
EINA

Universidad ZaragozaMáster Universitario enMeánia Apliada Trabajo Fin de Máster
2D Shallow Flow Simulation
Using GPU Technologies

Asier Lacasta Soto
Grupo de Hidráulica Computacional - alacasta@unizar.es

Directora: Pilar García Navarro1

Co-Director: Javier Murillo Castarlenas1

(1) Area de Mecánica de Fluidos
Escuela de Ingeniería y Arquitectura
Universidad Zaragoza

Curso 2011/2012

2

Aknowledgements
I would like to express my appreiation to Dra. Pilar Garía Navarro for her valuable andonstrutive suggestions during the planning and development of this researh work. My grate-ful thanks are also extended to Dr. Javier Murillo for his help with the model solving my doubts.I would also like to thank the other members of the group for their advies and points of viewwhen neessary. I would like speially mention to Hetor Ratia.Finally, I wish to thank nVidia for their partial support providing us with a Hardware part underthe Nvidia Aademi Partnership program.This work has been developed under projet CENIT-TECOAGUA CEN-20091028.

i

ii

Resumen
Los modelos matemátios y métodos numérios impliados en la simulaión de �ujos on super-�ie libre han sido estudiados durante tiempo en el Grupo de Hidráulia Computaional de laUniversidad de Zaragoza. Estos modelos son la base de nuevos desarrollos omo el transporte desedimento, el modelado de interaión on puentes o el aoplamiento hidrológio. A pesar de laalidad de estos métodos, el oste omputaional es muy alto y en gran parte esto se debe a latenología numéria que requieren.Con la �nalidad de superar esta limitaión, este trabajo estudia la implementaión de unódigo de simulaión hidráulia orientada a ejeuión en GPU, permitiendo simular un amplioonjunto de situaiones transitorias en gran esala temporal, on un tiempo de simulaión ra-zonable.El oste omputaional de éste tipo de herramientas ha sido reduido, tradiionalmente,utilizando ténias de paralelismo, impliando un alto número de proesadores para reduir eltiempo de álulo al máximo. En los últimos años, las freuenias de los proesadores pareenhaber alanzado su límite (Figura 1 extraida de [9℄) por lo que las ténias de paralelismo enproesadores masivos son una nueva opión.

Figure 1: Evoluión de las freuenias de CPU desde 1985 hasta 2011iii

En este trabajo, se analiza el rendimiento del ódigo implementado en GPU, omparándoloon su equivalente en CPU. Este segudo, viene siendo desarrollado, en su totalidad, en Fortranmientras que el primero, ha sido desarrollado utilizando el lenguaje de programaión C, om-partiendo el proesamiento geométrio on la versión CPU. Las fuionalidades implementadasen la versión GPU, ubre una gran parte de situaiones de interés, tales omo el avane de unainundaión, los ambios de fondo y friión y algunas ondiiones de ontorno de entrada y desalidas. La implementaión del método en GPU no es trivial y requiere de un onoimiento enprofundidad del funionamiento de esta tenología a bajo nivel. Los bene�ios de la versión GPUserán analizados a través de la aeleraión repeto a la versión CPU en diferentes tipos de aso.EL rendimiento del ódigo GPU además, será medido teniendo en uenta el uso de mallas noestruturadas, las uales suelen ser neesarias en muhos odigos de CFD. Para su simulaión,se utilizará la GPU Tesla 2075 de nVidia. Además se utilizará el estándar CUDA, que hae laprogramaión más senilla que otros estándar en programión GPU, permietiendo al programadorexprimir los bene�ios de esta tenología.

iv

Abstrat
The mathematial models and numerial methods implied in the resolution of free surfae �owshave been studied for a long time within the Computational Hydrauli Group at the UniversidadZaragoza. They support new developments suh as sediment transport, bridges modeling or hy-drologial oupling. Despite the quality that the numerial solvers proposed by the group o�er,the omputational ost of these methods is very high, due to the omplexity of the numerialtools required.In order to avoid this limitation, the present work studies the implementation of a sienti�hydrauli simulation tool oriented to be run on GPU, allowing to simulate a wide range of sit-uations over large time sale problems, that otherwise an not be omputed at an a�ordable ost.The omputational ost has been traditionally redued by using parallel tehniques, involvinga large number of proessors in order to redue the simulation time as muh as possible. SineCPU frequenies seem to be reahing their maximum apaity (Figure 2 extrated from [9℄),nowadays Many-Core parallel tehniques appear to be an interesting option.

Figure 2: CPU Frequeny evolution sine 1985 until 2011The performane of the GPU version is analyzed omparing both CPU and GPU versionsof the same ode. While the former was fully developed in Fortran language, the numerialv

kernel of the new GPU version has been written in C, sharing the geometrial preproessingmodule with the CPU version. The funtionalities implemented in the GPU version over awide range of situations as they inlude all the harateristis that are desirable in the ontextof shallow �ow simulation: �ooding advane, frition and bed slope soure-terms as weel as inletand outlet boundary onditions. The implementation of these requirements in the ontext ofrealisti simulations is not straightforward. This is explained when onsidering that, ontrary toother programming languages, the GPU version requires a good omprehension of the low leveloperations, that does not allow a diret onventional implementation. The bene�ts of the GPUversion will be analyzed in depth fousing on speed-up gain in omplex ases.The performane of the GPU ode is analyzed in depth to ensure not only the e�ieny butalso the possibilities of GPU programming when using unstrutured meshes, that are often re-quired in CFD odes. A Tesla 2075 nVidia GPU has been used in the present study. Moreover,it has been developed using nVidia-CUDA standard, whih makes friendly the programming forgeneral purpose appliations, allowing the programmer to exploit the many-ore paradigm.

vi

Contents
1 Introdution 11.1 Context and assumptions . 11.2 Struture of the report . 22 Mathematial Model and Numerial Method 32.1 Approximate Riemann solution . 32.2 Appliation to the 2D Shallow Water equations 62.3 Numerial resolution . 73 CUDA Tehnology Overview 113.1 GPU Tehnology history . 113.2 nVidia CUDA tehnology . 123.3 CUDA development . 133.3.1 Example of implementation in a 1D ase 143.4 Results All that glitters is not gold . 164 Implementation 194.1 Model overview . 194.2 Memory oalesing . 214.3 Gathering data avoiding bottlenek . 234.4 Writing output �les . 244.5 Compilation and other issues . 265 Results 295.1 Preision: A test-ase with analytial solution . 295.2 Performane: A large-sale simulation at Júar River 335.3 Comparing with a distributed memory parallel implementation 396 Conlusions and future work 45Bibliography 47vii

List of Figures
1 Evoluión de las freuenias de CPU desde 1985 hasta 2011 iii2 CPU Frequeny evolution sine 1985 until 2011 v2.1 Riemann problem in 2D along the normal diretion to a ell side. 53.1 thread, blok, grid sheme omposition . 123.2 Desription of our Fermi 2075 GPU based on GF100/GF110 Arhiteture. . . . 133.3 Exeution pipeline for a Strem Multiproessor (left) whih proess blok number4 (right) . 134.1 Exeution trae and performane detail for a time-step using Paraver 204.2 Strutured mesh with Cell Numbering detail (Right) and Wall Numbering detail(Left) example . 214.3 Misaligned and Coalesed aess pattern to ompute the �ux variation for anygroup of elements following the sheme of Right, Left, Down, Up for W data(Stored by ell) in a mesh ordered as Figure 4.2. Light oloured orrespond to theproessed element 5, wih implies ells 2, 4, 6 and 8. 224.4 Unstrutured mesh with Cell Numbering detail (Right) andWall Numbering detail(Left) example . 224.5 Unoalesed aess pattern to get W data (Stored by ell). Proessing wall 9 islight oloured when it aesses to ell 8 (i=9, 1=8) 234.6 Gathering minimum ∆t for all the domain . 244.7 Asynhronus dumping data diagram. 254.8 Flux diagram for the appliation. Green-highlighted is the ported slie of the ode 275.1 Left: Bed level and initial water depth state for test ase 1. 295.2 Test ase 1. Left: GPU Simulated results for h and Right: CPU Simulated resultsfor h at t = 42.03s. 305.3 Test ase 1. Left: GPU Simulated result for |v| and Right: CPU Simulated resultsfor |v| at t = 42.03s. 30viii

LIST OF FIGURES5.4 Left: Initial state h0 for the on�itive ell. Center: h1 for CPU. ǫ aurayinvolves wall treatment as solid edge implying an inreasing in it water depth.Right: h1 for GPU. ǫ auray involves wall treatment as non solid edge so thatwater level derease at ell i and inrease at ell j. 315.5 From Left to right, Top to down, h+z for t=T/4, T/2, 3T/4 and T 325.6 From Left to right, Top to down, u for t=T/4, T/2, 3T/4 and T 325.7 From Left to right, Top to down, v for t=T/4, T/2, 3T/4 and T 335.8 From Left to right, Top to down, h for t=0, T/4, T/2, 3T/4 and T 345.9 Left: Sumáarel photography. Right: simulation mesh 355.10 Water depth evolution for (Left-right, Top-down) t = 5, 10, 15, 20, 25, 30h 355.11 Gauges position . 365.12 Simulated and estimated water depth in 1-11 Gauges. 405.13 Simulated and estimated water depth in 12-21 Gauges. 415.14 Tous syntheti hydrograph for D1 (Right) and D2 (Left) 425.15 Comparison of Left: Coarse mesh veloity module and Righ: Re�ned mesh veloitymodule at t = 13h . 425.16 Initial onditions of water depth and mesh plot 425.17 5-0 Dam-Break simulation for (Right-Left, Top-Down) t=5, 10, 15, 20, 25, 30seonds . 43

ix

1IntrodutionThe present work deals with of the e�ient implementation of a sienti� purpose ode orientedto make hydrauli simulations that require a very high omputational load. These alulationsould range from a dam break simulation to the onsequenes of a river �ooding.The ode is based on a numerial resolution of the shallow water model used to simulatewater �uxes under ertain hypothesis. Free surfae �uxes of interest to Hydrauli Engineeringare usually formulated under the shallow water model whih assumes that vertial lengths arelower than horizontal sales in the problem. The depth averaged system of equations resultingfrom this approah allows to make a temporal desription of the �ow �eld as a funtion of waterdepth and horizontal veloity omponents u, v in x and y axis respetively.The governing system of partial di�erential equations is hyperboli and, in general, does nothave exat solution. Therefore, numerial methods are required to reah the solution or to ap-proximate it. The question of what is the most suitable method to solve it is still open but �nitevolume shemes are widely used.1.1 Context and assumptionsThe Computational Hydraulis Group at the University of Zaragoza (http://gh.unizar.es) isinvolved with both researh and teahing ativities related to the topi of this projet. This re-searh team has been working on Computational Hydrauli Researh sine 1986. The results havebeen published in many international journals and have led to atual knowledge transfer modelsthat are nowadays used by private and publi bodies in Spain. The numerial models of freesurfae �ows developed by this researh team has led to e�ient, robust and aurate simulationsoftware tools. The researh team has extended the numerial shemes making feasible the ap-pliation to realisti ases found in engineering appliations, where the importane of the soureterms in the equations, mainly related with the bathymetry of the bed in river �ows, requiresspeial numerial treatments. In order to involve all possible senarios, two di�erent modellinglines have been explored. A one-dimensional researh line to analyse rivers and hannels, and atwo-dimensional researh line, where the transversal omponent of the �ow is of importane, able1

CHAPTER 1. INTRODUCTIONto handle more omplex situations. This approah may lead to very time onsuming simulations.To study the performane of the GPU version, it has been ompared to the CPU version.That has been developed for a long time. The numerial kernel in the GPU version has been writ-ten in C, sharing the geometrial preproess with the CPU version. Although the CPU versionhas several funtionalities implemented, the GPU version overs only a few of them. In partiu-lar, the Shallow-Water equations disretization using Roe solver inluding wet/dry boundaries,frition soure-term, and two inlet and outlet boundaries. With this implementation, the gainof the GPU version will be studied.Both the CPU and GPU versions work with the same data-strutures. Furthermore, the nu-merial kernel in both versions is optimized so that they to make more or less the same numberof operations and are ompiled with the same options in order to apply a orret analysis for theomparison.1.2 Struture of the reportThe report has been strutured in 5 setions. First the mathematial model and numerialsheme used to solve the free surfae �ow equations are introdued. Seond one desribes theway to program a general numerial solver in GPU's, using as example the 1D transport equation.Furthermore, in this seond part the hardware omposition of the GPU and the CUDA modelto develop to it are also desribed. The third part explains the main problems found in theimplementation of the model. These problems are explained as a general way to solve problemsrelated to the numerial solvers. The fourth part ontains three test ases where auray andperformane are studied omparing with both, serial and parallel implementations of the method.The last part desribes our onlusions as well as the desirable future work improvements.

2

2Mathematial Model and Numerial MethodWe are interested in the simulation of a problem that an be formulated as a system of onser-vation laws with soure term as follows
∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U, x, y) (2.1)System (2.1) is time dependent and non linear. Under the hypothesis of dominant advetion,it an be lassi�ed and numerially dealt with as belonging to the family of hyperboli systems.It inludes the existene of a Jaobian matrix of the �ux normal to a diretion given by the unitvetor n, E · n. De�ning E · n = Fnx +Gny, the Jaobian an be written as

Jn =
∂E · n
∂U

=
∂F

∂U
nx +

∂G

∂U
ny (2.2)The Jaobian an be used to form de basis of the upwind numerial disretization.2.1 Approximate Riemann solutionThe previous di�erential formulation an be reinterpreted over a volume (or grid ell) Ω usingthe integral formulation as follows

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ (2.3)whih beomes, using the Gauss theorem
∂

∂t

∫

Ω

UdΩ +

∮

∂Ω
E · ndl =

∫

Ω

SdΩ (2.4)where n = (nx, ny) is the outward unit normal vetor to the volume Ω.Considering the omplete spatial domain disretized in omputational ells Ωi and using theonventional ell-average notation, the solution U
n

i
inside the ell for U(x, y, t)

U
n
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (2.5)3

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODbeing Ai the ell area. Assuming a pieewise representation of the onserved variables, (2.4)ould be written as
∂

∂t

∫

Ωi

UdΩ +

NE∑

k=1

Ej · nklk =

∫

Ωi

SdΩ (2.6)where Ej is the value of the funtion E at the neighbouring ell j onneted through the edge
k, nk is the outward unit normal vetor to the ell edge k, lk is the orresponding edge lengthand NE is the number of edges around ell i. Considering the quantity Ei uniform per ell iand that

NE∑

k=1

nklk = 0 (2.7)equation (2.6) is written as
∂

∂t

∫

Ωi

UdΩ+

NE∑

k=1

(δE)k · nklk =

∫

Ωi

SdΩ (2.8)with δE = Ej −Ei.In the Roe approah [24℄, the solution of eah RP is obtained from the exat solution of aloally linearized problem. In the 2D framework the solution is obtained reduing eah RP ateah k edge to a 1D Riemann problem projeted onto the diretion of n. The linearized solutionmust ful�ll the Consisteny Condition. In the 2D ase the integral of the approximate solution
Û(x′, t) of the k linearized RP over a suitable ontrol volume must be equal to the integral ofthe exat solution U(x′, t) over the same ontrol volume, with x′ the oordinate normal to theell edge k, Figure 2.1. Then in eah k Riemann problem with initial values Ui,Uj , in a timeinterval [0, 1] and a spae interval [−X ′,X ′] , where

−X ′ ≤ λmin, X ′ ≥ λmax (2.9)and λmin, λmax the positions of the slowest and the fastest wave at t = 1, in a k egde, the solution
Û(x′, 1) at time t = 1 must satisfy the following property:

∫ +X′

−X′

Û(x′, 1) dx′ =

∫ +X′

−X′

U(x′, 1) dx′ (2.10)so using (2.8) the Consisteny Condition beomes:
∫ +X′

−X′

Û(x′, 1) dx′ = X ′ (Ui +Uj)− δEk · nk +

∫ 1

0

∫ +X′

−X′

S dx′ dt (2.11)Sine the soure terms are not neessarily onstant in time, we assume the following timelinearization of the Consisteny Condition:
∫ +X′

−X′

Û(x′, 1) dx′ = X (Ui +Uj)− (δE −T)knk (2.12)4

2.1. APPROXIMATE RIEMANN SOLUTION
-

-

6

?@
@

@
@

@
@

@@

�
�

�
�

�
�

��

���������

HHHHHHHHH
�

�
�

��

@
@

@
@@

x′

lk
0

U
n
i

U
n
j

nk

Figure 2.1: Riemann problem in 2D along the normal diretion to a ell side.where following previous work, [28℄
∫ +X′

−X′

S(x′, 0) dx′ = (Tn)nk (2.13)where T is a suitable numerial soure matrix. This enables the following formulation of (2.8)
∂

∂t

∫

Ω

UdΩi +

NE∑

k=1

(δE −T)knklk = 0 (2.14)that is approximated by using the following linear problem
∂
∂t

∫
Ω
ÛdΩi +

∑NE
k=1

J
∗

n,kδÛklk = 0

Û(x′, 0)k =

{
Ui if x′ < 0

Uj if x′ > 0

(2.15)Integrating 2.15 over the same ontrol volume as before the following expression is obtainedfor eah k edge
∫

+X′

−X′

Û(x′, 1) dx′ = X (Ui +Uj)− J
∗ (Uj −Ui) (2.16)and sine we want to satisfy (2.12), the onstraint that follows is:

(δE −T)knk = J̃
∗ (Uj −Ui) (2.17)Due to the non-linear harater of the �ux matrix E, the de�nition of an approximatedJaobian matrix, J̃n,k, allows for a loal linearization

δ(En)k = J̃n,kδUk (2.18)and is exploited here [24℄. This approah provides a set of three real eigenvalues λ̃m
k and eigenve-tors ẽmk . Then, it is possible to de�ne two matries P̃ = (ẽ1, ẽ2, ẽ3) and P̃

−1 with the followingproperty
J̃n,k = P̃kΛ̃kP̃

−1

k (2.19)5

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODThe di�erene in vetor U aross the grid edge and the soure term are projeted onto thematrix eigenvetors basis:
δUk = P̃kAk (Tn)k = P̃kBk (2.20)with Ak =

(
α1 α2 α3

)T
k
and Bk =

(
β1 β2 β3

)T
k
. Expressing all terms more om-patly:

δ(E · n)k − (T · n)k =

Nλ∑

m=1

(
λ̃ θαẽ

)m
k

(2.21)with
θmk =

(
1− β

λ̃α

)m

k

(2.22)Finally, it is possible to de�ne the desired matrix in (2.17)
J̃
∗

k = (P̃Λ̃
∗
P̃

−1)k (2.23)with Λ̃
∗ = Λ̃Θ, where Λ̃k is a diagonal matrix with eigenvalues λ̃m,∗

k in the main diagonal and
Θk is a diagonal matrix with θmk in the main diagonal:

Λ̃k =

λ̃1 0 0

0 λ̃2 0

0 0 λ̃3

k

Θk =

θ1 0 0

0 θ2 0

0 0 θ3

k

(2.24)2.2 Appliation to the 2D Shallow Water equationsThe two-dimensional shallow water equations, whih represent depth averaged mass and mo-mentum onservation, an be obtained from the Navier-Stokes equations. Negleting di�usionof momentum due to visosity and turbulene, wind e�ets and the Coriolis term, they form asystem of equations [2℄ as in (2.1), where
U = (h, qx, qy)

T (2.25)are the onserved variables with h representing the water depth, qx = hu and qy = hv, with (u, v)the depth averaged omponents of the veloity vetor u along the (x, y) oordinates respetively.The �uxes of these variables are given by:
F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

q2y
h

+
1

2
gh2

)T (2.26)where g is the aeleration of the gravity. The soure terms of the system are the bed slope andthe frition terms:
S =

(
0,

pb,x
ρw

− τb,x
ρw

,
pb,y
ρw

− τb,y
ρw

)T (2.27)6

2.3. NUMERICAL RESOLUTIONwhere the bed slopes of the bottom level z are
pb,x
ρw

= −gh
∂z

∂x
,

pb,y
ρw

= −gh
∂z

∂y
(2.28)and the frition losses are written in terms of the Manning's roughness oe�ient n:

τb,x
ρw

= ghSfx Sfx =
n2u

√
u2 + v2

h4/3
,

τb,y
ρw

= ghSfy Sfy =
n2v

√
u2 + v2

h4/3
(2.29)2.3 Numerial resolutionFollowing Godunov's method, the solutions of the RP's are evolved for a time equal to the timestep and the resulting solution is ell-averaged. The volume integral in the ell at time tn+1 leadsto the updating numerial sheme as:

U
n+1
i Ai = U

n
i Ai −

NE∑

k=1

3∑

m=1

(λ̃−θαẽ)mk lk∆t (2.30)with λ̃±,m
k = 1

2
(λ̃± |λ̃|)mk .When applied to the shallow water system presented in setion 2.2 the approximate Jaobian

J̃n,k for the homogeneous part is onstruted with the following averaged variables [24℄
ũk =

ui
√
hi + uj

√
hj√

hi +
√

hj
, ṽk =

vi
√
hi + vj

√
hj√

hi +
√
hj

, c̃k =

√
g
hi + hj

2
(2.31)leading to

λ̃1
k = (ũn− c̃)k, λ̃2

k = (ũn)k, λ̃3
k = (ũn+ c̃)k (2.32)and

ẽ
1
k =

1

ũ− c̃nx

ṽ − c̃ny

k

, ẽ
2
k =

0

−c̃ny

c̃nx

k

, ẽ
3
k =

1

ũ+ c̃nx

ṽ + c̃ny

k

(2.33)When ell averaging the solution in the 1D dimensional ase the time step ∆t is taken smallenough so that there is no interation of waves from neighbouring Riemann problems, attendingto a distane ∆x/2. In the 2D framework, onsidering unstrutured meshes, the equivalentdistane to ∆x, that will be referred to as χi in eah ell i must onsider the volume of the elland the length of the shared k edges.
χi =

Ai

maxk=1,NE lk
(2.34)Considering that eah k RP is used to deliver information between eah pair of neighbouringells of di�erent size, the assoiated distanemin(Ai, Aj)/lk is relevant, so in ase that ĥ(x′, t) ≥ 0in all k RP's the time step is limited by

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

maxm=1,2,3 |λ̃m|
(2.35)7

CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHODThe previous stability ondition is insu�ient in presene of relatively important soure terms.The systemati ontrol of numerial stability in those ases has been a matter of reent researhin the group as it is related with the appliability of the sheme to real situations. A simplegeneralization of the CFL ondition paying attention to the existene of the soure terms anlead to extremely small values of ∆t various orders of magnitude smaller than the value ditatedby the homogeneous ondition, hene rendering the method impratial. This an be avoidedby means of a reonstrution of the approximate solution Û(x′, t) that is not detailed here forthe sake of oniseness. The strategy proposed is based on enforing positive values of auxiliaryquantities h∗i
h∗i = hni + α1

k −
(
β

λ̃

)1

k

≥ 0 (2.36)and h∗∗∗j

h∗∗∗j = hnj − α3
k +

(
β

λ̃

)3

k

≥ 0 (2.37)so that, when they beome negative, the numerial soure term is redued instead of reduingthe time step size. For more details, see [21, 18℄.Furthermore, following the uni�ed disretization in [6℄ the non-onservative term (Tn)k in(2.13) at a ell edge is written [20℄ as:
(Tn)k =

0(
pb
ρw

− τb
ρw

)
nx(

pb
ρw

− τb
ρw

)
ny

k

(2.38)where pb
ρw

and τb
ρw

attend to the pressure and frition exerted on the bed respetively.In this work the following expression for the thrust term pb
ρw

is proposed:
(
pb
ρw

)

k

=

max

((
pb
ρw

)a
,
(

pb
ρw

)b)

k

if δd δz ≥ 0 and (ũn)δz > 0

(
pb
ρw

)b
k

otherwise (2.39)where d = (h+ z) and
(
pb
ρw

)a

k

= −g(h̃δz)k

(
pb
ρw

)b

k

= −g

(
hr −

|δz′|
2

)
δz′ (2.40)with

r =

{
i if δz ≥ 0

j if δz < 0
δz′ =

hi if δz ≥ 0 and di < zj
hj if δz < 0 and dj < zi
δz otherwise (2.41)The disretization of the frition term based on [21℄ is applied

(
τb
ρw

)

k

= g(h̃Sf)kdn Sf,k =

(
n2

ũn|ũ|
max(hi, hj)4/3

)

k

(2.42)8

2.3. NUMERICAL RESOLUTIONwith dn the normal distane between neighbor ell enters.

9

10

3CUDA Tehnology Overview
Nowadays, GPU tehnologies start to onquer from ordinary business appliations to sieniti�appliations. This general purpose orientation is denomined GPGPU1, allowing its developersto reah higher performane than in oventional arhitetures (Single Instrution Single Data)where the operations are urrently performed sequentially. In the ase of sienti� omputation,the GPGPU paradigm performs the numerial methods.nVidia has been working in the improvement of the GPGPU paradigm, reating the CUDAtoolkit. CUDA toolkit is a parallel arhiteture for graphi proessing whih implements anintrution-set oriented to the GPU memory aess and operations in C. Other more generalimplementations have been performed through open-soure platforms suh as OpenCL and oth-ers like PGI-Cuda as propietary-soure. OpenCL has the main advantage of being hardware-independent. It implies that the same ode ould be exeuted on both nVidia and ATI GPUs.The main disadvantage is that the learning-urve is harder than for the CUDA toolkit. Theother option is PGI-Cuda. It has the main advantage in the support of CUDA primitives forFortran but the disadvantage is the ost of it. So, as we are interested in simulating at nVidiaGPUs, the implementation of the ode has been developed using CUDA-Toolkit.3.1 GPU Tehnology historySine the advent of OpenGL, GPUs added programmable shading to their apabilities. Eahpixel ould inoporate its proessing as a program to be shown on sreen after applying it. nVidiawas the �rst to produe a hip apable of programmable shading. In 2002, ATI developed the�rst Diret3D 9.0 aelerator, whih implemented looping and lengthy �oating point math, be-oming as �exible as CPU and orders of magnitude faster for image-array operations.Abstrating the graphial purpose and taking a double-point array as if it were a vertex-array, the same operations were able to be applied, so with the nVidia CUDA Toolkit, a newprogramming model for GPU omputing was stablished. After its appearane, OpenCL beamebroadly supported allowing developers oding for AMD/ATI GPUs.1General Purpose Graphi Proessor Unit 11

CHAPTER 3. CUDA TECHNOLOGY OVERVIEW3.2 nVidia CUDA tehnologyThe present work has been developed using an nVidia Tesla GPU. The partiular organizationand how it works is explained below and has followed [11℄. Most of the details are ommon withthe previous GPU generations and it is previsible that will be ommon with future generationstoo.There are two main points of view when explaining how CUDA works. The �rst is based onthe hardware arhiteture. The minimum unit is the Streaming Proessor (SP), where a singlethread is exeuted. A group of SP's form the Streaming Multiproessor (SM), tipially with 32SP's. Finally, a GPU is omposed by between 2 and 16 SM's. The seond point of view is basedon the way CUDA appliations are developed. The minimum unit is alled Thread. Threadsare identi�ed by labels ranging between 0 and blokDim. The group of Threads is alled Blok,and it ontains a (reommended) 32 multiple number of Threads. Finally any group of Bloksis alled Grid. These elements are illustrated on Figure 3.1.
Block 0 Block 1 Block 2

Thread Block GridFigure 3.1: thread, blok, grid sheme ompositionAtual nVidia GPU's performs the threads sheduling inside the SM in groups of 32 alledWarps (we also reommend [15℄ for future onsiderations). Eah SM features two Warp shedulersand two instrution dispath units, allowing two Warps to be issued and exeuted onurrently.Fermi's dual Warp sheduler selets two Warps, and issues one instrution from eah Warp to agroup of sixteen ores, sixteen load/store units, or four SFU's. Beause Warps exeute indepen-dently, Fermi's sheduler does not need to hek for dependenies from within the instrutionstream. Using this elegant model of dual-issue, Fermi ahieves near peak hardware performane.Most instrutions an be dual issued; two integer instrutions, two �oating instrutions, ora mix of integer, �oating point, load, store, and SFU instrutions an be issued onurrently.Double preision instrutions do not support dual dispath with any other operation.Figure 3.2 shows how the SP are distributed inside the SM and how the multiproessors aredistributed inside the GPU. Furthermore, Figure 3.3 shows the temporal evolution inside the SMand how it works for a blok with 256 elements (warp=256/32 = 8 elements).Any Thread an be labelled using blokDim, blokId and threadId. In an example with14 Bloks and 256 Threads/Blok (3584 elements), we �nd that for element 23 in Blok 4, thelabels inside the ode are12

3.3. CUDA DEVELOPMENT
Streaming Multiprocessor

Instruction Cache

Register File
WS/DU WS/DU

Interconnected Network
Shared Memory/L1 Cache

Uniform Cache(a) GF100 StreamingMultiproessor (SM)

Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor

Streaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming MultiprocessorStreaming Multiprocessor

L2 Cache

Host Interface / GigaThread Engine

M
e
m
o
ry

C
o
n
tr
o
ll
e
r M

e
m
o
ry

C
o
n
tro

lle
r

(b) 14-SM based Fermi Arhiteure detailFigure 3.2: Desription of our Fermi 2075 GPU based on GF100/GF110 Arhiteture.
Warp Scheduler Warp Scheduler

Inst. Disp. Unit

Warp 8 Instruction 5

Warp 2 Instruction 1

Warp 6 Instruction 17

Warp 8 Instruction 3

Warp 2 Instruction 2

... ..
.

Block 4

Warp 5 Instruction 14

Warp 7 Instruction 5

Warp 1 Instruction 2

Warp 5 Instruction 15

Warp 1 Instruction 3

Warp 7 Instruction 6

...

Inst. Disp. Unit

T
im

e

Warp 6 Instruction 16

Figure 3.3: Exeution pipeline for a Strem Multiproessor (left) whih proess blok number 4 (right)
• blokDim=256
• blokId=4
• threadId=23and then, the typial aess pattern, points toi=threadId+blokDim*blokId=23+256*4=10473.3 CUDA developmentThe CUDA main funtions are related to the memory interation between CPU and GPU, inpartiular, udaMempy with the di�erent �ags to stablish the way of the transfer. It is importantto remark that these interations or data transfers between GPU and CPU are extremely slowand should be minimized. Moreover, the alloation and memory freeing operations ould beperformed using their equivalenes in CUDA as shown in listing 3.1 13

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWListing 3.1: CUDA Most important funtions1 // GPU Memory alloation2 udaMallo(...,size);3 // GPU Memory free4 udaFree(..);5 // Copy Host To devie6 udaMempy(...,udaMempyHostToDevie);7 // Copy Devie To Host8 udaMempy(...,udaMempyDevieToHost);9 // Copy Devie To devie10 udaMempy(...,udaMempyDevieToDevie);The advantage of using GPU for programming numerial methods, omes from the High-Level Single Instrution Multiple Data (SIMD) or as nVidia alls, Single Intrutions MultipleThreads (SIMT) paradigm. Any operation an be exeuted in onurrene with many othersallowing any CUDA Thread to aess to a partiular position while any other is aessing toanother one.3.3.1 Example of implementation in a 1D aseConsider, for example, the 1D transport equation:
∂u

∂t
+ c

∂u

∂x
= 0 (3.1)with c > 0, and its initial and boundary onditions

u(x, 0) = f(x)

u(0, t) = U0applying the temporal disretization with forward Euler and the upwind sheme:
∆ui
∆t

= −ui − ui−1

δx
(3.2)writing its as

un+1
i = uni − uni − uni−1

δx
∆t · c (3.3)and the proedure ould be written in Standard C as followsListing 3.2: Simple 1D transport equation in C1 void upwindStepCPU(double *fn,double *fnmas1,double DELTAX){2 int i;3 for (i=1; i<1/DELTAX; i++) {4 fnmas1[i℄=fn[i℄+*DELTAT*(fn[i-1℄-fn[i℄)/(DELTAX);5 }6 }14

3.3. CUDA DEVELOPMENTSine onventional proessors are not-able to make this operation for any group of elementsat the same time, the result will be obtained at the end of 1/∆x yles. This kind of arhitetureis alled SISD (Single Instrution Single Data) and it is used by the most ommon personal om-puters. The disadvantage of this implementation is the need of proessing elements one-by-one,making easier the implementation of the ode but not reahing good performane.CUDA implementation of Listing 3.2 ould be written asListing 3.3: Simple 1D transport equation in CUDA1 __global__ void upwindStepGPU(double *fn,double *fnmas1,double DELTAX)2 {3 // Point to the data4 unsigned int x = blokIdx.x*blokDim.x + threadIdx.x;5 if(i<MAX){6 fnmas1[i℄=fn[i℄+*(DELTAT*(fn[i-1℄-fn[i℄)/(DELTAX);7 }8 } The funtion invoation ould be made as followsListing 3.4: Cuda funtions alling1 // CPU2 f=(double*)mallo(sizeof(double)*MAX);3 fnmas1=(double*)mallo(sizeof(double)*MAX);4 ...5 // Condiiones iniiales6 ...7 // Copia de CI a GPU8 udaMempy(d_f, f, sizeof(double)*MAX, udaMempyHostToDevie);9 udaMempy(d_fnmas1, f_nmas1, sizeof(double)*MAX, udaMempyHostToDevie);10 ...11 // Calulo12 for (j=0; j<=(TFINAL/DELTAT); j++) {13 upwindStepCPU(f,fnmas1,deltax);14 reAsigna(f,fnmas1,deltax);15 }16 //GPU17 for (j=0; j<=(TFINAL/DELTAT); j++) {18 upwindStepGPU<<<bloks,threads>>>(d_f,d_fnmas1,d_deltax);19 reAsignaG<<<bloks,threads>>>(d_f,d_fnmas1);20 }21 udaMempy(f, d_f, sizeof(double)*MAX, udaMempyDevieToHost);The key of this implementation is based on the fat that all Bloks and Threads togetherover the amount of elements to be proessed. The relation between Bloks (nb), Threads (nt)15

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWand the amount of elements (ne) must be
ne ≤ nb ∗ nt (3.4)3.4 Results All that glitters is not goldReent work [7℄ [10℄ has been published reporting that it is possible to get Speed-Ups around100x and 130x using Simple Preision Floating Point Data types. It is important to note thata few details must be taken into aount before aepting this kind of results. Moreover, [16℄explained that omparison tests from CPU to GPU, must be developed at the same onditionsin order to be satisfatory. To take this into aount the omputational resoures where testsare going to be performed in the present work are shown in Table 3.1 showing the omputationalfailities ommon to all the tests performed. CPU GPUCores 6 448Frequeny (MHz) 2666.969 1150DP Rpeak (GFLOPS) 67.2 515.2Memory (GB) 48 6Mem. Bandwidth (GB/s) 32 144Table 3.1: Intel Xeon X5650 � 2.66 GHz and nVidia Tesla 2075 tehnial harateristisWith 1D transport equation, omputational times as appear in table 3.2 an be obtained.The omputational performane is funtion of the number of elements implied in the alulation,both for GPU or CPU implementations. This detail is very important when the number of op-erations inreases and muh more when the aess to the main memory is high.1-Core 6-Core GPUn t (ms) Speed-Up t (ms) Speed-Up t (ms)1048576 143799.29 33.48 24844.87 5.78 4295.62524288 71162.12 32.65 11931.02 5.47 2179.62131072 17649.91 29.62 3034.35 5.09 597.98Table 3.2: Computational performane through CPU (Mono-Core and Multi-Core) and GPU for t=(0,1),x=(0.0,1000.0), δ = 1000.0/n and ∆t = 10−4The performane of the GPU is very high for the simplest 1D transport equation. TheSpeed-up has been measured as elapsed time at GPU divided by elapsed time at CPU. It reahes33.48x for the mono-ore version and 5.78x for the multi-ore version. It implies a performaneof around 73% with regard to the theoretial inrease (7.66x and 46x).It is widely aepted that Simple Preision has more throughput but it is not as preise asthe Double Preision.16

3.4. RESULTS ALL THAT GLITTERS IS NOT GOLDGPU-DP GPU-SP GPU-SP2n t (ms) ǫ Sup t (ms) ǫ SSup t (ms) ǫ Sup1048576 4293.87 -6.6437e-14 33.93 3345.54 -1.4267e-04 44.85 1904.97 -1.6645e-04 78.53524288 2175.31 2.2146e-14 32.95 1716.82 4.7558e-05 42.91 981.00 1.1889e-05 75.59131072 594.38 4.4291e-14 29.84 488.02 -1.0700e-04 37.61 293.64 -1.1889e-04 62.00Table 3.3: Simulation time, auray and performane for GPU performing the alulations for using Double,float and a tuned version with float for t=(0,1), x=(0.0,1000.0), δ = 1000.0/n and ∆t = 10−4In Table 3.3 shows three implementations, using double and float and a tuned version offloat in order to exploit the bene�ts of the GPU when �oat is used. Hene, it is importantto bear in mind that the use of the simple preision must be limited to those ases where thepreision is not the most important aspet [12℄ but the performane is ritial.When quantifying the omputational gain of GPU over CPU implementations, the followinge�ieny parameters are of interest:
ηCPU =

RCPU

Rpeak
CPU

ηGPU =
RGPU

Rpeak
GPU

(3.5)where R and Rpeak stand for the e�etive performane and peak performane of a partiular on-�guration respetively. It is important to note that performane omparisons should be evaluatedat similar individual levels of e�ieny in both CPU and GPU implementations and, ideally, atmaximum e�ieny. However, it is not always easy to reah the ideal values of ηCPU =1 and
ηGPU =1 of the proessors, nor it is to ensure that both implementations o�er ηCPU = ηGPUprior to their omparison. On the other hand, it is worth noting that it is easier to improve thee�ieny when working in GPU proessors than in CPU implementations so that, frequently,omparisons are made between implementations where ηGPU > ηCPU . A good implementationin both arhitetures o�ers very similar results to the ones shown in the previous table.The performane of the CUDA version ould be obtained as follows

γ =
Sup

STheoretical
up

=
tGPUR

peak
CPU

tCPUR
peak
GPU

(3.6)Attending to this implementation, it is obtained a relation of 73% of e�ieny in the imple-mentation of the GPU using Double data type and 85% using the tuned float version. Whenreading some literature, 140x is a�ordable [7℄ but we suggest that it is very important to analyzethe results and to apply some ommon sense.[7℄ obtains gainanes about 21x using Double Preision data types. It is used a Intel XeonE5430 (2.66 GHz, 12 MB L2 Cahe) whih ahieves Rpeak
CPU = 10.689 GFLOPS/ore (4 Cores)and a nVidia GeFore GTX 260, whih has Rpeak

CPU ≈ 71 GFLOPS. For this on�guration, theratio of the theoretial maximum gainane, assuming ηGPU = ηCPU = 1,
Rpeak

GPU

Rpeak
CPU

= 6.64 (3.7)17

CHAPTER 3. CUDA TECHNOLOGY OVERVIEWIn the work, 21 gainane has been shown, whih implies γ > 3, implying that ηGPU >>

ηCPU . When both CPU and GPU implementations are mostly optimized, this performane isoverstimated and we propose that γ ≈ 1 is a very aeptable performane, showing the pro�tsof the GPU and not taking to onfusion to developers. In this work, we have tuned bothimplementations in order to show a realisti performane of the GPU implementation.

18

4Implementation
The implementation and its di�ulty is not the main topi of this work but some interestingdetails are explained that ould be useful in any other appliation of a similar expliit �nite-volume sheme. In partiular, details about the importane of and how to obtain memoryoalesing pro�ts, solving bottle-nek problems or writing output �les with the minimum penaltyare desribed below. They are all related with the neessity to avoid data transfer between theGPU and the CPU during the alulation as muh as possible.4.1 Model overviewThe main of the implementation is shown in Listing 4.1. There it is shown the main aspets ofthe programming and the general aspet of any similar ode.Listing 4.1: Overview of the CUDA implementation.1 ...2 // Configuration of the parameters3 threads=512;4 wallBloks=nWall/threads;5 ellBloks=nCell/threads;6 while(t<tmax){7 // Calulate the fluxes8 alulateWallFluxes<<<wallBloks,threads,0,exeutionStream>>>(...);9 // Stablish the minimum dt obtaining the ID of the10 // minimum dt11 // (*) Explained at setion 4.312 ublasIdamin(...,nWall,vDt,1,id);13 // And assign it14 newDt<<<1,1,0,exeutionStream>>>(dt,vDt,id);15 // Update the elapsed time (in GPU)16 updateT<<<1,1,0,exeutionStream>>>(uda_t,dt);17 // Retrieves the value of t to CPU18 udaMempy(t,uda_t,sizeof(double),udaMempyDevieToHost);19

CHAPTER 4. IMPLEMENTATION

Figure 4.1: Exeution trae and performane detail for a time-step using Paraver19 // Update the ell values20 assignFluxes<<<ellBloks,threads,0,exeutionStream>>>(...);21 // Verify if it is neessary to dump data and22 // if it is neessary, proess it.23 // (*) Detailed in setion 4.424 if(t<t_dump){25 // Copy of ell variables to a GPU26 // stored buffer27 udaMempy(..., udaMempyDevieToDevie);28 // Stablishing the barrier to ensure the opy of the29 // data to the buffer30 udaStreamSynhronize(opyStream);31 // Copy the data to the CPU buffer32 udaMempyAsyn(..., udaMempyDevieToHost,opyStream);33 // Create another stream in order to be whih ontrols34 // the disk-transfer35 pthread_reate(&diskThread, ...);36 }37 } The details of this implementation are desribed below. Furthermore, the behaviour of theode is desribed in a timeline whih trae has been obtained using Paraver (www.bs.es/omputer-sienes/performane-tools/paraver) in Figure 4.1.20

4.2. MEMORY COALESCING
1 3

97

2

6

8

4 11

4

1

8

5

2 3

6 7

10

14

17

21

24

20

23

19

22

18

15

12

9

13

16

5

Figure 4.2: Strutured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) example4.2 Memory oalesingMemory oalesing is the way the memory is ordered allowing half-Warp to aess global mem-ory at the same time (using only 1 yle to perform the load operation). This means that, if aThread (The �rst one) in a Warp aesses to a partiular memory address and it aess patternis suh that aess to the next address (i, i+1, i+2....) the following 31 Threads do not needto read the memory again. Otherwise, two or more aesses are needed to allow eah Thread theaess to data.Memory oalesing is one of the most important things to take into aount when program-ming GPU's. Reent works [29℄ have demonstrated the e�ieny of oalesing tehniques, beingthis implementation better in some ases than shared memory strategies. Although there existworks dealing with the pro�ts of using this strategy, the way to proeed when using unstru-tured meshes is not lear. This topi will be disussed in the next May 2012 GPU TehnologyConferene [8℄ and some improvements are detailed in [25℄.In our ase, the perfet memory oalesing tehnique ould be implemented, [5℄ [7℄, if usingstrutured meshes. As it appears in Figure 4.2, ell labelling implies that the aess pattern fora Blok of (in this ase 9) ells allows the programmer to make the perfet math aess into aWarp. In other words, for any group of ells within a Warp, all the variables are aessible inonly a oalesed reading.Being the present work oriented to a general implementation of the �nite volume sheme onboth strutured and unstrutured grids, the memory optimization is not as easy as desribedabove.Aording to the general updating formula 2.30, this sheme works with the ell edge �uxes orinter-ell elements through whih the Rienmann Problem is solved. In the ase of the struturedmesh, this �ux takes plae into the left, right, upside and downside ell to a given ell, so all theoperations ould be performed looping by ells. In unstrutured grids, this onept is di�erent21

CHAPTER 4. IMPLEMENTATION
......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

......

... ...

32 Threads Warp

Cell Data Array

T
im

e

Figure 4.3: Misaligned and Coalesed aess pattern to ompute the �ux variation for any group of elementsfollowing the sheme of Right, Left, Down, Up for W data (Stored by ell) in a mesh ordered as Figure 4.2. Lightoloured orrespond to the proessed element 5, wih implies ells 2, 4, 6 and 8.
16

748

61

23

9

7 5

12

11
16

33

9

24

21

17

20

14

10

4531

87

56

8

22

18

49

2359

27

30Figure 4.4: Unstrutured mesh with Cell Numbering detail (Right) and Wall Numbering detail (Left) exampleand it is good idea to make the �ux alulations by walls and then, to assign them to eah ellwith the need to keep trae via a onnetivity matrix.For the general unstrutured ase it is important to deide how to stablish the order of thevariables. It an be performed through ells or through walls. Using as example Figure 4.2,the operations of applying the variation to the ell (8) has no a oalesed pattern. There existsthe need of searhing the neighbouring ells (74,61,16) and alulating the �ux through walls(33,9,16). Skething these operations in an example for wall 33 (i=33, 1=8, 2=74) we have:Listing 4.2: Aess pattern for the main �ux variation operation.1 alulateWallFluxes(...){2 // Loop by wall3 int i = threadIdx.x+(blokIdx.x*blokDim.x);4 if(i<nWall){22

4.3. GATHERING DATA AVOIDING BOTTLENECK
...

...

...

...

...

......

32 Threads Warp

Wall Neighbouring

Vector

Cell Data Array

Figure 4.5: Unoalesed aess pattern to get W data (Stored by ell). Proessing wall 9 is light oloured whenit aesses to ell 8 (i=9, 1=8)5 1=wall[i℄;6 2=wall[i+1℄;7 // [COALESCED℄ Aess to the variables of the wall8 // Normal Vetor9 // Length of the side10 // ...11 ...12 // [UNCOALESCED℄ Aess to the variables of 1 and 213 // Primitives variables14 // Area of the ells15 // ...16 ...17 // Store the value of the flux for the wall i18 }19 } Although this is the main funtion where the �ux is alulated and it involves many uno-alesed aesses to the variables, there are some operations whose aess ould be performedthrough the ells.4.3 Gathering data avoiding bottlenekOne of the troubles when trying to make all the operations inside the GPU is the identi�ationof global quantities suh as the minimum value of a vetor. As the Many-Core paradigm is notdesigned to share information between elements, redution operations like min, max, sum...are performed at ublas library [23℄.ublas library has high-level funtions that work retrieving results to GPU or to CPU. Wheninterested in using them without taking out the data from the GPU, that must be spei�ed. Thisould be done through ublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_DEVICE),stating that all results have to be returned to the GPU memory.In our ase, it is essential that the algorithm alulates the minimum ∆t following the CFLondition when running along all the ell edges. Then, following Figure 4.3 sheme, the minimumamong all of them is seleted. Details are shown in Listing 4.3. 23

CHAPTER 4. IMPLEMENTATION
1 2 3 n-2 n-1 n

0.13 0.45 0.05 0.62 0.78 0.11

cublasIdamin() 3

dt[1..n] Δt=dt[3]Figure 4.6: Gathering minimum ∆t for all the domainListing 4.3: Gathering ∆t operation1 __global__ void newDt(double *dt,double *vDt, int *id){2 // As ublasIdamin returns it value following3 // 1-based indexing, we must to substrate 14 *dt=vDt[*id-1℄;5 }67 ublasIdamin(handle,*npared,vDt,1,id);8 newDt<<<1,1>>>(dt,vDt,d_id);9 ...While alulation is ontrolled by host, it is neessary to transfer the updated tn+1. After
δt is alulated, the updating operation an be perform as 4.4 and then, you an transfer theupdated value of tn+1 to CPU.Listing 4.4: Updating ∆t1 __global__ void updateT(double *dt,double *t){2 int i;3 *t=*t+*dt;4 } In order to alulate the global mass error, there is a sum of mass inside the mesh and thebalane between the inlet and outlet boundariesM = ρ

∑
hiAi (4.1)and then, it alulates the error as

ǫ =
Mn+1 −Mn +Min −MoutMn+1

(4.2)The sums are performed using ublasDasum where all elements are added within a vetorand the results stored in a variable, working similar to ublasIdamin.4.4 Writing output �lesThe feature of the newest CUDA models allowing for simultaneous exeution and opy streamsan be used to hide delays aused by writing data to disk.24

4.4. WRITING OUTPUT FILES

Figure 4.7: Asynhronus dumping data diagram.Traditional udaMempy performs a synhronous opy, i.e., the all does not return until theopy is omplete. However, alls to the new family of asynhronous funtions like udaMem-pyAsyn may return before the opy is omplete. Furthermore, the opy may be assigned to astream. In this way it is possible for the CPU host ode to all udaMempyAsyn and assignit to a opy stream, then launh kernels in an exeution stream. Both streams are proessedsimultaneously by the GPU.It is not possible to use udaMempyAsyn diretly to opy simulation results to Host mem-ory in the ase of shallow �ow simulation beause the onurrent simulation would alter thevalues in the variables being opied. It is neessary to make a synhronous opy to a bu�er inGPU memory �rst (Figure 4.7). One the opy of the results to the bu�er is omplete, a all toudaMempyAsyn is made whih opies the bu�er to host memory, and the simulation kernelsare launhed simultaneously operating on the usual variables. 25

CHAPTER 4. IMPLEMENTATIONThis sheme requires that the CPU launhes kernels after the all to the asynhronous opy.It is neessary to introdue a parallel CPU thread that waits for the opy to �nish and thenwrites the results to disk. Thus, the main CPU thread will �rst all udaMempyAsyn, thenspawn a write thread and ontinue launhing kernels to advane the simulation. The �rst taskfor the writing CPU thread will be to wait for the opy stream to �nish, then proeed to writethe results in host memory to disk.The limitation in this sheme is that the omputation time between dumps to disk has to begreater than the writing time to disk itself. If that is not the ase, gains an still be ahievedfrom using this sheme but further barriers are required. One of them is that the main CPUthread has to wait for the writing thread to �nish before alling udaMempyAsyn. Dependingon the problem, further gains an be made e.g. using multibu�ering.4.5 Compilation and other issuesIn the original Fortran version of the ode there are several funtions related to the preproessand postproess as skethed on �gure 4.8. To be more e�ient, the programming of that partof the ode in C has been ommitted and the work has foused on the e�ient programmingof the numerial aspets. So the preproess is performed through the Fortran version and theomputing kernel is performed using C/CUDA.To work with the two odes at the same time, they have been ompiled together. Thetehnique used is based on making a standard C interfae whih interoperates with CUDA andis alled from Fortran as shown in [1℄. The most ompliated and interesting detail of thisoperation is the way of ompiling them. It is shown in Listing 4.5.Listing 4.5: Make�le Sript12 NVCC = nv3 FORT = gfortran45 FORTFLAGS = -w -O36 CUFLAGS = -g -w -O3 -m64 -arh sm_21 -Xptxas -dlm=a -I$(EXTRAE_HOME)/inlude7 LDFLAGS = -L/opt/uda/4.0/lib64 -L$(EXTRAE_HOME)/lib -ludatrae -luda -ludart-lstd++ -lublas -lrt -lm -lpthread8 OBJ = uda_bloks2mf.o SFS2Dv01_64.o9 BIN = sfsGPU1011 $(BIN): $(OBJ)12 $(FORT) $(FORTFLAGS) $(OBJ) $(LDFLAGS) -o $�1314 lean:15 $(RM) $(OBJ)26

4.5. COMPILATION AND OTHER ISSUES1617 leanEx:18 $(RM) $(OBJ) $(BIN)1920 uda_atualiza.o: uda_atualiza.u21 $(NVCC) $(CUFLAGS) $< - -o $�2223 uda_bloks2mf.o: uda_bloks2mf.u24 $(NVCC) $(CUFLAGS) $< - -o $�2526 SFS2Dv01_64.o: SFS2Dv01_64.for27 $(FORT) $(FORTFLAGS) $< - -o $�Bearing in mind that all the strutures are reated as Vetors in Fortran and Fortran indexingare 1-based (C uses 0-Based) an speial aess is required (Eq (4.5), (4.5) and (4.5)). Furthermore,Fortran stores the elements following Column-Major Order while C storing is Row-Major Orderbased. These two aspets imply that:
• The aess to the partiular position i of array V [M] is made, in C, as

V (i) = V [i− 1] (4.3)
• The aess to the partiular position i, j of array V [MxN] is made in C as

V (i, j) = V [(j − 1) ·M + i− 1] (4.4)
• The aess to the partiular position i, j, k of array V [MxNxO] is made in C as

V (i, j, k) = V [(k − 1) ·M ·N + (j − 1)M + i− 1] (4.5)
Load the mesh

Load Initial Conditions

Load BCs

Stablish Sim. Length

Stablish Sim. Length

Compute Results

Dump Data

Free Resources

t<tsim?

Calc. dW Calc. dt Wet/Dry Correction

Sync dtUpdate W

No

Yes

Sync dW

t
=
t
+
d
t

⊗

Figure 4.8: Flux diagram for the appliation. Green-highlighted is the ported slie of the ode
27

28

5ResultsThe ases hosen to show the results are foused on how similar are the GPU numerial results tothe ones obtained from the original CPU version (preision) and how e�ient this implementationan be (performane). To ahieve this, two examples have beed seleted. First, an aademi aseof unsteady �ow with soure terms with analytial solution and seond a real life inundation�ow of hydrauli interest. Furthermore, the GPU perfomane has been ompared with that ofa distributed-parallel version of the CPU ode at [14℄ using a dam-break �ow simulation with alarge number of ells.5.1 Preision: A test-ase with analytial solutionThis ase has been used to minimize the di�erenes between the results provided by the CPU andthe GPU versions. The ase simulates the evolution of a mass of water ontained in a fritionlessparaboloid. Test Case 1 orresponds to zero initial veloity and a urved initial free surfae shape(Figure 5.1). As times goes on, the potential energy transforms into kineti energy. It is a goodase beause it has analytial solution [27℄ and there exists a hallenging wet/dry boundary allthe time.

Figure 5.1: Left: Bed level and initial water depth state for test ase 1.As shown in Figure 5.2 and Figure 5.3 there are not visible di�erenes between both simula-tions. In order to quantify the preision of the GPU implementation with respet to the CPU,29

CHAPTER 5. RESULTS

Figure 5.2: Test ase 1. Left: GPU Simulated results for h and Right: CPU Simulated results for h at t = 42.03s.

Figure 5.3: Test ase 1. Left: GPU Simulated result for |v| and Right: CPU Simulated results for |v| at
t = 42.03s.the L1, L2 and L∞ norm of the error in water depth at di�erent times has been alulated. TestCase 1 shows aeptable di�erenes. This agrees with the error in the alulation reahing ma-hine preission (O(−14)) in both versions of the ode. The most sensitive region is the wet/dryboundary where both the water depth and veloity are very small.Test Case 2 orresponds to the same fritionless ontainer but with di�erent initial data or-responding to a �at surfae with veloity. Although the visual omparison is also favorable, thedetailed evaluation of the L1, L2 and L∞ norm of the error in water depth at di�erent timesshows unaeptable di�erenes whih ome from the preision of the double �oating point datatype, reahing O(L∞) = −4. Studying the proedene of the di�erenes we �nd the problem atthe �rst time step (See Figure 5.1).Following the numerial sheme, we found that:

h∗∗∗j = hnj − α1
k +

(
β

λ̃

)1

k

≥ 0 (5.1)Attending to the new state for the seond time-step, we found the values for ell 65399 asappears in Table 5.230

5.1. PRECISION: A TEST-CASE WITH ANALYTICAL SOLUTION
L1 Norm L2 Norm L∞ NormTest Case 1 T/4 5.8354e-06 4.4112e-08 5.0000e-10T/2 8.0286e-06 5.1624e-08 4.9991e-103T/4 8.0451e-06 5.1698e-08 4.9995e-10T 7.9398e-06 5.1307e-08 4.9988e-10Test Case 2 T/4 1.4805e+01 2.9783e-01 5.9207e-02T/2 1.6664e+01 2.2877e-01 3.1504e-023T/4 1.7416e+01 3.3210e-01 1.1387e-01T 2.5452e+01 4.3794e-01 5.4876e-02Table 5.1: L1, L2 and L∞ for hCPU GPU

α -7.00000000000000188e-03 -7.0000000000000045e-03
β -1.83403406456914518e-03 -1.8340340645691430e-03
λ 2.62004866367020641e-01 2.6200486636702058e-01

ǫ ∝ −α1
k + (β/λ̃)1k -8.67361737988403547e-19 8.6736173798840355e-18
hn+1

i 9.7990000000000005e-06 6.7151999999999997e-05
L∞(hi) 5.7353e-05Table 5.2: Computational results in the �rst time step for α, β, λ, h and L∞ for h in the on�itive ellAlthough there are little di�erenes, visual results appear to be the same as it is shown in�gures 5.5, Figure 5.6 and Figure 5.7In order to avoid this di�erenes in omputational auray and the orresponding non-physial �uxes, the following restrition is inluded (where hls=h∗ and hrs=h∗∗∗).Listing 5.1: Aess pattern for the main �ux variation operation.1 ...2 if(hls<COTAMIN1_15)3 hls=0.0;4 if(hrs<COTAMIN1_15)5 hrs=0.0;

Figure 5.4: Left: Initial state h0 for the on�itive ell. Center: h1 for CPU. ǫ auray involves wall treatmentas solid edge implying an inreasing in it water depth. Right: h1 for GPU. ǫ auray involves wall treatment asnon solid edge so that water level derease at ell i and inrease at ell j. 31

CHAPTER 5. RESULTS
-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)

-10

-5

 0

 5

 10

-1500 -1000 -500 0 500 1000 1500

h+
z

(m
)

r(m)Figure 5.5: From Left to right, Top to down, h+z for t=T/4, T/2, 3T/4 and T
-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

u(
m

/s
)

r(m)Figure 5.6: From Left to right, Top to down, u for t=T/4, T/2, 3T/4 and T6 ...32

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVER
-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)

-6

-4

-2

 0

 2

 4

 6

-1500 -1000 -500 0 500 1000 1500

v(
m

/s
)

r(m)Figure 5.7: From Left to right, Top to down, v for t=T/4, T/2, 3T/4 and TWith this orretion, the following norms are obtained (See Table 5.3)
L1 Norm L2 Norm L∞ NormTest Case 1 T/4 3.1995e-11 5.6889e-13 2.1316e-14T/2 3.4019e-11 5.8436e-13 1.0658e-143T/4 4.4666e-11 6.7184e-13 1.7764e-14T 3.3531e-11 5.8323e-13 1.9984e-14Test Case 2 T/4 2.0493e-11 4.5302e-13 1.0658e-14T/2 3.4429e-11 5.8694e-13 1.0658e-143T/4 3.2590e-11 5.7146e-13 1.0658e-14T 3.3222e-11 5.7687e-13 1.0658e-14Table 5.3: L1, L2 and L∞ for h before applied the orretion

5.2 Performane: A large-sale simulation at Júar RiverA realisti ase with a long simulation time has been used in order to study the behaviour ofthe implementation in a large spatial and time sale ase. Tous Dam is the last �ood ontrolstruture of the Júar River basin in the entral part of the Mediterranean oast of Spain. Dur-ing the 20th and the 21st Otober 1982 a partiular meteorologial ondition led to extremelyheavy rainfall. As a result the Júar River basin su�ered �ooding all along and the Tous Damfailed with devastating e�ets downstream. The �rst a�eted town was Sumaárel, about 5
km downstream of Tous Dam, lying at the toe of a hill on the right bank of Júar river [3℄.33

CHAPTER 5. RESULTS

Figure 5.8: From Left to right, Top to down, h for t=0, T/4, T/2, 3T/4 and TThe terrain is moderately mountainous and most of the buildings lie on a slope that partiallyproteted them from the �ood. The anient part of the village, however, is loated loser to theriver ourse and was ompletely �ooded, with high water marks reahing between 6 m and 7 m.The resolution of the available topographi data allow �ood modelling. The DTM modelused in this work was generated by CEDEX in 1998 [3℄. From this information two numerialdomains of di�erent size and grid re�nement were de�ned. The �rst domain, wih we will referto as D1, overs most of the original DTM, starting just after the dam loation and �nishingapproximately 1 km downstream of Sumaárel. More details an be found in [3℄.34

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVER

Figure 5.9: Left: Sumáarel photography. Right: simulation mesh

Figure 5.10: Water depth evolution for (Left-right, Top-down) t = 5, 10, 15, 20, 25, 30h

35

CHAPTER 5. RESULTSCPU GPUCells 563712CFL 0.9
tn 140400.0
Q0 0 m3/sComp. Load (h.) 698.52 22.31
Sup 31.31Table 5.4: Simulation time for test ase 2

Figure 5.11: Gauges positionThe values of referene to evaluate the quality of the simulations are �eld data of the maxi-mum level reahed by the �ood wave at di�erent loations within the town [3℄. The loation ofthese gauging points is shown in Figure 5.11.
D1 was onstruted using a triangular strutured mesh with side length 5 m, able to providea orret representation of the village. This led to 144669 grid ells. When doubling the ellsize the resolution of the buildings was smeared and the village topography was poorly de�ned,providing an unrealisti de�nition of the problem.The seond disretization D2, overs a small part of D1, fousing on the representation of thevillage and was generated using a �ner strutured triangular mesh haraterized by ell sides of2.5 m over a smaller domain (grid density inreased by a fator 4). This disretization involves563712 ells. Both disretizations D1 and D2 are able to reprodue the narrow streets of thevillage, although the mesh D2 provides a sharper delimitation of the buildings.Urban �ooding usually takes plae in unexpeted events and, in onsequene, useful dataare not aurately reorded, as in this ase. When reproduing these events it is neessary toimagine di�erent senarios in order to ompare the relative preditions to draw onlusions. Asin this work we are onerned about the auray of the proposed simulation model to urban�ooding, we will analyze the sensitivity of the solutions to the ell size. The derease in the ellsize leads to a large inrement in the time of simulation. Therefore, it is also useful to hek36

5.2. PERFORMANCE: A LARGE-SCALE SIMULATION AT JÚCAR RIVERif good preditions an be obtained using redued domains of the study area or if, otherwise,it is preferable to de�ne large domains at the ost of less de�nition for the topographi data ifextremely long omputational times are to be avoided.This hydrograph is syntheti sine no atual disharge reords exist [3℄. As the numerialdomain D2 is loated 4 km downstrean of the Tous Dam it is possible to ompute a new dis-harge urve by reording the rate of �ow disharge at an appropriate setion in D1. Due tothe huge magnitude of the �ooding the di�erene between the two disharge urves is merelya lag time of a few hours. Both are displayed in Figure 5.14. Considering this, and the fatthat no reords of the �ood wave arrival time exist, the same original disharge urve was set asinlet boundary ondition in domains D1 and D2 when performing numerial simulations. At theoulet boundary, downstream of the domains, the �ow was let to exit freely without imposing anyonditions, as no information was provided. The initial depth of water in the river reah prior tothe rain events is unknown. Taking into aount that the base �ow of Júar River is roughly 50
m3s−1 whih is totally negligible in omparison with the sale of Tous out�ow hydrograph, thevalley was assumed initially dry. Following [3℄ a Manning oe�ient of 0.030sm−1/3 was usedfor the whole river bed reah. Other zones of inreased Manning oe�ient are inluded. As theground in the town area was fully paved with onrete, the �ood did not erode it.Regarding reorded hydrauli data of the �ooding of the town of Sumaárel, a range for themaximum water elevation marks was olleted at 21 loations within or very lose to Sumaárelvillage. In both alulations a total time of 39 h was simulated with a omputational time of 5.5
h in the D1 domain and 22.3 h in the D2 domain.These gauging points are shown in Figure 5.11. Some gauges (numbers 5, 9, 15, 17, 18 and21) show no �ooding (zero or near zero maximum water depth) and orrespond to loations justbarely reahed by the �ooding so that they represent a sort of shore line of the �ood within thetown.Table 1 ontains a summary of probe loations, estimated maximum water depths and om-puted maximum water depths on the two omputational domains. The values of the water depthat gauges 1 and 2, plaed in the lower part of the village indiate that the numerial solutionsprovided by both grids are a good predition of the maximum water level reahed by the �oodingat both stations. Both gauges register almost the same water level surfae evolution, as expeteddue to their proximity. Good agreement between maximum water elevation marks and prediteddata is also found for gauge loations 3 and 4, of similar bed level elevation, and loated withinthe village.The results in table 1 show also a good agreement for gauge 5 that remains dry aording tothe �eld observations, despite it being lose to the river bed. The elevation at gauge 6, withinSumaárel, is overestimated in approximately 1 m. The water depth at gauge 7 agrees well withthe maximum water elevation mark, whilst water depth in gauge 8 is overestimated in approxi-mately 1 m. 37

CHAPTER 5. RESULTSGauge x(m) y(m) Est. max. h(m) Comp. max. h(m) D1 Comp. max. h(m) D21 2410 3290 17.5-19 18.613149 18.6846262 2400 3335 8.0-9.0 10.181195 9.8069113 2355 3315 7.0-8.0 7.270638 7.3861484 2345 3380 7 6.775814 6.8958015 2335 3175 0.2 0.000 0.006 2335 3420 5.0-6.0 7.464109 7.6152807 2330 3365 6 6.101556 6.1431408 2315 3450 5 6.561674 6.6795469 2310 3590 0 0.304004 0.11969810 2303 3255 4 3.887516 3.97977911 2285 3425 2 3.039008 3.19476112 2285 3500 5.0-6.0 4.772985 4.90987813 2280 3280 2.5-3.0 4.186196 4.33058014 2266 3550 2 3.549098 3.12208515 2265 3400 0 1.928118 2.13466216 2259 3530 3.0-4.0 3.698947 3.80285017 2250 3440 0 0.661666 0.90133418 2230 3525 0 1.041024 1.21563119 2205 3445 2.0-3.0 2.026697 2.25717020 2195 3440 2 1.857008 2.09682921 2190 3485 0 0.000 0.00Table 5.5: Gauges position, estimated maximum water depth and simulated water depthThe results for gauges 9 and 10 show good agreement with �eld observations. Gauge loation9 remained dry along the �ooding and the simulation provides a maximum water depth in thesale of the entimeters. The numerial results for gauge 11 indiate an overestimation of the�eld water depth estimation of approximately 1m, whilst very good agreement is found for gauge12. The simulations at the gauge loations 13 and 14 overestimate �eld observations in approxi-mately 1m. Gauge loation 15 remained dry along the �ooding whereas the numerial simulationdid not. On the other hand the results for gauge loation 16 are in good aordane with theobserved �eld data.Gauges 17 and 18 remained dry but the simulation estimates a maximum depth of nearly 1
m. The results for gauge loations 19 and 20 and 21 are in aordane with �eld observations.The evolution of the omputed �ooding an be seen in plan view in Figure 5.10 for times
t =5, 10, 15, 20, 25, and 30 hours. The omputed �ow advanes and passes around the buildingsbut always moving inside the limit given by that line.Although mesh D1 has larger ells than D2 the numerial preditions from both grids are ingeneral in agreement with observed data. It is remarkable that for this extreme event, despitethe di�erent loations of the inlet disharge setions and the di�erent size of the ells in D1 and
D2, the water depth results for D1 are only slightly inferior than the ones obtained with D2.38

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATIONIt is very useful, when an exhaustive study is required, to re�ne the mesh in the area of in-terest. In this ase, the main trouble is to stablish the input hydrograph. Although water depthhas no many signi�ative di�erenes Figure 5.12 and 5.13, veloity has not the same behaviour(Gauges 5 and 21 have been ommited beause of both have alulated the dry state). In Figure5.15 is possible to appreiate the di�erenes where the simulation performed with the oarsemesh makes a higher estimation of the veloity.As displayed by the results of the water level time evolution at the gauges, the mesh re�ne-ment in the zone of interest improves the quality of the preditions. The GPU simulation of theomputation on the re�ned mesh was 22 hours and 20 minutes (more than 28 days of simulationusing CPU) and that for the oarse mesh was 5 hours and 30 minutes. The oarse mesh was agood aproximation of how the �ood advanes but not always an be used to study the details ina partiular area.5.3 Comparing with a distributed memory parallel implementa-tion 28-Core⋄ 1-Core GPUCells 106648CFL 0.9
tn 400.0
h0 5 - 0Comp. Load (s.) 363.2 9383.83 250.79
Sup 25.84 37.41Table 5.6: Computational load for a Dam-Break simulation (400 s.) with the mono-ore version, the MPIparalellized version and the new CUDA version. ⋄ Eah ore omes from an Intel i7 CPU 860 � 2.80 GHzThis ase simulates the evolution of two onneted boxes where one of them ontains 5 m.of water level and the other one is dry. The initial onditions and geometry are shown at 5.16.The reason to inlude this additional test ase is that it was run previously with a CPUversion of the method paralellized through distrubuted mahines paradigm using Standard MPI.The simulation was run during 400 s. dumping data eah 200 time-steps. Furthermore, ithas been used CFL=0.9 and a manning oe�ient of m = 0.03.The results show that the power of omputing of the GPU is omparable with the power ofmore than 30 omputers working at the same time using the Distrubuted Computing paradigm.Although CUDA programming is not as easy as MPI programming and it is important to notethat not every implementations support both kind of implementations, the performane of the�rst tehnique is muh better. 39

CHAPTER 5. RESULTS

Figure 5.12: Simulated and estimated water depth in 1-11 Gauges.40

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATION

Figure 5.13: Simulated and estimated water depth in 12-21 Gauges. 41

CHAPTER 5. RESULTS
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20000 40000 60000 80000 100000 120000 140000 160000

D
is

ch
ar

ge
 (

m
3 /s

)

t (s)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20000 40000 60000 80000 100000 120000 140000 160000

D
is

ch
ar

ge
 (

m
3 /s

)

t (s)Figure 5.14: Tous syntheti hydrograph for D1 (Right) and D2 (Left)

Figure 5.15: Comparison of Left: Coarse mesh veloity module and Righ: Re�ned mesh veloity module at
t = 13h

Figure 5.16: Initial onditions of water depth and mesh plot42

5.3. COMPARING WITH A DISTRIBUTED MEMORY PARALLEL IMPLEMENTATION

Figure 5.17: 5-0 Dam-Break simulation for (Right-Left, Top-Down) t=5, 10, 15, 20, 25, 30 seonds
43

44

6Conlusions and future workA �rst order �nite volume sheme to disretize the Shallow Water equations on unstruturedmeshes has been implemented using GPUs. The assoiated speed-up has been studied whensolving di�erent problems with nVidia Tesla Series 2070. The di�ulties generated by the useof unstrutured meshes have been identi�ed and partially overome so that our results show thatit is possible to solve many di�erent problems 30 times faster than a ommon CPU version on asingle proessor. Furthermore, only mahine preision di�erenes are enountered between bothimplementations, so it is important to note that the speed of the simulation does not a�et thepreision of the numerial method.Communiating data between CPU and GPU has a very expensive ost. An interestingstrategy to redue the impat of the ommuniation has been proposed. The only neessity ofommuniation is the elapsed simulation time so that the CPU shedules the operations.Previous work related to reduing the omputational ost by means of parallel CPU pro-gramming has been ompared, showing that a GPU ould be faster than 30 CPU ores involvingless investment and less energy onsumption. The values of 50-100x speed-up announed in therelated literature have not been reahed in our implementation. Our interpretation is that it isnot possible to be more than 42 times faster than a CPU proessor when working with doublepreision data and serious and areful speed-up omparisons are required in any ase. Althoughit is very ompliated to reah the theorial performane peak, both implementations ould reaha reasonable power, so if both implementations are mostly optimized, speed ups like the relatedin this work are aeptable.As further work, it is interesting to explore the Multi-GPU paradigms, simulating with manyGPUs and to study other implementations whih perform the memory aess pattern underunstrutured meshes.
45

46

Bibliography
[1℄ J. C. Adams, W. S. Brainerd, R. A. Hendrikson, R. E. Maine, J. T. Martin, and B. T. Smith.The Fortran 2003 Handbook: The Complete Syntax, Features and Proedures. SpringerPublishing Company, Inorporated, 1 edition, 2008.[2℄ A. A. Akanbi and N. D. Katopodes. Model for �ood propagation on initially dry land.Journal of Hydrauli Engineering, 114(7):689�706, 1988.[3℄ F. Alrudo and J. Mulet. Desription of the tous dam break ase study (spain). Journal ofHydrauli Researh, 45(sup1):45�57, 2007.[4℄ A. Brodtkorb, T. Hagen, and M. Saetra. Gpu programming strategies and trends in gpuomputing. Journal of Parallel and Distributed Computing (In Press), 2012.[5℄ A. R. Brodtkorb, M. L. Sætra, and M. Altinakar. E�ient shallow water simulations ongpus: Implementation, visualization, veri�ation, and validation. Computers and Fluids,55(0):1 � 12, 2012.[6℄ J. Burguete and P. Garía-Navarro. E�ient onstrution of high-resolution tvd onservativeshemes for equations with soure terms: appliation to shallow water �ows. InternationalJournal for Numerial Methods in Fluids, 37(2):209�248, 2001.[7℄ M. J. Castro, S. Ortega, M. de la Asunión, J. M. Mantas, and J. M. Gallardo. Gpuomputing for shallow water �ow simulation based on �nite volume shemes. ComptesRendus Méanique, 339(2�3):165 � 184, 2011.[8℄ A. Corrigan and J. Dahm. Gpu tehnology onferene. In Unstrutured Grid NumberingShemes for GPU Coalesing Requirement, May 2012.[9℄ A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. Cpu db: Reordingmiroproessor history. Queue, 10(4):10:10�10:27, Apr. 2012.[10℄ M. Dixon, J. Chong, and K. Keutzer. Aeleration of market value-at-risk estimation. InProeedings of the 2nd Workshop on High Performane Computational Finane, WHPCF'09, pages 5:1�5:8, New York, NY, USA, 2009. ACM.47

BIBLIOGRAPHY[11℄ P. N. Glaskowsky. Nvidia ' s fermi : The �rst omplete gpu omputing arhiteture. A whitepaper prepared under ontrat with NVIDIA Corporation, (September):1�26, 2009.[12℄ D. Goldberg. What every omputer sientist should know about �oating point arithmeti.ACM Computing Surveys, 23(1):5�48, 1991.[13℄ M. Hubbard and P. Garia-Navarro. Flux di�erene splitting and the balaning of soureterms and �ux gradients. Journal of Computational Physis, 165(1):89 � 125, 2000.[14℄ A. Laasta, P. Garía-Navarro, J. Burguete, and J. Murillo. Preproess stati subdomaindeomposition in pratial ases of 2d unsteady hydrauli simulation. Computers and Fluids,2012.[15℄ A. Lashgar, A. Baniasadi, and A. Khonsari. "Investigating Warp Size Impat in GPUs".ArXiv e-prints, may 2012.[16℄ V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking the 100x gpuvs. pu myth: an evaluation of throughput omputing on pu and gpu. SIGARCH Comput.Arhit. News, 38(3):451�460, June 2010.[17℄ W.-Y. Liang, T.-J. Hsieh, M. T. Satria, Y.-L. Chang, J.-P. Fang, C.-C. Chen, and C.-C.Han. A gpu-based simulation of tsunami propagation and inundation. In Proeedings ofthe 9th International Conferene on Algorithms and Arhitetures for Parallel Proessing,ICA3PP '09, pages 593�603, Berlin, Heidelberg, 2009. Springer-Verlag.[18℄ J. Murillo and P. Garia-Navarro. Weak solutions for partial di�erential equations withsoure terms: Appliation to the shallow water equations. Journal of Computational PhysisVolume: 229 Issue: 11 Pages: 4327-4368, 2010.[19℄ J. Murillo and P. Garía-Navarro. Wave riemann desription of frition terms in unsteadyshallow �ows: Appliation to water and mud/debris �oods. J. Comput. Phys., 231(4):1963�2001, Feb. 2012.[20℄ J. Murillo, P. Garía-Navarro, and J. Burguete. Conservative numerial simulation of multi-omponent transport in two-dimensional unsteady shallow water �ow. J. Comput. Phys.,228(15):5539�5573, Aug. 2009.[21℄ J. Murillo, P. Garía-Navarro, and J. Burguete. Time step restritions for well-balaned shal-low water solutions in non-zero veloity steady states. International Journal for NumerialMethods in Fluids, 60(12):1351�1377, 2009.[22℄ J. Murillo, P. Garía-Navarro, J. Burguete, and P. Brufau. The in�uene of soure termson stability, auray and onservation in two-dimensional shallow �ow simulation usingtriangular �nite volumes. International Journal for Numerial Methods in Fluids, 54(5):543�590, 2007.[23℄ nVidia Corporation. CUDA CUBLAS Library, Aug. 2010.48

BIBLIOGRAPHY[24℄ P. Roe. A basis for upwind di�erening of the two-dimensional unsteady euler equations.Numerial Methods in Fluid Dynamis, II.[25℄ L. Solano-Quinde, Z. J. Wang, B. Bode, and A. K. Somani. Unstrutured grid appliationson gpu: performane analysis and improvement. In Proeedings of the Fourth Workshopon General Purpose Proessing on Graphis Proessing Units, GPGPU-4, pages 13:1�13:8,New York, NY, USA, 2011. ACM.[26℄ R. Suda, T. Aoki, S. Hirasawa, A. Nukada, H. Honda, and S. Matsuoka. Aspets of gpufor general purpose high performane omputing. In Proeedings of the 2009 Asia andSouth Pai� Design Automation Conferene, ASP-DAC '09, pages 216�223, Pisataway,NJ, USA, 2009. IEEE Press.[27℄ W. C. Thaker. Some exat solutions to the nonlinear shallow-water wave equations. Journalof Fluid Mehanis, 107:499�508, 1981.[28℄ M. E. Vázquez-Cendón. Improved treatment of soure terms in upwind shemes for theshallow water equations in hannels with irregular geometry. Journal of ComputationalPhysis, 148(2):497 � 526, 1999.[29℄ Y. Wang, M. Olano, M. K. Gobbert, and W. Gri�n. A GPU memory system omparisonfor an ellipti test problem. Tehnial Report HPCF�2012�1, UMBC High PerformaneComputing Faility, University of Maryland, Baltimore County, 2012. (HPCF mahinesused: tara.).

49

	Introduction
	Context and assumptions
	Structure of the report

	Mathematical Model and Numerical Method
	Approximate Riemann solution
	Application to the 2D Shallow Water equations
	Numerical resolution

	CUDA Technology Overview
	GPU Technology history
	nVidia CUDA technology
	CUDA development
	Example of implementation in a 1D case

	Results All that glitters is not gold

	Implementation
	Model overview
	Memory coalescing
	Gathering data avoiding bottleneck
	Writing output files
	Compilation and other issues

	Results
	Precision: A test-case with analytical solution
	Performance: A large-scale simulation at Júcar River
	Comparing with a distributed memory parallel implementation

	Conclusions and future work
	Bibliography

