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Resumen

En este reporte se estudia el cálculo del criterio de optimalidad D, para el
caso en que es utilizado como una medida de la incertidumbre de un sistema
SLAM. Propiedades del uso de este criterio de medida de la incertidumbre en
el contexto de SLAM activo son presentadas, al igual que una comparación
contra otros criterios de medida de la incertidumbre tales como la entroṕıa
y el criterio de optimalidad A. En este reporte se muestra que contrario a
lo divulgado previamente en la literatura cient́ıfica relacionada, el criterio de
optimalidad D es capaz de proporcionar información útil acerca de la incer-
tidumbre que tiene un robot que ejecuta un algoritmo de SLAM. Finalmente,
a través de varios experimentos con robots reales y simulados, damos soporte
a nuestras afirmaciones y mostramos que el uso del criterio de optimalidad D
tiene efecto deseables en varias tareas que hacen uso de algoritmos de SLAM
como mapeo y navegación activa.



Abstract

In this report, we consider the computation of the D-optimality criterion as
a metric for the uncertainty of a SLAM system. Properties regarding the
use of this uncertainty criterion in the active SLAM context are highlighted,
and comparisons against the A-optimality criterion and entropy are presented.
This report shows that contrary to what has been previously reported in the
literature, the D-optimality criterion is indeed capable of giving fruitful infor-
mation as a metric for the uncertainty of a robot performing SLAM. Finally,
through various experiments with simulated and real robots, we support our
claims and show that the use of D-opt has desirable effects in various SLAM
related tasks such as active mapping and exploration.
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Chapter 1

Introduction

A model of the operative environment is an essential requirement for an autonomous
mobile robot. The construction of this model requires the solution of at least three basic
tasks for a mobile robot, namely localization, mapping and trajectory planning. The
intersection of the first two tasks defines a key problem in modern robotics: Simultaneous
Localization and Mapping (SLAM).

SLAM is the problem of acquiring on-line and sequentially spatial data of an unknown
environment in order to construct a map of it, and at the same time, allows the robot to
localize itself in this map.

To integrate the trajectory planning into SLAM allows a mobile robot to perform
common tasks such as autonomous environment exploration. This approach is known as
active SLAM and specifically refers to the problem of how to give a mobile robot the
capability of generating on-line trajectories that simultaneously maximize the accuracy
of the map and robot’s localization, regarding a SLAM task.

The active SLAM paradigm was first proposed and tested in [1]. Since then, different
approaches have been done. e.g. [2] and [3] proposed a discrete and greedy planning
methodology. Huang et al. in [4] studied and tested the feasibility of multi-step planning.
Continuous states planning but with a discretization in actions space is explored in [5].
Recently, a continuous planning approach in states and actions has been proposed by [6].

To the best of the authors’ knowledge, the different approaches that attempt to pro-
duce an active SLAM algorithm, rely on criteria or metrics that quantify the improvement
of the actions taken by the robot (e.g. movements). This improvement is measured rela-
tive to (i) the robot and the map localization accuracy, (ii) the area of the map explored
or (iii) the time that the robot has been navigating. Specifically, the metrics that relate
the improvement of the localization accuracy or the uncertainty related to the movements
the robot makes are of high value, because their uses allow the reduction of the map’s
error, and therefore the probability to accomplish a given task is improved.

Until now the preferred criterion to quantify the localization uncertainty has been
the A-optimality criterion (A-opt). This criterion captures the mean uncertainty of the
covariance matrix of a SLAM system. The choice of this criterion in many active SLAM
related works such as [7], [8], [5], [9], and [6], among others, had its foundation in the
fact that papers such as [10], [11], and [12] reported that (i) the A-opt applied to the
problems of planning under uncertainty out performs other well-known criteria such as
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1. INTRODUCTION

the D-optimality criterion (D-opt), and (ii) that the D-opt for the active SLAM case
does not produce a meaningful metric. However, in the Theory of Optimal Experiment
Design (TOED) [13] [14], it is well-known that the use of the D-opt has more appealing
characteristics than the A-opt or E-optimality criterion (E-opt). Moreover, Kiefer in [15]
demonstrated that the A-opt, D-opt and E-opt are special cases of a general family of
uncertainty criteria and therefore they share some properties, but D-opt is the only one
proportional to the uncertainty ellipse of the estimated parameters, and it is also invariant
to re-parametrizations and linear transformations [14].

In this report, it is shown that is indeed possible to obtain a fruitful metric from
the D-opt for the particular case of a mobile robot performing SLAM. Also, it is shown
experimentally that its use as a metric for quantifying the uncertainty of the robot and
map in an active SLAM context, performs comparably to the A-opt metric popularized
by [10], [11] and [12].

The reminder of the report is structured as follows: chapter 2 gives an overview of
the active SLAM problem and its connection to the TOED. Also, a review of several
uncertainty and information measures is presented. Chapter 3 shows how to compute
D-opt in order to be compared correctly, and to allow its use in an active SLAM or path
planning under uncertainty context. Chapter 4 reports several experiments with simulated
and real robots that support our claims. Finally, chapter 5 presents the conclusions.
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Chapter 2

Preliminaries

2.1 Active SLAM

The SLAM problem does not establish which trajectories a robot has to follow. Usually,
they are chosen randomly or beforehand. However, it is well-known that the trajectories
selected and the order they are executed by a robot, are critical, among other things,
firstly for a rapidly convergence of the uncertainty of a SLAM algorithm, secondly for
increasing the area of the environment explored by the robot, and thirdly to improve the
possibility of fulfilling tasks.

The integration of the trajectory planning task into SLAM was first proposed in [1]
and the term active SLAM referring to the aforementioned integration was coined by [8].
The general idea of active SLAM can be summarized as follows in algorithm 1:

Algorithm 1 The active SLAM algorithm

Require:
• A complete or incomplete stochastic map of the environment Mk = {x̂Fk

,Σk}.

• The length i of the horizon of planning.

Ensure:
• A policy class of trajectories π.

1: Create a set πs of s different policy classes with i trajectories each one. The initial trajectory of each
policy starts at x̂Rk

.
2: Perform a SLAM algorithm using each policy class and the given map Mk.
3: Compute a value function J for each policy class of πs, using the information of each trajectory

followed and the final covariance matrix associated to the SLAM algorithm.
4: Select the policy class πopt that optimizes J .

The SLAM approach taken above is based on a probabilistic state-space model, where
the robot R and a set of features or landmarks in the environment F = {F1, . . . , Fn}
are represented by a stochastic state vector x with an estimated mean x̂ and associated
covariance matrix Σ. Furthermore,

x̂ =

[

x̂R

x̂F

]

; Σ =

[

ΣRR ΣRF

ΣFR ΣFF

]

(2.1)
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2. PRELIMINARIES

where x̂R and x̂F are the estimated locations of the robot and the landmarks respec-
tively, ΣRR is the covariance matrix of the estimated robot pose (e.g. x, y, θ) and it has a
size of p×p that is invariant with respect to the time, ΣFF represents the covariance ma-
trix of the estimated locations of the discovered landmarks and it has a size of n×n that
varies over time. Finally, ΣRF and ΣFR are matrices that encode the cross-covariance
of the robot pose and the landmarks estimations. The covariance matrix Σ has size
l × l, where l = p + n, and its value is variable with time. Moreover, it is a positive
semi-definitive matrix with eigenvalues {λ1, . . . , λl}.

2.1.1 The value function

As mentioned above, the integration of trajectory planning or, what is equivalent, applying
the active sensing paradigm [16] [10] to the SLAM problem, involves the optimization of
a multi-objective performance criterion or value function J .

This value function is used to decide which trajectories have to be followed by the
robot. A definition of this value function can be as follows:

J =
∑

i

αiUi +
∑

i

βiTi (2.2)

Where the index i defines the length of the planning horizon (i.e. the numbers of
consecutive trajectories planned ahead). The first term, Ui characterizes the expected
cost of the uncertainty in the parameters of the system. The second term, Ti includes
other expected costs such as trajectory length, navigation time, and energy consumption,
among others. Finally, α and β are weight coefficients for tuning the parameters and are
task dependant.

The Ui term can be further specified as a metric of the associated covariance matrix
Σ (e.g. the determinant, the trace). This metric needs to encode the robot and the
landmarks’ estimated locations uncertainty and can be defined as follows:

Ui : Σ → R (2.3)

The different ways to compute the above metric and their properties in relation to the
goals of the active SLAM approach is the target of the following sections of this report.
Moreover, a clarification in the computation of one of them is pointed out in chapter 3.

The second term Ti, as done previously, can be further specified and constrained as a
metric that represents the cost of performing a free collision trajectory Γ by the robot,

Ti : Γ → R (2.4)

This metric can be constrained to be a function only of the distance travelled, since
its cost is directly related to the power and navigation time of the robot while it performs
a task.

Finally, summarizing all the above definitions, the statement of the active SLAM
problem can be formulated as: the task of choosing a single or multiple step

policy class π of robot’s trajectories that optimize a value function J .

4



2. PRELIMINARIES

2.2 Theory of Optimal Experiment Design and active

SLAM

In the Theory of Optimal Experiment Design (TOED) [13] [14], a single trial of an ex-
periment is the process of changing the input parameters of a system perturbed with
unknown noise, with the purpose of observing the variation in the output parameters.
In this context, the particular values of the input parameters are known as a particular
design ξ.

In the active SLAM context, the ξ design is a particular policy class π commanded to
the robot, the unknown noise is the commonly assumed zero mean Gaussian noise and
the variation of the parameters is encoded in the covariance matrix Σ.

Based on the TOED, it is possible to know if a design ξ1 is better than a design ξ2
[13] [14]. Applying this concept in the active SLAM context, a policy class π1 is better in
terms of uncertainty than a policy class π2 if :

Cov(π1)− Cov(π2) ∈ NND(l) (2.5)

Where Cov(πi) is the covariance matrix of size l× l after the robot has followed πi and
NND(l) stands for the group of non-negative definite matrices of size l× l. NND matrices
are also known as positive semi-definite matrices [14].

As this criterion only tells if a policy class is better than another but does not quantify
how much, it is advantageous to define a function φ that maps a NND covariance matrix
of size l × l to a scalar,

φ : NND(l) → R (2.6)

This function has to capture the idea of whether or not the uncertainty of a covariance
matrix is large or small. Moreover, this function has to be positive homogeneous, isotonic
(i.e. order preserving) and concave [14].

2.3 Uncertainty and information measures

2.3.1 Uncertainty measures

Historically, the uncertainty metrics were first proposed in the Theory of Optimal Exper-
iment Design (TOED) [13] [14] context and were named like an alphabet with the suffix
optimality attached to them to denote the origin. These metrics or criteria coming from
the TOED aim at capturing the idea of whether or not the uncertainty of a covariance
matrix, Σ, is large or small, i.e. they aim at fulfilling the requirements outlines in the
section 2.2 and specially the constraint expressed in Eq.(2.6). The uses of the covariance
matrix to quantify the uncertainty has a strong base on the TOED literature [13] [14]
[17], moreover it has links with the information theory through the Cramér-Rao bound
[18].

A first criterion fulfilling the above requirements was proposed by Smith back in
1918 [19], and it aims at minimizing the maximum variance of any predicted value over
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2. PRELIMINARIES

the experimental space. This criterion, later named globally optimum or G-optimality
criterion (G-opt) by Kiefer [20], suffers from a high complexity in its computation because
the variance of each parameter of the system has to be tested individually, thus making
it impractical to be used in a many-parameters systems [14].

A second criterion named D-optimality (D-opt) was proposed by Wald in 1943 [21].
This criterion aims at monitoring directly the quality of the parameter estimation, to do
so it is defined as the determinant of the covariance matrix Σ:

det(Σ) =
∏

k=1,...,l

λk (2.7)

Where, λk represents the eigenvalues of Σ and the equality holds because the covari-
ance matrix is symmetric [17]. This criterion is the preferred in the TOED because:

1. It captures well the information in the confidence ellipsoid of the parameters, fur-
thermore exists an inverse proportionality [17] [13], and,

2. This criterion is the only one that is invariant to re-parametrization (i.e. change in
scale) and linear transformation on the covariance matrix [22].

The last property is appealing because a SLAM algorithm using this criterion does
not need to take into account if the parameters of Σ are in millimetres, meters, kilometres
or inches.

A common variation of the D-opt [13] is to apply the logarithm, in order to exploit
the addition and multiplication relationship in that domain,

log(det(Σ)) = log(
∏

k=1,...,l

λk) (2.8)

Additionally, working in the logarithmic space allows a correction of the round-off
error due to small values multiplication up to certain scale.

A third criterion named A-optimality (A-opt) was introduced by Chernoff in 1953 [23].
This criterion targets the minimization of the average variance and it is defined as follows,

trace(Σ) =
∑

k=1,...,l

λk (2.9)

Although this criterion does not have the advantages of the D-opt, its information is
related with the major axis of the confidence ellipsoid of the parameters [17].

Another optimality criterion named E-optimality (E-opt), was introduced by Ehrenfeld
in 1955 [24] and intends to minimize the maximum eigenvalue of Σ. The main advantage
of this criterion is the simplicity of its computation, but it is a rough approximation of
the error ellipsoid.

The above optimality criteria are compiled and discussed in further detail in [17], [13]
or [22].

6



2. PRELIMINARIES

2.3.2 Information measures

The uncertainty of an experiment and the information gain with it, share an inversely
proportional relationship. The informativeness of an experiment can be measured mainly
in two forms, and both of them inform about the compactness of a probability distribution
and not about the data itself.

2.3.2.1 Fisher based information measures

For a probability distribution P (x), the Fisher information is defined as [25]:

J (x) =
d2 logP (x)

dx2
(2.10)

For the particular case of a Gaussian distribution (i.e. N (µ,Σ)) the Fisher informa-
tion measure is

J (x) = Σ−1 (2.11)

Finally, it is worth to mention that the Fisher information measure is only defined for
continuous distribution.

2.3.2.2 Shannon based information measures

The Shannon information measures are based on the concept of entropy defined by Shan-
non [26]. In brief, the entropy of a random variable with an associated probability distri-
bution P (x) is defined in the continuous case as:

H(x) = −

∞
∫

−∞

P (x) logP (x) dx (2.12)

The entropy is an ever decreasing function; i.e. any new information increase the
informativeness of the experiment. This property does not allow a direct comparison of
the entropy between two instances of an experiment. To overcome this, another entropy
based measure, the mutual information, is defined as:

MI(x ; y) = H(x)−H(x|y) (2.13)

where x and y have probability distributions P (x) and P (y), respectively. H(x|y) is
known as the conditional entropy of y given x. Because of the properties of the entropy,
the mutual information is bounded between zero and infinity.

For the particular case of a multidimensional Gaussian distribution (i.e. Nn(µ,Σ))
the entropy is:

H(x) =
1

2
log(2πe)n|Σ| (2.14)

7



Chapter 3

Uncertainty criteria for active SLAM

In the planning under uncertainty or active SLAM context [27], [10], [11] and [12], have
done comparisons between uncertainty criteria, in order to determine if there is a criterion
that for that specific task, converges faster to a desired solution. In all the aforementioned
papers, the D-opt - defined by them as the determinant of the covariance matrix - has
been disregarded as a fruitful metric for mainly two reasons:

i) The D-optimality criterion does not allow the checking of task completion as the
A-optimality criterion does.

ii) The D-optimality criterion can be driven rapidly to zero, so no fruitful information
is provided by this criterion.

The authors believe that the above two reasons are misconceptions stemming from a
misuse of the TOED.

For (i), the misuse lies in that the determinant of a matrix l × l is homogeneous of
degree l; hence the comparison of the determinant of a matrix l × l and a matrix m×m
is unfair. Specifically in the case of a SLAM system this is relevant, because the size of
the covariance matrix varies over time, so the evolution of an uncertainty criterion based
on determinants has to be normalized in order to be compared fairly [14].

Recently, Vidal-Calleja et al [28] intuited this, and proposed a solution that needs to
suppose the maximum number of landmarks in the environment and initialize its covari-
ance with a constant number. This solution is effective to fairly compare the determinant
as the matrix size does not vary in time, but adds complexity to the computation of the
metric and fails if the number of landmarks is greater than the initial assumption.

A proper solution as pointed out by [14], is to take the lth root of the determinant
of Σ (with size l × l) before making any comparison. This solution rises evidently if the
D-opt is derived from the family of uncertainty criteria proposed by Kiefer in [15],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (3.1)

This family of uncertainty criteria is valid in the range of 0 < p < ∞ for a covariance
matrix (Σ) of size l × l associated to a design ξ (e.g. π). Moreover, the case φ1 and the
boundary cases φ0 and φ∞ are the already known A, D and E-optimality criteria.

8



3. UNCERTAINTY CRITERIA FOR ACTIVE SLAM

Taking the above into account, the normalized D-optimality criterion proposed by
Kiefer is,

φ0(π) = lim
p→0+

φp(π) = [det(Σ(π))]1/l

= (
∏

k=1,...,l

λk)
1/l (3.2)

The misuse of TOED for the second reason, usually used to disregard the D-opt, lies
in the fact that this criterion considers the global variance. Geometrically, this means the
volume of a n-dimensional ellipsoid [13]. The latter implies that estimated parameters
with low uncertainty will produce very low value of D-opt, hence making its computation
prone to round-off errors.

Specifically in the SLAM case, as the landmarks get correlated the eigenvalues of Σ
become quite small values near to zero. A zero eigenvalue would mean that without doubt
the position of a landmark is known, but this does not happen in practice. Examples of the
above are presented in chapter 4, where we reported several experiments with simulated
and real robots. Regarding the computation of the determinant, it is possible that a small
value of an eigenvalue can cause a round-off error in the computation, so the D-opt gets
stuck at zero. One way to overcome this issue is to use the logarithmic space to compute
the determinant as proposed by Pazman [13]. Thus, the resulting equation to compute
the criterion would be,

exp(log([det(Σ(π))]1/l)) (3.3)

Summarizing, for the particular case of measuring the uncertainty of a SLAM system,
the D-opt should be computed using the definition of Kiefer [15] and as presented in (3.3).

9



Chapter 4

Experiments

In this chapter, two experiments are presented in order to (i) support the claims about
the computation of the D-optimality criterion of a SLAM system (ii) point out some
properties of the D-optimality criterion. The first experiment investigates the evolution of
different uncertainty metrics in simulated and real robots performing SLAM. The second
experiment is related to performing active SLAM using solely the uncertainty as a guiding
factor. A third experiment is reported in the appendix B.3 and deals with obtaining the
minimum uncertainty path for autonomous navigation.

4.1 First experiment: On the computation

Aiming at showing that is feasible to compute the D-opt in a robot performing SLAM,
in the following the evolution of the aforementioned uncertainty criterion is computed
for simulated and real robots performing SLAM. Due to space limitations only two test
scenarios are shown, but other results on the Victoria Park dataset and in an ad-hoc
indoor environment using a Pioneer DX-3 robot are presented in the appendix A. For
completeness, the A-opt, E-opt, the determinant of the covariance matrix, entropy and
mutual information are also computed.

In each of the following experiments the aforementioned uncertainty criteria are com-
puted at each step update of the covariance matrix Σ associated to x̂R and x̂F .

4.1.1 Simulated robot in an indoor environment

The simulation environment was created using C++ and the Mobile Robot Programming
Toolkit (MRPT) v0.9.4. The data of the covariance matrix were gathered while the
robot was performing EKF-SLAM with a predefined trajectory, within a map with static
landmarks and using a limited range sensor.

Specifically, the robot was moving at 0.3 m per step and travelled along a square-
shaped trajectory of 25x25 m. The navigation environment was composed of 2-D point
features, located in both sides of the trajectory with a distribution of 1.8 feature/m. The
robot was equipped with a range-bearing sensor with a frontal field of view of 360o and
a maximum range of 3 m. Synthetic errors, with a Gaussian distribution, were generated
for the odometry model of the robot (standard deviations of 0.1o in orientation and 0.2

10
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Figure 4.1: Resulting stochastic map for the experiment with a simulated robot in an
indoor environment. In red is the estimated trajectory of the robot and in blue is the
graphical representation of the covariance for each landmark.
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Figure 4.2: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for
the experiment with a simulated robot in an indoor environment

m per m in displacement) and the sensor measurements (standard deviations of 0.125o

in orientation and 1 cm per m in range), but known data association is assumed. The
resulting stochastic map after one loop is shown in Fig. 4.1

Fig. 4.2 shows the evolution of the different criteria as stated above. Each point of
the evolution gives an indication of the amount of uncertainty the SLAM system has at
that step. As expected, once the robot starts navigating, the uncertainty related to the
landmarks and robot’s localization starts increasing. The evolution of the tested criteria
behaves similarly at this stage.

Around the step 350 a loop closing event occurred, and therefore a decrease in the
uncertainty of the system is produced as expected. This drop is sensed by all the metrics
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(a) (b)

Figure 4.3: (a) Resulting stochastic map with uncertainty regions for each landmark. (b)
Blueprint of the environment with a superimposed sketch of the trajectory

but at different magnitudes, A-opt and E-opt had a major reduction, but D-opt had a
minor one.

The difference in magnitude is due to the opposite definition of the metrics. D-opt in
general, takes into account the uncertainty of each element of the system multiplicatively,
i.e. every element has an equal chance to contribute to the uncertainty. This definition
allows encompassing the global uncertainty in the D-optimality criterion.

On the other hand, A-opt gives independent and additive contribution to each element
of uncertainty. Giving the possibility of a single component of the system to drive the
whole uncertainty. In fact, as can be seen in Fig. 4.2a and Fig. 4.2b, A-opt and E-opt
resemble in shape and scale, thus giving a numerical example, although qualitative, of the
above, as E-opt represents the value of the single maximum eigenvalue. Moreover, the
correlation between A-opt and E-opt is 0.9655, giving a quantity value of its resemblance.

Fig. 4.2d shows an example of computing the determinant of the covariance matrix as
reported in [27], [10], [11] or [12], as can be seen after few steps -in this case 8- the value
of the criterion goes to zero. In contrast, Fig 4.2c shows an example of meaningful values
of uncertainty using the logarithmic based computation method presented in (3.3).

4.1.2 Real robot in an indoor environment: DLR dataset

In this experiment the DLR dataset [29] is used. This dataset was recorded at the
Deutsches Zentrum fur Luft und Raumfahrt (DLR) with a mobile platform. The en-
vironment is a typical office indoor environment and covers a region of 60m x 45m. To
estimate the trajectory and the map of the environment an EKF based SLAM algorithm
coded in python is used.

Fig. 4.4 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and landmarks for the DLR dataset that has a path length of
approximately 505 meters.
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Figure 4.4: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI for
the experiment using the DLR dataset

4.1.3 Discussion

The above results give numerical examples about the feasibility of computing the D-opt
in the SLAM context in simulated and real data. Also, the results give some insights
between the relation among the A-opt and E-opt. Although this relation (shape and
magnitude of the plots) is qualitative, a quantitative relation via the correlation of the
data can be obtained.

The correlation between the A-opt and the E-opt for all the experiments has a mean
of 0.9872 ± 2.1155 × 10−4. The latter means that exist a strong relation between these
two criteria in the SLAM context. Moreover, based on the definition of the E-opt, the
uncertainty measured by the A-opt is dominated by a single eigenvalue. In our context,
the above implies that a single feature - in the case of a probabilistic feature based SLAM
- can drive the complete SLAM uncertainty. The effect of the above property could lead
an active SLAM algorithm using an A-opt based metric to get stuck in a local minima.
An example of this is shown in the next experiment.

For the above experiments, the A-opt and D-opt correlation has a mean of 0.6003 ±
0.0540, which means that exist a correlation but neither is weak or strong. Moreover,
it gives an example of the main characteristic of the criteria according to the TOED:
The A-opt measures the mean of the uncertainty and the D-opt measures the complete
dimension of the uncertainty (e.g. Area in a 2D case).
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4. EXPERIMENTS

4.2 Second experiment: Active approach

In this experiment we perform a comparison between an active SLAM approach driven
by the A-opt, D-opt and entropy. The active SLAM approach used follows the algorithm
outlined in chapter 2, therefore assumes a priori and probably incomplete, stochastic map
of the environment. This map is generated by commanding the robot to follow a prede-
fined trajectory in the environment, while performing EKF-SLAM. Once the predefined
trajectory is completed, the robot begins the performance of active SLAM and therefore
starts planning autonomously trajectories that achieve an accurate map.

Each time the robot is planning which trajectory it has to follow, in order to fulfil the
active SLAM objectives, it has to consider every possible path in the navigation environ-
ment. In order to make the problem computationally tractable, the possible destinations
are constrained to positions near the landmarks already discovered.

Planning each time only the next movement is known as greedy approach or one step
look-ahead [4]. It is possible to plan several steps ahead that yields, as has been pointed
out by [4], in a faster convergence of the active SLAM goals but with an increase in the
complexity of the computation. Independent of the one step look-ahead or multi-step
look-ahead planning, each time the next movement is chosen as the one that minimizes
an uncertainty metric, in this case the value of A-opt or D-opt or entropy related to the
SLAM.

In this experiment, the paths follow autonomously for the robot are generated via an
A* based path planner. Specifically the environment is discretized and the only forbidden
areas are the positions of the landmarks. Two test environments were used for this
experiment: the first test environment consists of a 30x30 meter obstacle free square area
with 104 landmarks distributed around the perimeter of a 25 meter square. The second
test environment consists of a 20x20 meter obstacle free square area with 72 landmarks
distributed on the perimeter of a 15 meter square. The Mean Squared Error (MSE)
between the two initial stochastic maps has a ratio of 9.65, with the first environment
having a bigger MSE. The initial position of the robot is (X=1,Y=0) in both environments.
The ground truth position of the landmarks and their estimated positions from the EKF-
SLAM are depicted in Fig. 4.5.

The strategy for active SLAM described above can be summarized in the following
steps:

• Hallucinate paths from the current estimated position of the robot to all the land-
marks, except those which are below a radius of X (i.e. 1) meters from the current
estimated position.

• Measure the uncertainty at the end of each hallucinated path.

• Select the path that produced the lowest uncertainty according to the chosen metric.

• If the number of path planned is greater than i (i.e. 100), exit. In any other case,
execute again.
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Figure 4.5: (a) Ground truth of the landmarks and (b) initial stochastic map of the 30x30
test environment
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Figure 4.6: Resulting paths from each uncertainty metric: (a) D-opt, (b) A-opt and (c)
Entropy. Each colour represents an executed path. The planning area was 20 x 20 m.

4.2.1 One step look-ahead results

Performing active SLAM with a one-step look-ahead approach leads to completely differ-
ent trajectories using the A-opt and D-opt. The A-opt plans trajectories with a distinctive
local behaviour, while the D-opt plans trajectories more globally, often revisiting previous
landmarks. Regarding the entropy, this generates paths similar to the D-opt.

An example of the above behaviour is illustrated in Fig. 4.6. There, the active SLAM
starts after the robot has executed one loop (i.e. X=1,Y=0) and has an estimation of all
the landmarks in the environment. The resulting trajectories for the A-opt, D-opt and
the entropy are shown in Fig. 4.6a, Fig. 4.6b and Fig. 4.6c, respectively. Each generated
trajectory is identified by a different colour. A video of the incremental construction of
each trajectory can be seen in http://webdiis.unizar.es/~hcarri/1.avi.

In addition to the above qualitative assessment of the effect derived by using each
criterion, we can quantify the effect of using each criterion by measuring the quality of
its resulting maps.

To measure the quality of the map we use the guidelines proposed in [30] that urge
for the use of the MSE an χ2 together in the assessment of the maps quality generated
by a SLAM algorithm.

In order to compare the three criteria, we compute the ratio between them for each
quality metric at each update step of the active algorithm. Therefore we have the A-
opt/D-opt ratio, the A-opt/entropy ratio and the entropy/D-opt for the MSE and χ2
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Figure 4.7: Evolution of the MSE ((a)-(c)) and χ2 ((d)-(f)) ratios related to the map
(30x30) after each active step. The ratios are computed for each possible uncertainty
metric combination. The average of 10 Monte Carlo runs is depicted for each ratio.

metric.
Fig. 4.7 presents the result of 10 Monte Carlo Runs for each ratio related to the MSE

and χ2 metric of the 20x20 test environment. Respectively, Fig. 4.8 presents the same
information for the 30x30 environment.

Finally, Fig. 4.9 shows the resulting path for the active SLAM strategy presented
in this section using a limit of 10000 steps and a continuous path planner based on an
attractor/repulsion technique. This last experiment illustrates another example of the
quasi-opposite behaviour of an active SLAM strategy using the A-opt and D-opt.

4.2.2 Discussion

An explanation of the difference in the path planning behaviours due to the A-opt or D-
opt used relies on the definition of the metric itself. As pointed out in the previous section,
D-opt encompasses the global uncertainty therefore revisiting previous landmarks (closing
the loop) helps in decreasing the value of the metric. On the other hand, A-opt criterion
can be driven by a single eigenvalue, and therefore the uncertainty of the covariance
matrix can get stuck in a local minimum.

Regarding the quality of the maps, the results show an advantage in the use of D-opt
and entropy over the A-opt. Also in this specific experiment the D-opt and entropy share
similar results. This similarity does not come as a surprise, because the EKF-SLAM
assumed gaussianity as well the noise used in the experiment, therefore the D-opt and the
entropy have an explicit relationship through the determinant as can be seen comparing
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Figure 4.8: Evolution of the MSE ((a)-(c)) and χ2 ((d)-(f)) ratios related to the map
(20x20) after each active step. The ratios are computed for each possible uncertainty
metric combination. The average of 10 Monte Carlo runs is depicted for each ratio.
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Figure 4.9: Resulting trajectories for a 10000 steps active SLAM simulation. (a). Prede-
fined trajectory and landmarks ground truth. (b). A-opt based active SLAM. (c). D-opt
based active SLAM. This figure is best viewed in colour.

(3.3) and the entropy of a multidimensional Gaussian distribution (i.e. Nn(µ,Σ)):

H(x) =
1

2
log(2πe)n|Σ| (4.1)

4.3 Third experiment

Due to limitation in the space, this section is in the appendix B.3.
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Chapter 5

Conclusions

In this report a clarification on the use and computation of the D-optimality criterion for a
covariance matrix with variable size in time, in order to make comparisons of uncertainty
evolution in a SLAM context, is presented. This report highlights that computing the
D-optimality criterion in the SLAM context as reported in [27], [10], [11] and [12] leads
to wrong results because it does not take into account the change in dimensionality of
the determinant. Instead of the above definition, a method that produces fruitful results
is the one proposed by Kiefer [15]. Furthermore, a solution for the problem of round-
off errors in the computation of the D-optimality criterion is achieved by proposing its
computation in the logarithmic space.

This report demonstrates via several experiments with simulated and real robots the
above claims, and point out appealing characteristics (e.g. encompassing global uncer-
tainty) for the use of D-optimality criterion as a measurement of the uncertainty of a
SLAM system. Besides, it is shown that the use of D-optimality criterion, instead of the
A-optimality criterion, to drive an active SLAM approach seems more rewarding towards
the fulfilling of the active SLAM objectives. Also in the active SLAM context is shown
through examples the similarity of guiding a greedy active SLAM strategy with the D-opt
and the entropy.

Finally, with the clarification reported in this report, the D-opt rises as an alternative
to quantify the uncertainty of a SLAM algorithm. Its use has a strong background from
the TOED and its properties allow it to be used instead of the commonly used A-opt.

As a future work, firstly we aim at developing a more complex guiding factor for
the active SLAM strategy that will include beside the uncertainty, time and obstacle
constraints. Secondly, we want to include within the assumptions of the active SLAM,
dynamic landmarks and obstacles.
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Appendix A

A.1 Real robot in an ad-hoc indoor environment

In order to validate completely the simulated results, and further evaluate the proposed
computation method. A real test is perform on a Pioneer P3-DX robot. The robot
is equipped, besides its standards accessories, with a LMS 200 SICK laser, a Microsoft
Kinect camera and a laptop with a Intel Core i7 @ 2.7 GHz and 6 GB of memory. The
robot is programmed using C++ and python under ROS environment in Ubuntu 10.10.
A photo of the robot is shown in Fig. A.1a.

The robot performs an EKF-SLAM algorithm from which the covariance matrix is
obtained and the uncertainty criteria computed. In order to isolate the effect of data
association, markers of the ARToolkit are used as distinguishable isolated features. Also,
to guarantee a correct navigation, a localization module based on AMCL is used when
the robot is following a commanded path. The environment is a room of 6 × 4 meters
and contain five markers. A metric map of the room with the position of the markers
highlighted is shown in Fig A.1b.

Fig. A.2 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and the five landmarks.

(a) (b)

Figure A.1: (a). Pioneer robot used in the experiment. (b) Metric map of the test
environment with the position of the markers (Red) and the initial position of the robot
(Blue).
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(a) (b) (c)

(d) (e) (f)

Figure A.2: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI
for the experiment with a real robot in an indoor environment.

A.2 Real robot in an outdoor environment: Victoria

Park dataset

In this experiment the well-known Victoria Park dataset is used. This dataset provides
among others, data from a laser and an odometer mounted over a vehicle that is traversing
a natural park populated with trees, which can be used as landmarks. In order to estimate
the trajectory of the vehicle and a map of the environment, a graph based SLAM algorithm
(iSAM [31]) was used. This algorithm is capable of producing the full solution to the
SLAM problem incrementally by defining it as a graph optimization problem and solving
it in incremental batch steps. A solution for the Victoria Park dataset using batch steps
every 10 iteration is shown in Fig. A.3.

Fig. A.4 shows the evolution of the different uncertainty criteria associated to the
uncertainty of the robot and landmarks for the first 720 steps.
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Figure A.3: Resulting pose/feature graph. In dark blue and green are respectively, the
estimated trajectory of the robot and landmarks. In yellow are shown the constraints
between the nodes of the graph.
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Figure A.4: (a)-(f) Evolution of the A-opt, E-opt, D-opt, determinant, entropy and MI
for the experiment using the Victoria Park dataset.
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Appendix B

From this thesis stems three papers that are presented in the reminder of this ap-
pendix. The first one (B.1) is entitled “Experimental Comparison of Optimum Crite-
ria for Active SLAM” and was accepted for oral presentation in the “III Workshop de
Robótica: Robótica Experimental (ROBOT’11)”. The second paper (B.2) was submit-
ted to ICRA’12 and is entitled “On the Comparison of Uncertainty Criteria for Active
SLAM”. Finally, the third paper (B.3), entitled “Planning Minimum Uncertainty Paths
Over Pose/Feature Graphs Constructed Via SLAM” was also submitted to ICRA’12.
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Experimental Comparison of Optimum Criteria for
Active SLAM

Henry Carrillo and José A. Castellanos

Abstract—In this paper, we consider the computation of the
D-optimality criterion as a metric for the uncertainty of a SLAM
system. Properties regarding the use of this uncertainty criterion
in the active SLAM context are highlighted, and comparisons
against the A-optimality criterion are presented. This paper
shows that contrary to what have been previously reported,
the D-optimality criterion is indeed capable of giving fruitful
information as a metric for the active SLAM problem. Moreover,
its performance is comparable to A-optimality, but with extra
appealing characteristics such as the invariance to change in
scale and an intrinsic global trajectory planning.

I. INTRODUCTION

A model of the operative environment is an essential re-
quirement for an autonomous mobile robot. The construction
of this model requires the solution of at least three basic
tasks for a mobile robot, namely localization, mapping and
trajectory planning. The intersection of the first two tasks,
defines a key problem in modern robotics: Simultaneous
Localization and Mapping (SLAM).

SLAM is the problem of acquiring on-line and sequentially
spatial data of an unknown environment in order to construct
a map of it, and at the same time, allows the robot to localize
itself in this map. SLAM is still a key-open problem regard-
ing mobile robotics and its solution in all senses (practical
and theoretical) will be a breakthrough achievement towards
autonomous robots [1].

To integrate the trajectory planning into SLAM allows a
mobile robot to perform common tasks such as autonomous
environment exploration. This approach is known as active
SLAM and specifically refers to the problem of how to give a
mobile robot the capability of generating on-line trajectories
that simultaneously maximize the accuracy of the map and
robot’s localization, regarding a SLAM task.

The active SLAM paradigm was first proposed and tested in
[2]. Since then, different approaches have been done.e.g. [3]
and [4] proposed a discrete and greedy planning methodology.
Huang et al. in [5] studied and tested the feasibility of
multi-step planning. Continuous states planning but with a
discretization in actions space is explored in [6]. Recently,
continuous planning approach in states and actions has been
proposed by [7].

This work has been supported by the MICINN-FEDER project DPI2009-
13710, and research grants BES-2010-033116 and EEBB-2011-44287.

H. Carrillo and J. A. Castellanos are with theDepartamento de Informática
e Ingenierı́a de Sistemas, Instituto de Investigación en Ingenierı́a de Aragón,
Universidad de Zaragoza, C/ Marı́a de Luna 1, 50018, Zaragoza, Spain.
{henry.carrillo, jacaste}@unizar.es

To the best of the authors’ knowledge, the different ap-
proaches that attempt to produce an active SLAM algorithm,
rely on metrics that quantify the improvement of the actions
taken by the robot (e.g. movements). This improvement is
measured relative to the robot and the map localization ac-
curacy, the area of the map explored or the time that the robot
has been navigating. Specifically, the metrics that relate the
improvement of the localization accuracy or uncertainty to the
movements the robot makes are of high value, because their
use allow the reduction of the map’s error, and therefore the
probability to accomplish a given task is improved.

Until now the preferred criterion to quantify the localization
uncertainty has been A-optimality. This criterion captures the
mean uncertainty of the covariance matrix of a SLAM system.
The choice of this criterion in many active SLAM related
works such as [8], [9], [10], [11], [6], [12], and [7], among
others, found its foundation in the fact that papers such as [13],
[14], and [15] reported that A-optimality criterion applied to
the problems of planning under uncertainty outperforms others
well known criteria such as D-optimality.

In the Theory of Optimal Experiment Design (TOED) [16]
[17] [18] [19], it is well known that the use of the D-
optimality criterion has more appealing characteristics than
the A-optimality or E-optimality criterion. Moreover, J. Kiefer
in [20] demonstrated that the A, D and E-optimality criteria
are special cases of a general family of optimality criteria
and therefore they share some properties, but D-optimality
is the only one proportional to the uncertainty ellipse of
the estimated parameters, and it is also invariant to re-
parametrizations and linear transformations [19].

In this paper, it is shown that is indeed possible to ob-
tain a fruitful metric from the D-optimality criterion for the
specifically case of the active SLAM problem, and its use
as a metric perform comparable to the A-optimality metric
popularized by [13], [14] and [15], but with extra appealing
characteristics such as the invariance to change in scale and
an intrinsic global trajectory planning.

The reminder of the paper is structured as follows: section
II gives an overview of the active SLAM problem. SectionIII
reviews several optimality criteria and its application to the
active SLAM problem. Moreover, this section also shows how
to compute correctly those criteria in order to be compared
correctly. SectionIV reports a comparison of the evolution
of different optimality criteria on a simulated and real SLAM
scenarios. SectionV shows a comparison between the perfor-
mances of an active SLAM approach using different optimality
criteria. Finally, sectionVI presents conclusions.



II. ACTIVE SLAM

The SLAM problem does not establish which trajectories
a robot has to follow. Usually, they are chosen randomly or
beforehand.

It is well known that the trajectories selected and the order
they are executed by a robot, are critical, among other things,
firstly for a rapidly convergence of the uncertainty of a SLAM
algorithm, secondly for increasing the area of the environment
explored by the robot, and thirdly to improve the possibility
of fulfilling possible tasks.

The integration of the trajectory planning task into SLAM
has been first proposed in [2] and the term active SLAM
referring to the aforementioned integration was coined by [10].
The general idea of active SLAM is summarized in Alg. 1.
There, the SLAM approach taken is based on a probabilistic
state-space model, where the robotR and a set of features
or landmarks in the environmentF = {F1, . . . , Fn} are
represented by a stochastic state vectorx with an estimated
meanx̂ and associated covariance matrixΣ. Furthermore,

x̂ =

[

x̂R
x̂F

]

; Σ =

[

ΣRR ΣRF

ΣFR ΣFF

]

(1)

where x̂R and x̂F are the estimated locations of the robot
and the landmarks respectively,ΣRR is the covariance matrix
of the estimated robot pose (e.g.x, y, θ) and it has a size of
p × p that is invariant with respect to (wrt) the time,ΣFF

represents the covariance matrix of the estimated locations of
the discovered landmarks and it has a size ofn × n that
varies wrt the time. Finally,ΣRF and ΣFR are matrices
that encode the cross-covariance of the robot pose and the
landmarks estimations. The covariance matrixΣ has size
l × l, where l = p + n, and its value is variable wrt the
time. Moreover, it is a positive semi-definitive matrix with
eigenvalues{λ1, . . . , λl}.

Algorithm 1 The active SLAM algorithm
Require:

• A complete or incomplete stochastic map of the
environmentMk = {x̂k,Σk}.

• The lengthi of the horizon of planning.
Ensure:

• A policy class of trajectoriesπ.
1: Create a setπs of s different policy class withi trajectories

each one. The initial trajectory of each policy starts atx̂Rk
.

2: Perform a SLAM algorithm using each policy class and
the given mapMk.

3: Compute a value functionJ for each policy class ofπs,
using the information of each trajectory followed and the
final covariance matrix associated to the SLAM algorithm.

4: Select the policy classπopt that optimizeJ .

A. The value function

As mentioned above, the integration of trajectory planning
or, what is equivalent, applying the active sensing paradigm

[21] [13] to the SLAM problem, involves the optimization of
a multi-objective performance criterion or value functionJ .

This value function is used to decide which trajectories have
to be followed by the robot. A definition of this value function
can be as follows:

J =
∑

i

αiUi +
∑

i

βiTi (2)

Where the indexi defines the length of the planning horizon
(i.e. the numbers of consecutive trajectories planned ahead).
The first term,Ui characterizes the expected cost of the
uncertainty in the parameters of the system. The second term,
Ti includes other expected costs such as trajectory length, nav-
igation time, and energy consumption, among others. Finally,
α andβ are weight coefficients for tuning the parameters and
are task dependant.

TheUi term can be further specified as a metric of the asso-
ciated covariance matrixΣ (e.g. the trace). This metric needs
to encode the robot and the landmarks estimated locations
uncertainty and can be defined as follows:

Ui : Σ → R (3)

The different ways to compute the above metric and theirs
properties in relation to the goals of the active SLAM approach
is the target of the following sections of this paper. Moreover,
a clarification in the computation of one of them is pointed
out in sectionIII .

The second termTi, as done previously, can be further
specified and constrained as a metric that represents the cost
of performing a free collision trajectoryΓ by the robot,

Ti : Γ → R (4)

This metric can be constrained to be a function only of the
distance travelled, since its cost is directly related to the power
and navigation time of the robot while it performs a task.

Finally, summarizing all the above definitions at this point,
a statement of the active SLAM problem can be formulated
as:the task of choosing a single or multiple step policy class
π of robot’s trajectories that optimize a value function J .

III. OPTIMUM EXPERIMENTAL DESIGN AND
OPTIMUM CRITERIA

A. Background

In the Theory of Optimal Experiment Design (TOED) [16]
[18] [19], a single trial of an experiment is the process of
changing the input parameters of a system perturbed with
unknown noise, with the purpose of observing the variation
in the output parameters. In this context, the particular values
of the input parameters are known as a particular designξ.

In the active SLAM context, the aforementioned design is a
particular policy classπ commanded to the robot, the unknown
noise is the commonly assumed zero mean Gaussian noise, and
the variation of the parameters is encoded in the covariance
matrix Σ.



Based on the TOED, it is possible to know if a designξ1
is better than a designξ2 [16] [19]. Applying this concept in
the active SLAM context, a policy classπ1 is better in terms
of uncertainty than a policy classπ2 if :

Cov(π1)− Cov(π2) ∈ NND(l) (5)

WhereCov(πi) is the covariance matrix of sizel × l after
the robot has followedπi andNND(l) stands for the group
of non-negative definite matrices of sizel× l. NND matrices
are also known as positive semi-definite matrices [19].

As this criterion only tells if a policy class is better than
other but does not quantify how much, it is advantageous to
define a functionφ that map aNND covariance matrix of
size l × l to a scalar,

φ : NND(l) → R (6)

This function has to capture the idea of whether or not the
uncertainty of a covariance matrix is large or small. Moreover,
this function has to be positive homogeneous, isotonic (i.e.
order preserving) and concave [19].

In the TOED context, a first criterion fulfilling the above
requirements was proposed by K. Smith back in 1918 [22], and
it aims at minimizing the maximum variance of any predicted
value over the experimental space.

This criterion, later named globally optimum or G-
optimality by J. Kiefer [23], suffers from a high complexity in
its computation because the variance of each parameter of the
system has to be tested individually, thus making it impractical
to be used in a many-parameters systems [19].

A second criterion named D-optimality (D-opt) was pro-
posed by A. Wald in 1943 [24]. This criterion aims at
monitoring directly the quality of the parameter estimation,
to do so it is defined as the determinant of the covariance
matrix Σ:

det(Σ) =
∏

j=1,...,l

λj (7)

Where,λj represents the eigenvalues ofΣ and the equality
holds because the covariance matrix is symmetric [16]. This
criterion is the preferred in the TOED because:

1) It captures well the information in the confidence el-
lipsoid of the parameters, furthermore exists an inverse
proportionality [16] [17], and,

2) This criterion is the only one that is invariant to re-
parametrization (i.e. change in scale) and linear trans-
formation on the covariance matrix [18].

This last property is appealing because a SLAM algorithm
using this criterion does not need to take into account if the
parameters ofΣ are in millimetres, meters, kilometres or
inches.

A common variation of the D-optimality criterion [17] is
to apply the logarithm, in order to exploit the addition and
multiplication relationship in that domain,

ln(det(Σ)) = ln(
∏

j=1,...,l

λj) (8)

Additionally, working in the logarithmic space allows a cor-
rection of the round-off error due to small values multiplication
up to certain scale.

A third criterion named A-optimality (A-opt) was introduced
by H. Chernoff in 1953 [25]. This criterion targets the mini-
mization of the average variance and it is defined as follows,

trace(Σ) =
∑

j=1,...,l

λj (9)

Although this criterion does not have the advantages of the
D-optimality, its information is related with the major axis of
the confidence ellipsoid of the parameters [16].

Another optimality criterion named E-optimality (E-opt),
was introduced by E. Ehrenfeld in 1955 [26] and intends to
minimize the maximum eigenvalue ofΣ. The main advantage
of this criterion is the simplicity of its computation, but it is
a rough approximation of the error ellipsoid.

The above optimality criteria are compiled and discuss in
further detail in [16], [17] or [18].

B. Optimum criteria for active SLAM

In the planning under uncertainty or active SLAM context
the following articles [27], [13], [14] and [15], have done
comparisons between optimum criteria, in order to determine
if there is a criterion that for that specific task, converges faster
to a desire solution. In all the aforementioned papers, the D-
optimality has been disregarded as a fruitful metric for mainly
two reasons:

1) The D-optimality criterion does not allow the checking
of task completion as the A-optimality criterion does.

2) The D-optimality criterion can be driven rapidly to zero,
so no fruitful information is provided by this criterion.

The authors believe that the above two reasons are miscon-
ceptions lead by a misuse of the TOED.

For the first reason, the misuse lies in that the determinant
of a matrixl× l is positively homogeneous of degreel, hence
the comparison of the determinant of a matrixl × l and a
matrix m ×m is unfair. Specifically in the case of a SLAM
system this is relevant, because the size of the covariance
matrix varies with time, so the evolution of optimality criteria
based in determinants has to be normalized in order to be
compared fairly [19].

Recently, Vidal-Callejaet al [28] intuited this, and proposed
a solution that needs to suppose a maximum number of
landmarks in the environment and also initialize its covariance
with a constant number. This solution is effective to compare
fairly the determinant as the matrix size does not vary in time,
but adds complexity to the computation of the metric and
fails if the number of landmarks are superior to the initial
assumption.

A proper solution as pointed out by [19], is to take the
l root of the determinant ofΣ (with size l × l) before



making any comparison. This solution rises evidently if the
optimality criteria are derived from the family of optimal
criteria proposed by J. Kiefer in 1974 [20],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (10)

This family of optimal criteria is valid in the range of0 <

p < ∞ for a covariance matrix (Σ) of size l× l associated to
a designξ (e.g.π). Moreover, the caseφ1 and the boundary
casesφ0 andφ∞ are the already known A, D and E-optimality
criteria.

Taking the above into account, the normalized D-optimality
criterion proposed by J. Kiefer (DN -opt) is,

φ0(π) = lim
p→0+

φp(π) = [det(Σ(π))]1/l

= (
∏

j=1,...,l

λj)
1/l (11)

Furthermore, J. Kiefer in 1959 [23] demonstrated that the G-
optimality is equivalent to a D-optimality. Therefore, the later
adds another appealing characteristic for the use of the D-
optimality criterion, because G-optimality aims at minimizing
the maximum variance of all the estimated values.

The misuse of TOED for the second reason usually used to
disregard the D-optimality, lies in the fact that this criterion
considers the global variance. This geometrically means the
volume of an-dimensional ellipsoid [17]. The later implies
that estimated parameters with low uncertainty will produce
very low value of D-optimality, hence making its computation
prone to round-off errors.

Specifically in the SLAM case, as the landmarks get corre-
lated the eigenvalues ofΣ become quite small values near to
zero. A zero eigenvalue would mean that without doubt the
position of a landmark is known, but this practically just not
happened. Moreover, it is possible that a small value of an
eigenvalue can cause a round-off error in the computation,
so the D-optimally criterion gets stuck at zero. One way
to overcome this issue is to use the logarithmic space to
compute the determinant as proposed by A. Pazman [17].
Thus, the resulting equation to compute the criterion (DN−log-
opt) would be,

exp(ln([det(Σ(π))]1/l)) (12)

A common transformation to prevent a matrix to have ill
condition eigenvalues, is to shift the eigenvalues in order to
have a smaller relative span between them. This practice is
very common in numerical linear algebra (e.g.QR algorithm
[29]) and it is done by adding algebraically a scaled version of
the identity matrix from the ill conditioned matrix. A problem
with this approach is that it transforms the D-optimality in a
scale version of the A-optimality criterion (see proof in the
appendix).

For the above reason, working the D-optimality criterion in
the logarithmic space seems as the most reasonable solution
to avoid round-off errors in computation.

0 5 10 15 20

0

5

10

15

20

GROUND TRUTH, features: 97

Fig. 1. Ground truth of the predefined trajectory and landmarks positions.

IV. EVOLUTION OF OPTIMUM CRITERIA IN A
SLAM SYSTEM

In this section, the evolution of the values ofA-opt, E-
opt and DN−log-opt optimality criteria in a SLAM system
are shown via simulated experiments. The experiments are
done firstly to support the claims previously made about the
computation of D-optimality and secondly to pointed out some
properties of the criteria.

A. The simulation setup

The simulation environment used for the experiments was
MATLAB and the simulations itself consisted in the computa-
tion of the A, E and D-optimality criteria at each step update
of the covariance matrixΣ associated tôxR and x̂F .

The data of the covariance matrix were gathered while the
robot was performing EKF-SLAM with a predefined trajec-
tory, within a map with static landmarks and using a limited
range sensor. Four different predefined trajectories were tested:
loop, lawn, snail and random, and all of them share the same
results, therefore only the results of the first one (i.e. loop) are
shown.

Specifically in the reported simulated experiment, the robot
travelled along a square-shaped trajectory of 18x18m, moving
0.325m per step. The navigation environment was composed
of 2-D point features, located in the outer sides of the
trajectory with a distribution of 1.8feature/m and in the
inner sides of the trajectory with a random distribution with
a density of 6feature/m2. The robot was equipped with a
range-bearing sensor with a maximum range of 2.5m and
a 180o frontal field of view. Gaussian distributed synthetic
errors were generated for both the odometry model of the
robot (standard deviations of 0.2m per m in displacement
and 0.1o in orientation) and the sensor measurements (standard
deviations of 1cm perm in range and 0.125o in orientation),
but known data association is assumed.

B. The simulation results

The square-shaped (i.e. loop) trajectory followed by the
robot is shown (in black triangles) along with the 2-D point
features (blue circles) in Fig.1.



0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14
A−Criterion @Robot+Landmarks

Steps

(a)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9
E−Criterion @Robot+Landmarks

Steps

(b)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4 D−Criterion by Kiefer Log @Robot+Landmarks

Steps

(c)

Fig. 2. Results of the evolution of the different optimum criteria while performing the square-shaped trajectory. (a).A-opt. (b). E-opt. (c). DN−log-opt.
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Fig. 3. Results of the evolution of different computation forms of the D-
optimality criterion while performing the square-shaped trajectory. (a).D-opt.
(b). DN -opt.

Fig. 2 shows the evolution of theA-opt, E-optandDN−log-
opt criteria as stated above. Each point of the evolution gives
an indication of the amount of uncertainty the SLAM system
has at that step. As expected, once the robot starts navigating,
the uncertainty regarding the parameters the SLAM algorithm
is estimating start increasing. The evolution of the three tested
criteria behave similarly at this stage.

At step 165 a loop closing event occurred, and therefore
a decrease in the uncertainty of the system is produced as
expected. This drop is sensed by all the metrics but at different
magnitudes,A-opt and E-opt had a major reduction, but
DN−log-opt had a minor one.

The difference in magnitude is due to the opposite definition
of the metrics. D-optimality in general, takes into account the
uncertainty of each element of the system multiplicatively,
that is every element has equal chance to contribute to the
uncertainty. This definition allows encompassing the global
uncertainty in the D-optimality criterion.

On the other hand, A-optimality criterion gives independent
and additive contribution to each element of uncertainty.
Giving the possibility of a single component of the system
to drive the whole uncertainty. In fact, as can be seen in Fig.
2(a) and Fig.2(b), A-opt and E-opt resemble in shape and
scale, thus giving a numerical example of the above, asE-opt
represents the value of the single maximum eigenvalue.

Fig. 3 shows the evolution of two different ways of com-
puting the D-optimality criteria for the above case. The first,

(a) (b)

Fig. 4. (a). Pioneer robot used in the test. (b) Metric map of the test
environment.

is the traditional form proposed by A. Wald in [24] as in (7),
and the second is the form proposed by J. Kiefer [20] as in
(10). As it is shown,D-opt does not give fruitful information
and mainly, as it can be seen in the magnitude, because of
round-off errors.DN -opt shows good results in the first steps
but gets saturated at step 160. This happens again, due to the
round-off error problems in the computation. This problem is
overcome by computing the multiplication in the logarithmic
space (i.e.DN−log-opt), as it is shown previously in Fig2(c).

C. Experiments with real robots

In order to validate completely the simulated results, an
further evaluate the proposed computation method. A real test
is perform on a Pioneer P3-DX robot. The robot is equipped,
besides its standards accessories, with a LMS 200 SICK laser,
a Microsoft Kinect camera and a laptop with a Intel Core i7
@ 2.7 GHz and 6 GB of memory. The robot is programmed
using ROS in Ubuntu 10.10. A photo of the robot is shown in
Fig.4a.

In order to isolate the effect of data association, markers of
the ARToolkit are used as a distinguishable isolated features.
Also to guarantee a correct navigation, a localization module
based on AMCL is used when the robot is following a
commanded path. The environment is a room of 6 x 4 meters.
A metric map of the room is shown in Fig.4b.

Figure 5 shows the evolution of the different optimum
criteria associated to the uncertainty of the robot and five



Fig. 5. Results of the evolution of the different optimum criteria while
performing a real trajectory. (Up).D-opt. (Down). A-opt.

landmarks. The landmarks are distribute over the walls.

V. COMPARISON WITHIN AN ACTIVE SLAM
APPROACH

In this section, the results of a comparison between an active
SLAM approach driven by the A-optimality criterion and by
the D-optimality (i.e.DN−log-opt) criterion, is presented. The
active SLAM approach used, assumesa priori and probably
incomplete, stochastic map of the environment. This map is
generated by commanding the robot to follow a predefined
trajectory in the environment, while performing SLAM. Once
the predefined trajectory is completed, the robot begins the
performance of active SLAM and therefore starts planning
autonomously trajectories that achieve an accurate map.

Each time the robot is planning which trajectory it has to
follow, in order to fulfil the active SLAM objectives, it has
to consider every possible path in the navigation environment.
In order to make the problem computationally tractable, the
possible destinations are constrained to positions near the
landmarks already discovered.

Planning each time only the next movement is known as
greedy approach or one step look-ahead [5]. It is possible
to plan several steps ahead that yields, as has been pointed
out by [5], in a faster convergence of the active SLAM goals
but with an increase in the complexity of the computation.
Independent of the one step look-ahead or multi-step look-
ahead planning, each time the next movement is chosen as
the one that minimizes a metric, in this case the value of A
or D-optimality of the SLAM system covariance matrix.

A. One step look-ahead simulation

Performing active SLAM with a one-step look-ahead ap-
proach leads to completely different trajectories using the A
and D-optimality criterion. The A-optimality plans trajectories
with a distinctive local behaviour, while the D-optimality plans
trajectories more globally, revisiting often previous landmarks.

An example of the above behaviour is illustrated in Fig.
6. There the active SLAM starts after the robot has executed
the predefined trajectory (black triangles) shown in Fig.6(a),
and partially discovers some landmarks (blue circles). The

resulting trajectories after 10000 steps of simulations for A
and D-optimality are shown respectively in Fig.6(b) and Fig.
6(c). Each trajectory is identified by a different colour.

An explanation of the difference in the trajectory planning
behaviours due to the A or D-optimality used derives in the
definition of the metric itself. As pointed out in the previ-
ous section, D-optimality encompasses the global uncertainty
therefore revisiting previous landmarks (closing the loop)
helps in decreasing the value of the metric. On the other hand,
A-optimality criterion can be driven by a single eigenvalue,
and therefore the uncertainty of the covariance matrix can get
stuck in a local minimum.

B. Two steps look-ahead simulation

To perform a multi-step active SLAM approach is a cumber-
some task, mainly because the numbers of possible trajectories
to be considered before planning a trajectory are extremely
high. Exactly, the number of trajectories are equal to the
possible permutations obtained from a set with length equal to
the quantity of known landmarks and arranging at each time
i, which represents the amount of steps ahead.

In order to reduce the number of places that have to be
tested, a partition of the environment is performed with regions
having a size equal to the robot’s sensor visibility range. The
valid regions after the partition are those which contain one
or more landmarks.

An example of this partition is shown in Fig.7, where
the scheme of partition was used in a set of 1000 randomly
distributed points, in an area of1× 1 meters, which simulate
the landmarks. The result of partitioning the environment
having a circular shape visibility range of radius 0.1, is shown
in Fig. 7(b). Each partitioned region is delimited by a red circle
that depicts the boundaries of the sensor and the cross in the
centre indicated the position of the sensor, which is where the
robot has to stand.

This type of partition is very common in sensor deployment
problems [30] and reduces greatly the number of places
to be tested, but it does not produce the optimal partition
result. Firstly, because some partitioned regions are partially
overlapped and secondly, because it considers that the sensor
is equally accurate within its range. Taking into account the
above statement, this kind of partitions are more suitable
for any-time algorithms [31] used in real time constrained
systems, where a suboptimal answer is better than nothing.

Fig. 9 shows the evolution of the root mean square error
(RMSE) of the mean state vector for the A and D-optimality
driven active SLAM approach for one and two step look-ahead
planning. The ground map and the initial trajectory of the robot
are shown in Fig.8(a) along with the trajectories planned for
the two steps look-ahead approach for each criterion, in Fig.
8(b) and Fig.8(c) respectively.

As expected, for the intrinsic global quality of its trajectory,
the active SLAM based on the D-criterion yields a lower
RMSE than the A-criterion based active SLAM. Moreover,
the two steps case, as previously pointed out by [5], leads to a
better result than a greedy approach. It is worth to remark, that
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Fig. 6. Resulting trajectories for a 10000 steps active SLAM simulation. (a). Predefined trajectory and landmarks ground truth. (b).A-opt based active
SLAM. (c). DN−log-opt based active SLAM.
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Fig. 7. Example of the partition proposed. (a). 1000 randomly distributed
landmarks. (b) Result of the partition.

because the re-planning is done after a complete trajectory (a
sequence of discrete movement), a fair comparison between
the metrics should be done at the end of each trajectory. The
end points of each trajectory are marked in each figure.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a clarification on the use and computation of
the D-optimality criterion for a covariance matrix with variable
size in time, in order to make comparisons of uncertainty evo-
lution, is presented. This paper highlights that the definition for
computing the D-optimality criterion provided by A. Wald [24]
leads to wrong results because it does not take into account
the change in dimensionality of the determinant. Instead of
the above definition, the one that produces fruitful results is
the proposed by J. Kiefer [20]. Furthermore, a solution for
the problem of round-off errors in the computation of the D-
optimality criterion is achieved by proposing its computation
in the logarithmic space.

This paper also demonstrates via simulation and real tests
the above claims, and point out appealing characteristics (e.g.
encompassing global uncertainty) for the use of D-optimality
criterion as a measurement of the uncertainty of a SLAM
system. Besides, it is shown that the use of D-optimality
criterion, instead of the A-optimality, to drive an active SLAM
approach seems more rewarding towards the fulfilling of the
active SLAM objectives.

Finally, as a way to overcome the complexity of computing
active SLAM with a multi-step approach, a partition scheme
of the environment based on the range of the robot sensor is
used.

As a future work, firstly we aim at testing the feasibility of
the active SLAM approach used, in a real robot at different
environments with time constraints and secondly, to include
within the assumptions of the active SLAM, dynamic land-
marks and obstacles.
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On the Comparison of Uncertainty Criteria for
Active SLAM

Henry Carrillo, Ian Reid and José A. Castellanos

Abstract—In this paper, we consider the computation of the
D-optimality criterion as a metric for the uncertainty of a SLAM
system. Properties regarding the use of this uncertainty criterion
in the active SLAM context are highlighted, and comparisons
against the A-optimality criterion and entropy are presented.
This paper shows that contrary to what has been previously
reported, the D-optimality criterion is indeed capable of giving
fruitful information as a metric for the uncertainty of a robot
performing SLAM. Finally, through various experiments with
simulated and real robots, we support our claims and show that
the use of D-opt has desirable effects in various SLAM related
tasks such as active mapping and exploration.

I. I NTRODUCTION

A model of the operative environment is an essential re-
quirement for an autonomous mobile robot. The construction
of this model requires the solution of at least three basic
tasks for a mobile robot, namely localization, mapping and
trajectory planning. The intersection of the first two tasks
defines a key problem in modern robotics: Simultaneous
Localization and Mapping (SLAM).

SLAM is the problem of acquiring on-line and sequentially
spatial data of an unknown environment in order to construct
a map of it, and at the same time, allows the robot to localize
itself in this map.

To integrate the trajectory planning into SLAM allows a
mobile robot to perform common tasks such as autonomous
environment exploration. This approach is known as active
SLAM and specifically refers to the problem of how to give a
mobile robot the capability of generating on-line trajectories
that simultaneously maximize the accuracy of the map and
robot’s localization, regarding a SLAM task.

The active SLAM paradigm was first proposed and tested in
[1]. Since then, different approaches have been done.e.g. [2]
and [3] proposed a discrete and greedy planning methodology.
Huang et al. in [4] studied and tested the feasibility of
multi-step planning. Continuous states planning but with a
discretization in actions space is explored in [5]. Recently,
a continuous planning approach in states and actions has been
proposed by [6].

To the best of the authors’ knowledge, the different ap-
proaches that attempt to produce an active SLAM algorithm,
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rely on criteria or metrics that quantify the improvement of the
actions taken by the robot (e.g.movements). This improvement
is measured relative to (i) the robot and the map localization
accuracy, (ii ) the area of the map explored or (iii ) the time
that the robot has been navigating. Specifically, the metrics
that relate the improvement of the localization accuracy or the
uncertainty related to the movements the robot makes are of
high value, because their uses allow the reduction of the map’s
error, and therefore the probability to accomplish a given task
is improved.

Until now the preferred criterion to quantify the localization
uncertainty has been the A-optimality criterion (A-opt). This
criterion captures the mean uncertainty of the covariance
matrix of a SLAM system. The choice of this criterion in many
active SLAM related works such as [7], [8], [5], [9], and [6],
among others, had its foundation in the fact that papers such
as [10], [11], and [12] reported that (i) the A-opt applied to
the problems of planning under uncertainty out performs other
well-known criteria such as the D-optimality criterion (D-opt),
and (ii ) that theD-opt for the active SLAM case does not
produce a meaningful metric.

However, in the Theory of Optimal Experiment Design
(TOED) [13] [14], it is well-known that the use of theD-
opt has more appealing characteristics than theA-opt or E-
optimality criterion (E-opt). Moreover, Kiefer in [15] demon-
strated that theA-opt, D-opt andE-opt are special cases of a
general family of uncertainty criteria and therefore they share
some properties, butD-opt is the only one proportional to
the uncertainty ellipse of the estimated parameters, and it is
also invariant to re-parametrizations and linear transformations
[14].

In this paper, it is shown that is indeed possible to obtain
a fruitful metric from theD-opt for the particular case of a
mobile robot performing SLAM. Also, it is shown experimen-
tally that its use as a metric for quantifying the uncertainty
of the robot and map in an active SLAM context, performs
comparably to theA-opt metric popularized by [10], [11] and
[12].

The reminder of the paper is structured as follows: section
II gives an overview of the active SLAM problem and its
connection to the TOED. SectionIII shows how to compute
D-opt in order to be compared correctly, and to allow its use
in an active SLAM or path planning under uncertainty context.
SectionsIV andV report several experiments with simulated
and real robots that support our claims. Finally, sectionVI
presents the conclusions.



II. A CTIVE SLAM

The SLAM problem does not establish which trajectories
a robot has to follow. Usually, they are chosen randomly or
beforehand. However, it is well-known that the trajectories
selected and the order they are executed by a robot, are critical,
among other things, firstly for a rapidly convergence of the
uncertainty of a SLAM algorithm, secondly for increasing the
area of the environment explored by the robot, and thirdly to
improve the possibility of fulfilling tasks.

The integration of the trajectory planning task into SLAM
was first proposed in [1] and the term active SLAM referring
to the aforementioned integration was coined by [8]. The
general idea of active SLAM can be summarized as follows
in algorithm 1:

Algorithm 1 The active SLAM algorithm
Require:

• A complete or incomplete stochastic map of the environment
Mk = {x̂

Fk
,Σk}.

• The lengthi of the horizon of planning.

Ensure:
• A policy class of trajectoriesπ.

1: Create a setπs of s different policy classes withi trajectories each one.
The initial trajectory of each policy starts atx̂Rk

.
2: Perform a SLAM algorithm using each policy class and the given map

Mk .
3: Compute a value functionJ for each policy class ofπs, using the

information of each trajectory followed and the final covariance matrix
associated to the SLAM algorithm.

4: Select the policy classπopt that optimizesJ .

The SLAM approach taken above is based on a probabilistic
state-space model, where the robotR and a set of features
or landmarks in the environmentF = {F1, . . . , Fn} are
represented by a stochastic state vectorx with an estimated
meanx̂ and associated covariance matrixΣ. Furthermore,

x̂ =

[

x̂R
x̂F

]

; Σ =

[

ΣRR ΣRF

ΣFR ΣFF

]

(1)

where x̂R and x̂F are the estimated locations of the robot
and the landmarks respectively,ΣRR is the covariance matrix
of the estimated robot pose (e.g.x, y, θ) and it has a size ofp×
p that is invariant with respect to the time,ΣFF represents the
covariance matrix of the estimated locations of the discovered
landmarks and it has a size ofn × n that varies over time.
Finally, ΣRF and ΣFR are matrices that encode the cross-
covariance of the robot pose and the landmarks estimations.
The covariance matrixΣ has sizel × l, where l = p + n,
and its value is variable with time. Moreover, it is a positive
semi-definitive matrix with eigenvalues{λ1, . . . , λl}.

A. The value function

As mentioned above, the integration of trajectory planning
or, what is equivalent, applying the active sensing paradigm
[16] [10] to the SLAM problem, involves the optimization of
a multi-objective performance criterion or value functionJ .

This value function is used to decide which trajectories have
to be followed by the robot. A definition of this value function
can be as follows:

J =
∑

i

αiUi +
∑

i

βiTi (2)

Where the indexi defines the length of the planning horizon
(i.e. the numbers of consecutive trajectories planned ahead).
The first term,Ui characterizes the expected cost of the
uncertainty in the parameters of the system. The second term,
Ti includes other expected costs such as trajectory length, nav-
igation time, and energy consumption, among others. Finally,
α andβ are weight coefficients for tuning the parameters and
are task dependant.

TheUi term can be further specified as a metric of the as-
sociated covariance matrixΣ (e.g.the determinant, the trace).
This metric needs to encode the robot and the landmarks’
estimated locations uncertainty and can be defined as follows:

Ui : Σ → R (3)

The different ways to compute the above metric and their
properties in relation to the goals of the active SLAM approach
is the target of the following sections of this paper. Moreover,
a clarification in the computation of one of them is pointed
out in sectionIII .

The second termTi, as done previously, can be further
specified and constrained as a metric that represents the cost
of performing a free collision trajectoryΓ by the robot,

Ti : Γ → R (4)

This metric can be constrained to be a function only of the
distance travelled, since its cost is directly related to the power
and navigation time of the robot while it performs a task.

Finally, summarizing all the above definitions, the statement
of the active SLAM problem can be formulated as:the task of
choosing a single or multiple step policy class π of robot’s
trajectories that optimize a value function J .

B. Theory of Optimal Experiment Design and active SLAM

In the Theory of Optimal Experiment Design (TOED) [13]
[14], a single trial of an experiment is the process of changing
the input parameters of a system perturbed with unknown
noise, with the purpose of observing the variation in the output
parameters. In this context, the particular values of the input
parameters are known as a particular designξ.

In the active SLAM context, theξ design is a particular
policy classπ commanded to the robot, the unknown noise
is the commonly assumed zero mean Gaussian noise and the
variation of the parameters is encoded in the covariance matrix
Σ.

Based on the TOED, it is possible to know if a designξ1
is better than a designξ2 [13] [14]. Applying this concept in
the active SLAM context, a policy classπ1 is better in terms
of uncertainty than a policy classπ2 if :

Cov(π1)− Cov(π2) ∈ NND(l) (5)



WhereCov(πi) is the covariance matrix of sizel × l after
the robot has followedπi and NND(l) stands for the group of
non-negative definite matrices of sizel× l. NND matrices are
also known as positive semi-definite matrices [14].

As this criterion only tells if a policy class is better than
another but does not quantify how much, it is advantageous
to define a functionφ that maps a NND covariance matrix of
size l × l to a scalar,

φ : NND(l) → R (6)

This function has to capture the idea of whether or not the
uncertainty of a covariance matrix is large or small. Moreover,
this function has to be positive homogeneous, isotonic (i.e.
order preserving) and concave [14].

A compendium of functions fulfilling the above require-
ments can be found in [13] or [14]. Among the most
commonly used functions or uncertainty criteria are the A-
optimality criterion (A-opt), the D-optimality criterion (D-opt)
and the E-optimality (E-opt) criterion.

III. U NCERTAINTY CRITERIA FOR ACTIVE SLAM

In the planning under uncertainty or active SLAM context
[17], [10], [11] and [12], have done comparisons between
uncertainty criteria, in order to determine if there is a criterion
that for that specific task, converges faster to a desired solution.
In all the aforementioned papers, theD-opt - defined by
them as the determinant of the covariance matrix - has been
disregarded as a fruitful metric for mainly two reasons:

i) The D-optimality criterion does not allow the checking
of task completion as the A-optimality criterion does.

ii) The D-optimality criterion can be driven rapidly to zero,
so no fruitful information is provided by this criterion.

The authors believe that the above two reasons are miscon-
ceptions stemming from a misuse of the TOED.

For (i), the misuse lies in that the determinant of a matrix
l× l is homogeneous of degreel; hence the comparison of the
determinant of a matrixl × l and a matrixm × m is unfair.
Specifically in the case of a SLAM system this is relevant,
because the size of the covariance matrix varies over time, so
the evolution of an uncertainty criterion based on determinants
has to be normalized in order to be compared fairly [14].

Recently, Vidal-Callejaet al [18] intuited this, and proposed
a solution that needs to suppose the maximum number of
landmarks in the environment and initialize its covariance with
a constant number. This solution is effective to fairly compare
the determinant as the matrix size does not vary in time, but
adds complexity to the computation of the metric and fails if
the number of landmarks is greater than the initial assumption.

A proper solution as pointed out by [14], is to take thelth

root of the determinant ofΣ (with size l × l) before making
any comparison. This solution rises evidently if theD-opt is
derived from the family of uncertainty criteria proposed by
Kiefer in [15],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (7)

This family of uncertainty criteria is valid in the range of
0 < p < ∞ for a covariance matrix (Σ) of sizel× l associated
to a designξ (e.g.π). Moreover, the caseφ1 and the boundary
casesφ0 andφ∞ are the already known A, D and E-optimality
criteria.

Taking the above into account, the normalized D-optimality
criterion proposed by Kiefer is,

φ0(π) = lim
p→0+

φp(π) = [det(Σ(π))]1/l

= (
∏

k=1,...,l

λk)
1/l (8)

The misuse of TOED for the second reason, usually used to
disregard theD-opt, lies in the fact that this criterion considers
the global variance. Geometrically, this means the volume of a
n-dimensional ellipsoid [13]. The latter implies that estimated
parameters with low uncertainty will produce very low value
of D-opt, hence making its computation prone to round-off
errors.

Specifically in the SLAM case, as the landmarks get corre-
lated the eigenvalues ofΣ become quite small values near to
zero. A zero eigenvalue would mean that without doubt the
position of a landmark is known, but this does not happen in
practice. Examples of the above are presented in sectionIV,
where we reported several experiments with simulated and
real robots. Regarding the computation of the determinant, it
is possible that a small value of an eigenvalue can cause a
round-off error in the computation, so theD-opt gets stuck at
zero. One way to overcome this issue is to use the logarithmic
space to compute the determinant as proposed by Pazman [13].
Thus, the resulting equation to compute the criterion would be,

exp(log([det(Σ(π))]1/l)) (9)

Summarizing, for the particular case of measuring the
uncertainty of a SLAM system, theD-opt should be computed
using the definition of Kiefer [15] and as presented in (9).

In the following, two experiments are presented in order
to (i) support the claims about the computation of the D-
optimality criterion of a SLAM system (ii ) point out some
properties of the D-optimality criterion. The first experiment
investigates the evolution of different uncertainty metrics in
simulated and real robots performing SLAM. The second ex-
periment is related to performing active SLAM using solely the
uncertainty as a guiding factor. A third experiment is reported
in [19] and deals with obtaining the minimum uncertainty path
for autonomous navigation.

IV. F IRST EXPERIMENT: ON THE COMPUTATION

Aiming at showing that is feasible to compute theD-opt
in a robot performing SLAM, in the following the evolution
of the aforementioned uncertainty criterion is computed for
simulated and real robots performing SLAM. Due to space
limitations only two test scenarios are shown, but other results
on the Victoria Park dataset and in anad-hoc indoor envi-
ronment using a Pioneer DX-3 robot are presented in [19].
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Fig. 1. Resulting stochastic map for the experiment with a simulated robot
in an indoor environment. In red is the estimated trajectory of the robot and
in blue is the graphical representation of the covariance for each landmark.

For completeness, theA-opt, E-opt, the determinant of the
covariance matrix, entropy and mutual information are also
computed.

In each of the following experiments the aforementioned
uncertainty criteria are computed at each step update of the
covariance matrixΣ associated tôxR and x̂F .

A. Simulated robot in an indoor environment

The simulation environment was created using C++ and the
Mobile Robot Programming Toolkit (MRPT) v0.9.4. The data
of the covariance matrix were gathered while the robot was
performing EKF-SLAM with a predefined trajectory, within a
map with static landmarks and using a limited range sensor.

Specifically, the robot was moving at 0.3 m per step and
travelled along a square-shaped trajectory of 25x25 m. The
navigation environment was composed of 2-D point features,
located in both sides of the trajectory with a distribution of
1.8 feature/m. The robot was equipped with a range-bearing
sensor with a frontal field of view of 360o and a maximum
range of 3 m. Synthetic errors, with a Gaussian distribution,
were generated for the odometry model of the robot (standard
deviations of 0.1o in orientation and 0.2 m per m in displace-
ment) and the sensor measurements (standard deviations of
0.125o in orientation and 1 cm per m in range), but known
data association is assumed. The resulting stochastic map after
one loop is shown in Fig.1

Fig. 2 shows the evolution of the different criteria as stated
above. Each point of the evolution gives an indication of the
amount of uncertainty the SLAM system has at that step.
As expected, once the robot starts navigating, the uncertainty
related to the landmarks and robot’s localization starts increas-
ing. The evolution of the tested criteria behaves similarly at
this stage.

Around the step 350 a loop closing event occurred, and
therefore a decrease in the uncertainty of the system is
produced as expected. This drop is sensed by all the metrics
but at different magnitudes,A-opt and E-opt had a major
reduction, butD-opt had a minor one.

The difference in magnitude is due to the opposite definition
of the metrics. D-opt in general, takes into account the

uncertainty of each element of the system multiplicatively,
i.e. every element has an equal chance to contribute to the
uncertainty. This definition allows encompassing the global
uncertainty in the D-optimality criterion.

On the other hand,A-opt gives independent and additive
contribution to each element of uncertainty. Giving the possi-
bility of a single component of the system to drive the whole
uncertainty. In fact, as can be seen in Fig.2a and Fig. 2b,
A-opt and E-opt resemble in shape and scale, thus giving a
numerical example, although qualitative, of the above, asE-
opt represents the value of the single maximum eigenvalue.
Moreover, the correlation betweenA-opt andE-opt is 0.9655,
giving a quantity value of its resemblance.

Fig. 2d shows an example of computing the determinant of
the covariance matrix as reported in [17], [10], [11] or [12],
as can be seen after few steps -in this case 8- the value of the
criterion goes to zero. In contrast, Fig2c shows an example of
meaningful values of uncertainty using the logarithmic based
computation method presented in (9).

B. Real robot in an indoor environment: DLR dataset

In this experiment the DLR dataset [20] is used. This
dataset was recorded at the Deutsches Zentrum fur Luft und
Raumfahrt (DLR) with a mobile platform. The environment
is a typical office indoor environment and covers a region of
60m x 45m. To estimate the trajectory and the map of the
environment an EKF based SLAM algorithm coded in python
is used.

Fig. 4 shows the evolution of the different uncertainty cri-
teria associated to the uncertainty of the robot and landmarks
for the DLR dataset that has a path length of approximately
505 meters.

C. Discussion

The above results give numerical examples about the fea-
sibility of computing theD-opt in the SLAM context in
simulated and real data. Also, the results give some insights
between the relation among theA-opt and E-opt. Although
this relation (shape and magnitude of the plots) is qualitative,
a quantitative relation via the correlation of the data can be
obtained.

The correlation between theA-opt and theE-opt for all the
experiments has a mean of0.9872±2.1155×10−4. The latter
means that exist a strong relation between these two criteria in
the SLAM context. Moreover, based on the definition of the
E-opt, the uncertainty measured by theA-opt is dominated
by a single eigenvalue. In our context, the above implies that
a single feature - in the case of a probabilistic feature based
SLAM - can drive the complete SLAM uncertainty. The effect
of the above property could lead an active SLAM algorithm
using anA-opt based metric to get stuck in a local minima.
An example of this is shown in the next experiment.

For the above experiments, theA-opt andD-opt correlation
has a mean of0.6003 ± 0.0540, which means that exist
a correlation but neither is weak or strong. Moreover, it
gives an example of the main characteristic of the criteria
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Fig. 2. (a)-(f) Evolution of theA-opt, E-opt, D-opt, determinant, entropy and MI for the experiment with a simulated robot in an indoor environment

(a) (b)

Fig. 3. (a) Resulting stochastic map with uncertainty regions for each
landmark. (b) Blueprint of the environment with a superimposed sketch of
the trajectory

according to the TOED: TheA-opt measures the mean of the
uncertainty and theD-opt measures the complete dimension
of the uncertainty (e.g.Area in a 2D case).

V. SECOND EXPERIMENT: ACTIVE APPROACH

In this experiment we perform a comparison between an
active SLAM approach driven by theA-opt, D-opt and en-
tropy. The active SLAM approach used follows the algorithm
outlined in sectionII , therefore assumesa priori and probably
incomplete, stochastic map of the environment. This map is
generated by commanding the robot to follow a predefined
trajectory in the environment, while performing EKF-SLAM.
Once the predefined trajectory is completed, the robot begins

the performance of active SLAM and therefore starts planning
autonomously trajectories that achieve an accurate map.

Each time the robot is planning which trajectory it has to
follow, in order to fulfil the active SLAM objectives, it has
to consider every possible path in the navigation environment.
In order to make the problem computationally tractable, the
possible destinations are constrained to positions near the
landmarks already discovered.

Planning each time only the next movement is known as
greedy approach or one step look-ahead [4]. It is possible
to plan several steps ahead that yields, as has been pointed
out by [4], in a faster convergence of the active SLAM goals
but with an increase in the complexity of the computation.
Independent of the one step look-ahead or multi-step look-
ahead planning, each time the next movement is chosen as
the one that minimizes an uncertainty metric, in this case the
value ofA-opt or D-opt or entropy related to the SLAM.

In this experiment, the paths follow autonomously for the
robot are generated via an A* based path planner. Specifically
the environment is discretized and the only forbidden areas are
the positions of the landmarks. Two test environments were
used for this experiment: the first test environment consists of
a 30x30 meter obstacle free square area with 104 landmarks
distributed around the perimeter of a 25 meter square. The
second test environment consists of a 20x20 meter obstacle
free square area with 72 landmarks distributed on the perimeter
of a 15 meter square. The Mean Squared Error (MSE) between
the two initial stochastic maps has a ratio of 9.65, with the
first environment having a bigger MSE. The initial position
of the robot is (X=1,Y=0) in both environments. The ground
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Fig. 4. (a)-(f) Evolution of theA-opt, E-opt, D-opt, determinant, entropy and MI for the experiment using the DLR dataset
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Fig. 5. (a) Ground truth of the landmarks and (b) initial stochastic map of
the 30x30 test environment

truth position of the landmarks and their estimated positions
from the EKF-SLAM are depicted in Fig.5.

The strategy for active SLAM described above can be
summarized in the following steps:

• Hallucinate paths from the current estimated position of
the robot to all the landmarks, except those which are
below a radius ofX (i.e. 1) meters from the current
estimated position.

• Measure the uncertainty at the end of each hallucinated
path.

• Select the path that produced the lowest uncertainty
according to the chosen metric.

• If the number of path planned is greater thani (i.e. 100),
exit. In any other case, execute again.

A. One step look-ahead results

Performing active SLAM with a one-step look-ahead ap-
proach leads to completely different trajectories using theA-
opt and D-opt. The A-opt plans trajectories with a distinc-
tive local behaviour, while theD-opt plans trajectories more
globally, often revisiting previous landmarks. Regarding the
entropy, this generates paths similar to theD-opt.

An example of the above behaviour is illustrated in Fig.6.
There, the active SLAM starts after the robot has executed one
loop (i.e. X=1,Y=0) and has an estimation of all the landmarks
in the environment. The resulting trajectories for theA-opt, D-
opt and the entropy are shown in Fig.6a, Fig. 6b and Fig.6c,
respectively. Each generated trajectory is identified by a dif-
ferent colour. A video of the incremental construction of each
trajectory can be seen inhttp://webdiis.unizar.es/∼hcarri/1.avi.

In addition to the above qualitative assessment of the effect
derived by using each criterion, we can quantify the effect of
using each criterion by measuring the quality of its resulting
maps.

To measure the quality of the map we use the guidelines
proposed in [21] that urge for the use of the MSE anχ2

together in the assessment of the maps quality generated by a
SLAM algorithm.

In order to compare the three criteria, we compute the ratio
between them for each quality metric at each update step of
the active algorithm. Therefore we have theA-opt/D-opt ratio,
theA-opt/entropy ratio and the entropy/D-opt for the MSE and
χ2 metric.

Fig. 7 presents the result of 10 Monte Carlo Runs for each
ratio related to the MSE andχ2 metric of the 20x20 test en-
vironment. Respectively, Fig.8 presents the same information
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Fig. 6. Resulting paths from each uncertainty metric: (a)D-opt, (b) A-opt and (c) Entropy. Each colour represents an executed path. The planning area was
20 x 20 m.
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Fig. 7. Evolution of the MSE ((a)-(c)) andχ2 ((d)-(f)) ratios related to
the map (30x30) after each active step. The ratios are computed for each
possible uncertainty metric combination. The average of 10 Monte Carlo runs
is depicted for each ratio.
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Fig. 8. Evolution of the MSE ((a)-(c)) andχ2 ((d)-(f)) ratios related to
the map (20x20) after each active step. The ratios are computed for each
possible uncertainty metric combination. The average of 10 Monte Carlo runs
is depicted for each ratio.

for the 30x30 environment.
Finally, Fig.9 shows the resulting path for the active SLAM

strategy presented in this section using a limit of 10000 steps
and a continuous path planner based in an attractor/repulsion
technique. This last experiment illustrates another example of
the quasi-opposite behaviour of an active SLAM strategy using
the A-opt andD-opt.

B. Discussion

An explanation of the difference in the path planning be-
haviours due to theA-optor D-opt used relies on the definition
of the metric itself. As pointed out in the previous section,
D-opt encompasses the global uncertainty therefore revisiting
previous landmarks (closing the loop) helps in decreasing the
value of the metric. On the other hand,A-opt criterion can be
driven by a single eigenvalue, and therefore the uncertainty of
the covariance matrix can get stuck in a local minimum.

Regarding the quality of the maps, the results show an
advantage in the use ofD-opt and entropy over theA-opt. Also
in this specific experiment theD-opt and entropy share similar
results. This similarity does not come as a surprise, because
the EKF-SLAM assumed gaussianity as well the noise used
in the experiment, therefore theD-opt and the entropy have
an explicit relationship through the determinant as can be seen
comparing (9) and the entropy of a multidimensional Gaussian
distribution (i.e. Nn(µ,Σ)):

H(x) =
1

2
log(2πe)n|Σ| (10)

VI. CONCLUSION

In this paper a clarification on the use and computation
of the D-optimality criterion for a covariance matrix with
variable size in time, in order to make comparisons of un-
certainty evolution in a SLAM context, is presented. This
paper highlights that computing the D-optimality criterion in
the SLAM context as reported in [17], [10], [11] and [12]
leads to wrong results because it does not take into account
the change in dimensionality of the determinant. Instead of
the above definition, a method that produces fruitful results is
the one proposed by Kiefer [15]. Furthermore, a solution for
the problem of round-off errors in the computation of the D-
optimality criterion is achieved by proposing its computation
in the logarithmic space.

This paper demonstrates via several experiments with simu-
lated and real robots the above claims, and point out appealing
characteristics (e.g. encompassing global uncertainty) for the
use of D-optimality criterion as a measurement of the uncer-
tainty of a SLAM system. Besides, it is shown that the use of
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Fig. 9. Resulting trajectories for a 10000 steps active SLAM simulation. (a). Predefined trajectory and landmarks ground truth. (b).A-opt based active
SLAM. (c). D-opt based active SLAM. This figure is best viewed in colour.

D-optimality criterion, instead of the A-optimality criterion,
to drive an active SLAM approach seems more rewarding
towards the fulfilling of the active SLAM objectives. Also
in the active SLAM context is shown through examples the
similarity of guiding a greedy active SLAM strategy with the
D-opt and the entropy.

Finally, with the clarification reported in this paper, theD-
opt rises as an alternative to quantify the uncertainty of a
SLAM algorithm. Its use has a strong background from the
TOED and its properties allow it to be used instead of the
commonly usedA-opt.

As a future work, firstly we aim at developing a more
complex guiding factor for the active SLAM strategy that will
include beside the uncertainty, time and obstacle constraints.
Secondly, we want to include within the assumptions of the
active SLAM, dynamic landmarks and obstacles.
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Planning Minimum Uncertainty Paths Over
Pose/Feature Graphs Constructed Via SLAM

Henry Carrillo and José A. Castellanos

Abstract—This paper addresses the problem of path plan-
ning considering uncertainty metrics over the belief space.
Specifically, we propose a path planning algorithm that uses a
novel determinant-based measure of uncertainty to obtain the
minimum uncertainty path from a roadmap. Our proposal does
not require a priori knowledge of the environment due to the
construction of the roadmap via a graph-based SLAM algorithm.
We report experimental results of our proposal in two real dataset
that show its feasibility to obtain the minimum uncertainty path
towards an autonomous navigation framework.

I. I NTRODUCTION

Path planning solely in theCfree (i.e. only taking into
account geometric constrains) does not guaranty the safety of a
robot navigating over those paths [1] [2] [3]. The main reason
for the above problem stems from the uncertainty generated
by the inherent noise in the localization and control systems
of a robot working in a real environment due to the imperfect
data it gathers. Moreover, a robot navigates an environment
in order to fulfil a task, and an initial condition to effectively
complete any task is to accurately reacha priori initial position
established in the workspace where this task will be performed.
e.g. A mobile manipulator aiming at opening a door using
visual servoing, needs to position its manipulator within the
range of the doorknobs.

Again, reaching accurately a position using solely path
planned in theCfree cannot be guaranteed, because the sensor
inherently gather data with noise (i.e. due to our inability
to model every detail within the environment) that prevent
performing control algorithms which follow perfectly a path.

In order to overcome the above problem, several works have
proposed the integration of the uncertainty in the path planning
process: [4] [5] [3], and more naturally [6] has proposed to
plan over the so-called belief space. The use of the belief
space in the proposal of different path planners [7] [8] [9] had
proved experimentally that, taking into account the uncertainty
in the planning process leads to an accurate and safe navigation
process.

All the aforementioned path planners, which use the belief
space, rely on metrics or criteria that measure or quantify the
uncertainty or its dual the information of certain configuration
in the space. Among the most used metrics are [10] [11] [12]:
the trace of the covariance matrix, the entropy and the mutual
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information. In this paper, we devise a path planner that relies
on a novel determinant-based metric to take into account the
effects of uncertainty and that can be seamlessly integrated
to recently proposed graph-based SLAM algorithms [13] [14]
[15] [16].

The reminder of the paper is structured as follows: SectionII
presents a brief overview of the uncertainty metrics commonly
utilized in path planners that uses the belief space and presents
in more detail the novel metric used in our approach. In section
III , we define the problem we are dealing with: planning
the minimum uncertainty path in a roadmap like structure,
also in this section, we discuss some conditions to guarantee
that we actually obtain the minimum uncertainty path from a
roadmap. SectionIV reports our path planner that use a novel
determinant based metric to quantify the uncertainty and is
designed to seamlessly integrate with a graph-based SLAM
algorithm. SectionV presents two experimental trials of our
approach in real datasets and finally sectionVI gives some
conclusions.

II. U NCERTAINTY MEASURES

Historically, the uncertainty metrics were first proposed in
the Theory of Optimal Experiment Design (TOED) [17] [18]
context and were named like an alphabet with the suffix
optimality attached to them to denote the origin. This metrics
or criteria coming from the TOED aim at capturing the idea
of whether or not the uncertainty of a covariance matrix,Σ,
is large or small. The use of the covariance matrix to quantify
the uncertainty has a strong base in the TOED literature [17]
[18] [19], moreover it has links with the information theory
through the Cramér-Rao bound [20].

Formally, an uncertainty criterion has to define a function
φ that maps a NND covariance matrix of sizel× l to a scalar,

φ : NND(l)→ R (1)

Where NND(l) stands for the group of non-negative definite
matrices of sizel×l. NND matrices are also known as positive
semi-definite matrices [18]. The above function has to be
positive homogeneous, isotonic (i.e.order preserving), concave
[18] and defines the magnitude of the uncertainty.

A compendium of functions fulfilling the above require-
ments can be found in [17] or [18]. Among the most com-
monly used functions or uncertainty criteria, for a covariance
matrix Σ with size l × l and eigenvaluesλl, we find:

• A-optimality criterion (A-opt) [21]: This criterion targets
the minimization of the average variance and it is defined



as follows,
trace(Σ) =

∑

k=1,...,l

λk (2)

• D-optimality criterion (D-opt) [22]: This criterion aims
at capturing the full dimension of the covariance matrix
and at first glance it can be defined as

det(Σ) =
∏

k=1,...,l

λk (3)

• E-optimality criterion (E-opt) [23]: This criterion intends
to minimize the maximum eigenvalue of the covariance
matrixΣ. The main advantage of this criterion is the sim-
plicity of its computation, but it is a rough approximation
of the error ellipsoid.

According to the TOED [17] [18] the D-opt gives the
most accurate approximation of the uncertainty enclosed in
the covariance matrix, but in the active SLAM or planning
under uncertainty context [10], [11], [12] and [24], have shown
that using the definition in (3) to compute theD-opt does not
produce a meaningful metric (i.e.The value gets stuck in zero).

In [25] a novel computation form of the uncertainty criterion
based on the determinant of the covariance matrix is presented.
There theD-opt is computed as follows:

exp(l−1
∑

k=1,...,l

log(λk)) (4)

that stems from the family of uncertainty criteria proposed by
Kiefer in [26],

φp(ξ) = [l−1trace(Σp(ξ))]1/p (5)

This family of uncertainty criteria is valid in the range of
0 < p <∞ for a covariance matrix (Σ) of sizel× l associated
to a designξ (e.g.π). Moreover, the caseφ1 and the boundary
casesφ0 andφ∞ are the already known A, D and E-optimality
criteria.

Using (4) instead of (3) in order to compute theD-opt in
the planning under uncertainty or active SLAM context has the
advantage of producing a meaningful uncertainty metric.i.e. it
does get stuck in zero and evolves resembling the uncertainty
encompassed in the covariance matrix. Furthermore, according
to the TOED is the uncertainty criterion that by definition truly
captures the complete dimension of the uncertainty, unlike the
A-opt andE-opt that are approximations [17] [18] [19].

I II. PATH PLANNING IN THE BELIEF SPACE

Assuming that the data structure representing the environ-
ment (i.e. a map) is a graph-like structure (i.e. a metric-
topological representation) we could use the well-known Prob-
abilistic Roadmaps (PRM) algorithm to generate a discrete
graph in Cfree (i.e. the set of configuration at which the
robot does not intersect any obstacle [27]). Given a start
configuration XStart of a robot and a goal configuration
XGoal, within the above discrete graph, we desire to find the
minimum uncertainty path between them.

Planning for the minimum uncertainty path cannot be longer
done in theCfree, because it cannot guarantee the safety we

Fig. 1. Example of a graphical representation of a belief roadmap.

are aiming at. Therefore, it seems more natural to use another
space such as the belief (B) or information (I) space [6] [8]
[2]. Autonomous path planning in the belief or information
space, as any autonomous path planner, relies heavenly in met-
rics that quantify the cost of moving from one configuration
to another. In the case of the belief space, the most common
used metrics are the ones based on the TOED (uncertainty)
and in the information theory. In both cases, and unlike the
metrics used in the configuration space, the evolution of the
uncertainty or information metrics are non-monotonic, and so
far there is not an optimistic heuristic that allows the use of the
plethora of well-know and effective non-uniform path planner
such as: A* [28] or D* [ 29] [30].

Even the use of more traditional path planning algorithm
(e.g. Breadth-first search, depth-first search) could lead to
misleading results regarding the planning of the minimum
uncertainty path. Take for instance, the graph showed in Fig.
1. There, we have a start and a goal nodes, labelledXStart

and XGoal respectively, and a series of intermediate nodes
n1, . . . ,n7. Each of these nodes encodes a configuration pose
in Cfree and the link between two of them has a fixed cost
associated to the uncertainty in the goal position.

If we perform an exhaustive search over the
graph, the minimum uncertainty path will be
{XStart,n1,n3,n5,n7,XGoal} with an associated cost
of 7 in the goal node. Using for instance the breadth-first
search based solution proposed in [9] will result in the
following path:{XStart,n1,n2,XGoal} with an associated
cost of 10 in the goal node. This result stems from the stop
condition of line 9 in algorithm 1 in [9] that is designed to
trigger as soon as the goal node is reached. This behaviour
is typical of a greedy algorithm that cannot guarantee the
minimum uncertainty path to the goal node [31].

Another example of the above behaviour can be
corroborated using the Algorithm 2 in [8]. Using
that algorithm, we end up with the following path:
{XStart,n1,n2,n4,n6,XGoal} with an associated cost
of 8 in the goal node. In this algorithm the greedy behaviour
is due to the condition imposed to feed the queue (Line 12
to 15).

There is no doubt that imposing a discretization of the
environment with the PRM algorithm, prevents any discrete
search algorithm to guarantee that it will find the minimum
uncertainty path. However, within a discrete graph built upon a



Algorithm 1 The minimum uncertainty path planning process
in a pose/feature graph map
Require:

• A pose/feature graph map of the environment.
• A initial posens and a goal poseng.

Ensure:
• The path with the minimum cost from the posens to

the poseng.
1: Initialize an empty search queueQ with the initial po-

sition, covariance and features seen byns: Q ← ns =
{µs,Σs, es}

2: Initialize an empty search queueC, that will store the value
of the uncertainty associated to traverse from a nodena

to a nodenb, as well as the information of those nodes.
3: while Q is not emptydo
4: Popn← Q
5: if n = ng then
6: Push{n, n} → C
7: Continue
8: end if
9: for i = Range(Successors(n)) do

10: ComputeCost(n,i)
11: Pushi→ Q
12: Push{n, i} → C
13: end for
14: end while
15: return SelectPath(ns,ng,C)

tractable computing premise according to the PRM algorithm,
is possible to find the minimum uncertainty path.

Another issue with the PRM algorithm is its requirement
of a priori knowledge of the environment to produce the
roadmap. This constraint limits the feasibility of the integration
of the path planner in an autonomous robot framework. An
approach based on a SLAM algorithm can produce a roadmap
of the environment and overcomes the aforementioned issue.
Specifically, we can use a graph-based SLAM algorithm such
as: [13] [14] [15] [16], that does not need a beforehand knowl-
edge of the environment and can produce a good estimate of
the environment enclosed in a pose/feature graph.

IV. OUR APPROACH

In the following, we present an algorithm capable of plan-
ning the minimum uncertainty path using a pose/feature graph
map. This approach has been previously applied in a SLAM
context by [7] using a cost function based on the trace of
the covariance matrix and by [9] using an entropy based cost
function, but both algorithms rely on a greedy approach that
cannot guarantee the obtention of the minimum uncertainty
path. Our proposal, in contrast, uses a cost function based on
the D-opt and an exhaustive search. We report results of its
implementation in two real dataset.

Our algorithm requires a pose/feature graph map, such as
the produced by graph based SLAM algorithms (e.g. iSAM
[14]), a start (XStart) and goal (XGoal) pose within the graph,

Algorithm 2 The path selection process: SelectPath(ns,ng,C)

Require:
• A queueC with the associated cost of traverse from

the nodena to the nodenb.
• A initial posens and a goal poseng.

Ensure:
• The path with the minimum cost from the posens to

the poseng.
1: Global C
2: i = {Cost← 0, Path← 0, Pose← ng}
3: return PathR(ns,i)

The PathR procedure:
proc PathR(ns, i) ≡

for j = Range(Parents(i))
j.Cost = i.Cost+ cost(i, j)
j.Path = i.Path ∪ j.Pose

if j.Pose = ns

return j.Path

else
L.append(PathR(ns, j))

end
end
return MinCost(L)
end.

and ensure the path with minimum uncertainty fromXStart

to XGoal according to theD-opt (c.f. sectionII and (4)).
Algorithm 1 outlines our proposal. It starts by creating

two queues, the first will contain unvisited nodes and it is
initialized with the information of the start node (Line 1). The
second queue will store the cost of traversing between nodes
(Line 2). After the initialization, a graph search process (Line
3-14) retrieves the uncertainty associated to traverse each node
and stores it in a queue (i.e. C). The uncertainty of going
from a nodena to a nodenb is calculated by the function
ComputeCost(na,nb) (Line 10). The procedure to compute this
cost is one of the main differences between our approach and
the presented in [8] or [9]. Our approach is based on theD-opt
of the joint compatibility matrix of the marginal covariance
[32] belonging to the target node. For a pose node withk

visible landmarks, each one with covarianceΣj and the node
itself with covarianceΣX , the aforementioned matrix is:

ΣXlk =











ΣXX ΣXl1 · · · ΣXlk

Σl1X Σl1l1 · · · Σl1lk
...

...
. . .

...
ΣlkX Σlkl1 · · · Σlklk











(6)

The use ofD-opt over other uncertainty metrics such as
A-opt or E-opt is supported extensively in the TOED [17]
[18], mainly becauseD-opt is a criterion designed to capture
the complete dimension of the uncertainty in a covariance
matrix. Regarding the entropy based uncertainty metrics,D-



(a) Initial graph map (b) Map with the shortest path highlighted (c) Map with the minimum uncertainty path high-
lighted

Fig. 2. (a) Initial graph map of the DLR dataset. In dark blue is the estimated trajectory of the robot and in brown are depicted the position of the landmarks.
(b) In red is highlighted the shortest path from the start to the goal node. (c) In red is highlighted the minimum uncertainty path from the start to goal node.
This figure is best viewed in color.
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Fig. 3. (a) Evolution of the accumulated cost for the selected path in the
DLR dataset. (b) Positional error for each path taking as a ground truth a
batch optimized map of the entire DLR dataset.

opt behaves similarly under the mild and common assumption
of gaussianity as reported in [25], moreover its computation
is less complex.

Finally, in algorithm 1 the minimum uncertainty path is
reconstructed by the procedure SelectPath(⋆) that back-track
the paths from the start nodens to the goal nodeng and then
select the minimum cost path. This procedure is outlined in
algorithm2.

V. EXPERIMENTAL RESULTS

The proposed approach was tested in two real dataset. From
the odometry and features constraints given by each dataset,
an initial pose/feature graph is constructed through a SLAM
algorithm [14], next the graph used for path planning is refined
through an adaptation of the procedure presented in [33]. This
procedure can be summarized as follows:

• If the robot rotates more thanθ radians or move more
thanx meters a new pose node is added jointly with any
observed feature.

• Each observed feature is matched with previous observa-
tions to guarantee data association.

• If a new pose node is added in less thany meters from
a previous pose (e.g.when the robot revisits a previously
unknown area) a constraint is added between the nodes.

In each dataset a start and a goal within the pose/feature
graph map was selected and the proposed approach was carried
out.

The first dataset used, was recorded at the Deutsches Zen-
trum fur Luft und Raumfahrt (DLR) with a mobile platform
[34]. The environment is a typical office indoor environment
and covers a region of 60m x 45m. One of the main charac-
teristics of this dataset is that it has hand annotated features
data association. In order to obtain the pose/feature graph map
of the environment, the iSAM [14] algorithm was used. The
resulting pose/feature graph map of the dataset is shown in Fig.
2, as well in the same figure is shown the shortest (Fig.2b)
and minimum uncertainty path (Fig.2c). The resulting graph
of the DLR dataset has 3816 nodes and 17042 measurements
(i.e. edges) and a normalizedχ2 error of 0.072.

Fig. 3a shows the evolution of the accumulated cost for
the two paths. The uncertainty of the shortest path is bigger
than the minimum uncertainty path, which implies that if the
robot follows the minimum uncertainty path it will be better
localized and will increase the chances of getting to the goal
node. This implication although, depends on how consistent
is the belief of the robot, because the uncertainty is measured
solely from the covariance matrix that can be alter if the
SLAM algorithm is overconfident.

This DLR dataset lacks of ground truth, therefore we cannot
measure the true positional error of both paths, but as a first
approximation, we adopt a batch optimized map of the entire
dataset as a ground truth and compare the Mean Squared Error
(MSE) of the position of the robot in the two paths. Fig.3b
shows the plot of the positional error at each node for both
paths, the minimum uncertainty path has a better localization
in the final goal destination as predicted for the low uncertainty
achieved during its path.

The second dataset used, is the well-known Victoria park
dataset. This dataset was recorded in an outdoors environment
and provides among others, data from odometry and a laser
mounted over a vehicle that is traversing a natural park pop-
ulated with trees (that can be used as landmarks). As above,



(a) Initial graph map (b) Map with the shortest path highlighted (c) Map with the minimum uncertainty path high-
lighted

Fig. 4. (a) Initial graph map of the Victoria park dataset. In dark blue is the estimated trajectory of the robot and in green are depicted the position of the
landmarks. (b) In red is highlighted the shortest path from the start to the goal node. (c) In red is highlighted the minimum uncertainty path from the start to
the goal node. This figure is best viewed in color.
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Fig. 5. (a) Evolution of the accumulated cost for the selected path in the
Victoria park dataset. (b) Positional error for each path taking as a ground
truth a batch optimized map of the entire Victoria park dataset.

the iSAM algorithm by Kaess [14] was used to estimate the
trajectory and the map of the environment. The pose/feature
graph map of the dataset is shown in Fig.4, along the shortest
(Fig.4b) and the minimum uncertainty path (Fig.4c). The
resulting graph of the Victoria park dataset has 7120 nodes
and 10609 measurements (i.e. edges) and a normalizedχ2

error of 0.8862.
Fig. 5ashows the evolution of the accumulated cost for the

two paths. As in the previous dataset, the uncertainty of the
shortest path is bigger than the minimum uncertainty path.
Although this dataset has some GPS based ground truth, it is
sparse and does not cover the area used for experimentation.
Therefore, we used the approach of the previous experiment
in order to measure the positional error of both paths. Fig.
5 shows the plot of the positional error at each node for
both paths, there, the minimum uncertainty path has a better
localization in the final goal destination as predicted from the
low uncertainty achieved during its path.

VI. D ISCUSSION

In this paper, we proposed a path planning algorithm
capable of obtaining the minimum uncertainty path according

to a determinant-based criterion. In the literature, to the best
knowledge of the authors of this article, this is the first use of
the determinant-based criterion to quantify the uncertainty of
the robot and environment in a path planning under uncertainty
context, therefore accurately capturing the complete dimension
of the uncertainty according to the TOED [17] [18].

The proposed algorithm produces, via an exhaustive search,
the minimum uncertainty path from an initial configuration
of the robot until the goal one. We use an exhaustive search
because the minimum uncertainty path in the belief space
cannot be guarantee in a greedy search procedure such as the
proposed in [8] or [9] due to the non-monotonic evolution
of the uncertainty. Moreover, the non-monotonic evolution
prevent the direct use of well-known non-uniform path plan-
ning algorithm such as A* or D*. The proposal of optimistic
heuristics of the uncertainty should be the focus of future work
in the path planning under uncertainty research if we desire
to use the incremental, computational tractable yet complete
path planning solutions of [29], [30] and [35], among others.

Although the proposed exhaustive search is unsuitable for
real time re-planning, it is a suitable off-line procedure to
obtain a good starting plan that can be re-planned, if the
environment changes, with efficient greedy search approaches.

Finally, as pointed out in [9], the use of graph-based SLAM
algorithm to create the initial roadmap overcomes the necessity
of a priori knowledge of the environment, therefore bringing
the solution closer to the reality. Furthermore, liking the
uncertainty measure of the path planning to the structured
of the SLAM problem -i.e. by using the joint compatibility
matrix - is a step forward in the integration of mapping ,
exploration and planning towards achieving truly autonomous
robots.
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