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Resumen

En este reporte se estudia el cédlculo del criterio de optimalidad D, para el
caso en que es utilizado como una medida de la incertidumbre de un sistema
SLAM. Propiedades del uso de este criterio de medida de la incertidumbre en
el contexto de SLAM activo son presentadas, al igual que una comparacion
contra otros criterios de medida de la incertidumbre tales como la entropia
y el criterio de optimalidad A. En este reporte se muestra que contrario a
lo divulgado previamente en la literatura cientifica relacionada, el criterio de
optimalidad D es capaz de proporcionar informacion ttil acerca de la incer-
tidumbre que tiene un robot que ejecuta un algoritmo de SLAM. Finalmente,
a través de varios experimentos con robots reales y simulados, damos soporte
a nuestras afirmaciones y mostramos que el uso del criterio de optimalidad D
tiene efecto deseables en varias tareas que hacen uso de algoritmos de SLAM
como mapeo y navegacion activa.



Abstract

In this report, we consider the computation of the D-optimality criterion as
a metric for the uncertainty of a SLAM system. Properties regarding the
use of this uncertainty criterion in the active SLAM context are highlighted,
and comparisons against the A-optimality criterion and entropy are presented.
This report shows that contrary to what has been previously reported in the
literature, the D-optimality criterion is indeed capable of giving fruitful infor-
mation as a metric for the uncertainty of a robot performing SLAM. Finally,
through various experiments with simulated and real robots, we support our
claims and show that the use of D-opt has desirable effects in various SLAM
related tasks such as active mapping and exploration.
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Chapter 1

Introduction

A model of the operative environment is an essential requirement for an autonomous
mobile robot. The construction of this model requires the solution of at least three basic
tasks for a mobile robot, namely localization, mapping and trajectory planning. The
intersection of the first two tasks defines a key problem in modern robotics: Simultaneous
Localization and Mapping (SLAM).

SLAM is the problem of acquiring on-line and sequentially spatial data of an unknown
environment in order to construct a map of it, and at the same time, allows the robot to
localize itself in this map.

To integrate the trajectory planning into SLAM allows a mobile robot to perform
common tasks such as autonomous environment exploration. This approach is known as
active SLAM and specifically refers to the problem of how to give a mobile robot the
capability of generating on-line trajectories that simultaneously maximize the accuracy
of the map and robot’s localization, regarding a SLAM task.

The active SLAM paradigm was first proposed and tested in [1]. Since then, different
approaches have been done. e.g. [2] and [3] proposed a discrete and greedy planning
methodology. Huang et al. in [4] studied and tested the feasibility of multi-step planning.
Continuous states planning but with a discretization in actions space is explored in [5].
Recently, a continuous planning approach in states and actions has been proposed by [6].

To the best of the authors’ knowledge, the different approaches that attempt to pro-
duce an active SLAM algorithm, rely on criteria or metrics that quantify the improvement
of the actions taken by the robot (e.g. movements). This improvement is measured rela-
tive to (7) the robot and the map localization accuracy, (i) the area of the map explored
or (1) the time that the robot has been navigating. Specifically, the metrics that relate
the improvement of the localization accuracy or the uncertainty related to the movements
the robot makes are of high value, because their uses allow the reduction of the map’s
error, and therefore the probability to accomplish a given task is improved.

Until now the preferred criterion to quantify the localization uncertainty has been
the A-optimality criterion (A-opt). This criterion captures the mean uncertainty of the
covariance matrix of a SLAM system. The choice of this criterion in many active SLAM
related works such as [7], [8], [5], [9], and [6], among others, had its foundation in the
fact that papers such as [10], [11], and [12] reported that (i) the A-opt applied to the
problems of planning under uncertainty out performs other well-known criteria such as
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the D-optimality criterion (D-opt), and (ii) that the D-opt for the active SLAM case
does not produce a meaningful metric. =~ However, in the Theory of Optimal Experiment
Design (TOED) [13] [14], it is well-known that the use of the D-opt has more appealing
characteristics than the A-opt or E-optimality criterion (E-opt). Moreover, Kiefer in [15]
demonstrated that the A-opt, D-opt and FE-opt are special cases of a general family of
uncertainty criteria and therefore they share some properties, but D-opt is the only one
proportional to the uncertainty ellipse of the estimated parameters, and it is also invariant
to re-parametrizations and linear transformations [14].

In this report, it is shown that is indeed possible to obtain a fruitful metric from
the D-opt for the particular case of a mobile robot performing SLAM. Also, it is shown
experimentally that its use as a metric for quantifying the uncertainty of the robot and
map in an active SLAM context, performs comparably to the A-opt metric popularized
by [10], [11] and [12].

The reminder of the report is structured as follows: chapter 2 gives an overview of
the active SLAM problem and its connection to the TOED. Also, a review of several
uncertainty and information measures is presented. Chapter 3 shows how to compute
D-opt in order to be compared correctly, and to allow its use in an active SLAM or path
planning under uncertainty context. Chapter 4 reports several experiments with simulated
and real robots that support our claims. Finally, chapter 5 presents the conclusions.



Chapter 2

Preliminaries

2.1 Active SLAM

The SLAM problem does not establish which trajectories a robot has to follow. Usually,
they are chosen randomly or beforehand. However, it is well-known that the trajectories
selected and the order they are executed by a robot, are critical, among other things,
firstly for a rapidly convergence of the uncertainty of a SLAM algorithm, secondly for
increasing the area of the environment explored by the robot, and thirdly to improve the
possibility of fulfilling tasks.

The integration of the trajectory planning task into SLAM was first proposed in [1]
and the term active SLAM referring to the aforementioned integration was coined by [8].
The general idea of active SLAM can be summarized as follows in algorithm 1:

Algorithm 1 The active SLAM algorithm

Require:
e A complete or incomplete stochastic map of the environment M;, = {Xz,, Xy }.

e The length i of the horizon of planning.

Ensure:
e A policy class of trajectories 7.

1: Create a set 7° of s different policy classes with i trajectories each one. The initial trajectory of each
policy starts at Xp, .

2: Perform a SLAM algorithm using each policy class and the given map M.

3: Compute a value function J for each policy class of 7%, using the information of each trajectory
followed and the final covariance matrix associated to the SLAM algorithm.

4: Select the policy class 7o+ that optimizes J.

The SLAM approach taken above is based on a probabilistic state-space model, where
the robot R and a set of features or landmarks in the environment F = {Fy,..., F,}
are represented by a stochastic state vector x with an estimated mean x and associated
covariance matrix 3. Furthermore,

. XR Xrr | XrF
X=| . ;X = 2.1
[ XF } [ Yrr | XFF ] (21)
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where X and Xz are the estimated locations of the robot and the landmarks respec-
tively, X gp is the covariance matrix of the estimated robot pose (e.g. x,y,0) and it has a
size of p x p that is invariant with respect to the time, 37 represents the covariance ma-
trix of the estimated locations of the discovered landmarks and it has a size of n x n that
varies over time. Finally, Xz and Xz are matrices that encode the cross-covariance
of the robot pose and the landmarks estimations. The covariance matrix 3 has size
[ x I, where | = p + n, and its value is variable with time. Moreover, it is a positive
semi-definitive matrix with eigenvalues {Aq, ..., A}

2.1.1 The value function

As mentioned above, the integration of trajectory planning or, what is equivalent, applying
the active sensing paradigm [16] [10] to the SLAM problem, involves the optimization of
a multi-objective performance criterion or value function 7.

This value function is used to decide which trajectories have to be followed by the
robot. A definition of this value function can be as follows:

J = ZOéz‘Ui + Zﬁﬂ? (2.2)

Where the index i defines the length of the planning horizon (i.e. the numbers of
consecutive trajectories planned ahead). The first term, U; characterizes the expected
cost of the uncertainty in the parameters of the system. The second term, 7; includes
other expected costs such as trajectory length, navigation time, and energy consumption,
among others. Finally, o and g are weight coefficients for tuning the parameters and are
task dependant.

The U; term can be further specified as a metric of the associated covariance matrix
3 (e.g. the determinant, the trace). This metric needs to encode the robot and the
landmarks’ estimated locations uncertainty and can be defined as follows:

U2 >R (2.3)

The different ways to compute the above metric and their properties in relation to the
goals of the active SLAM approach is the target of the following sections of this report.
Moreover, a clarification in the computation of one of them is pointed out in chapter 3.

The second term 7, as done previously, can be further specified and constrained as a
metric that represents the cost of performing a free collision trajectory I' by the robot,

T,:I' =R (2.4)

This metric can be constrained to be a function only of the distance travelled, since
its cost is directly related to the power and navigation time of the robot while it performs
a task.

Finally, summarizing all the above definitions, the statement of the active SLAM
problem can be formulated as: the task of choosing a single or multiple step
policy class ™ of robot’s trajectories that optimize a value function J.
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2.2 Theory of Optimal Experiment Design and active
SLAM

In the Theory of Optimal Experiment Design (TOED) [13] [14], a single trial of an ex-
periment is the process of changing the input parameters of a system perturbed with
unknown noise, with the purpose of observing the variation in the output parameters.
In this context, the particular values of the input parameters are known as a particular
design &.

In the active SLAM context, the £ design is a particular policy class 7 commanded to
the robot, the unknown noise is the commonly assumed zero mean Gaussian noise and
the variation of the parameters is encoded in the covariance matrix 3.

Based on the TOED, it is possible to know if a design &; is better than a design &
[13] [14]. Applying this concept in the active SLAM context, a policy class 7 is better in
terms of uncertainty than a policy class m if :

Cov(my) — Cov(mg) € NND() (2.5)

Where Cov(m;) is the covariance matrix of size [ x [ after the robot has followed m; and
NND(/) stands for the group of non-negative definite matrices of size { x [. NND matrices
are also known as positive semi-definite matrices [14].

As this criterion only tells if a policy class is better than another but does not quantify
how much, it is advantageous to define a function ¢ that maps a NND covariance matrix
of size [ x [ to a scalar,

¢ : NND(I) = R (2.6)

This function has to capture the idea of whether or not the uncertainty of a covariance
matrix is large or small. Moreover, this function has to be positive homogeneous, isotonic
(i.e. order preserving) and concave [14].

2.3 Uncertainty and information measures

2.3.1 Uncertainty measures

Historically, the uncertainty metrics were first proposed in the Theory of Optimal Exper-
iment Design (TOED) [13] [14] context and were named like an alphabet with the suffix
optimality attached to them to denote the origin. These metrics or criteria coming from
the TOED aim at capturing the idea of whether or not the uncertainty of a covariance
matrix, 3, is large or small, i.e. they aim at fulfilling the requirements outlines in the
section 2.2 and specially the constraint expressed in Eq.(2.6). The uses of the covariance
matrix to quantify the uncertainty has a strong base on the TOED literature [13] [14]
[17], moreover it has links with the information theory through the Cramér-Rao bound
[18].

A first criterion fulfilling the above requirements was proposed by Smith back in
1918 [19], and it aims at minimizing the maximum variance of any predicted value over
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the experimental space. This criterion, later named globally optimum or G-optimality
criterion (G-opt) by Kiefer [20], suffers from a high complexity in its computation because
the variance of each parameter of the system has to be tested individually, thus making
it impractical to be used in a many-parameters systems [14].

A second criterion named D-optimality (D-opt) was proposed by Wald in 1943 [21].
This criterion aims at monitoring directly the quality of the parameter estimation, to do
so it is defined as the determinant of the covariance matrix 3:

det(2) = ] M (2.7)
k=1,...]
Where, A\ represents the eigenvalues of 3 and the equality holds because the covari-
ance matrix is symmetric [17]. This criterion is the preferred in the TOED because:

1. It captures well the information in the confidence ellipsoid of the parameters, fur-
thermore exists an inverse proportionality [17] [13], and,

2. This criterion is the only one that is invariant to re-parametrization (i.e. change in
scale) and linear transformation on the covariance matrix [22].

The last property is appealing because a SLAM algorithm using this criterion does
not need to take into account if the parameters of 3 are in millimetres, meters, kilometres
or inches.

A common variation of the D-opt [13] is to apply the logarithm, in order to exploit
the addition and multiplication relationship in that domain,

log(det(%)) =1log( [ M) (2.8)

kzly---y

Additionally, working in the logarithmic space allows a correction of the round-off
error due to small values multiplication up to certain scale.

A third criterion named A-optimality (A-opt) was introduced by Chernoff in 1953 [23].
This criterion targets the minimization of the average variance and it is defined as follows,

trace(X) = Z Ak (2.9)

kzly---y

Although this criterion does not have the advantages of the D-opt, its information is
related with the major axis of the confidence ellipsoid of the parameters [17].

Another optimality criterion named E-optimality (E-opt), was introduced by Ehrenfeld
in 1955 [24] and intends to minimize the maximum eigenvalue of 3. The main advantage
of this criterion is the simplicity of its computation, but it is a rough approximation of
the error ellipsoid.

The above optimality criteria are compiled and discussed in further detail in [17], [13]
or [22].
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2.3.2 Information measures

The uncertainty of an experiment and the information gain with it, share an inversely
proportional relationship. The informativeness of an experiment can be measured mainly
in two forms, and both of them inform about the compactness of a probability distribution
and not about the data itself.

2.3.2.1 Fisher based information measures

For a probability distribution P(z), the Fisher information is defined as [25]:
_ d?log P(x)

N dx?

For the particular case of a Gaussian distribution (i.e. N'(p, X)) the Fisher informa-
tion measure is

J () (2.10)

J(z) =31 (2.11)

Finally, it is worth to mention that the Fisher information measure is only defined for
continuous distribution.

2.3.2.2 Shannon based information measures

The Shannon information measures are based on the concept of entropy defined by Shan-
non [26]. In brief, the entropy of a random variable with an associated probability distri-
bution P(z) is defined in the continuous case as:

o0

H(z)=— / P(z)log P(z)dx (2.12)

—00

The entropy is an ever decreasing function; i.e. any new information increase the
informativeness of the experiment. This property does not allow a direct comparison of
the entropy between two instances of an experiment. To overcome this, another entropy
based measure, the mutual information, is defined as:

Mi(z ; y) = H(z) — H(aly) (2.13)

where x and y have probability distributions P(z) and P(y), respectively. H(z|y) is
known as the conditional entropy of y given x. Because of the properties of the entropy,
the mutual information is bounded between zero and infinity.

For the particular case of a multidimensional Gaussian distribution (i.e. N, (u, X))
the entropy is:

H(x) = %10g(27re)"|2| (2.14)



Chapter 3

Uncertainty criteria for active SLAM

In the planning under uncertainty or active SLAM context [27], [10], [11] and [12], have
done comparisons between uncertainty criteria, in order to determine if there is a criterion
that for that specific task, converges faster to a desired solution. In all the aforementioned
papers, the D-opt - defined by them as the determinant of the covariance matrix - has
been disregarded as a fruitful metric for mainly two reasons:

i) The D-optimality criterion does not allow the checking of task completion as the
A-optimality criterion does.

ii) The D-optimality criterion can be driven rapidly to zero, so no fruitful information
is provided by this criterion.

The authors believe that the above two reasons are misconceptions stemming from a
misuse of the TOED.

For (i), the misuse lies in that the determinant of a matrix [ x [ is homogeneous of
degree [; hence the comparison of the determinant of a matrix [ X [ and a matrix m x m
is unfair. Specifically in the case of a SLAM system this is relevant, because the size of
the covariance matrix varies over time, so the evolution of an uncertainty criterion based
on determinants has to be normalized in order to be compared fairly [14].

Recently, Vidal-Calleja et al [28] intuited this, and proposed a solution that needs to
suppose the maximum number of landmarks in the environment and initialize its covari-
ance with a constant number. This solution is effective to fairly compare the determinant
as the matrix size does not vary in time, but adds complexity to the computation of the
metric and fails if the number of landmarks is greater than the initial assumption.

A proper solution as pointed out by [14], is to take the [ root of the determinant
of 3 (with size [ x [) before making any comparison. This solution rises evidently if the
D-opt is derived from the family of uncertainty criteria proposed by Kiefer in [15],

dp(€) = [I” M trace(XP(€))]"? (3.1)

This family of uncertainty criteria is valid in the range of 0 < p < oo for a covariance
matrix (X) of size | x [ associated to a design £ (e.g. m). Moreover, the case ¢; and the
boundary cases ¢y and ¢, are the already known A, D and E-optimality criteria.
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Taking the above into account, the normalized D-optimality criterion proposed by
Kiefer is,

¢o(m) = lim ¢,(m) = [det(z(ﬂ))]l/l

p—0+ » (32)
= ( Ak)
Il A

k=1,...,

The misuse of TOED for the second reason, usually used to disregard the D-opt, lies
in the fact that this criterion considers the global variance. Geometrically, this means the
volume of a n-dimensional ellipsoid [13]. The latter implies that estimated parameters
with low uncertainty will produce very low value of D-opt, hence making its computation
prone to round-off errors.

Specifically in the SLAM case, as the landmarks get correlated the eigenvalues of X
become quite small values near to zero. A zero eigenvalue would mean that without doubt
the position of a landmark is known, but this does not happen in practice. Examples of the
above are presented in chapter 4, where we reported several experiments with simulated
and real robots. Regarding the computation of the determinant, it is possible that a small
value of an eigenvalue can cause a round-off error in the computation, so the D-opt gets
stuck at zero. One way to overcome this issue is to use the logarithmic space to compute
the determinant as proposed by Pazman [13]. Thus, the resulting equation to compute
the criterion would be,

exp(log([det (3(m))]/")) (3.3)

Summarizing, for the particular case of measuring the uncertainty of a SLAM system,
the D-opt should be computed using the definition of Kiefer [15] and as presented in (3.3).



Chapter 4

Experiments

In this chapter, two experiments are presented in order to (¢) support the claims about
the computation of the D-optimality criterion of a SLAM system (7i) point out some
properties of the D-optimality criterion. The first experiment investigates the evolution of
different uncertainty metrics in simulated and real robots performing SLAM. The second
experiment is related to performing active SLAM using solely the uncertainty as a guiding
factor. A third experiment is reported in the appendix B.3 and deals with obtaining the
minimum uncertainty path for autonomous navigation.

4.1 First experiment: On the computation

Aiming at showing that is feasible to compute the D-opt in a robot performing SLAM,
in the following the evolution of the aforementioned uncertainty criterion is computed
for simulated and real robots performing SLAM. Due to space limitations only two test
scenarios are shown, but other results on the Victoria Park dataset and in an ad-hoc
indoor environment using a Pioneer DX-3 robot are presented in the appendix A. For
completeness, the A-opt, E-opt, the determinant of the covariance matrix, entropy and
mutual information are also computed.

In each of the following experiments the aforementioned uncertainty criteria are com-
puted at each step update of the covariance matrix 3 associated to Xz and Xr.

4.1.1 Simulated robot in an indoor environment

The simulation environment was created using C++ and the Mobile Robot Programming
Toolkit (MRPT) v0.9.4. The data of the covariance matrix were gathered while the
robot was performing EKF-SLAM with a predefined trajectory, within a map with static
landmarks and using a limited range sensor.

Specifically, the robot was moving at 0.3 m per step and travelled along a square-
shaped trajectory of 25x25 m. The navigation environment was composed of 2-D point
features, located in both sides of the trajectory with a distribution of 1.8 feature/m. The
robot was equipped with a range-bearing sensor with a frontal field of view of 360° and
a maximum range of 3 m. Synthetic errors, with a Gaussian distribution, were generated
for the odometry model of the robot (standard deviations of 0.1° in orientation and 0.2

10
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Figure 4.1: Resulting stochastic map for the experiment with a simulated robot in an
indoor environment. In red is the estimated trajectory of the robot and in blue is the
graphical representation of the covariance for each landmark.

N A-criterion @Robot-Landmark 1 E-Criterion @Robot+Landmarks <10 D~Criterion by Kiefer @Robot+Landmarks
8 0.8
10
6 0.6
4 0.4
5 A N N \.
2 0.2
0 0 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Steps Steps Steps
(a) (b) (©)
X107 Determinant @Robot+Landmarks Entropy @Robot+Landmark M| @Robot+Landmarks
4 200 12
10
3 150
8
2 100 6
4
1 50
2
0 0 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Steps Steps Steps
(d) (e) (f)

Figure 4.2: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for
the experiment with a simulated robot in an indoor environment

m per m in displacement) and the sensor measurements (standard deviations of 0.125°
in orientation and 1 cm per m in range), but known data association is assumed. The
resulting stochastic map after one loop is shown in Fig. 4.1

Fig. 4.2 shows the evolution of the different criteria as stated above. Each point of
the evolution gives an indication of the amount of uncertainty the SLAM system has at
that step. As expected, once the robot starts navigating, the uncertainty related to the
landmarks and robot’s localization starts increasing. The evolution of the tested criteria
behaves similarly at this stage.

Around the step 350 a loop closing event occurred, and therefore a decrease in the
uncertainty of the system is produced as expected. This drop is sensed by all the metrics

11
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(a)

Figure 4.3: (a) Resulting stochastic map with uncertainty regions for each landmark. (b)
Blueprint of the environment with a superimposed sketch of the trajectory

but at different magnitudes, A-opt and FE-opt had a major reduction, but D-opt had a
minor one.

The difference in magnitude is due to the opposite definition of the metrics. D-opt in
general, takes into account the uncertainty of each element of the system multiplicatively,
i.e. every element has an equal chance to contribute to the uncertainty. This definition
allows encompassing the global uncertainty in the D-optimality criterion.

On the other hand, A-opt gives independent and additive contribution to each element
of uncertainty. Giving the possibility of a single component of the system to drive the
whole uncertainty. In fact, as can be seen in Fig. 4.2a and Fig. 4.2b, A-opt and E-opt
resemble in shape and scale, thus giving a numerical example, although qualitative, of the
above, as F-opt represents the value of the single maximum eigenvalue. Moreover, the
correlation between A-opt and F-opt is 0.9655, giving a quantity value of its resemblance.

Fig. 4.2d shows an example of computing the determinant of the covariance matrix as
reported in [27], [10], [11] or [12], as can be seen after few steps -in this case 8- the value
of the criterion goes to zero. In contrast, Fig 4.2c¢ shows an example of meaningful values
of uncertainty using the logarithmic based computation method presented in (3.3).

4.1.2 Real robot in an indoor environment: DLR dataset

In this experiment the DLR dataset [29] is used. This dataset was recorded at the
Deutsches Zentrum fur Luft und Raumfahrt (DLR) with a mobile platform. The en-
vironment is a typical office indoor environment and covers a region of 60m x 45m. To
estimate the trajectory and the map of the environment an EKF based SLAM algorithm
coded in python is used.

Fig. 4.4 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and landmarks for the DLR dataset that has a path length of
approximately 505 meters.
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Figure 4.4: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for
the experiment using the DLR dataset

4.1.3 Discussion

The above results give numerical examples about the feasibility of computing the D-opt
in the SLAM context in simulated and real data. Also, the results give some insights
between the relation among the A-opt and FE-opt. Although this relation (shape and
magnitude of the plots) is qualitative, a quantitative relation via the correlation of the
data can be obtained.

The correlation between the A-opt and the E-opt for all the experiments has a mean
of 0.9872 £ 2.1155 x 10~%. The latter means that exist a strong relation between these
two criteria in the SLAM context. Moreover, based on the definition of the F-opt, the
uncertainty measured by the A-opt is dominated by a single eigenvalue. In our context,
the above implies that a single feature - in the case of a probabilistic feature based SLAM
- can drive the complete SLAM uncertainty. The effect of the above property could lead
an active SLAM algorithm using an A-opt based metric to get stuck in a local minima.
An example of this is shown in the next experiment.

For the above experiments, the A-opt and D-opt correlation has a mean of 0.6003 £
0.0540, which means that exist a correlation but neither is weak or strong. Moreover,
it gives an example of the main characteristic of the criteria according to the TOED:
The A-opt measures the mean of the uncertainty and the D-opt measures the complete
dimension of the uncertainty (e.g. Area in a 2D case).

13
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4.2 Second experiment: Active approach

In this experiment we perform a comparison between an active SLAM approach driven
by the A-opt, D-opt and entropy. The active SLAM approach used follows the algorithm
outlined in chapter 2, therefore assumes a priori and probably incomplete, stochastic map
of the environment. This map is generated by commanding the robot to follow a prede-
fined trajectory in the environment, while performing EKF-SLAM. Once the predefined
trajectory is completed, the robot begins the performance of active SLAM and therefore
starts planning autonomously trajectories that achieve an accurate map.

Each time the robot is planning which trajectory it has to follow, in order to fulfil the
active SLAM objectives, it has to consider every possible path in the navigation environ-
ment. In order to make the problem computationally tractable, the possible destinations
are constrained to positions near the landmarks already discovered.

Planning each time only the next movement is known as greedy approach or one step
look-ahead [4]. Tt is possible to plan several steps ahead that yields, as has been pointed
out by [4], in a faster convergence of the active SLAM goals but with an increase in the
complexity of the computation. Independent of the one step look-ahead or multi-step
look-ahead planning, each time the next movement is chosen as the one that minimizes
an uncertainty metric, in this case the value of A-opt or D-opt or entropy related to the
SLAM.

In this experiment, the paths follow autonomously for the robot are generated via an
A* based path planner. Specifically the environment is discretized and the only forbidden
areas are the positions of the landmarks. Two test environments were used for this
experiment: the first test environment consists of a 30x30 meter obstacle free square area
with 104 landmarks distributed around the perimeter of a 25 meter square. The second
test environment consists of a 20x20 meter obstacle free square area with 72 landmarks
distributed on the perimeter of a 15 meter square. The Mean Squared Error (MSE)
between the two initial stochastic maps has a ratio of 9.65, with the first environment
having a bigger MSE. The initial position of the robot is (X=1,Y=0) in both environments.
The ground truth position of the landmarks and their estimated positions from the EKF-
SLAM are depicted in Fig. 4.5.

The strategy for active SLAM described above can be summarized in the following
steps:

e Hallucinate paths from the current estimated position of the robot to all the land-
marks, except those which are below a radius of X (i.e. 1) meters from the current
estimated position.

e Measure the uncertainty at the end of each hallucinated path.
e Select the path that produced the lowest uncertainty according to the chosen metric.

e If the number of path planned is greater than i (i.e. 100), exit. In any other case,
execute again.

14
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Figure 4.5: (a) Ground truth of the landmarks and (b) initial stochastic map of the 30x30
test environment

Figure 4.6: Resulting paths from each uncertainty metric: (a) D-opt, (b) A-opt and (c)
Entropy. Each colour represents an executed path. The planning area was 20 x 20 m.

4.2.1 One step look-ahead results

Performing active SLAM with a one-step look-ahead approach leads to completely differ-
ent trajectories using the A-opt and D-opt. The A-opt plans trajectories with a distinctive
local behaviour, while the D-opt plans trajectories more globally, often revisiting previous
landmarks. Regarding the entropy, this generates paths similar to the D-opt.

An example of the above behaviour is illustrated in Fig. 4.6. There, the active SLAM
starts after the robot has executed one loop (i.e. X=1,Y=0) and has an estimation of all
the landmarks in the environment. The resulting trajectories for the A-opt, D-opt and
the entropy are shown in Fig. 4.6a, Fig. 4.6b and Fig. 4.6¢, respectively. Each generated
trajectory is identified by a different colour. A video of the incremental construction of
each trajectory can be seen in http://webdiis.unizar.es/~hcarri/1.avi.

In addition to the above qualitative assessment of the effect derived by using each
criterion, we can quantify the effect of using each criterion by measuring the quality of
its resulting maps.

To measure the quality of the map we use the guidelines proposed in [30] that urge
for the use of the MSE an x? together in the assessment of the maps quality generated
by a SLAM algorithm.

In order to compare the three criteria, we compute the ratio between them for each
quality metric at each update step of the active algorithm. Therefore we have the A-
opt/D-opt ratio, the A-opt/entropy ratio and the entropy/D-opt for the MSE and y?
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Figure 4.7: Evolution of the MSE ((a)-(c)) and x? ((d)-(f)) ratios related to the map
(30x30) after each active step. The ratios are computed for each possible uncertainty
metric combination. The average of 10 Monte Carlo runs is depicted for each ratio.

metric.

Fig. 4.7 presents the result of 10 Monte Carlo Runs for each ratio related to the MSE
and y? metric of the 20x20 test environment. Respectively, Fig. 4.8 presents the same
information for the 30x30 environment.

Finally, Fig. 4.9 shows the resulting path for the active SLAM strategy presented
in this section using a limit of 10000 steps and a continuous path planner based on an
attractor /repulsion technique. This last experiment illustrates another example of the
quasi-opposite behaviour of an active SLAM strategy using the A-opt and D-opt.

4.2.2 Discussion

An explanation of the difference in the path planning behaviours due to the A-opt or D-
opt used relies on the definition of the metric itself. As pointed out in the previous section,
D-opt encompasses the global uncertainty therefore revisiting previous landmarks (closing
the loop) helps in decreasing the value of the metric. On the other hand, A-opt criterion
can be driven by a single eigenvalue, and therefore the uncertainty of the covariance
matrix can get stuck in a local minimum.

Regarding the quality of the maps, the results show an advantage in the use of D-opt
and entropy over the A-opt. Also in this specific experiment the D-opt and entropy share
similar results. This similarity does not come as a surprise, because the EKF-SLAM
assumed gaussianity as well the noise used in the experiment, therefore the D-opt and the
entropy have an explicit relationship through the determinant as can be seen comparing
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Figure 4.8: Evolution of the MSE ((a)-(c)) and x? ((d)-(f)) ratios related to the map
(20x20) after each active step. The ratios are computed for each possible uncertainty
metric combination. The average of 10 Monte Carlo runs is depicted for each ratio.

PREDEFINED PATH, features: 20 PATH A-opt, features: 20

Figure 4.9: Resulting trajectories for a 10000 steps active SLAM simulation. (a). Prede-
fined trajectory and landmarks ground truth. (b). A-opt based active SLAM. (c). D-opt
based active SLAM. This figure is best viewed in colour.

(3.3) and the entropy of a multidimensional Gaussian distribution (i.e. N, (u, 2)):

H(x) = %10g(27re)"|§]| (4.1)

4.3 Third experiment

Due to limitation in the space, this section is in the appendix B.3.
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Chapter 5

Conclusions

In this report a clarification on the use and computation of the D-optimality criterion for a
covariance matrix with variable size in time, in order to make comparisons of uncertainty
evolution in a SLAM context, is presented. This report highlights that computing the
D-optimality criterion in the SLAM context as reported in [27], [10], [11] and [12] leads
to wrong results because it does not take into account the change in dimensionality of
the determinant. Instead of the above definition, a method that produces fruitful results
is the one proposed by Kiefer [15]. Furthermore, a solution for the problem of round-
off errors in the computation of the D-optimality criterion is achieved by proposing its
computation in the logarithmic space.

This report demonstrates via several experiments with simulated and real robots the
above claims, and point out appealing characteristics (e.g. encompassing global uncer-
tainty) for the use of D-optimality criterion as a measurement of the uncertainty of a
SLAM system. Besides, it is shown that the use of D-optimality criterion, instead of the
A-optimality criterion, to drive an active SLAM approach seems more rewarding towards
the fulfilling of the active SLAM objectives. Also in the active SLAM context is shown
through examples the similarity of guiding a greedy active SLAM strategy with the D-opt
and the entropy.

Finally, with the clarification reported in this report, the D-opt rises as an alternative
to quantify the uncertainty of a SLAM algorithm. Its use has a strong background from
the TOED and its properties allow it to be used instead of the commonly used A-opt.

As a future work, firstly we aim at developing a more complex guiding factor for
the active SLAM strategy that will include beside the uncertainty, time and obstacle
constraints. Secondly, we want to include within the assumptions of the active SLAM,
dynamic landmarks and obstacles.
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Appendix A

A.1 Real robot in an ad-hoc indoor environment

In order to validate completely the simulated results, and further evaluate the proposed
computation method. A real test is perform on a Pioneer P3-DX robot. The robot
is equipped, besides its standards accessories, with a LMS 200 SICK laser, a Microsoft
Kinect camera and a laptop with a Intel Core i7 @ 2.7 GHz and 6 GB of memory. The
robot is programmed using C++ and python under ROS environment in Ubuntu 10.10.
A photo of the robot is shown in Fig. A.la.

The robot performs an EKF-SLAM algorithm from which the covariance matrix is
obtained and the uncertainty criteria computed. In order to isolate the effect of data
association, markers of the ARToolkit are used as distinguishable isolated features. Also,
to guarantee a correct navigation, a localization module based on AMCL is used when
the robot is following a commanded path. The environment is a room of 6 x 4 meters
and contain five markers. A metric map of the room with the position of the markers
highlighted is shown in Fig A.1b.

Fig. A.2 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and the five landmarks.

Figure A.1: (a). Pioneer robot used in the experiment. (b) Metric map of the test
environment with the position of the markers (Red) and the initial position of the robot
(Blue).
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Figure A.2: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI
for the experiment with a real robot in an indoor environment.

A.2 Real robot in an outdoor environment: Victoria

Park dataset

In this experiment the well-known Victoria Park dataset is used. This dataset provides
among others, data from a laser and an odometer mounted over a vehicle that is traversing
a natural park populated with trees, which can be used as landmarks. In order to estimate
the trajectory of the vehicle and a map of the environment, a graph based SLAM algorithm
(iSAM [31]) was used. This algorithm is capable of producing the full solution to the
SLAM problem incrementally by defining it as a graph optimization problem and solving
it in incremental batch steps. A solution for the Victoria Park dataset using batch steps
every 10 iteration is shown in Fig. A.3.

Fig. A.4 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and landmarks for the first 720 steps.
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Figure A.3: Resulting pose/feature graph. In dark blue and green are respectively, the
estimated trajectory of the robot and landmarks. In yellow are shown the constraints
between the nodes of the graph.
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Figure A.4: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI
for the experiment using the Victoria Park dataset.
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Appendix B

From this thesis stems three papers that are presented in the reminder of this ap-
pendix. The first one (B.1) is entitled “Experimental Comparison of Optimum Crite-
ria for Active SLAM” and was accepted for oral presentation in the “IIT Workshop de
Robética: Robdtica Experimental (ROBOT’11)”. The second paper (B.2) was submit-
ted to ICRA’12 and is entitled “On the Comparison of Uncertainty Criteria for Active
SLAM”. Finally, the third paper (B.3), entitled “Planning Minimum Uncertainty Paths
Over Pose/Feature Graphs Constructed Via SLAM” was also submitted to ICRA’12.
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Experimental Comparison of Optimum Ciriteria for
Active SLAM

Henry Carrillo and José A. Castellanos

Abstract—In this paper, we consider the computation of the  To the best of the authors’ knowledge, the different ap-
D-optimality criterion as a metric for the uncertainty of a SLAM  proaches that attempt to produce an active SLAM algorithm,
system. Properties regarding the use of this uncertainty criterion o1y o5 metrics that quantify the improvement of the actions
in the active SLAM context are highlighted, and comparisons L .
against the A-optimality criterion are presented. This paper taken by the rqbote(.g. movements). This |mprove_me_nt IS
shows that Contrary to what have been previous|y reported, measured relat|Ve to the rObOt and the map |Oca|I2atI0n ac-
the D-optimality criterion is indeed capable of giving fruitful  curacy, the area of the map explored or the time that the robot
information as a metric for the active SLAM problem. Moreover,  has been navigating. Specifically, the metrics that relate the
its performance is comparable to A-optimality, but with extra_joroyement of the localization accuracy or uncertainty to the
appealing characteristics such as the invariance to change in . .
scale and an intrinsic global trajectory planning. movements the robo_t makes are of high value, because their

use allow the reduction of the map’s error, and therefore the
| INTRODUCTION probability to accomplish a given task is improved.
Until now the preferred criterion to quantify the localization

A model of the operative environment is an essential rgncertainty has been A-optimality. This criterion captures the
quirement for an autonomous mobile robot. The constructibhean uncertainty of the covariance matrix of a SLAM system.
of this model requires the solution of at least three basidie choice of this criterion in many active SLAM related
tasks for a mobile robot, namely localization, mapping antlorks such asd], [9], [10], [11], [6], [12], and [7], among
trajectory planning. The intersection of the first two task®thers, found its foundation in the fact that papers suchids [
defines a key problem in modern robotics: Simultaneol$4], and [L5] reported that A-optimality criterion applied to
Localization and Mapping (SLAM). the problems of planning under uncertainty outperforms others

SLAM is the problem of acquiring on-line and sequentiallyvell known criteria such as D-optimality.
spatial data of an unknown environment in order to construct/n the Theory of Optimal Experiment Design (TOED)]

a map of it, and at the same time, allows the robot to localité7] [18] [19], it is well known that the use of the D-
itself in this map. SLAM is still a key-open problem regardoptimality criterion has more appealing characteristics than
ing mobile robotics and its solution in all senses (practicite A-optimality or E-optimality criterion. Moreover, J. Kiefer
and theoretical) will be a breakthrough achievement towariis [20] demonstrated that the A, D and E-optimality criteria
autonomous robotsl]. are special cases of a general family of optimality criteria

To