Ar=1 0 X 0 Or=1] 0 6> 0 (2.24)
0 0 X\ . 0o 0 6 .

2.2 Application to the 2D Shallow Water equations

The two-dimensional shallow water equations, which represent depth averaged mass and mo-
mentum conservation, can be obtained from the Navier-Stokes equations. Neglecting diffusion
of momentum due to viscosity and turbulence, wind effects and the Coriolis term, they form a
system of equations [2] as in (2.1]), where

U=(h, ¢z, q)" (2.25)

are the conserved variables with h representing the water depth, ¢, = hu and g, = hv, with (u,v)
the depth averaged components of the velocity vector u along the (x,y) coordinates respectively.
The fluxes of these variables are given by:

@ 1 A Gy @& 1 ’
F:<qz,f+§gh2, ”‘“hy> , G:<qy, ”““hyﬁy+§gh2> (2.26)

where g is the acceleration of the gravity. The source terms of the system are the bed slope and
the friction terms:

T
S — (0’ Poz _ Tz IM_@> (2.27)
Pw Pw  Pw Pw



2.3. NUMERICAL RESOLUTION

where the bed slopes of the bottom level z are

Db,z 0z Dby 0z
— = —gh—, —= = —gh— 2.28
Puw S P I8y (2.28)
and the friction losses are written in terms of the Manning’s roughness coefficient n:
2, /2 £ 2 2000 2 1 02
Too _n'u u® +v Thy _nv u® + v

2.3 Numerical resolution

Following Godunov’s method, the solutions of the RP’s are evolved for a time equal to the time
step and the resulting solution is cell-averaged. The volume integral in the cell at time t"*! leads
to the updating numerical scheme as:

NE 3
UMt =004 - Y D (A 0a@) At (2.30)
k=1m=1

with X7 = (X + [\

When applied to the shallow water system presented in section 2.2 the approximate Jacobian
Jn,i for the homogeneous part is constructed with the following averaged variables [24]

uiv/hi + uj\/hj _ oV /by ~ ghi+hj

up = , Vg = , cx = 2.31
i+l Vit 2 230
leading to
M=@n-2;, A =(@On) A =(@n+d (2.32)
and
1 0 1
~1_ | ~ ~ ~2 ~ ~3 |~ <
e.=| u—cn, , e, =| —cny , e, = | u-+cn, (2.33)
U —cny . cny X v+ cny L

When cell averaging the solution in the 1D dimensional case the time step At is taken small
enough so that there is no interaction of waves from neighbouring Riemann problems, attending
to a distance Axz/2. In the 2D framework, considering unstructured meshes, the equivalent
distance to Ax, that will be referred to as ; in each cell ¢ must consider the volume of the cell
and the length of the shared k£ edges.

—— (2.34)
max—1,Ng lk

Considering that each k& RP is used to deliver information between each pair of neighbouring
cells of different size, the associated distance min(A;, A;)/ly, is relevant, so in case that h(z',t) > 0
in all £ RP’s the time step is limited by

AL<CFLAR AP — —BnlGX) (2.35)

maXy—1,2:3 | A"



CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

The previous stability condition is insufficient in presence of relatively important source terms.
The systematic control of numerical stability in those cases has been a matter of recent research
in the group as it is related with the applicability of the scheme to real situations. A simple
generalization of the C'F'L condition paying attention to the existence of the source terms can
lead to extremely small values of At various orders of magnitude smaller than the value dictated
by the homogeneous condition, hence rendering the method impractical. This can be avoided
by means of a reconstruction of the approximate solution ﬁ(m’ ,t) that is not detailed here for
the sake of conciseness. The strategy proposed is based on enforcing positive values of auxiliary
quantities h;

B 1
hi = A +aj, — <:> >0 (2.36)
Ak
and A}
,8 3
Wi =h— o + <§> >0 (2.37)
k

so that, when they become negative, the numerical source term is reduced instead of reducing
the time step size. For more details, see [21], [18].

Furthermore, following the unified discretization in [6] the non-conservative term (Tn)g in
([213)) at a cell edge is written [20] as:

0
(Tn), = | (B2 —2k)ne (2.38)
Dy T
Pw Pw ny k

where ;I))_Z and ;—Z attend to the pressure and friction exerted on the bed respectively.

In this work the following expression for the thrust term g—i is proposed:

() 2" (&) (2)), wotsez0mt @uazzo
Pw ) K 2.39
Pk (5—2)2 otherwise

where d = (h + z) and

a b /
Db ~ Db ’53 ’) /
— = —g(hdz — | =—g| h - 0z 2.40
<pw>k g(hoz)y, (m)k g< 5 (2.40)

with
i 52> 0 hz‘ ifdzEOanddi<zj
7 ifdz
= { BRTE ; 0 67 = hj if 0z < 0 and dj <z (241)
J 0z otherwise

The discretization of the friction term based on [21] is applied

2~ ~
Th ~ n un|u|
— | =g(hSf)rdn Stp=——"—= 2.42
<pw>k A5 . <max<hi,hj>4/3>k 242
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with d, the normal distance between neighbor cell centers.
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CUDA Technology Overview

Nowadays, GPU technologies start to conquer from ordinary business applications to sciencitific
applications. This general purpose orientation is denomined GPGP , allowing its developers
to reach higher performance than in coventional architectures (Single Instruction Single Data)
where the operations are currecntly performed sequentially. In the case of scientific computation,
the GPGPU paradigm performs the numerical methods.

nVidia has been working in the improvement of the GPGPU paradigm, creating the CUDA
toolkit. CUDA toolkit is a parallel architecture for graphic processing which implements an
intruction-set oriented to the GPU memory access and operations in C. Other more general
implementations have been performed through open-source platforms such as OpenCL and oth-
ers like PGI-Cuda as propietary-source. OpenCL has the main advantage of being hardware-
independent. It implies that the same code could be executed on both nVidia and ATI GPUs.
The main disadvantage is that the learning-curve is harder than for the CUDA toolkit. The
other option is PGI-Cuda. It has the main advantage in the support of CUDA primitives for
Fortran but the disadvantage is the cost of it. So, as we are interested in simulating at nVidia
GPUs, the implementation of the code has been developed using CUDA-Toolkit.

3.1 GPU Technology history

Since the advent of OpenGL, GPUs added programmable shading to their capabilities. Each
pixel could incoporate its processing as a program to be shown on screen after applying it. nVidia
was the first to produce a chip capable of programmable shading. In 2002, ATI developed the
first Direct3D 9.0 accelerator, which implemented looping and lengthy floating point math, be-
coming as flexible as CPU and orders of magnitude faster for image-array operations.

Abstracting the graphical purpose and taking a double-point array as if it were a vertex-
array, the same operations were able to be applied, so with the nVidia CUDA Toolkit, a new
programming model for GPU computing was stablished. After its appearance, OpenCL became
broadly supported allowing developers coding for AMD/ATI GPUs.

!General Purpose Graphic Processor Unit

11



CHAPTER 3. CUDA TECHNOLOGY OVERVIEW

3.2 nVidia CUDA technology

The present work has been developed using an nVidia Tesla GPU. The particular organization
and how it works is explained below and has followed [I1]. Most of the details are common with
the previous GPU generations and it is previsible that will be common with future generations
too.

There are two main points of view when explaining how CUDA works. The first is based on
the hardware architecture. The minimum unit is the Streaming Processor (SP), where a single
thread is executed. A group of SP’s form the Streaming Multiprocessor (SM), tipically with 32
SP’s. Finally, a GPU is composed by between 2 and 16 SM’s. The second point of view is based
on the way CUDA applications are developed. The minimum unit is called Thread. Threads
are identified by labels ranging between 0 and blockDim. The group of Threads is called Block,
and it contains a (recommended) 32 multiple number of Threads. Finally any group of Blocks
is called Grid. These elements are illustrated on Figure Bl

Block 0 Block 1 Block 2

Thread Block Grid
Figure 3.1: thread, block, grid scheme composition

Actual nVidia GPU’s performs the threads scheduling inside the SM in groups of 32 called
Warps (we also recommend [I5] for future considerations). Each SM features two Warp schedulers
and two instruction dispatch units, allowing two Warps to be issued and executed concurrently.
Fermi’s dual Warp scheduler selects two Warps, and issues one instruction from each Warp to a
group of sixteen cores, sixteen load/store units, or four SFU’s. Because Warps execute indepen-
dently, Fermi’s scheduler does not need to check for dependencies from within the instruction
stream. Using this elegant model of dual-issue, Fermi achieves near peak hardware performance.

Most instructions can be dual issued; two integer instructions, two floating instructions, or
a mix of integer, floating point, load, store, and SFU instructions can be issued concurrently.
Double precision instructions do not support dual dispatch with any other operation.

Figure shows how the SP are distributed inside the SM and how the multiprocessors are
distributed inside the GPU. Furthermore, Figure B3] shows the temporal evolution inside the SM
and how it works for a block with 256 elements (warp=256/32 = 8 elements).

Any Thread can be labelled using blockDim, blockId and threadId. In an example with
14 Blocks and 256 Threads/Block (3584 elements), we find that for element 23 in Block 4, the
labels inside the code are

12
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Streaming Multiprocessor Host Interface / GigaThread Engine

Instruction Cache
WS/DU WS/DU

Register File

Memory Controller
I3[[01U0D) ATOUIdA!

Interconnected Network
Shared Memory/L1 Cache

Uniform Cache

(a) GF100 Streaming (b) 14-SM based Fermi Architecure detail
Multiprocessor (SM)

Figure 3.2: Description of our Fermi ¢2075 GPU based on GF100/GF110 Architecture.

Warp Scheduler f§ Warp Scheduler Block 4
Yy

N AN A

Warp 6 Instruction 16

Warp 8 Instruction 5
Warp 1 Instruction 2 Warp 2 Instruction 1

Warp 6 Instruction 17
Warp 1 Instruction 3 Warp 8 Instruction 3
Y Warp 2 Instruction 2

Time

Figure 3.3: Execution pipeline for a Strem Multiprocessor (left) which process block number 4 (right)

e blockDim=256
e blockId=4

e threadId=23

and then, the typical access pattern, points to

i=threadId+blockDim*blockId=23+256%4=1047

3.3 CUDA development

The CUDA main functions are related to the memory interaction between CPU and GPU, in
particular, cudaMemcpy with the different flags to stablish the way of the transfer. It is important
to remark that these interactions or data transfers between GPU and CPU are extremely slow
and should be minimized. Moreover, the allocation and memory freeing operations could be
performed using their equivalences in CUDA as shown in listing B.1]
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// GPU Memory allocation
cudaMalloc(...,size);

// GPU Memory free

cudaFree(..);

// Copy Host To device

cudaMemcpy (. . .,cudaMemcpyHostToDevice) ;
// Copy Device To Host

cudaMemcpy (. . .,cudaMemcpyDeviceToHost) ;
// Copy Device To device

cudaMemcpy (. . .,cudaMemcpyDeviceToDevice) ;

The advantage of using GPU for programming numerical methods, comes from the High-
Level Single Instruction Multiple Data (SIMD) or as nVidia calls, Single Intructions Multiple
Threads (SIMT) paradigm. Any operation can be executed in concurrence with many others
allowing any CUDA Thread to access to a particular position while any other is accessing to
another one.

3.3.1 Example of implementation in a 1D case

Consider, for example, the 1D transport equation:

ou ou

s — =0 3.1

ot "o (3.1)
with ¢ > 0, and its initial and boundary conditions

u(z,0) = f(x)

u(O, t) = Uo

applying the temporal discretization with forward Euler and the upwind scheme:

Au; Ui — Uj—1
= — 3.2
At 0x (32)
writing its as
ult —ul
ultl = — LA (3.3)
ox

and the procedure could be written in Standard C as follows

void upwindStepCPU(double *fn,double *fnmasl,double DELTAX){
int 1i;
for (i=1; i<1/DELTAX; i++) {
fonmas1[i]=fn[i]+c*DELTAT*(fn[i-1]-fn[i])/(DELTAX) ;

14
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Since conventional processors are not-able to make this operation for any group of elements
at the same time, the result will be obtained at the end of 1/Ax cycles. This kind of architecture
is called SISD (Single Instruction Single Data) and it is used by the most common personal com-
puters. The disadvantage of this implementation is the need of processing elements one-by-one,
making easier the implementation of the code but not reaching good performance.

CUDA implementation of Listing could be written as

1 __global_
2 {

3 // Point to the data

4 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
5 if (i<MAX){

6 fnmas1[i]l=fn[i]+c*x(DELTAT*(fn[i-1]-fn[i])/(DELTAX) ;

void upwindStepGPU(double *fn,double *fnmasl,double DELTAX)

The function invocation could be made as follows

1 // CPU
2 f=(double*)malloc(sizeof (double)*MAX);
3 fnmasl=(doublex)malloc(sizeof (double)*MAX) ;

5 // Condiciones iniciales

7 // Copia de CI a GPU

s cudaMemcpy(d_f, f, sizeof (double)*MAX, cudaMemcpyHostToDevice );

o cudaMemcpy(d_fnmasl, f_nmasl, sizeof(double)*MAX, cudaMemcpyHostToDevice );
10 ..

1 // Calculo

12 for (j=0; j<=(TFINAL/DELTAT); j++) {

13 upwindStepCPU(f,fnmasl,deltax);

14 reAsigna(f,fnmasl,deltax);
15 }
6 //GPU

17 for (j=0; j<=(TFINAL/DELTAT); j++) {

18 upwindStepGPU<<<blocks,threads>>>(d_f,d_fnmasl,d_deltax);

19 reAsignaG<<<blocks,threads>>>(d_f,d_fnmasl);

20 }

21 cudaMemcpy(f, d_f, sizeof(double)*MAX, cudaMemcpyDeviceToHost);

The key of this implementation is based on the fact that all Blocks and Threads together
cover the amount of elements to be processed. The relation between Blocks (n;), Threads (n;)
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and the amount of elements (n.) must be

Ne < np * Ny (3.4)

3.4 Results All that glitters is not gold

Recent work [7] [I0] has been published reporting that it is possible to get Speed-Ups around
100x and 130x using Simple Precision Floating Point Data types. It is important to note that
a few details must be taken into account before accepting this kind of results. Moreover, [16]
explained that comparison tests from CPU to GPU, must be developed at the same conditions
in order to be satisfactory. To take this into account the computational resources where tests
are going to be performed in the present work are shown in Table Bl showing the computational
facilities common to all the tests performed.

CPU GPU

Cores 6 448

Frequency (MHz) 2666.969 1150

DP RPe* (GFLOPS) 67.2 515.2
Memory (GB) 48 6

Mem. Bandwidth (GB/s) 32 144

Table 3.1: Intel Xeon X5650 @ 2.66 GHz and nVidia Tesla ¢2075 technical characteristics

With 1D transport equation, computational times as appear in table can be obtained.
The computational performance is function of the number of elements implied in the calculation,
both for GPU or CPU implementations. This detail is very important when the number of op-

erations increases and much more when the access to the main memory is high.

1-Core 6-Core GPU

n t (ms) Speed-Up t (ms) Speed-Up t (ms)
1048576 143799.29 33.48 24844.87 5.78 4295.62
524288 71162.12 32.65 11931.02 5.47 2179.62
131072 17649.91 29.62 3034.35 5.09 597.98

Table 3.2: Computational performance through CPU (Mono-Core and Multi-Core) and GPU for t=(0,1),
x=(0.0,1000.0), § = 1000.0/n and At = 10~*

The performance of the GPU is very high for the simplest 1D transport equation. The
Speed-up has been measured as elapsed time at GPU divided by elapsed time at CPU. It reaches
33.48x for the mono-core version and 5.78x for the multi-core version. It implies a performance
of around 73% with regard to the theoretical increase (7.66x and 46x).

It is widely accepted that Simple Precision has more throughput but it is not as precise as
the Double Precision.
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GPU-DP GPU-SP GPU-SP2
n t (ms) € Sup t (ms) € SSup  t (ms) € Sup
1048576  4293.87  -6.6437e-14  33.93  3345.54 -1.4267e-04 44.85 1904.97 -1.6645e-04 78.53
524288 2175.31 2.2146e-14 32.95 1716.82 4.7558e-05 42.91 981.00 1.1889e-05 75.59
131072 594.38 4.4291e-14  29.84  488.02  -1.0700e-04  37.61 293.64  -1.1889e-04  62.00

Table 3.3: Simulation time, accuracy and performance for GPU performing the calculations for using Double,
float and a tuned version with float for t—(0,1), x=(0.0,1000.0), § = 1000.0/n and At = 10™*

In Table B3] shows three implementations, using double and float and a tuned version of
float in order to exploit the benefits of the GPU when float is used. Hence, it is important
to bear in mind that the use of the simple precision must be limited to those cases where the
precision is not the most important aspect [12] but the performance is critical.

When quantifying the computational gain of GPU over CPU implementations, the following
efficiency parameters are of interest:

_ Repu _ Rgpu 55
UCPU—W nGPU_W (3.5)
CPU GPU

where R and RP* stand for the effective performance and peak performance of a particular con-
figuration respectively. It is important to note that performance comparisons should be evaluated
at similar individual levels of efficiency in both CPU and GPU implementations and, ideally, at
maximum efficiency. However, it is not always easy to reach the ideal values of nopyy =1 and
napu =1 of the processors, nor it is to ensure that both implementations offer nopy = ngpu
prior to their comparison. On the other hand, it is worth noting that it is easier to improve the
efficiency when working in GPU processors than in CPU implementations so that, frequently,
comparisons are made between implementations where ngpy > ncpy. A good implementation
in both architectures offers very similar results to the ones shown in the previous table.

The performance of the CUDA version could be obtained as follows

peak

_ SUP _ tGPURCPU (3 6)
v7= STheoretical ~— peak :
up tCPURGPU

Attending to this implementation, it is obtained a relation of 73% of efficiency in the imple-
mentation of the GPU using Double data type and 85% using the tuned float version. When
reading some literature, 140x is affordable [7] but we suggest that it is very important to analyze
the results and to apply some common sense.

[7] obtains gainances about 21x using Double Precision data types. It is used a Intel Xeon
E5430 (2.66 GHz, 12 MB L2 Cache) which achieves R’gﬁg = 10.689 GFLOPS/core (4 Cores)
and a nVidia GeForce GTX 260, which has R%e;l;] ~ 71 GFLOPS. For this configuration, the
ratio of the theoretical maximum gainance, assuming ngpy = nopy = 1,

peak
GPU _ 6,64 (3.7)

peak
]%CFQ]
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In the work, 21 gainance has been shown, which implies v > 3, implying that ngpy >>
nepy- When both CPU and GPU implementations are mostly optimized, this performance is
overstimated and we propose that v ~ 1 is a very acceptable performance, showing the profits
of the GPU and not taking to confusion to developers. In this work, we have tuned both
implementations in order to show a realistic performance of the GPU implementation.
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Implementation

The implementation and its difficulty is not the main topic of this work but some interesting
details are explained that could be useful in any other application of a similar explicit finite-
volume scheme. In particular, details about the importance of and how to obtain memory
coalescing profits, solving bottle-neck problems or writing output files with the minimum penalty
are described below. They are all related with the necessity to avoid data transfer between the
GPU and the CPU during the calculation as much as possible.

4.1 Model overview

The main of the implementation is shown in Listing 4.1. There it is shown the main aspects of
the programming and the general aspect of any similar code.

Listing 4.1: Overview of the CUDA implementation.

1 ...

2 // Configuration of the parameters

3 threads=512;

4+ wallBlocks=nWall/threads;

5 cellBlocks=nCell/threads;

6 while(t<tmax)q{

v // Calculate the fluxes

s calculateWallFluxes<<<wallBlocks,threads,0,executionStream>>>(...);
o // Stablish the minimum dt obtaining the ID of the

10 // minimum dt

u // (x) Explained at section 4.3

12 cublasIdamin(...,nWall,vDt,1,id);

13 // And assign it

14 newDt<<<1,1,0,executionStream>>>(dt,vDt,id);

15 // Update the elapsed time (in GPU)

16 updateT<<<1,1,0,executionStream>>>(cuda_t,dt);

17 // Retrieves the value of t to CPU

18 cudaMemcpy(t,cuda_t,sizeof (double),cudaMemcpyDeviceToHost) ;
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CHAPTER 4. IMPLEMENTATION

}

code is described in a timeline which trace has been obtained using Paraver (www.bsc.es/computer-

Figure 4.1: Execution trace and performance detail for a time-step using Paraver

Update the cell values

assignFluxes<<<cellBlocks,threads,0,executionStream>>>(...);
// Verify if it is

7 to dump data and

if it

if (t<t_dump){

/ Copy of cell variables to a GPU
// stored buffer

cudaMemcpy(. .., cudaMemcpyDeviceToDevice);

// Stablishi g the barrier to ensure the copy of the
/ data to the buffer

cudaStreamSynchronize (copyStream) ;

D

/ Copy the data to the CPU buffer
cudaMemcpyAsync(. .., cudaMemcpyDeviceToHost,copyStream) ;
/ Create another stream in order to be which controls
// the disk-transfer
pthread_create( &diskThread, ...);

The details of this implementation are described below. Furthermore, the behaviour of the

sciences/performance-tools/paraver) in Figure 4.1.
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4.2. MEMORY COALESCING

@
ORROREO, ° 9

Figure 4.2: Structured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) example

4.2 Memory coalescing

Memory coalescing is the way the memory is ordered allowing half-Warp to access global mem-
ory at the same time (using only 1 cycle to perform the load operation). This means that, if a
Thread (The first one) in a Warp accesses to a particular memory address and it access pattern
is such that access to the next address (i, i+1, i+2....) the following 31 Threads do not need
to read the memory again. Otherwise, two or more accesses are needed to allow each Thread the
access to data.

Memory coalescing is one of the most important things to take into account when program-
ming GPU’s. Recent works [29] have demonstrated the efficiency of coalescing techniques, being
this implementation better in some cases than shared memory strategies. Although there exist
works dealing with the profits of using this strategy, the way to proceed when using unstruc-
tured meshes is not clear. This topic will be discussed in the next May 2012 GPU Technology
Conference [8] and some improvements are detailed in [25].

In our case, the perfect memory coalescing technique could be implemented, [3] [7], if using
structured meshes. As it appears in Figure 2] cell labelling implies that the access pattern for
a Block of (in this case 9) cells allows the programmer to make the perfect match access into a
Warp. In other words, for any group of cells within a Warp, all the variables are accessible in
only a coalesced reading.

Being the present work oriented to a general implementation of the finite volume scheme on
both structured and unstructured grids, the memory optimization is not as easy as described
above.

According to the general updating formula2.30] this scheme works with the cell edge fluxes or
inter-cell elements through which the Rienmann Problem is solved. In the case of the structured
mesh, this flux takes place into the left, right, upside and downside cell to a given cell, so all the
operations could be performed looping by cells. In unstructured grids, this concept is different
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Time

Y

Cell Data Array

32 Threads Warp

Cell Data Array

32 Threads Warp

Cell Data Array

32 Threads Warp

Cell Data Array

32 Threads Warp

Figure 4.3: Misaligned and Coalesced access pattern to compute the flux variation for any group of elements
following the scheme of Right, Left, Down, Up for W data (Stored by cell) in a mesh ordered as Figure[£.2] Light
coloured correspond to the processed element 5, wich implies cells 2, 4, 6 and 8.

&

@
(&

Figure 4.4: Unstructured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) example

and it is good idea to make the flux calculations by walls and then, to assign them to each cell
with the need to keep trace via a connectivity matrix.

For the general unstructured case it is important to decide how to stablish the order of the
variables. It can be performed through cells or through walls. Using as example Figure [4.2]
the operations of applying the variation to the cell (8) has no a coalesced pattern. There exists
the need of searching the neighbouring cells (74,61,16) and calculating the flux through walls
(33,9,16). Sketching these operations in an example for wall 33 (i=33, ¢1=8, ¢2=74) we have:

calculateWallFluxes(...){

// Loop by wall

int i = threadIdx.x+(blockIdx.x*blockDim.x);
if (i<nWall){

22



10

11

12

13

14

15

16

17

18

19

4.3. GATHERING DATA AVOIDING BOTTLENECK

- Cell Data Array

a8 I I O D I D D v s

Figure 4.5: Uncoalesced access pattern to get W data (Stored by cell). Processing wall 9 is light coloured when
it accesses to cell 8 (i=9, c1=8)

cl=wallli];

c2=walll[i+1];

// [COALESCED] Access to the variables of the wall
// Normal Vector

// Length of the side

/] ...

// [UNCOALESCED] Access to the variables of cl and c2
// Primitives variables

// Area of the cells

/] ...

// Store the value of the flux for the wall i

¥

Although this is the main function where the flux is calculated and it involves many unco-
alesced accesses to the variables, there are some operations whose access could be performed
through the cells.

4.3 Gathering data avoiding bottleneck

One of the troubles when trying to make all the operations inside the GPU is the identification
of global quantities such as the minimum value of a vector. As the Many-Core paradigm is not
designed to share information between elements, reduction operations like min, max, sum...

are performed at cublas library [23].

cublas library has high-level functions that work retrieving results to GPU or to CPU. When
interested in using them without taking out the data from the GPU, that must be specified. This
could be done through cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_DEVICE),
stating that all results have to be returned to the GPU memory.

In our case, it is essential that the algorithm calculates the minimum At following the CFL

condition when running along all the cell edges. Then, following Figure[£.3]scheme, the minimum
among all of them is selected. Details are shown in Listing 43l

23



CHAPTER 4. IMPLEMENTATION

O ( 2 » cublasIldamin()-» (3)
dt[1..n] At—dt(3]

Figure 4.6: Gathering minimum At for all the domain

void newDt(double *dt,double *vDt, int *id){
// As cublasIdamin returns it value following

__global__
// 1-based indexing, we must to substrate 1
*dt=vDt [*id-1];

cublasIdamin(handle,*npared,vDt,1,id);
newDt<<<1,1>>>(dt,vDt,d_id);

While calculation is controlled by host, it is necessary to transfer the updated t"*1. After
0t is calculated, the updating operation can be perform as [£4] and then, you can transfer the
updated value of t"*! to CPU.

__global__ void updateT(double *dt,double *t){

int i;
xt=kt+*dt ;

In order to calculate the global mass error, there is a sum of mass inside the mesh and the
balance between the inlet and outlet boundaries

and then, it calculates the error as

N Mn+1 - M" + Mzn - Mout
€= Mn+1

The sums are performed using cublasDasum where all elements are added within a vector

(4.2)

and the results stored in a variable, working similar to cublasIdamin.

4.4 Writing output files

The feature of the newest CUDA models allowing for simultaneous execution and copy streams
can be used to hide delays caused by writing data to disk.
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CPU - Main thread

[

Launch simulation
kernels

CPU - Write thread GPU - Execution stream GPU - Copy stream

Execute
simulation
kernels

Launch copy to buffer
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copy to CPU RAM

}

Copy results to buffer in GPU RAM
(Default stream)

|
Join write | | *
thread
I T I I
Launch write I I I
thread | | |
I | Synchronize with | Coggj‘gﬁ; to
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{ 7N\
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Figure 4.7: Asynchronus dumping data diagram.

Traditional cudaMemcpy performs a synchronous copy, i.e., the call does not return until the
copy is complete. However, calls to the new family of asynchronous functions like cudaMem-
cpyAsync may return before the copy is complete. Furthermore, the copy may be assigned to a
stream. In this way it is possible for the CPU host code to call cudaMemcpyAsync and assign
it to a copy stream, then launch kernels in an execution stream. Both streams are processed
simultaneously by the GPU.

It is not possible to use cudaMemcpyAsync directly to copy simulation results to Host mem-
ory in the case of shallow flow simulation because the concurrent simulation would alter the
values in the variables being copied. It is necessary to make a synchronous copy to a buffer in
GPU memory first (Figure 7). Once the copy of the results to the buffer is complete, a call to
cudaMemcpyAsync is made which copies the buffer to host memory, and the simulation kernels
are launched simultaneously operating on the usual variables.
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This scheme requires that the CPU launches kernels after the call to the asynchronous copy.
It is necessary to introduce a parallel CPU thread that waits for the copy to finish and then
writes the results to disk. Thus, the main CPU thread will first call cudaMemcpyAsync, then
spawn a write thread and continue launching kernels to advance the simulation. The first task
for the writing CPU thread will be to wait for the copy stream to finish, then proceed to write
the results in host memory to disk.

The limitation in this scheme is that the computation time between dumps to disk has to be
greater than the writing time to disk itself. If that is not the case, gains can still be achieved
from using this scheme but further barriers are required. One of them is that the main CPU
thread has to wait for the writing thread to finish before calling cudaMemcpyAsync. Depending
on the problem, further gains can be made e.g. using multibuffering.

4.5 Compilation and other issues

In the original Fortran version of the code there are several functions related to the preprocess
and postprocess as sketched on figure 4.8 To be more efficient, the programming of that part
of the code in C has been ommitted and the work has focused on the efficient programming
of the numerical aspects. So the preprocess is performed through the Fortran version and the
computing kernel is performed using C/CUDA.

To work with the two codes at the same time, they have been compiled together. The
technique used is based on making a standard C interface which interoperates with CUDA and
is called from Fortran as shown in [I]. The most complicated and interesting detail of this
operation is the way of compiling them. It is shown in Listing

NVCC
FORT

nvcc

gfortran

FORTFLAGS = -w -03

CUFLAGS = -g -w -03 -m64 -arch sm_21 -Xptxas -dlcm=ca -I$(EXTRAE_HOME)/include

LDFLAGS = -L/opt/cuda/4.0/1ib64 -L$(EXTRAE_HOME)/lib -lcudatrace -lcuda -lcudart
-lstdc++ -lcublas -1rt -1m -lpthread

cuda_blocks2mf.o SFS2Dv01_64.0

sfsGPU

0BJ
BIN

$(BIN): $(0BJ)
$(FORT) $(FORTFLAGS) $(0BJ) $(LDFLAGS) -o $@

clean:

$(rRM) $(0BJ)
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cleanEx:
$(RM) $(0OBJ) $(BIN)

cuda_actualiza.o: cuda_actualiza.cu
$(NVCC) $(CUFLAGS) $< -c -o $@

cuda_blocks2mf.o: cuda_blocks2mf.cu
$(NVCC) $(CUFLAGS) $< -c -o $@

SFS2Dv01_64.0: SFS2Dv01_64.for
$(FORT) $(FORTFLAGS) $< -c -o $@

Bearing in mind that all the structures are created as Vectors in Fortran and Fortran indexing
are 1-based (C uses 0-Based) an special access is required (Eq (£3), ([43]) and (@3])). Furthermore,
Fortran stores the elements following Column-Major Order while C storing is Row-Major Order

based. These two aspects imply that:

e The access to the particular position ¢ of array V[M] is made, in C, as

V@) =V]i—1]

e The access to the particular position 4, j of array V[MxzN] is made in C as

V(i,j)=V[[ji-1) -M+1i-1]

e The access to the particular position 4, j, k of array V[MxNzO] is made in C as

V(i,j, k) =V[(k—=1)-M-N+(j— )M +i—1]

| Load the mesh |

Load Initial Conditions

Stablish Sim. Length | o’

No |:|

t<tsin®?

Ye

Compute Results

t +dt

Dump Data .

S
Calc. dw Mc‘am dt IA\\Qé\vjvet/Dry Correction %

IInmnmihihhniimmum

Load BCs

Sync dW

,I Update W m Sync dt =\

.
.
t=

Stablish Sim. Length Free Resources *
.
Y
.

Figure 4.8: Flux diagram for the application. Green-highlighted is the ported slice of the code

(4.3)

(4.4)
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Results

The cases chosen to show the results are focused on how similar are the GPU numerical results to
the ones obtained from the original CPU version (precision) and how efficient this implementation
can be (performance). To achieve this, two examples have beed selected. First, an academic case
of unsteady flow with source terms with analytical solution and second a real life inundation
flow of hydraulic interest. Furthermore, the GPU perfomance has been compared with that of
a distributed-parallel version of the CPU code at [14] using a dam-break flow simulation with a
large number of cells.

5.1 Precision: A test-case with analytical solution

This case has been used to minimize the differences between the results provided by the CPU and
the GPU versions. The case simulates the evolution of a mass of water contained in a frictionless
paraboloid. Test Case 1 corresponds to zero initial velocity and a curved initial free surface shape
(Figure 5.0)). As times goes on, the potential energy transforms into kinetic energy. It is a good
case because it has analytical solution [27] and there exists a challenging wet/dry boundary all
the time.

Figure 5.1: Left: Bed level and initial water depth state for test case 1.

As shown in Figure and Figure there are not visible differences between both simula-
tions. In order to quantify the precision of the GPU implementation with respect to the CPU,
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Figure 5.2: Test case 1. Left: GPU Simulated results for h and Right: CPU Simulated results for h at ¢ = 42.03s.
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Figure 5.3: Test case 1. Left: GPU Simulated result for |v| and Right: CPU Simulated results for |v| at
t = 42.03s.

the L1, Ly and Ly, norm of the error in water depth at different times has been calculated. Test
Case 1 shows acceptable differences. This agrees with the error in the calculation reaching ma-
chine precission (O(—14)) in both versions of the code. The most sensitive region is the wet/dry
boundary where both the water depth and velocity are very small.

Test Case 2 corresponds to the same frictionless container but with different initial data cor-
responding to a flat surface with velocity. Although the visual comparison is also favorable, the
detailed evaluation of the L1, Ly and L., norm of the error in water depth at different times
shows unacceptable differences which come from the precision of the double floating point data
type, reaching O(Ls) = —4. Studying the procedence of the differences we find the problem at
the first time step (See Figure B.1)).

Following the numerical scheme, we found that:

IB 1
k

Attending to the new state for the second time-step, we found the values for cell 65399 as
appears in Table
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5.1. PRECISION: A TEST-CASE WITH ANALYTICAL SOLUTION

L1 Norm Lo Norm Lo Norm

T/4 5.8354e-06 4.4112e-08 5.0000e-10

Test Case 1 T/2 8.0286e-06 5.1624e-08 4.9991e-10
3T/4 8.0451e-06 5.1698e-08 4.9995e-10

T 7.9398e-06 5.1307e-08 4.9988e-10

T/4 1.4805e+-01 2.9783e-01 5.9207e-02

Test Case 2 T/2 1.6664e+-01 2.2877e-01 3.1504e-02
3T/4 1.7416e+-01 3.3210e-01 1.1387e-01

T 2.5452e+-01 4.3794e-01 5.4876e-02

Table 5.1: L1, L2 and L for h

CPU GPU
a -7.00000000000000188e-03 -7.0000000000000045¢-03
B -1.834034064569145186-03 -1.8340340645691430e-03
A 2.62004866367020641e-01 2.6200486636702058¢-01
e o —ab + (B/N)} -8.67361737988403547e-19 8.6736173798840355¢-18
et 9.7990000000000005¢-06 6.7151999999999997¢-05
Loo(hi) 5.7353¢-05

Table 5.2: Computational results in the first time step for o, 8, A\, h and Lo for h in the conflictive cell

Although there are little differences, visual results appear to be the same as it is shown in
figures 5.5] Figure and Figure £.7]

In order to avoid this differences in computational accuracy and the corresponding non-
physical fluxes, the following restriction is included (where hls=h* and hrs=h***).

if (h1s<COTAMIN1_15)
hl1s=0.0;

if (hrs<COTAMIN1_15)
hrs=0.0;

ho ht cpu htgpu

Figure 5.4: Left: Initial state ho for the conflictive cell. Center: h' for CPU. € accuracy involves wall treatment
as solid edge implying an increasing in it water depth. Right: h* for GPU. € accuracy involves wall treatment as
non solid edge so that water level decrease at cell ¢ and increase at cell j.
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Figure 5.7: From Left to right, Top to down, v for t=T/4, T/2, 3T/4 and T

With this correction, the following norms are obtained (See Table [5.3))

L1 Norm Lo Norm Lo Norm

T/4 3.1995e-11 5.6889%e-13 2.1316e-14

Test Case 1 T/2 3.4019e-11 5.8436e-13 1.0658e-14
3T /4 4.4666e-11 6.7184e-13 1.7764e-14

T 3.3531e-11 5.8323e-13 1.9984e-14

T/4 2.0493e-11 4.5302e-13 1.0658e-14

Test Case 2 T/2 3.4429e-11 5.8694e-13 1.0658e-14
3T/4 3.2590e-11 5.7146e-13 1.0658e-14

T 3.3222e-11 5.7687e-13 1.0658e-14

Table 5.3: L1, Lo and L, for h before applied the correction

5.2 Performance: A large-scale simulation at Jacar River

A realistic case with a long simulation time has been used in order to study the behaviour of
the implementation in a large spatial and time scale case. Tous Dam is the last flood control
structure of the Jucar River basin in the central part of the Mediterranean coast of Spain. Dur-
ing the 20th and the 21st October 1982 a particular meteorological condition led to extremely
heavy rainfall. As a result the Jucar River basin suffered flooding all along and the Tous Dam
failed with devastating effects downstream. The first affected town was Sumacércel, about 5
km downstream of Tous Dam, lying at the toe of a hill on the right bank of Jucar river [3].
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Figure 5.8: From Left to right, Top to down, h for t=0, T/4, T/2, 3T/4 and T

The terrain is moderately mountainous and most of the buildings lie on a slope that partially
protected them from the flood. The ancient part of the village, however, is located closer to the
river course and was completely flooded, with high water marks reaching between 6 m and 7 m.

The resolution of the available topographic data allow flood modelling. The DTM model
used in this work was generated by CEDEX in 1998 [3]. From this information two numerical
domains of different size and grid refinement were defined. The first domain, wich we will refer
to as D1, covers most of the original DTM, starting just after the dam location and finishing
approximately 1 km downstream of Sumacércel. More details can be found in [3].
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Figure 5.9: Left: Sumacarcel photography. Right: simulation mesh
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Figure 5.10: Water depth evolution for (Left-right, Top-down) ¢ = 5,10, 15, 20, 25, 30h



CHAPTER 5. RESULTS

CPU GPU
Cells 563712
CFL 0.9
tn 140400.0
Qo 0 m3/s
Comp. Load (h.) 698.52 22.31
Sup 31.31

Table 5.4: Simulation time for test case 2

Figure 5.11: Gauges position

The values of reference to evaluate the quality of the simulations are field data of the maxi-
mum level reached by the flood wave at different locations within the town [3]. The location of
these gauging points is shown in Figure 5111

D, was constructed using a triangular structured mesh with side length 5 m, able to provide
a correct representation of the village. This led to 144669 grid cells. When doubling the cell
size the resolution of the buildings was smeared and the village topography was poorly defined,
providing an unrealistic definition of the problem.

The second discretization Ds, covers a small part of Dy, focusing on the representation of the
village and was generated using a finer structured triangular mesh characterized by cell sides of
2.5 m over a smaller domain (grid density increased by a factor 4). This discretization involves
563712 cells. Both discretizations D7 and Dsy are able to reproduce the narrow streets of the
village, although the mesh Dy provides a sharper delimitation of the buildings.

Urban flooding usually takes place in unexpected events and, in consequence, useful data
are not accurately recorded, as in this case. When reproducing these events it is necessary to
imagine different scenarios in order to compare the relative predictions to draw conclusions. As
in this work we are concerned about the accuracy of the proposed simulation model to urban
flooding, we will analyze the sensitivity of the solutions to the cell size. The decrease in the cell
size leads to a large increment in the time of simulation. Therefore, it is also useful to check
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if good predictions can be obtained using reduced domains of the study area or if, otherwise,
it is preferable to define large domains at the cost of less definition for the topographic data if
extremely long computational times are to be avoided.

This hydrograph is synthetic since no actual discharge records exist [3]. As the numerical
domain Dy is located 4 km downstrean of the Tous Dam it is possible to compute a new dis-
charge curve by recording the rate of flow discharge at an appropriate section in D;. Due to
the huge magnitude of the flooding the difference between the two discharge curves is merely
a lag time of a few hours. Both are displayed in Figure 514l Considering this, and the fact
that no records of the flood wave arrival time exist, the same original discharge curve was set as
inlet boundary condition in domains D and Do when performing numerical simulations. At the
oulet boundary, downstream of the domains, the flow was let to exit freely without imposing any
conditions, as no information was provided. The initial depth of water in the river reach prior to
the rain events is unknown. Taking into account that the base flow of Jucar River is roughly 50

3

m3s~1 which is totally negligible in comparison with the scale of Tous outflow hydrograph, the

~1/3 was used

valley was assumed initially dry. Following [3] a Manning coefficient of 0.030sm
for the whole river bed reach. Other zones of increased Manning coefficient are included. As the

ground in the town area was fully paved with concrete, the flood did not erode it.

Regarding recorded hydraulic data of the flooding of the town of Sumacércel, a range for the
maximum water elevation marks was collected at 21 locations within or very close to Sumacércel
village. In both calculations a total time of 39 h was simulated with a computational time of 5.5
h in the Dq domain and 22.3 h in the Dy domain.

These gauging points are shown in Figure (.11l Some gauges (numbers 5, 9, 15, 17, 18 and
21) show no flooding (zero or near zero maximum water depth) and correspond to locations just
barely reached by the flooding so that they represent a sort of shore line of the flood within the

town.

Table 1 contains a summary of probe locations, estimated maximum water depths and com-
puted maximum water depths on the two computational domains. The values of the water depth
at gauges 1 and 2, placed in the lower part of the village indicate that the numerical solutions
provided by both grids are a good prediction of the maximum water level reached by the flooding
at both stations. Both gauges register almost the same water level surface evolution, as expected
due to their proximity. Good agreement between maximum water elevation marks and predicted
data is also found for gauge locations 3 and 4, of similar bed level elevation, and located within
the village.

The results in table 1 show also a good agreement for gauge 5 that remains dry according to
the field observations, despite it being close to the river bed. The elevation at gauge 6, within
Sumacércel, is overestimated in approximately 1 m. The water depth at gauge 7 agrees well with
the maximum water elevation mark, whilst water depth in gauge 8 is overestimated in approxi-

mately 1 m.
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Gauge x(m) y(m) Est. max. h(m) Comp. max. h(m) D1 Comp. max. h(m) Ds

1 2410 3290  17.5-19 18.613149 18.684626
2 2400 3335 8.0-9.0 10.181195 9.806911
3 23556 3315  7.0-8.0 7.270638 7.386148
4 2345 3380 7 6.775814 6.895801
5 2335 3175 0.2 0.000 0.00

6 2335 3420  5.0-6.0 7.464109 7.615280
7 2330 3365 6 6.101556 6.143140
8 2315 3450 5 6.561674 6.679546
9 2310 3590 0O 0.304004 0.119698
10 2303 3255 4 3.887516 3.979779
11 2285 3425 2 3.039008 3.194761
12 2285 3500  5.0-6.0 4.772985 4.909878
13 2280 3280  2.5-3.0 4.186196 4.330580
14 2266 3550 2 3.549098 3.122085
15 2265 3400 O 1.928118 2.134662
16 2259 3530  3.0-4.0 3.698947 3.802850
17 2250 3440 0 0.661666 0.901334
18 2230 3525 O 1.041024 1.215631
19 2205 3445  2.0-3.0 2.026697 2.257170
20 2195 3440 2 1.857008 2.096829
21 2190 3485 0 0.000 0.00

Table 5.5: Gauges position, estimated maximum water depth and simulated water depth

The results for gauges 9 and 10 show good agreement with field observations. Gauge location
9 remained dry along the flooding and the simulation provides a maximum water depth in the
scale of the centimeters. The numerical results for gauge 11 indicate an overestimation of the
field water depth estimation of approximately 1 m, whilst very good agreement is found for gauge
12.

The simulations at the gauge locations 13 and 14 overestimate field observations in approxi-
mately 1 m. Gauge location 15 remained dry along the flooding whereas the numerical simulation
did not. On the other hand the results for gauge location 16 are in good accordance with the
observed field data.

Gauges 17 and 18 remained dry but the simulation estimates a maximum depth of nearly 1
m. The results for gauge locations 19 and 20 and 21 are in accordance with field observations.

The evolution of the computed flooding can be seen in plan view in Figure B.I0 for times
t =5, 10, 15, 20, 25, and 30 hours. The computed flow advances and passes around the buildings
but always moving inside the limit given by that line.

Although mesh Dy has larger cells than Dy the numerical predictions from both grids are in
general in agreement with observed data. It is remarkable that for this extreme event, despite
the different locations of the inlet discharge sections and the different size of the cells in Dy and
Dy, the water depth results for D; are only slightly inferior than the ones obtained with Ds.
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It is very useful, when an exhaustive study is required, to refine the mesh in the area of in-
terest. In this case, the main trouble is to stablish the input hydrograph. Although water depth
has no many significative differences Figure and (.13], velocity has not the same behaviour
(Gauges 5 and 21 have been ommited because of both have calculated the dry state). In Figure
is possible to appreciate the differences where the simulation performed with the coarse
mesh makes a higher estimation of the velocity.

As displayed by the results of the water level time evolution at the gauges, the mesh refine-
ment in the zone of interest improves the quality of the predictions. The GPU simulation of the
computation on the refined mesh was 22 hours and 20 minutes (more than 28 days of simulation
using CPU) and that for the coarse mesh was 5 hours and 30 minutes. The coarse mesh was a
good aproximation of how the flood advances but not always can be used to study the details in

a particular area.

5.3 Comparing with a distributed memory parallel implementa-
tion

28-Core® 1-Core GPU

Cells 106648
CFL 0.9
tn 400.0
ho 5-0
Comp. Load (s.) 363.2 9383.83 250.79
Sup 25.84 37.41

Table 5.6: Computational load for a Dam-Break simulation (400 s.) with the mono-core version, the MPI
paralellized version and the new CUDA version. © Each core comes from an Intel i7 CPU 860 @ 2.80 GHz

This case simulates the evolution of two connected boxes where one of them contains 5 m.
of water level and the other one is dry. The initial conditions and geometry are shown at [5.10]

The reason to include this additional test case is that it was run previously with a CPU
version of the method paralellized through distrubuted machines paradigm using Standard MPI.

The simulation was run during 400 s. dumping data each 200 time-steps. Furthermore, it
has been used CFL=0.9 and a manning coefficient of m = 0.03.

The results show that the power of computing of the GPU is comparable with the power of
more than 30 computers working at the same time using the Distrubuted Computing paradigm.
Although CUDA programming is not as easy as MPI programming and it is important to note
that not every implementations support both kind of implementations, the performance of the
first technique is much better.
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Figure 5.12: Simulated and estimated water depth in 1-11 Gauges.
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Figure 5.16: Initial conditions of water depth and mesh plot
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Figure 5.17: 5-0 Dam-Break simulation for (Right-Left, Top-Down) t=5, 10, 15, 20, 25, 30 seconds
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Conclusions and future work

A first order finite volume scheme to discretize the Shallow Water equations on unstructured
meshes has been implemented using GPUs. The associated speed-up has been studied when
solving different problems with nVidia Tesla Series c2070. The difficulties generated by the use
of unstructured meshes have been identified and partially overcome so that our results show that
it is possible to solve many different problems 30 times faster than a common CPU version on a
single processor. Furthermore, only machine precision differences are encountered between both
implementations, so it is important to note that the speed of the simulation does not affect the
precision of the numerical method.

Communicating data between CPU and GPU has a very expensive cost. An interesting
strategy to reduce the impact of the communication has been proposed. The only necessity of
communication is the elapsed simulation time so that the CPU schedules the operations.

Previous work related to reducing the computational cost by means of parallel CPU pro-
gramming has been compared, showing that a GPU could be faster than 30 CPU cores involving
less investment and less energy consumption. The values of 50-100x speed-up announced in the
related literature have not been reached in our implementation. Our interpretation is that it is
not possible to be more than 42 times faster than a CPU processor when working with double
precision data and serious and careful speed-up comparisons are required in any case. Although
it is very complicated to reach the theorical performance peak, both implementations could reach
a reasonable power, so if both implementations are mostly optimized, speed ups like the related
in this work are acceptable.

As further work, it is interesting to explore the Multi-GPU paradigms, simulating with many

GPUs and to study other implementations which perform the memory access pattern under

unstructured meshes.
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