
Proyecto Fin de Carrera

Ingeniería en Informática

CENSURA EN BITTORRENT

Ismael Saad García

Director: Björn Knutsson
Ponente: Sergio Ilarri Artigas

Departamento de Informática e Ingeniería de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

Telecommunication Systems Laboratory
Information and Communication Technology

Kungliga Tekniska Högskolan – Royal Institute of Technology
Estocolmo (Suecia)

Noviembre 2010 – Curso 2010/2011

iii

Resumen

BitTorrent es, hoy en día, una de las redes P2P (Peer-to-Peer) de
compartición de objetos más populares. Tiene millones de usuarios.
BitTorrent proporciona un mecanismo eficiente para compartir objetos
entre un gran número de clientes, incentivando a aquellos que descargan
un objeto a compartirlo con el resto.

Para obtener peers con los que intercambiar un objeto, las versiones
más recientes de BitTorrent empiezan a incorporar el uso de un DHT
(Distributed Hash Table). El DHT es un mecanismo para distribuir el
almacenamiento de las listas de peers participantes en la distribución de
un objeto entre todos los nodos participantes en la red P2P. BitTorrent
tiene dos DHTs: Mainline DHT y Azureus DHT. Este proyecto se centra
en el estudio de Mainline DHT.

Concretamente, este proyecto se centra en el estudio de la generación,
distribución y obtención de valores en Mainline DHT. En primer lugar,
se presenta un análisis teórico de esta parte concreta del DHT y, pos-
teriormente, se contrasta con el comportamiento real. Se identifican
situaciones inesperadas y casos en los que el rendimiento del DHT se
podría mejorar.

Además, de acuerdo con el análisis que se presenta, hay situaciones
en las que el DHT es vulnerable, haciendo posible: censura mediante
la denegación a nodos del acceso al intercambio de un objeto, encam-
inamiento de tráfico a modo de ataque DDoS (Distributed Denial of
Service) y un problema de escalabilidad. Se han comprobado estos prob-
lemas experimentalmente y se incluye una documentación de los mismos.
El análisis ha ayudado a diseñar algunos experimentos que muestran la
robustez del DHT contra la censura y, por otro lado, un serio problema
de escalabilidad.

Para llevar a cabo los experimentos, se ha desarrollado una colección
de herramientas que sirve para monitorizar aspectos concretos del DHT.
Estas herramientas son Open Source de modo que se puedan utilizar y
ampliar para llevar a cabo más experimentos.

Agradecimientos

Quiero dar las gracias a mi supervisor, Raúl Jiménez, y a mi director, Björn
Knutsson, por toda la ayuda que me prestaron en Estocolmo durante el desarrollo
de este proyecto. Doy también las gracias a mi compañera de departamento, Sara
Dar, por su apoyo.

Gracias a mi padre, Mahmoud Saad, a mi madre, Teresa García, y a mi hermano,
Carlos Saad, que siempre me apoyaron desde la distancia.

Gracias a todos los amigos que estuvieron junto a mí durante este tiempo tan
maravilloso: David, Javier, Daniel C, Miguel, Peio, Silvana, Luigi, Elena, Daniel
W, Jens, Sebastian, Alexandra, Paolo, Víctor, Adrian, Marta, Marcos, Tony, Xan-
dra, Luis, Pablo, Beatriz y José.

Finalmente, gracias a todos aquellos que me apoyaron durante la recta final de
este proyecto.

v

Prólogo

El proyecto "Censura en BitTorrent" ha sido desarrollado enteramente en el Real
Instituto Tecnológico de Estocolmo (Kungliga Tekniska Högskolan - Royal Institute
of Technology). Al final de la memoria se adjunta una copia original escrita en inglés.

El presente texto es una adaptación al español de la memoria original. Dada la
inexistencia o imprecisión de una traducción directa para algunos de los términos
utilizados, se ha decidido mantener los nombres originales. Además, los anexos es-
tán escritos en inglés. Únicamente, han sido traducidos al español sus títulos, pero
no su contenido (texto, secciones y pies de figuras y tablas).

Este proyecto se presentó en el Real Instituto Tecnológico de Estocolmo el día 5
de noviembre de 2010. Fue evaluado por el Doctor y Profesor Don Björn Knutsson
(Departamento "Telecommunication Systems Laboratory") con una calificación de
A. Las calificaciones siguen una escala de seis valores (A, B, C, D, E, F) donde A
es la nota más alta y F es suspenso.

vii

Índice

Agradecimientos v

Prólogo vii

Índice viii

Índice de figuras xii

Índice de tablas xiv

1 Introducción 1
1.1 Introducción al contexto tecnológico 1
1.2 Alcance del proyecto . 2
1.3 Objetivos . 3

2 Contexto tecnológico 5
2.1 Sistemas distribuidos . 5
2.2 Redes P2P y DHTs . 5
2.3 Kademlia . 6

2.3.1 La distancia XOR . 6
2.3.2 Mensajes . 7
2.3.3 La tabla de rutas . 7
2.3.4 Descubrimiento de nodos . 7

2.4 BitTorrent . 7
2.5 Mainline DHT . 8

2.5.1 Una implementación de Kademlia 8
2.5.2 Listas de peers como valores 9
2.5.3 Mensajes . 9

3 Análisis 11
3.1 Período de los announcements . 11
3.2 Número de nodos que contienen lista de peers 11
3.3 Posicionar un nodo en Mainline DHT para que contenga una lista de

peers dada . 12

viii

Índice ix

3.4 Control total de una lista de peers 13
3.4.1 Consecuencias . 14

3.5 Escalabilidad en los nodos que contienen la lista de peers 15
3.5.1 Análisis . 15
3.5.2 Consecuencias . 15

4 Herramientas, experimentos y resultados 17
4.1 Herramientas . 17
4.2 Configuración de los experimentos 17
4.3 Estudio del DHT . 18
4.4 Censura . 18
4.5 Influencia en el DHT de los nodos que no siguen las especificaciones 19
4.6 Escalabilidad y ataques DDoS . 20
4.7 Detección de nodos sospechosos . 20

5 Trabajo futuro 23
5.1 Estudio de comportamientos anómalos 23
5.2 Gestión de la lista de peers . 24
5.3 Estudio más exhaustivo de Mainline DHT 24
5.4 Prevenir y solucionar las vulnerabilidades 24

5.4.1 Solucionar el problema de escalabilidad 24
5.4.2 Prevenir ataques DDoS . 25

5.5 Modificaciones a largo plazo . 25

6 Conclusiones 27
6.1 Cumplimiento de los objetivos y contribución 27
6.2 Lecciones aprendidas . 28

A Glosario de términos 29

B Acrónimos 31

C Formato de paquetes en Mainline DHT 33

D Obtención de un número elevado de info hashes 39

E Experimentos con varios nodos 41

F Probabilidades de identificadores 43

G Experimento 1 - Número de nodos conteniendo una lista de peers 45
G.1 Expected results . 45
G.2 Experiment definition . 45
G.3 Results . 46

x Índice

H Experimento 2 - Crecimiento de una lista de peers en función de
la distancia al info hash de los nodos que la contienen 49
H.1 Expected results . 49
H.2 Experiment definition . 49
H.3 Results . 50

I Experimento 3 - Período de los announcements 53
I.1 Expected results . 53
I.2 Experiment definition . 53
I.3 Results . 54

J Experimento 4 - Intento de control total de una lista de peers 57
J.1 Expected results . 57
J.2 Experiment definition . 57
J.3 Results . 58

K Experimento 5 - Announcements desde el punto de vista del
anunciante 61
K.1 Expected results . 61
K.2 Experiment definition . 61
K.3 Results . 61

L Experimento 6 - Distancia al info hash de los nodos que contienen
lista de peers 65
L.1 Goal . 65
L.2 Expected results . 65
L.3 Experiment definition . 65
L.4 Results . 66

M Experimento 7 - Porcentaje de la lista de peers contenida en los
nodos en función de su orden de distancia al info hash 67
M.1 Expected results . 67
M.2 Experiment definition . 67
M.3 Results . 68

N Experimento 8 - Número de mensajes en función del número de
peers 71
N.1 Goal . 71
N.2 Experiment definition . 71
N.3 Results . 72

O Experimento 9 - Distancia entre info hashes y su nodo más cercano 77
O.1 Expected results . 77
O.2 Experiment definition . 77
O.3 Results . 78

Índice xi

P Diferencia de mensajes y almacenamiento entre Kademlia y Main-
line DHT 81

Q Desarrollo de las herramientas 85
Q.1 Requirement of active tools . 85

Q.1.1 Choices . 85
Q.1.2 Final choice . 86

Q.2 Requirement of passive tools . 86
Q.2.1 Choices . 86
Q.2.2 Final choice . 86

Q.3 Modifying kadtracker . 87
Q.4 Set of tools . 87
Q.5 Tool parse_announcements . 88

R Ocupación del espacio de identificadores 91

S Trabajos relacionados 93
S.1 Profiling work . 93
S.2 Vulnerabilities . 94
S.3 Documented vulnerabilities . 94

T Metodología 97
T.1 Choice of technologies and resources 97

T.1.1 Planetlab . 98
T.2 Kadtracker . 98
T.3 Experiments . 98

T.3.1 Limitation in the list of peers 99
T.3.2 Types of experiments . 99
T.3.3 Validity of experiments . 100

T.4 Information management . 100
T.5 The log distance metric . 101

U Planificación 103

Bibliografía 107

Índice de figuras

3.1 Nodos que contienen la lista de peers tras la adición de los nuevos nodos. 13

4.1 Número de nodos conteniendo la lista de peers. 19

G.1 Number of nodes containing list of peers. 46

H.1 Announcements in the first scenario. 51
H.2 Announcements in the second scenario. 52
H.3 Announcements in the third scenario. 52

I.1 Period of announcements. 55

J.1 Size of list of peers in nodes containing it. Red circles are our nodes
enabled for this experiment and blue squares lines are the rest. 59

J.2 Number of nodes. The red circles are the number of nodes enabled for
this experiment and the blue squares are the total. 59

L.1 Distance of nodes containing list of peers to their info hash. 66

M.1 Distribution of the list of peers according to the closeness to the closest
node to the info hash. 68

M.2 Distribution of the list of peers according to the closeness to the closest
node to the info hash for info hashes with 50 or less peers. 69

M.3 Distribution of the list of peers according to the closeness to the closest
node to the info hash for info hashes with more than 50 peers. 69

N.1 Number of messages according to the number of peers. 74

O.1 Distance of the closest node to the info hash to the info hash. 79

P.1 Kademlia STORE query. 81
P.2 Mainline DHT ANNOUNCE_PEER query. 82
P.3 Kademlia GET_VALUE query. 82
P.4 Mainline DHT GET_PEERS query. 83

T.1 Schema of how the tools manage the information. 101

xii

Índice de figuras xiii

T.2 Examples of log distance using 8-bit identifiers. 102

Índice de tablas

2.1 Ejemplo de distancias XOR usando identificadores de 8 bits. 6

D.1 Large set of info hashes and their number of peers. 40

G.1 Number of nodes containing list of peers. 47

I.1 Period of announcements. 56

K.1 Nodes where UTorrent announces itself. 62
K.2 Nodes where BitSpirit announces itself. 63
K.3 Nodes where KTorrent announces itself. 63

N.1 Incoming messages for different info hashes (part1). 75
N.2 Incoming messages for different info hashes (part2). 76

O.1 Distance of the closest node to the info hash to the info hash. 78

Q.1 Tools with passive loggers and their purpose. 88
Q.2 Tools with active loggers and their purpose. 89

U.1 Planning . 104
U.2 Real work . 105

xiv

Capítulo 1

Introducción

Las redes P2P (Peer-to-Peer) son un tipo de red donde todos los participantes tienen
las mismas responsabilidades. BitTorrent [1] es, hoy en día, una de las redes P2P
más populares. Es utilizada por millones de usuarios.

Este proyecto explora la generación, distribución y obtención de valores en un
DHT (Distributed Hash Table) de BitTorrent. En primer lugar, se presenta un
análisis teórico de algunos aspectos del DHT que es contrastado posteriormente con
resultados experimentales.

El análisis muestra además algunas posibles vulnerabilidades del DHT, las cuales
son: censura de contenidos, uso del DHT para llevar a cabo ataques DDoS (Dis-
tributed Denial of Service) y un problema de escalabilidad. Estas vulnerabilidades
han sido comprobadas experimentalmente.

En las redes P2P, el servicio debería estar distribuido equitativamente entre to-
dos los participantes, pero las vulnerabilidades estudiadas implican un desequilibrio
en esta equidad. Por tanto, estudiar vulnerabilidades en una red P2P como Bit-
Torrent puede mejorar significativamente el rendimiento y seguridad del software
en beneficio de millones de usuarios.

1.1 Introducción al contexto tecnológico

Las redes P2P (Peer-to-Peer) son un tipo de red en las que la responsabilidad del
servicio se distribuye entre todos los nodos participantes en la misma. BitTorrent
es una de las redes P2P más populares hoy en día. Su propósito es proporcionar un
mecanismo distribuido, escalable y robusto para compartir objetos.

En BitTorrent, los objetos se obtienen siguiendo tres pasos: descubrir el objeto,
obtener nodos con los que intercambiar el objeto (llamados peers) y, finalmente,
comenzar la descarga del objeto así como compartir con los peers las partes del
mismo que se tienen. La lista de peers se obtiene pidiéndosela a un servidor cen-
tralizado llamado tracker.

La existencia de trackers como entidades centralizadas puede suponer proble-
mas de escalabilidad y robustez. Para prevenir estos problemas, las versiones más

1

2 CAPÍTULO 1. INTRODUCCIÓN

recientes de BitTorrent tienden a prescindir de los trackers delegando su tarea de
forma progresiva a un DHT (Distributed Hash Table). BitTorrent tiene dos DHTs,
ambos basados en Kademlia [2]: Mainline DHT [22] y Azureus DHT [23]. Este
proyecto estudia Mainline DHT.

Mainline DHT es un mecanismo distribuido que gestiona las listas de los peers
que están descargando o que contienen los objetos. Cada objeto tiene un identifi-
cador llamado info hash. Cuando un participante (llamado nodo) quiere descargar
un objeto, envía un mensaje (llamado announcement) al conjunto de los nodos más
cercanos al info hash para ser incluido en la lista de peers. Por lo tanto, los nodos
que almacenan una lista de peers son elegidos de forma determinista.

Cuando un nodo quiere obtener la lista de peers de un objeto, pregunta iterati-
vamente a los nodos conocidos más cercanos al info hash de dicho objeto sobre otros
nodos más cercanos, hasta que encuentra aquellos que contienen la lista de peers.

1.2 Alcance del proyecto

La primera parte de este proyecto perfila una parte del DHT. Cuando un nodo
comienza la descarga de un objeto, envía annoucenments periódicamente al con-
junto de los nodos más cercanos al info hash del objeto para ser incluido en la
lista de peers. Centrándose en este aspecto, este proyecto estudia: cuántos nodos
contienen la lista de peers, cuántos nodos se eligen para enviarles announcements
y cómo son elegidos, cuál es el período de los announcements, cómo las listas de
peers están distribuidas entre los nodos y la distancia al info hash de los nodos que
contienen la lista de peers.

En primer lugar, se han analizado los resultados esperados en base al modelo
teórico de Mainline DHT. La necesidad de hacer una comprobación empírica radica
en que, aunque el análisis puede proporcionar una aproximación razonable, puede
no concordar con el comportamiento real del DHT por dos motivos:

• La coexistencia de diferentes clientes en el DHT: Mainline DHT es una red
P2P abierta, de modo que cualquier implementación de un cliente del DHT
puede unirse. Hoy en día coexisten varios clientes distintos. Por tanto, si
tienen comportamientos diferentes, pueden influir en el estado del DHT.

• La popularidad de algunos objetos: objetos con un gran número de peers
pueden implicar un desequilibrio en el DHT (un objeto con 10 peers puede
influir en el DHT de manera muy diferente a otro con un millón de peers).
Este desequilibrio puede alterar el comportamiento del DHT.

La segunda parte de este proyecto consiste en el estudio de algunas posibles vul-
nerabilidades del DHT deducidas a partir del análisis. De nuevo, el análisis indica
que son reales, pero es necesario comprobarlas empíricamente ya que, como se ha
explicado, el comportamiento real del DHT puede diferir del teórico.

1.3. OBJETIVOS 3

Todas las vulnerabilidades son un punto de vista diferente del mismo escenario.
Como se ha explicado antes, las listas de peers de los objetos se almacenan en
un conjunto de nodos elegidos de forma determinista (los más cercanos al info
hash). Los nodos son capaces de elegir su posición en el DHT (como se explica
detalladamente en el Capítulo 3) y, por tanto, pueden posicionarse en el DHT cerca
de un info hash para así contener la lista de peers de cualquier objeto. Esto puede
dar lugar a las siguientes vulnerabilidades:

• Censura: si un conjunto de nodos acuerda posicionarse cerca de un info hash,
puede llegar a ser la única entidad responsable del almacenamiento de la lista
de peers de un objeto. Controlando la lista de peers de un objeto, estos nodos
podrían denegar a otros nodos el acceso a la descarga del objeto.

• Ataques DDoS: una lista de peers es un conjunto de pares (direcciones IP,
puerto UDP). Al obtener una lista de peers, los nodos se comunican con las
máquinas cuyas direcciones están contenidas en la lista. Por tanto, si un nodo
contiene la lista de peers de un objeto popular, proporcionando una lista de
peers con la dirección IP de una víctima, puede encaminar hacia la víctima
parte de su tráfico entrante en forma de ataque DDoS.

• Escalabilidad: si un nodo contiene la lista de peers de un objeto muy popular,
la tasa de tráfico que se generará en él puede llegar a ser crítica. En el DHT
hay millones de nodos. Por tanto, si un objeto llega a ser muy popular, su
lista de peers será enorme y, en consecuencia, el número de peticiones de peers
recibidas en los nodos que contienen su lista de peers será muy elevado.

Este proyecto presenta además una colección de herramientas desarrolladas para
estudiar el comportamiento real y las vulnerabilidades del DHT de empíricamente.

1.3 Objetivos
Los objetivos que este proyecto pretende alcanzar son los siguientes:

• Comparar el análisis teórico con el comportamiento real de Mainline DHT.

• Proporcionar una perspectiva experimental de la generación, distribución y
obtención de listas de peers en Mainline DHT.

• Proporcionar una colección de herramientas para monitorizar Mainline DHT.

• Explorar el problema de censura en Mainline DHT.

• Comprobar y cuantificar los problemas de escalabilidad y ataques DDoS en
Mainline DHT.

Estos objetivos han sido alcanzados y se puede ver su cumplimiento en el Capí-
tulo 6. Además, el Apéndice U muestra la planificación y el tiempo real que llevó
todo el trabajo.

Capítulo 2

Contexto tecnológico

Este capítulo presenta el contexto tecnológico del proyecto, profundizando poco a
poco partiendo desde un contexto general. Se complementa con el Apéndice S donde
se presentan otros trabajos con contextos cercanos al ámbito de este proyecto.

2.1 Sistemas distribuidos

El modelo clásico de servicios en red se ha basado tradicionalmente en la existencia
de un servidor y varios clientes. En aquellos casos en los que un gran número
de clientes solicita el mismo servicio, este modelo puede dar lugar a problemas de
robustez y escalabilidad. Si un servidor deja de funcionar o demasiados clientes lo
sobrecargan, el servicio que ofrece puede perder su disponibilidad.

Una forma de prevenir los problemas de robustez y escalabilidad es replicando
el servidor, creando así una redundancia en el servicio. Esta solución mejora la
robustez y escalabilidad del servicio. Sin embargo, los mismos problemas pueden
persistir. La existencia de una entidad centralizada implica, en general, un límite
en la robustez y escalabilidad de un servicio, ya que siempre puede fallar o sufrir
sobrecargas (aunque la redundancia reduzca estos problemas).

Uno de los objetivos principales de las redes P2P (Peer-to-Peer) es tratar los
problemas de robustez y escalabilidad proponiendo una arquitectura completamente
distinta. Las redes P2P evitan o minimizan la existencia de entidades centralizadas
mediante la distribución de las tareas de servicio entre todos los participantes.

2.2 Redes P2P y DHTs

Tal como se define en [4], "Una red P2P (Peer-to-Peer) es un tipo de red en la
que los participantes comparten una parte de sus recursos hardware. Estos recursos
compartidos son necesarios para proveer el servicio y contenido ofrecido por la red.
Con esta distribución, las redes P2P no requieren la intermediación o soporte de un
servidor o autoridad global y centralizada".

5

6 CAPÍTULO 2. CONTEXTO TECNOLÓGICO

Un DHT (Distributed Hash Table) es un mecanismo para almacenar y recuperar
valores indexados mediante claves. Esta tarea se distribuye entre todas las entidades
participantes en él. Cada participante en el DHT (llamado nodo) es responsable
del almacenamiento de un conjunto de valores cuya clave está dentro de un rango
dado. El DHT proporciona el mecanismo para encontrar al nodo o conjunto de
nodos responsables del almacenamiento del valor mediante su clave asociada. La
metodología utilizada para gestionar el almacenamiento de los pares (clave, valor)
es lo que define el diseño de un DHT. Entre los posibles diseños de DHTs destacan:
Chord [5], Pastry [6] y Kademlia [2]. Kademlia es el estudiado en este proyecto
dado que es el diseño del DHT en el que está basado este trabajo.

2.3 Kademlia

Kademlia es el diseño de un DHT. Cada valor tiene como clave asociada un iden-
tificador de 160 bits. Además, cada nodo elige un identificador de 160 bits cuando
se une al DHT. Un valor se almacena en el conjunto de los nodos más cercanos
a su clave; esta propiedad es uno de los aspectos de diseño más importantes para
comprender el trabajo de este proyecto, ya que es la base de gran parte del análisis
presentado en el Capítulo 3.

2.3.1 La distancia XOR

La distancia entre un identificador de nodo y una clave se mide como la función
XOR bit a bit de ambas secuencias de 160 bits. La métrica XOR es simétrica, es
decir, distancia(x, y) = distancia(y, x). La Tabla 2.1 muestra algunos ejemplos
de distancia XOR suponiendo identificadores de 8 bits. Además, esta métrica es
unidireccional ya que, para cualquier nodo x y distancia z > 0, hay sólo un punto
y tal que distancia(x, y) = z (tal como se explica en [2]).

En los experimentos se ha utilizado la métrica de distancia logarítmica, una
métrica más fácil de manejar y que es el logaritmo en base 2 de la distancia XOR.
Esta métrica se explica más en profundidad en la Sección T.5.

X 00000001 (1) 00001010 (10) 00000001 (1) 11111010 (250)
Y 00000010 (2) 00010100 (20) 11001000 (200) 11111111 (255)
Distancia XOR 00000011 (3) 00011110 (30) 11001001 (201) 00000101 (5)

Tabla 2.1. Ejemplo de distancias XOR usando identificadores de 8 bits.

2.4. BITTORRENT 7

2.3.2 Mensajes
Todos los mensajes en Kademlia se envían utilizando el protocolo UDP. Kademlia
tiene cuatro tipos de mensaje:

• PING: comprueba que un nodo está vivo.

• FIND_NODE: dada una clave, devuelve la dirección IP, puerto UDP e iden-
tificador de nodo de los k nodos más cercanos a la clave.

• STORE: manda a un nodo que almacene un par (clave, valor).

• FIND_VALUE: se comporta como FIND_NODE con una excepción, si se
encuentra un nodo que había recibido previamente un mensaje STORE para
la clave, devuelve el valor almacenado.

Para almacenar un par (clave, valor), un nodo debe encontrar los k nodos más
cercanos a la clave y enviarles un mensaje STORE. Además, cada nodo debe publicar
periódicamente los pares (clave, valor) que posee ya que estos lo borrarán pasado
este tiempo.

2.3.3 La tabla de rutas
Cada nodo del DHT gestiona una tabla de rutas en la que almacena y actualiza
información acerca de un conjunto de nodos conocidos. La tabla de rutas almacena,
para cada 0 ≤ i < 160, la dirección IP, puerto UDP e identificador de k nodos a
distancia [2i, 2i+1) de él mismo en lo que se llama k-bucket.

2.3.4 Descubrimiento de nodos
Cuando un nodo quiere encontrar aquellos nodos donde un valor debería estar al-
macenado (ya sea para recuperarlo o para enviarlo para su almacenamiento), debe
saber la clave asociada al valor. Usando la clave, el nodo pregunta iterativamente a
los nodos conocidos más cercanos a la clave sobre otros nodos más cercanos, hasta
que encuentra aquellos que contienen el valor. Dado que la distancia XOR es unidi-
reccional, todas las búsquedas convergerán en el mismo camino, independientemente
del nodo que la lleve a cabo.

2.4 BitTorrent
BitTorrent [1] es una red P2P de compartición de objetos. Su objetivo es proveer
un mecanismo eficiente de distribución de objetos a un gran número de clientes,
incentivando a aquellos que descargan un objeto a compartirlo con el resto.

Un cliente participando en el intercambio de un objeto se llama peer del objeto.
Cuando un cliente quiere descargar un objeto, necesita un fichero torrent (el cual
contiene meta datos del objeto). Los ficheros torrent se pueden descargar, por

8 CAPÍTULO 2. CONTEXTO TECNOLÓGICO

ejemplo, desde un servidor web (algunos de los distribuidores de torrents más im-
portantes son The Pirate Bay [8] y Mininova [9]). Una vez obtenido el fichero
torrent, el cliente puede empezar la descarga del objeto.

En BitTorrent, la obtención de un objeto se divide en tres fases:

1. Descubrir el contenido: obtener el fichero torrent del objeto.

2. Obtener peers: conseguir peers de los que descargar el objeto.

3. Descargar el objeto: descargar el objeto de los peers.

Los ficheros torrent contienen, opcionalmente, la URL de un tracker (que es un
servidor centralizado que gestiona listas de peers). El cliente le pide al tracker peers
del objeto y, comunicándose con ellos, comienza la descarga del este, así como el
envío a otros clientes de las partes que posee. El conjunto de los peers que comparten
un objeto se llama swarm. El intercambio del objeto se lleva a cabo utilizando el
protocolo BitTorrent (explicado en [1]. Es importante aclarar que este protocolo
tiene el mismo nombre que el software) el cual funciona sobre el protocolo TCP.

El uso de trackers como entidades centralizadas puede suponer problemas de
escalabilidad y robustez. Las versiones más recientes de BitTorrent van delegando
progresivamente la obtención de peers a un DHT. La mayoría de los clientes Bit-
Torrent existentes, implementan tanto el protocolo BitTorrent como el protocolo
del DHT. Aunque, en general, aún se utilizan los trackers para la obtención de
peers, la mayoría de los clientes BitTorrent tienen compatibilidad con el DHT y
utilizan ambos mecanismos. Algunos de los clientes de BitTorrent más populares
son: UTorrent [26], BitSpirit [27] y KTorrent [28].

2.5 Mainline DHT

Existen dos DHTs en BitTorrent: Mainline DHT y Azureus DHT. Ambos son im-
plementaciones de Kademlia. Este proyecto estudia Mainline DHT.

2.5.1 Una implementación de Kademlia

Como implementación de Kademlia, la mayoría de los aspectos del diseño de Kadem-
lia están presentes en Mainline DHT. Sin embargo, algunos detalles (especificados
en [20]) se añaden en la implementación:

• Las claves son un hash SHA-1 [25] de 160 bits llamado info hash calculado a
partir del contenido del objeto. El uso de la función hash SHA-1 garantiza
que es casi imposible que dos info hashes tengan el mismo valor. Además,
por definición, las funciones hash aseguran una distribución uniforme en sus
valores. El info hash está contenido en el fichero torrent del objeto.

2.5. MAINLINE DHT 9

• Elige k = 8 (como se ha citado anteriormente, k en Kademlia es el número de
nodos almacenados en un k-bucket así como el número de nodos elegidos para
enviar un mensaje STORE).

2.5.2 Listas de peers como valores
En Mainline DHT, los valores son listas de peers. Por tanto, lo que devuelve una
búsqueda en Mainline DHT es una lista de peers (dirección IP y puerto TCP de cada
peer). Con esta lista, es posible unirse al intercambio del objeto iniciando comuni-
cación con los peers mediante el protocolo BitTorrent. El mensaje de recuperación
de una lista de peers se llama get_peers.

Esta decisión implica que un nodo le envía un mensaje a otro para ser incluido
en la lista de peers cuando se une al intercambio del objeto. En este caso, se dice
que un nodo se anuncia y el mensaje se llama announcement o announce_peer. Los
peers de la lista de peers también expiran. Por tanto, aunque las listas de peers son
siendo valores, son dinámicas, dado que crecen y decrecen con los announcements
y sus expiraciones. El Apéndice P ilustra qué implicaciones supone esta decisión
frente al diseño de Kademlia.

2.5.3 Mensajes
Al igual que Kademlia, Mainline DHT tiene cuatro tipos de mensaje (el formato del
paquete para estos mensajes se explica en el Apéndice C y se define en [20]):

• PING: comprueba que un nodo está vivo.

• FIND_NODE: dado un info hash, devuelve la dirección IP, puerto UDP e
identificador de nodo de los k (valor fijado a 8 en las especificaciones) nodos
más cercanos al info hash.

• ANNOUNCE_PEER: manda a un nodo que le añada en la lista de peers de
un info hash.

• GET_PEERS: se igual que FIND_NODE con una excepción, si se encuentra
un nodo que había recibido previamente un mensaje ANNOUNCE_PEER
para el info hash, devuelve la lista de peers.

Capítulo 3

Análisis

Este capítulo presenta el análisis teórico que comprueban los experimentos.

3.1 Período de los announcements
El tiempo de expiración de un announcement debe ser el mismo valor que su período
para que cuando este expire se envíe de nuevo. En las especificaciones de Mainline
DHT este valor no está explícitamente definido, pero [7] indica que es de 30 minutos
(aunque el diseño de Kademlia [2] lo fija en una hora, también dice que se puede
modificar para optimizaciones).

Dado que Crosby y Wallach [7] afirman explícitamente que este valor es de 30
minutos, siendo su documento el más reciente, y que las especificaciones de Mainline
DHT [20] no determinan ningún valor para este parámetro, se asume que el tiempo
de expiración es de 30 minutos.

3.2 Número de nodos que contienen lista de peers
Según Crosby y Wallach [7], un peer se anuncia a los tres nodos más cercanos al
info hash del objeto. No obstante, el diseño de Kademlia [2] afirma que un nodo
almacena un valor en los k nodos más cercanos a la clave. Las especificaciones de
Mainline DHT [20] fijan el valor de k a 8 y no indican nada más acerca de este
parámetro. Ambas definiciones son inconsistentes pero coinciden en que los nodos
elegidos para enviar un announcement deben ser los más cercanos al info hash.

Al ser el documento más reciente, se ha considerado la elección de los tres
nodos más cercanos al info hash para los announcements que afirman Crosby
y Wallach [7]. Esto indica además que el número de nodos que contiene la lista de
peers será aproximadamente de tres (dado que son los elegidos para almacenarla).

Se podrían encontrar casos en los que la lista de peers estuviera contenida en
más o menos de tres nodos dada la adición y exclusión de nodos en el DHT y la
expiración y periodicidad de los announcements. En cualquier caso, la media en el
número de nodos conteniendo lista de peers de un info hash debería ser cercana a

11

12 CAPÍTULO 3. ANÁLISIS

tres y la desviación típica un valor suficientemente pequeño como para considerar
la media significativa.

3.3 Posicionar un nodo en Mainline DHT para que
contenga una lista de peers dada

Las especificaciones de Mainline DHT [20] explican que los nodos deben elegir un
identificador aleatorio de 160 bits cuando se unen al DHT. El identificador de un
nodo posiciona a este en una parte dada del DHT. Esta posición es relativa ya
que, dependiendo de su identificador, un nodo estará más cerca o más lejos del
resto de nodos e info hashes. El diseño de Kademlia [2] explica que, dado que los
identificadores de nodo son aleatorios, es bastante improbable que su distribución
sea no uniforme.

Los info hashes también deberían seguir una distribución uniforme. Estos se
calculan como la función hash SHA-1 del contenido del objeto. Por definición, una
función hash debe asegurar una distribución uniforme en sus valores.

Dado que Mainline DHT es una red P2P abierta, cualquier cliente se puede unir.
Así pues, se puede crear un cliente en el que la elección del identificador de nodo
no sea aleatoria. Por otro lado, los info hashes de los objetos son conocidos, ya que
están contenidos en los ficheros torrent y son inmutables. Por lo tanto, un nodo es
capaz de elegir su identificador para situarse cerca de un info hash dado. Además,
al ser aleatorios los identificadores de nodo, no es posible comprobar si un nodo ha
elegido su identificador de forma aleatoria o no.

A través de la búsqueda de un info hash se puede conocer el conjunto de nodos
que contienen la lista de peers de un objeto. Estos nodos deberían ser los más
cercanos al info hash dado que son los que eligen los anunciantes (tal y como se
define en [2]). En la respuesta a la búsqueda, los nodos que contienen la lista de
peers no sólo proporcionan dicha lista, sino también información acerca de ellos
mismos, incluyendo su identificador (para ver el formato de todos los mensajes y
respuestas en Mainline DHT, consultar el Apéndice C).

Sabiendo la distancia entre un info hash y sus nodos más cercanos, y siendo
capaz un nodo de elegir su identificador, este se puede posicionar en el DHT más
cerca del info hash que aquellos que contienen la lista de peers. El nodo empezará
a recibir announcements y a contener la lista de peers del objeto. A su vez, el nodo
más cercano al info hash de los que contenían la lista de peers dejará de recibir
announcements y, por tanto, su lista de peers empezará a decrecer a medida que
los announcements vayan expirando (hasta que quede vacía). Así pues, debería ser
posible añadir un nodo al DHT y hacer que contenga la lista de peers de cualquier
objeto.

3.4. CONTROL TOTAL DE UNA LISTA DE PEERS 13

3.4 Control total de una lista de peers
De acuerdo con las referencias presentadas en este capítulo, el número de nodos
conteniendo la lista de peers de un info hash debería ser alrededor de tres y, tanto
el período como el tiempo de expiración de los announcements, debería ser de 30
minutos. Además, según se ha analizado, un nodo es capaz de elegir su identificador
para posicionarse en cualquier punto del DHT.

Teniendo en cuenta el análisis presentado en las anteriores secciones de este
capítulo, debería ser posible controlar la totalidad de una lista de peers llevando a
cabo las siguientes acciones:

1. Obtener el info hash del fichero torrent del objeto.

2. Realizar una búsqueda y encontrar los nodos responsables de la lista de peers
(deberían ser alrededor de tres).

3. Observar su distancia al info hash y posicionar tres nuevos nodos en el DHT
más cercanos al info hash que el más cercano de los que contienen la lista
de peers (la situación quedaría como refleja la Figura 3.1, en la que las for-
mas cuadradas representan los nuevos nodos y las formas circulares los nodos
antiguos.).

4. Esperar a que pase el tiempo de expiración (que debería ser 30 minutos).

Figura 3.1. Nodos que contienen la lista de peers tras la adición de los nuevos nodos.

Tras seguir estos pasos, los peers del objeto no se anunciarán más en los nodos
en los que lo estaban haciendo sino en los nuevos nodos (dado que en ese momento
serían los tres nodos más cercanos al info hash). Así pues, tres nodos posi-
cionados como los más cercanos a un info hash serán la única entidad
responsable del almacenamiento de la lista de peers pasado el tiempo de
expiración. El espacio entre un info hash y sus nodos más cercanos debería ser

14 CAPÍTULO 3. ANÁLISIS

suficientemente grande como para añadir en él millones de nodos (como se muestra
en el Apéndice R).

3.4.1 Consecuencias

De acuerdo con el análisis presentado hasta ahora en este capítulo, un conjunto de
nodos se puede coordinar para tomar el control de una lista de peers. Esto da la
posibilidad a esos nodos de hacer un uso inadecuado de la lista de peers, lo que
puede tener consecuencias perjudiciales para el DHT.

3.4.1.1 Responsabilidades

Un conjunto de nodos controlando la totalidad de la lista de peers de un objeto
sería la única entidad responsable de permitir a otros nodos el acceso al intercambio
del objeto. Cuando un nodo quiera obtener peers para intercambiar un objeto,
realizará una búsqueda en el DHT. La búsqueda siempre desembocará en los nodos
que contienen la lista de peers dado que todas las búsquedas sobre la misma clave
convergen a lo largo del mismo camino (como se demuestra en [2]). El nodo que
lleva a cabo la búsqueda enviará una petición de peers a los nodos que contienen la
lista de peers.

3.4.1.2 Censura de contenidos

Una vez que los nodos que controlan una lista de peers empiecen a recibir peticiones
de peers, pueden acordar proporcionar listas de peers vacías o falsas a los nodos que
ellos quieran. En ese caso, se les estaría denegando el acceso al objeto haciéndoles
imposible unirse al intercambio del objeto. Esta acción se consideraría censura de
contenidos dada la denegación de acceso al objeto.

Es importante aclarar que siempre puede existir un tracker que contenga peers
del objeto, en cuyo caso, los nodos que quieran descargarlo podrán obtener peers a
través del tracker.

3.4.1.3 Ataques DDoS

Existe otra posible vulnerabilidad cuyo escenario es el mismo que en el problema
de la censura aunque, a diferencia de este, en este caso no hace falta poseer el
control total de una lista de peers, basta con uno o más nodos conteniendo parte
de la misma. Este uso inapropiado consiste, de nuevo, en devolver una lista falsa
de peers a los nodos que la pidan. Si esta lista de peers contiene la dirección IP de
una máquina a la que atacar y el objeto asociado a la lista de peers es popular (es
decir, tiene un gran número de peers), se estaría llevando a cabo un ataque DDoS
silencioso (ya que el culpable no tomaría parte en el ataque, dado que él no enviaría
ningún mensaje de forma directa a la víctima).

Los nodos que solicitan peers no son capaces de saber a priori si la dirección IP
y el puerto proporcionados en la lista de peers corresponden a un cliente BitTorrent

3.5. ESCALABILIDAD EN LOS NODOS QUE CONTIENEN LA LISTA DE PEERS 15

hasta que intentan comunicarse con él. Si el info hash asociado a la lista de peers
es muy popular, la víctima podría llegar a recibir cientos de miles de mensajes.

3.5 Escalabilidad en los nodos que contienen la lista de
peers

Dada la aleatoriedad de los identificadores de nodo y la distribución uniforme de los
info hashes, un nodo no puede saber a priori qué listas de peers va a contener. Si
un nodo es el encargado de almacenar la lista de peers de un objeto muy popular,
las tasas de tráfico que se generen en él pueden ser muy elevadas.

3.5.1 Análisis

El objetivo en este escenario es estudiar el crecimiento del tráfico entrante y saliente
generado en el nodo que contiene la lista de peers de un objeto en función del
número de peers. En el DHT hay millones de nodos. Por tanto, nada imposibilita
la existencia de un objeto con cientos de miles de peers.

En los nodos que contienen la lista de peers de un objeto popular, el número
de announcements y peticiones de peers por segundo puede ser excesivo, haciendo
imposible que los nodos atiendan todos los mensajes. El tráfico entrante para estos
nodos puede llegar a ser enorme, pero el tráfico saliente sería incluso mayor (porque
las respuestas a los mensajes find_nodes y get_peers son mayores que las peticiones
en sí ya que tienen que adjuntar una lista de nodos o una lista de peers tal como se
muestra en [20]).

3.5.2 Consecuencias

El desequilibrio generado por este problema tendría tres implicaciones importantes:

3.5.2.1 Equidad

Aunque los nodos fueran capaces de soportar la tasa de tráfico generada por contener
la lista de peers de un objeto popular, esta situación rompería con la propiedad de
equidad en las redes P2P. Los nodos cercanos a un info hash de un objeto popular
sufrirían una tasa de tráfico debida al DHT mucho mayor que el resto. El DHT
es un esfuerzo para distribuir la indexación de las listas de peers a través de la
colaboración equitativa de todos los nodos. Si algunos nodos sufren tasas de tráfico
mucho mayores que el resto, el esfuerzo no estará repartido de forma equitativa
entre todos los nodos.

3.5.2.2 Impacto

Este problema puede ser serio en conexiones de Internet domésticas, pero hay al-
gunos casos donde puede ser más crítico. En la actualidad, existen algunos estudios

16 CAPÍTULO 3. ANÁLISIS

de clientes DHT en dispositivos móviles. Estos estudios tratan de minimizar el con-
sumo de energía a través de una tasa de tráfico reducida (como el trabajo presen-
tado en [31]). Estos dispositivos podrían no ser capaces de afrontar este problema.
Por otro lado, el coste de algunas conexiones a Internet está basado en el tráfico
generado. Los usuarios podrían no darse cuenta de que su cliente de BitTorrent
está generando una tasa de tráfico enorme debida al DHT ya que no es algo de lo
que un usuario final deba percatarse. Esto podría generar un coste elevado en la
factura de Internet de los usuarios.

3.5.2.3 Futuro

Los estudios llevados a cabo en este proyecto muestran que el problema de escalabil-
idad no es demasiado crítico en los info hashes encontrados (de hasta 33000 peers).
Sin embargo, en el DHT hay millones de nodos, por tanto, nada imposibilita la
existencia de un objeto con millones de peers. Por ejemplo, el proyecto P2P-Next
[34] es un proyecto a nivel europeo financiado, entre otros, por la cadena de tele-
visión BBC, que pretende usar una red P2P para retransmitir eventos televisivos en
directo. Eventos internacionales como Eurovision o los Juegos Olímpicos, que son
seguidos por millones de personas, podrían dar lugar a info hashes con millones de
peers.

Capítulo 4

Herramientas, experimentos y
resultados

Este capítulo resume y analiza los resultados de los experimentos realizados. La
definición y resultados completos de los experimentos están contenidos, desde el
Apéndice G al Apéndice O, progresivamente. Además, en ellos, se puede observar
que algunos utilizan un conjunto grande de info hashes. La obtención de estos info
hashes y su caracterización se explica en el Apéndice D. Otros experimentos han
utilizado varios nodos simultáneamente. La coordinación de estos nodos se explica
en el Apéndice E.

4.1 Herramientas
En este proyecto se presenta un análisis que, posteriormente, se comprueba em-
píricamente. Para llevar a cabo este fin, fue necesario desarrollar una colección de
herramientas. Estas herramientas son pequeños scripts con propósitos muy especí-
ficos, desarrollados modificando un cliente de Mainline DHT. En el Apéndice Q
se explica brevemente el propósito de las mismas. Aunque las herramientas son
una contribución importante de este proyecto, a través de los resultados de los
experimentos se puede ver más claramente su funcionalidad. El Apéndice Q justi-
fica también las elecciones, en cuanto a desarrollo, tomadas para la elaboración de
las herramientas.

4.2 Configuración de los experimentos
Se han llevado a cabo 9 experimentos cuyos resultados se muestran desde el Apéndice G
al Apéndice O y están resumidos en este capítulo. Para la configuración de los ex-
perimentos, se tomaron varias decisiones. Están explicadas y justificadas en el
Apéndice T que explica la metodología seguida en todo el proceso.

Ente la información contenida en en Apéndice T, que explica la metodología
seguida, hay un hecho que cabe destacar para entender los resultados de alguno de

17

18 CAPÍTULO 4. HERRAMIENTAS, EXPERIMENTOS Y RESULTADOS

los experimentos. El hecho es que durante el desarrollo del proyecto se observó que
las listas de peers con bastantes peers no caben en el campo de datos de un paquete
UDP (que es el protocolo utilizado para el envío de mensajes en Mainline DHT).
Se encontraron dos soluciones: fragmentar los paquetes IP o limitar el tamaño de
la lista de peers. El cliente DHT utilizado fue modificado para que limitara la lista
de peers a los últimos 50 announcements.

4.3 Estudio del DHT

El experimento 1 estudia el número de nodos que contienen lista de peers utilizando
1200 info hashes. Según el estudio presentado en el Capítulo 3, este valor debería
ser cercano a 3. Los resultados muestran que, de los info hashes observados, el
40% tiene más de 10 nodos conteniendo su lista de peers. Este comportamiento lo
explican los resultados del experimento 5.

El experimento 2 comprueba si el número de announcements recibidos en los
nodos más cercanos a un info hash depende de la distancia a este. Como se esperaba,
se ha comprobado que la distancia no influye en el número de announcements.
Sin embargo, los tres nodos más cercanos al info hash deberían ser los únicos que
reciben announcements y todos los nodos están recibiendo un número elevado de
announcements. Este comportamiento lo explican los resultados del experimento 5.

El experimento 3 estudia el período de los announcements. Los resultados son
como se esperaba, ya que la mayoría de los nodos se anuncian periódicamente en
un tiempo cercano a 30 minutos. Sin embargo, hay una excepción, ya que el 17%
de los nodos anunciantes observados tiene un período inferior a 5 minutos. Este
resultado es inesperado y debería ser investigado más en profundidad.

El experimento 5 da con la razón de algunos comportamientos inesperados ob-
servados en otros experimentos. Muestra que algunos clientes del DHT no están
siguiendo las especificaciones de los announcements. Los clientes BitSpirit se están
anunciando en más de tres nodos en todos los casos. Los clientes KTorrent están
escogiendo para los announcements nodos que es casi imposible que sean los más
cercanos al info hash. La agregación de estos comportamientos explica por qué en
el experimento 1 el número de nodos que contienen lista de peers es tan elevado y
por qué en el experimento 2 más de tres nodos reciben announcements.

4.4 Censura

El experimento 4 es un intento de censura. Los resultados obtenidos en los experi-
mentos 1, 2 y 3 ayudaron a diseñarlo. De acuerdo con el experimento 1, un conjunto
de 12 nodos debería ser suficiente para llevar a cabo la censura. De acuerdo con el
experimento 2, su distancia al info hash no importa (mientras que sean los más cer-
canos). De acuerdo con el experimento 3 en, aproximadamente una hora, deberían
controlar toda la lista de peers.

4.5. INFLUENCIA EN EL DHT DE LOS NODOS QUE NO SIGUEN LAS
ESPECIFICACIONES 19

Figura 4.1. Número de nodos conteniendo la lista de peers.

La censura no ha sido posible en ningún caso. Aunque en un intento hubo
un pequeño período de tiempo en que lo fue, dado que no había más nodos que
los del experimento conteniendo la lista de peers (como se puede observar en la
Figura 4.1, extraída del Apéndice J), aun siendo los nodos del experimento los
más cercanos al info hash y manteniéndose vivos todo el tiempo, siempre se unen
nuevos nodos conteniendo la lista de peers. La razón de este resultado (que fue
investigada a posteriori) son, de nuevo, los resultados obtenidos en el experimento
5. La existencia de clientes que se anuncian en más de tres nodos posibilitaría la
censura. Sin embargo, al haber clientes que no se anuncian sólo en los nodos más
cercanos al info hash, es imposible llevar a cabo la censura añadiendo nodos cerca del
info hash. Dado que no todos los clientes se comportan igual, la heterogeneidad de
clientes en el DHT y sus comportamientos hacen que la censura sea casi imposible.

4.5 Influencia en el DHT de los nodos que no siguen las
especificaciones

Dado que en el experimento 5 se descubrió que algunos nodos no siguen las especi-
ficaciones del diseño, los experimentos 6 y 7 estudian el impacto en el DHT de estos
nodos.

El experimento 6 muestra que hay nodos conteniendo listas de peers que es casi
imposible que sean parte de los más cercanos al info hash. La distribución de las
distancias de estos nodos al info hash parece ser una distribución normal con la

20 CAPÍTULO 4. HERRAMIENTAS, EXPERIMENTOS Y RESULTADOS

excepción de que los nodos más lejanos son demasiados. El alto número de nodos
lejanos se debe, probablemente, a los resultados obtenidos en el experimento 5.

El experimento 7 analiza la distribución de la lista de peers entre los nodos
que la contienen. El resultado muestra que los tres nodos más cercanos al info
hash son aquellos que contienen la mayor parte de la lista de peers. Sin embargo,
hay nodos conteniendo la lista de peers que no son parte de los tres más cercanos.
El porcentaje de la lista de peers parece decrecer exponencialmente en función del
orden de distancia al info hash. Una hipótesis acerca de la causa de este resultado es
que algunos clientes se anuncian en los nodos que encuentran durante la búsqueda.
En [2] se demuestra que, si el DHT tiene n nodos, el número de iteraciones para
encontrar un valor es O(log(n)). Esto podría explicar el decrecimiento exponencial.

4.6 Escalabilidad y ataques DDoS
El experimento 8 comprueba empíricamente los problemas de escalabilidad y ataques
DDoS. Muestra que, en info hashes populares, el impacto del tráfico entrante en el
nodo más cercano al info hash no es demasiado crítico con los info hashes encontra-
dos (de hasta 33.000 peers). No es una tasa de tráfico desmesurada para conexiones
domésticas, pero sí que es demasiado alta para estar generada tan sólo por el DHT.
El problema del tráfico saliente es más serio, ya que las tasas generadas no son
razonables. Dado que la lista de peers puede llegar a ser enorme en este tipo de
info hashes, la tasa de tráfico saliente llega a ser enorme.

Para reducir el impacto de este problema se ha propuesto una solución sencilla,
consiste en limitar el tamaño de la lista de peers en las respuestas a las peticiones
de peers. Como se ha anteriormente en ese capítulo, listas con más de 50 peers
no encajan en el campo de datos de un paquete UDP. La opción de limitar la lista
a 50 peers suaviza el problema de escalabilidad. A través de esta solución se ha
podido soportar el tráfico del info hash más popular encontrado (aunque las tasas
de tráfico todavía siguen siendo demasiado altas). Esta solución reduce el impacto
del problema pero este todavía existe.

En el futuro pueden existir info hashes con millones de peers. Proyectos como
P2P-Next [34] (cuyo objetivo es emitir transmisiones televisivas en directo usando
una red P2P) pueden dar lugar a info hashes con millones de peers en la trans-
misión de eventos internacionales. Además, BitTorrent tiene hoy en día millones
de usuarios, nada impide que pueda existir un objeto con un millón de peers. El
tráfico en este tipo de nodos haría el problema mucho más serio. En los resultados
del experimento 8 se proveen datos para estimar este posible tráfico.

4.7 Detección de nodos sospechosos
Ya que la distribución obtenida en el experimento 6 no se ajusta a ninguna conocida
debido a los nodos que no siguen las especificaciones, en el experimento 9 se ha estu-
diado la distancia entre el info hash y su nodo más cercano. Esta medición no puede

4.7. DETECCIÓN DE NODOS SOSPECHOSOS 21

ser alterada por los distintos clientes, ya que el nodo más cercano a un info hash
siempre debería contener la lista de peers del objeto. Los datos obtenidos muestran
una distribución que parece ser normal en estas distancias. El conocimiento de esta
distribución puede ayudar a comprobar si el conjunto de los nodos más cercanos a
un info hash concuerda con la distribución y detectar así nodos sospechosos.

Capítulo 5

Trabajo futuro

El trabajo de este proyecto estudia una parte poco explorada de Mainline DHT.
En este capítulo se presentan todos los hechos que, a partir del desarrollo de este
proyecto, se consideran interesantes para estudiar y que han estado fuera del alcance
del trabajo desarrollado.

5.1 Estudio de comportamientos anómalos

Uno de los hechos más importantes descubiertos durante este proyecto ha sido que
algunos clientes de BitTorrent no respetan las especificaciones del DHT (como mues-
tra, por ejemplo, el experimento 5). La coexistencia de varias implementaciones
diferentes de clientes DHT y sus respectivos comportamientos hacen que algunas
premisas deducidas a partir del diseño del DHT sean incorrectas, influyendo así en
su comportamiento real.

Algunos de estos comportamientos son beneficiosos (por ejemplo, el experimento
5 muestra que, dado que hay clientes que no eligen sólo los nodos más cercanos al info
hash para anunciarse, es casi imposible censurar el acceso a la lista de peers). Por
el contrario, estos comportamientos generan tráfico extra. Se debería comprobar si
existen razones por las que estos comportamientos sean razonables y estudiar más
a fondo su influcencia en el DHT. Los comportamientos cuyo estudio se considera
más interesante son los siguientes:

• El número de nodos que un nodo elige para anunciarse no es el mismo en
todos los clientes de BitTorrent (como muestra el experimento 5).

• Algunos clientes de BitTorrent eligen nodos que no son parte de los más cer-
canos al info hash para anunciarse (como muestra el experimento 5).

• Hay clientes que, a la hora de anunciarse, envían varios announcements en unos
pocos segundos cuando sólo uno es necesario (como muestra el experimento
3).

23

24 CAPÍTULO 5. TRABAJO FUTURO

• Algunos clientes proveyendo listas de peers proporcionan listas con peers
repetidos (como se ha observado en varios experimentos).

5.2 Gestión de la lista de peers
Un hecho cuya importancia destaca en este proyecto es la gestión de la lista de peers.
Al principio se descubrió que las listas de peers con más de 50 peers no caben dentro
del campo de datos de un paquete UDP. Existen dos alternativas para afrontar este
problema: limitar el tamaño de la lista de peers o fragmentar los paquetes IP para
que el destinatario los ensamble. El experimento 8 muestra que el problema de
escalabilidad se reduce notablemente utilizando una lista de peers limitada. En el
caso de este proyecto la lista de peers se ha limitado a los 50 announcements más
recientes. Sin embargo, distintas políticas de gestión de lista de peers deberían ser
analizadas. Dicho estudio debería tener en cuenta el intercambio de peers que existe
dentro del protocolo BitTorrent por el que los peers pueden comunicarse entre ellos
para obtener más peers (como se detalla en [30]).

5.3 Estudio más exhaustivo de Mainline DHT
En este proyecto se ha estudiado una parte específica del DHT y, con ello, se han
descubierto varias situaciones que sería interesante estudiar. Antes del comienzo de
este proyecto no se contaba con demasiada información acerca del comportamiento
real del DHT. A través de la observación de sus comportamientos es más fácil
entender lo que ocurre dentro de él.

El hecho de que haya clientes que no siguen las especificaciones, implica que el
modelo teórico del DHT no concuerde con el comportamiento real. En estudios más
exhaustivos, probablemente se encontrarían más comportamientos anómalos. Sería
muy útil obtener una clasificación de clientes y sus respectivos comportamientos.
Se proponen dos modos de estudio del DHT: observaciones de su estado real y
observaciones del comportamiento individual de los clientes.

5.4 Prevenir y solucionar las vulnerabilidades
Aunque el experimento 8 muestra que el problema de escalabilidad es reducible,
este todavía existe. Objetos con millones de peers podrían implicar que los nodos
que contuvieran su lista de peers no pudieran soportar el tráfico generado. En los
resultados del experimento 8 se proporcionan datos para estimar el tráfico generado
por objetos con un número de peers no existente en la actualidad.

5.4.1 Solucionar el problema de escalabilidad

Una posible solución al problema de escalabilidad radica en el hecho de hacer
dinámico el número de nodos conteniendo la lista de peers en función del número de

5.5. MODIFICACIONES A LARGO PLAZO 25

peers. Este mecanismo debería asegurar que todos los nodos del DHT soportaran
una cantidad similar de tráfico generado por el DHT.

Una solución completa se podría alcanzar desde aquellos nodos participando en
la búsqueda del info hash. Podrían detectar que demasiados nodos están buscando
un info hash y limitar de algún modo el acceso a estos.

Otra técnica que podría ser útil a la hora de diseñar una solución es el caching
de valores en el DHT. En el diseño de Kademlia [2] hay una explicación de cómo
puede llevarse a cabo esto. Se explica que, dado que todas las búsquedas convergen
a lo largo de un mismo camino, el caching de valores aliviaría el trabajo de los nodos
que los contienen. Esto no se hace actualmente en Mainline DHT. Sería sencillo
de implementar si en él los valores fueran estáticos, pero son dinámicos así que la
implementación de esta solución no es trivial dada la posible incoherencia de valores.

5.4.2 Prevenir ataques DDoS
En el experimento 8 se ha estudiado también el problema de los ataques DDoS. Esta
vulnerabilidad está presente y tendría un impacto en la víctima similar al causado
por el tráfico entrante en un nodo que sufre el problema de escalabilidad.

Para prevenir este problema, los experimentos 6 (Apéndice L) y 9 (Apéndice O)
ofrecen datos para detectar nodos posicionados sospechosamente cerca de un info
hash. Aún así, los nodos atacantes podrían colocarse a una distancia prudencial del
info hash. Por tanto, se debería buscar una solución completa. Si dicha solución
limitara el tráfico que se puede encaminar como ataque DDoS, valdría también como
solución para el problema de escalabilidad.

5.5 Modificaciones a largo plazo
Algunas de las vulnerabilidades estudiadas en este proyecto se deben a la posibilidad
que tienen los nodos de elegir cualquier identificador. La existencia de un mecanismo
para detectar nodos ilegítimos resolvería algunos problemas.

Una posible solución para resolver este problema sería obligar a los nodos a cal-
cular su identificador como una función hash de su dirección IP (como se hace en
Azureus DHT [24]). Esto permitiría comprobar si un nodo ha elegido su identifi-
cador de forma legítima. Los nodos que no lo hagan podrían ser ignorados.

El problema de esta solución es que es global y todos los nodos deberían aplicarla
a partir de un momento dado, lo cual es difícil en un DHT con millones de nodos.
Para aliviar este problema podría establecerse un período de transición usando al
principio técnicas menos agresivas para ignorar a los nodos.

Capítulo 6

Conclusiones

Este capítulo presenta las conclusiones extraídas de los resultados obtenidos en los
experimentos y, en general, desde la experiencia del desarrollo de este proyecto.
Compara los resultados con los objetivos propuestos en el Capítulo 1 y explica la
contribución del trabajo.

6.1 Cumplimiento de los objetivos y contribución

En el Capítulo 3 se presentó un estudio acerca de la generación, distribución y
obtención de las listas de peers en el DHT. Los experimentos presentados desde
el Apéndice G al Apéndice O y resumidos en el Capítulo 4 exploran esta parte
del DHT y comparan los resultados con el análisis. La combinación de todos los
experimentos presenta un perfil de esta parte del DHT. Este perfil ayuda a entender
mejor cómo funciona el DHT.

Se ha desarrollado un conjunto de herramientas para interaccionar con el DHT.
Se presentan en el Apéndice Q. Dichas herramientas han servido para comprobar
empíricamente el análisis presentado en el Capítulo 3. Estas herramientas se pueden
utilizar o adaptar para recopilar información del DHT. Su uso puede ser útil para
futuras investigaciones como las propuestas en el Capítulo 5. Las herramientas
son Open Source de modo que puedan ser utilizadas y modificadas para futuras
investigaciones.

El experimento 4 muestra que la censura no ha sido posible en ningún caso.
Aunque el análisis indicaba que era posible, el experimento 5 muestra que existe un
mecanismo implícito que la evita, basado en que hay clientes BitTorrent que no se
anuncian sólo en los nodos más cercanos al info hash.

El experimento 8 documenta que algunos nodos del DHT pueden sufrir un tasa
de tráfico mucho más alta que el resto, debido a la popularidad de algunos objetos.
Aunque este tráfico puede no ser crítico para algunos usuarios hoy en día, detectar
que algunos nodos deben soportar una tasa de tráfico mayor que el resto es una
contribución importante, ya que rompe la propiedad de equidad en el DHT.

Se han encontrado algunos clientes que no respetan las especificaciones, como

27

28 CAPÍTULO 6. CONCLUSIONES

muestran los experimentos 3 (que muestra que hay clientes que no respetan el
período de los announcements) y 5 (que muestra que hay clientes que no se anun-
cian en los tres nodos más cercanos al info hash). Estas inconsistencias suponen
una carencia de equidad en el DHT ya que no todos los clientes lo están utilizando
de la misma manera.

6.2 Lecciones aprendidas
Estas son algunas de las lecciones aprendidas desde la experiencia del desarrollo de
este proyecto:

• El correcto funcionamiento de Mainline DHT se basa en la igual
cooperación de todos los participantes. Las vulnerabilidades y el perfil
de Mainline DHT estudiados en este proyecto han ayudado a detectar algunas
situaciones de falta de equidad. La documentación y solución de estas situa-
ciones puede suponer una mejora en el rendimiento y seguridad en el software
de millones de usuarios.

• Proponer cambios globales no es fácil en un DHT como Mainline
DHT. Los cambios globales han de ser adoptados en todo el DHT al mismo
tiempo, lo cual hace difícil su implantación. Sin embargo, un período de
transición en el que se utilice una solución intermedia es razonable.

• La influencia de UTorrent en Mainline DHT es muy importante.
El experimento 2 parece indicar que UTorrent es el cliente más popular en
Mainline DHT. Probablemente, los cambios globales deberían empezar por
UTorrent porque es una parte muy importante de Mainline DHT.

• Algunos de los problemas estudiados en este proyecto existen debido
a la posibilidad de que los nodos elĳan un identificador dado. En el
futuro, debería existir un mecanismo para evitar que los nodos puedan escoger
cualquier identificador.

Los resultados de este proyecto han sido de ayuda para el grupo de investigación
en el que se ha trabajado de cara al diseño de una red P2P en la que los objetos
pueden llegar a tener millones de peers. El perfil obtenido de Mainline DHT, el
estudio de la censura y las pruebas de escalabilidad proporcionan datos para mejorar
el rendimiento y evitar problemas futuros.

En cuando a las impresiones personales del proyecto, entender el funcionamiento
del protocolo del DHT a la perfección fue una de las partes más difíciles, ya que cada
paso aportaba nuevos conocimientos. Además, los experimentos se han obtenido
interactuando con un sistema real en el que hay millones de nodos activos, por lo
que había que asegurar el correcto funcionamiento de las herramientas ya que no
era fácil diferenciar casos anómalos de bugs.

Apéndice A

Glosario de términos

• DDoS attack: a denial of service attack (DoS attack) or distributed denial
of service attack (DDoS attack) is an attempt to make a computer resource
unavailable to its intended users.

• DHT: a structured overlay that uses key-based routing for put and get index
operations and in which each peer is assigned to maintain a portion of the
index.

• Hash: a hash function is any well-defined procedure or mathematical function
that converts a large, possibly variable-sized amount of data into a small
datum.

• Info hash: 160-bit SHA-1 hash of an object.

• IP address: an Internet Protocol (IP) address is a numerical label that is
assigned to devices participating in a computer network that uses the Internet
Protocol for communication between its nodes.

• Key: sequence of bits used to index a value, usually much smaller than the
value.

• Leecher: a peer or any client that does not have 100% of the object.

• Node: computer connected to the Internet running a BitTorrent client using
the DHT.

• Object: chunk of data.

• P2P: Peer-to-Peer systems are distributed systems consisting of intercon-
nected nodes able to self-organize into network topologies with the purpose of
sharing resources such as content, CPU cycles, storage and bandwidth, capa-
ble of adapting to failures and accommodating transient populations of nodes
while maintaining acceptable connectivity and performance, without requiring
the intermediation or support of a global centralized server or authority.

29

30 APÉNDICE A. GLOSARIO DE TÉRMINOS

• Peer: an end system, node, or host that is a member of a P2P system.

• Seeder: a seeder is a peer that has a complete copy of the torrent and still
offers it for upload.

• SHA-1: is a cryptographic hash function designed by the National Security
Agency (NSA) and published by the NIST as a U.S. Federal Information
Processing Standard. SHA stands for Secure Hash Algorithm.

• Swarm: together, all peers (including seeders) sharing a torrent. For example,
six ordinary peers and two seeders make a swarm of eight.

• Torrent: a small meta-data file which contains information about the object to
download, not the object itself. It is downloaded from a web site (BitTorrent
file extension is .torrent). Part of the meta-data is the info hash of the object.

• Tracker: server on the Internet that coordinates the action of BitTorrent
Clients. Upon opening a torrent, the tracker is contacted and a list of peers
to connect to is received. Throughout the transfer, the client will query the
tracker, telling it how much it has downloaded and uploaded and how much
before finishing.

• Value: chunk of data indexed by a key.

Apéndice B

Acrónimos

• DDoS: Distributed Denial of Service.

• DHT: Distributed Hash Table.

• IP: Internet Protocol.

• P2P: Peer-to-Peer.

• SHA: Secure Hash Algorithm.

• TCP: Transmission Control Protocol.

• UDP: User Datagram Protocol.

• URL: Uniform Resource Locator.

31

Apéndice C

Formato de paquetes en Mainline DHT

The packet format defined here is extracted from [20].

PING query:

"t": token
"y": "q"
"q": "ping"
"a": "id": sender_id

"t": parameter is a token.
token: transaction ID.
"y": the query contains two additional keys: "q" and "a".
"q": the message is a query.
"ping": the query is a ping query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.

PING response:

"t": token
"y": "r"
"r": "id": responder_id

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response.
"r": there are returned values.
"id": parameter is an identifier.

33

34 APÉNDICE C. FORMATO DE PAQUETES EN MAINLINE DHT

responder_id: node identifier of the responder.

FIND_NODE query:

"t": token
"y": "q"
"q": "find_node"
"a": "id": sender_id

"target": target_node

"t": parameter is a token.
token: transaction ID.
"y": the query contains two additional keys: "q" and "a".
"q": message is a query.
"find_node": the query is a find_node query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.
"target": parameter is the node to find.
target: identifier of the node to find.

FIND_NODE response:

"t": token
"y": "r"
"r": "id": responder_id

"nodes": info_node_1
info_node_2
...
info_node_8

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response.
"r": returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"nodes": parameter is a list of nodes.
info_node_i: information about node i (identifier, IP address and UDP port) com-
pacted.

35

GET_PEERS query:

"t": token
"y": "q"
"q": "get_peers"
"a": "id": sender_ID

"info_hash": target_info_hash

"t": parameter is a token.
token: transaction ID .
"y": the query contains two additional keys: "q" and "a".
"q": message is a query.
"get_peers": the query is a get_peers query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.
"info_hash": parameter is an info hash.
target_info_hash: info hash to get_peers.

GET_PEERS response if the queried node has no peers (in that case will provide closer nodes):

"t": token
"y": "r"
"r": "id": responder_id

"token": token_ann
"nodes": info_node_1

info_node_2
...
info_node_8

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response (must be the same sent in the query).
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"token": parameter is a token to send in case the querier wants to announce.
token_ann: value of the token.
"nodes": parameter is a list of nodes.
info_node_i: information about node i (identifier, IP address and UDP port) com-
pacted.

36 APÉNDICE C. FORMATO DE PAQUETES EN MAINLINE DHT

GET_PEERS response if the queried node has peers:

"t": token
"y": "r"
"r": "id": responder_id

"token": token_ann
"values": peer_1

peer_2
...
peer_n

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the message contains an additional key: "r".
"r": message is a response.
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"token": parameter is a token to send in case the querier wants to announce.
token_ann: value of the token.
"values": parameter is a list of peers.
peer_i: information about peer i (IP address and TCP port) compacted.

ANNOUNCE_PEER query:

"t": token
"y": "q"
"q": "announce_peer"
"a": "id": sender_ID

"info_hash": info_hash_ann
"port": TCP_port
"token": token_gp

"t": parameter is a token.
token: transaction ID.
"y": the message contains two additional keys: "q" and "a".
"q": message is a query.
"announce_peer": the query is an announce_peer query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.

37

"info_hash": parameter is the info hash of the announcement.
info_hash_ann: value of the info hash.
"port": parameter is TCP port of the BitTorrent protocol.
TCP_port: value of the TCP port.
"token": parameter is the token provided in the get_peers query.
token_gp: value of the token.

ANNOUNCE_PEER response:

"t": token
"y": "r"
"r": "id": responder_id

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the message contains an additional key: "r".
"r": message is a response.
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.

Apéndice D

Obtención de un número elevado de
info hashes

Some of the experiments had to use a large set of info hashes in order to get reliable
results, for this kind of experiments it’s been used a set of 1200 info hashes obtained
from The Pirate Bay [8]. The way to get them has been using the following Unix
command:

wget http://thepiratebay.org/browse/100/ -r -x --no-parent

This command retrieves all the files contained in the folder browse/100 of the
webpage. In the webpage, it’s possible to see that all the torrents are contained in
folders with the prefix /browse/100, /browse/200, etc. So, repeating this command
for five or six times, a large set of html files containing info hashes is obtained.
Once all this html files have been downloaded, it’s necessary to parse them and get
the info hash from them (it was previously checked that it was contained there). In
all of them it is part of the line 155 of the file. To get it, it’s been used the following
Unix command:

sed ’155q;d;’ file.html | sed -n ’s/.*\([a-f0-9]\{40\}\).*/\1/p’

The first part (before the vertical bar) gets the line number 155 of the file and uses it
as input for the second command. The second command parses that line searching
a sequence of 40 hexadecimal digits and prints it.
With this, it’s been developed a Python script to parse all the downloaded files and
print all the info hashes in a single file.

A summary of the number of peers for this set of info hashes is summarized in
the Table D.1. The number of peers is all those peers observed in all the lookups.

39

40 APÉNDICE D. OBTENCIÓN DE UN NÚMERO ELEVADO DE INFO HASHES

Number of peers Number of info hashes
0 298

1-49 658
50-99 61
100-149 47
150-199 41
200-249 30
250-299 20
300-349 15
350-399 6
400-449 9
450-499 6
500-549 1
550-599 2
600-649 3
650-699 1
700+ 2

Tabla D.1. Large set of info hashes and their number of peers.

Apéndice E

Experimentos con varios nodos

Some of the experiments require a set of nodes. In order to perform this exper-
iments, some of the nodes of the Planetlab network have been used. Planetlab
provides access to hundreds of computers all around the world and with different
IP addresses. For some experiments up to 30 nodes have been used at the same
time.
Nodes have been accessed using SSH [18]. It’s been used one node to coordinate
the others, by using SSH, this node sends commands included in the Unix SSH
command to the other nodes.

41

Apéndice F

Probabilidades de identificadores

• XOR distance is the result of the bitwise XOR of two sequences. Log distance
performs the same operation, however, the result is not the number itself but
the position (counting from the right and starting from zero) of the first bit
which is 1 (counting from the left).

• In an identifier space of a bits, log distances belong to the interval [−1, a).

• Two sequences have a log distance of −1 between them in an identifier space
of a bits if they are equal (i.e. they have a bits equal).

• Two sequences have a log distance of a−1 between them in an identifier space
of a bits if their first left bit is different.

• Two sequences have a log distance of d between them where 0 ≤ d < a− 1 in
an identifier space of a bits if their first a − d − 1 left bits are equal and the
next one is different.

• The probability that two random sequences of n bits are equal is 1
2n .

• The probability of two random sequences to have a log distance equal to −1
between them in an identifier space of a bits is 1

2a .

• The probability of two random sequences to have a log distance equal to a−1
between them in an identifier space of a bits is 1

2 .

• The probability of two random sequences to have a log distance equal to d
between them where 0 ≤ d < a − 1 in an identifier space of a bits is the
probability that their first a − d − 1 left bits are equal and the next one is
different.

• The probability of two random sequences to have a log distance equal to
d between them where 0 ≤ d < a − 1 in an identifier space of a bits is

1
2a−d−1 ∗ 1

2 = 1
2a−d

43

44 APÉNDICE F. PROBABILIDADES DE IDENTIFICADORES

• The probability of two random sequences to have a log distance equal or less
to d between them in an identifier space of a bits is the probability that they
have the a− d− 1 or more left bits in common and one different.

• The probability of two random sequences to have a log distance equal or less
to d between them where 0 ≤ d < a − 1 in an identifier space of a bits is
1

2a +
∑d
i=0

1
2a−i = 2d−a+1.

Apéndice G

Experimento 1 - Número de nodos
conteniendo una lista de peers

The number of nodes where a node should announce itself is not clearly defined in
the bibliography. This experiment aims to clarify it and document it. The number
of nodes containing list of peers of an info hash should be similar to that value since
the nodes chosen for the announcement have to be the closest to the info hash.

G.1 Expected results
According to [7], when a peer announces itself, it does it in the three closest nodes
to the info hash of the object. However, according to the design of Kademlia [2],
a node stores a value in the k closest nodes to the key and [20] specifies that in
Mainline DHT k=8. In Mainline DHT values are the lists of peers, so, nodes should
announce themselves in the 8 closest nodes to the info hash. As in the design
of Mainline DHT the number of nodes where a node should announce itself isn’t
specified explicitly, for this experiment we suppose that the value is three nodes, as
asserted in [7].

The number of nodes containing list of peers should be similar to the number
of nodes chosen for the announcement since the closest nodes to the info hash are
chosen for the announcement (both [7] and [2] assert it). Our deduction points out
that the number of nodes containing list of peers for an info hash is about
three in all the cases.

G.2 Experiment definition
An active node has been used for this experiment. For every info hash, the node
has performed lookups over it and has counted the number of different nodes that
return a list of peers. A node is identified by its IP address and UDP port.

• Number of active nodes: 1.

45

46
APÉNDICE G. EXPERIMENTO 1 - NÚMERO DE NODOS CONTENIENDO UNA

LISTA DE PEERS

• Number of info hashes to lookup: 1200.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to measure: number of nodes containing list of peers for every info hash.

The tools complete_lookup and display_average_number_nodes have been used
for this experiment.

G.3 Results
The data obtained in the experiment is summarized in Table G.1 and represented
graphically in Figure G.1. The result hasn’t been as we expected. Even though the
most typical case is 5 nodes which is close to 3 and 3 is the second most typical case,
there are too many cases with too many nodes containing list of peers. The 40.23%
of the observed info hashes have more than 10 nodes containing list of peers. The
average number of nodes containing list of peers is 11.8 but the standard deviation
is 18.47, which is too high to take into account the average. According to the ex-
pected results we show in Chapter 3, the average should be approximately 3 and
the standard deviation a small number.

Figura G.1. Number of nodes containing list of peers.

G.3. RESULTS 47

Number of nodes Ocurrences Percentage
1 7 0.78%
2 28 3.10%
3 76 8.43%
4 73 8.09%
5 86 9.53%
6 74 8.20%
7 63 6.98%
8 52 5.76%
9 51 5.65%
10 29 3.22%
11 23 2.55%
12 23 2.55%
13 22 2.44%
14 16 1.77%
15 14 1.55%
16 23 2.55%
17 31 3.44%
18 15 1.66%
19 16 1.77%
20 15 1.66%
21 11 1.22%
22 10 1.11%
23 18 2.00%
24 18 2.00%
25 14 1.55%
26 15 1.66%
27 12 1.33%
28 10 1.11%
29 12 1.33%
30 6 0.67%
31 7 0.78%
32 3 0.33%
33 8 0.89%
34 4 0.44%
35 1 0.11%
36 1 0.11%
37 4 0.44%
38 1 0.11%
39 4 0.44%
40+ 6 0.67%

Tabla G.1. Number of nodes containing list of peers.

Apéndice H

Experimento 2 - Crecimiento de una
lista de peers en función de la distancia
al info hash de los nodos que la
contienen

This experiment intends to corroborate that nodes positioned as the closest to an
info hash start having a list of peers of it and containing a big part of the list. This
experiment checks whether the result changes depending on the distance or not.

H.1 Expected results

The closest nodes to the info hash will receive the largest amount of an-
nouncements independently of their distance to the info hash. According
to [2] and [20], nodes announce in the closest nodes to the info hash. There’s not any
mention in the bibliography about any different behavior according to the distance
of the nodes to the info hash.

H.2 Experiment definition

A set of nodes has been positioned close to an info hash in three different scenarios.
In every scenario, one of the nodes was the closest and consecutive pairs of nodes
had a distance between them of 2 units.

We didn’t check our nodes were the closest all the time, however, according
to the probabilities we present in Appendix F, the probability for a random node
identifier to have distance 0 or -1 to the info hash is 2−159, to have distance 22 or
less to the info hash 2−137 and to have distance 80 or less to the info hash 2−79. So,
it’s extremely improbable that a random node is closer to the info hash than our
nodes in this experiment.

49

50

APÉNDICE H. EXPERIMENTO 2 - CRECIMIENTO DE UNA LISTA DE PEERS EN
FUNCIÓN DE LA DISTANCIA AL INFO HASH DE LOS NODOS QUE LA

CONTIENEN
• Number of passive nodes: 11 in the first scenario, 29 in the second scenario

and 31 in the third scenario.

• First scenario: the log distance between the info hash and its the closest node
is 0.

• Second scenario: the log distance between the info hash and its the closest
node is 22.

• Third scenario: the log distance between the info hash and its the closest node
is 80.

• Log distance between consecutive pairs of nodes in every scenario: 2 (if the
distance to the info hash of the closest node is x, the distance of the second
closest is x+ 2, the distance of the third closest x+ 3, etc).

• Number of different info hashes tested: 1. This experiment requires too much
time to be performed with a large set of info hashes. It has been chosen a
popular info hash to have a large enough set of announcements.

• Time for the experiment: 24 hours in every scenario and another 24 hours
between consecutive scenarios.

• Data to measure: number of announcements in every node as well as the
versions of the clients announcing (when they provide it).

The tools announcements and display_announcements_distance have been used
for this experiment.

H.3 Results
The results of this experiment are shown graphically the first scenario in Figure H.1,
the second scenario in Figure H.2 and the third scenario in Figure H.3 (the Y axes in
the figures has a logarithmic scale). They show the total number of announcements
and the versions of the clients announcing.

In these experiments we use the abbreviated name of BitTorrent clients (for
example, "UT" is UTorrent). "None" are those clients which don’t provide their
version (more information about the meaning of these abbreviated names can be
found in [21]).

In the scenario 1 and the scenario 3 the closest node is receiving a very small
amount of announcements. This behavior should be investigated more in depth. If
the closest node is ignored, the closest nodes are those receiving the largest amount
of announcements in all the scenarios. This result seems to be caused by UTorrent.
The rest of the clients send more or less the same number of announcements to all
the nodes.

H.3. RESULTS 51

The nodes receiving the largest amount of announcements aren’t only the three
closest (ignoring the closest in the scenarios 1 and 3), they are more than three
in some case. However, our goal is accomplished in this experiment, we intended
to show that the number of announcements doesn’t depend on the distance to the
info hash of the closest nodes. We can see in all the scenarios that the number of
announcements in the closest nodes is similar.

In both the scenario 1 and the scenario 2 some points of the graphic seem to be
missing. They are not missing, this result is due to the logarithmic scale. In those
points where there graphic seems to be missing its value is 0. As there aren’t two
real numbers x and y such that xy = 0 we omit the value of the graphic in those
points.

In the scenario 3, the node with distance 120 to the info hash has a very low
number of announcements compared with the rest. We don’t know the cause of this
behavior, perhaps it’s due to some problem in the Planetlab node.

Independently of the versions of the clients announcing themselves, nodes which
aren’t part of the three closest are receiving too many announcements. This behav-
ior could be related with the limitation in the list of peers. A mechanism could exist
to detect this and choose other nodes to announce. These unexpected behaviors
are investigated in later experiments. This experiment also shows that UTorrent is
the most popular BitTorrent client, this is important since the behavior of Mainline
DHT is highly influenced by UTorrent.

Figura H.1. Announcements in the first scenario.

52

APÉNDICE H. EXPERIMENTO 2 - CRECIMIENTO DE UNA LISTA DE PEERS EN
FUNCIÓN DE LA DISTANCIA AL INFO HASH DE LOS NODOS QUE LA

CONTIENEN

Figura H.2. Announcements in the second scenario.

Figura H.3. Announcements in the third scenario.

Apéndice I

Experimento 3 - Período de los
announcements

This experiment checks if the period of the announcements is the expected one. In
this experiment a node has been positioned close to a popular info hash. It has
tracked the announcements it received to observe the period of nodes announcing
on it.

Furthermore, this parameter may serve to check if nodes are coordinated. The
period of announcements is supposed to be the same value than their expiration
time. If a node sends an announcement to a node with a different period to its
period, it may stay out of the list of peers during some intervals of time. Giving a
popular value for the period may help to nodes to stay in the list of peers.

I.1 Expected results
According to [7], the period of an announcement (as well as its expiration
time) is 30 minutes.

I.2 Experiment definition
One node has been positioned in passive mode close enough to an info hash to
contain its list of peers. It has recorded all the announcements it has received and
has tracked those sent by the same node (identifying a node by its IP address and
DHT port). From all the announcements sent by the same node, it has calculated
the average time between every pair of consecutive announcements.

• Number of passive nodes: 1.

• Number of info hashes: 1 (we have chosen a popular enough info hash to get
enough announcements to obtain a reliable result).

• Distance to the info hash: 130 (being the closest one).

53

54 APÉNDICE I. EXPERIMENTO 3 - PERÍODO DE LOS ANNOUNCEMENTS

• Time for the experiment: 3 hours. We haven chosen a longer time because,
if a node sends an announcements, leaves the DHT, joins again afterwards
and sends another announcements, we could wrongly think that its period is
the time the node has left the DHT. We consider the time we have chosen is
enough to get a reliable result.

• Data to measure: average period of all announcements for every node an-
nouncing.

The tools announcements and display_freq_announcements have been used for
this experiment.

I.3 Results
We have observed a set of 581 different nodes announcing. The result of the exper-
iment is summarized in Table I.1 and represented graphically in Figure I.1. A big
part of the announcements (the 47,16%) have a period between 20 minutes and 35
minutes (which is as expected).

A strange result is the high number of nodes announcing in less than 5 minutes.
This behavior is unexpected and we haven’t found any reason for it, but it’s very
improbable that this is their actual period and expiration time. Also in other
experiments we observed that many nodes send several announcements in some
seconds, this is probably the cause of this result. An hypothesis about this behavior
is that these nodes have restrictions in the incoming network traffic (which can be
caused, for example, by a firewall). Firewalls or routers using a NAT (Network
Address Translation) have some behavior which limit the incoming traffic in the
computer. In this case, nodes sending several announcements may not receive the
responses and that would be the reason why they send the query several times, but
it should be investigated more in depth.

In this experiment it’s not possible to differ a node which stays alive and sends
announcements periodically from a node which leaves the DHT and joins again after
some time. For example, if there are two nodes announcing, the first node sends
an announcement and 30 minutes later sends another one, the second node sends
an announcement, leaves the DHT, joins again after 30 minutes and sends another
announcement, their behavior will be the same from the point of view of the node
where they announce.

For the design of a Mainline DHT client, this result suggests a period of an-
nouncements of 20 minutes. Even though the expiration time of a queried node is
30 minutes, it’ll probably refresh the list of peers with the announcement so the
querier will stay on it all the time.

I.3. RESULTS 55

Figura I.1. Period of announcements.

56 APÉNDICE I. EXPERIMENTO 3 - PERÍODO DE LOS ANNOUNCEMENTS

Period (min) Number of nodes
0 - 4 100 (17.21%)
5 - 9 13 (2.24%)
10 - 14 27 (4.65%)
15 - 19 19 (3.27%)
20 - 24 90 (15.49%)
25 - 29 116 (19.97%)
30 - 34 68 (11.70%)
35 - 39 32 (5.51%)
40 - 44 57 (9.81%)
45 - 49 18 (3.10%)
50 - 54 8 (1.38%)
55 - 59 2 (0.34%)
60 - 64 14 (2.41%)
65 - 69 0 (0.00%)
70 - 74 3 (0.52%)
75 - 79 0 (0.00%)
80 - 84 5 (0.86%)
85 - 89 1 (0.17%)
90 - 94 2 (0.34%)
95 + 6 (1.03%)

Tabla I.1. Period of announcements.

Apéndice J

Experimento 4 - Intento de control total
de una lista de peers

This experiment checks the problem of censorship. A set of passive nodes has been
positioned closer to an info hash than those containing its lists of peers. After some
time, these nodes should take the total control of the list of peers. Besides, an active
node has been enabled to monitor the evolution of the passive nodes and check if
they get the total control of the list of peers.

We did not check if during the experiment the nodes enabled for it were all the
time the closest to the info hash, however, according to the probabilities we present
in Appendix F, the probability for a random node identifier to have 130 or less of
distance to the info hash is 2−29.

J.1 Expected results

When an announcement is received, after its expiration time, the peer which sent it
will be removed from the list of peers. In order to stay on the list of peers the peer
will have to send it to a set of the closest nodes to the info hash periodically, as
explained in [7]. The experiment 3 shows that after one hour, all the current entries
in a list of peers will probably have expired. The experiment 1 shows that the 82%
of the info hashes have 20 or less nodes containing list of peers. The experiment 2
shows that, if a set of nodes are the closest to an info hash, independently of their
distance, they will receive the largest amount of announcements. So, if 23 nodes
join the DHT as the closest to an info hash and they stay alive, after less
than 24 hours, they will be the only nodes containing the list of peers of
the info hash.

J.2 Experiment definition

• Number of passive nodes: 23.

57

58
APÉNDICE J. EXPERIMENTO 4 - INTENTO DE CONTROL TOTAL DE UNA

LISTA DE PEERS

• Distance to the info hash of the passive nodes: from 107 to 130. Each node
has been positioned in a different distance in that interval.

• Estimation of peers for the info hash: 671.

• Number of active nodes: 1.

• Frequency of lookups by the active node: 2 minutes.

• Time for the experiment: 24 hours.

• Number of info hashes: we have tried several times to control an info hash and
it has not been possible in any case. For this reason, this experiment shows a
typical case of how it has not been possible to control an info hash.

• Data to measure: nodes containing list of peers for the info hash and the size
of their list.

The tool censor has been used for the passive nodes and the tools evolution and
display_evolution for the active node to watch the passive nodes.

J.3 Results
Controlling a whole list of peers of any info hash has not been possible in any case.
Even though 23 nodes have been positioned as the closest to the info hash and
they have stayed alive for 24 hours, new nodes joined all the time. Our nodes, the
nodes trying to control the info hash, have controlled the most of the list of peers,
Figure J.1 shows it. In that figure, red circles are our nodes and blue squares are
the rest. The size of the list of peers of nodes which are not ours always tends to
be small whereas our nodes control the most of the list of peers peers. Our nodes
never have a list of peers with more than 50 nodes due to the limitation established
to make the list of peers fit in a UDP packet.

A clearer way to observe the result is by watching the number of nodes containing
list of peers independently of the size of list of peers. This view shows the addition
of new nodes when they are not supposed to join. Figure J.2 shows the number of
nodes in every moment during the experiment. In this case, the red circles are the
number of nodes positioned for this experiment (our nodes) and the blue squares
are the total number of nodes. There are two intervals of half an hour where the
control of the list of peers is almost total and another one where it is completely
total, however, there are always new nodes joining. According to the our expected
results new nodes should not join. This fact is explained in later experiments.

The number of the rest of nodes increases and decreases several times (there
is even an interval of time when they are zero). This proves that the existence
of other nodes containing list of peers is not due to a high expiration time or a
lack of expiration of peers in their list. The reason is probably that peers send
announcements to nodes which are not the closest.

J.3. RESULTS 59

Figura J.1. Size of list of peers in nodes containing it. Red circles are our nodes enabled for this
experiment and blue squares lines are the rest.

Figura J.2. Number of nodes. The red circles are the number of nodes enabled for this experiment
and the blue squares are the total.

Apéndice K

Experimento 5 - Announcements desde
el punto de vista del anunciante

Due to the results obtained in the experiment 4 (where it has not been possible to
get the total control of a list of peers in any case), this experiment seeks the reason
in the behavior of some of the most popular BitTorrent clients. This experiment
studies the distance to the info hash of nodes where some clients choose to announce.
The results obtained in the experiment 4 are probably due to some clients which do
not respect the design rules. This experiment tries to identify those clients misusing
the network.

K.1 Expected results
Every DHT client should announce itself in a set of the closest nodes to
the info hash (three nodes according to [7] and eight nodes according to [20]).

K.2 Experiment definition
• BitTorrent clients used: UTorrent, KTorrent and BitSpirit.

• Info hashes used per client: 8.

• Data to measure: distance to the info hash of nodes containing list of peers
as well as of those chosen for the announcement.

The tool parse_announcements has been used for this experiment.

K.3 Results
The results of this experiment are presented in Table K.1, Table K.2 and Table K.3
(the info hashes used are different in every client). They are not enough to extract

61

62
APÉNDICE K. EXPERIMENTO 5 - ANNOUNCEMENTS DESDE EL PUNTO DE

VISTA DEL ANUNCIANTE

a pattern of how these clients choose the nodes to announce but it is possible to
assert two facts:

• There are clients which are not announcing in three nodes as they should
(according to the specifications). In the most of the cases UTorrent announces
itself in three nodes but BitSpirit and KTorrent announce themselves in more
than three nodes the most of the times.

• There are clients which do not announce themselves only in the closest nodes.
UTorrent seems to announce itself in the three closest nodes. BitSpirit an-
nounces itself in more than three nodes but those nodes where it announces
itself might be the closest to the info hash. It is almost sure that KTorrent
is not choosing the closest nodes to the info hash to announce itself. Even
though it announces itself in some nodes which seem to be the closest, it also
announces itself in some nodes far from the info hash (later experiments show
that it is almost impossible that those nodes KTorrent chooses for the an-
nouncement are the closest). In some cases it announces itself in nodes with
distance 155 or 152 to the info hash, it is almost impossible that do not exist
closer nodes. The nodes KTorrent chooses for the announcements could be
those providing nodes in the lookup, but this is not sure.

In the results obtained using UTorrent we can observe one case where it sends 5
announcements, we do not know the reason of this behavior.

It would be interesting to do a complete analysis of the behavior of the most
popular clients using the DHT and describing how they actually behave. The re-
sults we have obtained are just an approach of their actual behavior.

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 134, 138, 139, 139 138, 138, 139
IH2 136, 137, 139, 139, 140 136, 137, 139
IH3 131, 137, 138, 138, 138 136, 137, 139
IH4 136, 138, 139 139, 140, 140
IH5 135, 139, 140 135, 135, 139
IH6 138, 138, 138 138, 138, 138, 139, 140
IH7 140, 140 138, 139, 140
IH8 138, 138, 139, 140, 140,

141, 141
138, 138, 139

Tabla K.1. Nodes where UTorrent announces itself.

K.3. RESULTS 63

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 137, 138, 139, 139 136, 138, 139, 139, 139,
139

IH2 132, 137, 137, 138, 139,
139, 139, 139, 140

132, 137, 137, 138, 139,
139, 139, 139, 139, 140

IH3 (no nodes) 134, 136, 138, 139, 141
IH4 134, 137, 138, 138, 138,

138
134, 137, 138, 138, 139,
139, 140

IH5 138, 140, 140, 140, 140,
140, 140, 141, 141, 141,
141

138, 140, 140, 140, 140,
141, 141

IH6 137, 138, 138, 138, 139,
139, 139, 139, 140

138, 138, 138, 139, 139,
139

IH7 138, 139 138, 139, 139, 139, 140,
140, 140, 140, 140

IH8 137, 137, 137, 137, 137,
137, 138, 139, 140

136, 137, 137, 137, 137,
138, 139

Tabla K.2. Nodes where BitSpirit announces itself.

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 147, 149, 149, 149, 150,
150, 151, 151

147, 149, 149, 149, 150

IH2 144, 144, 147, 149, 149,
150, 150, 152, 155

144, 144, 149, 149, 150,
152

IH3 142, 145, 146, 146, 146,
146, 147, 147, 148

142, 146, 146, 146, 147,
147

IH4 147, 149, 151, 151, 152,
152, 152, 152, 153

149, 151, 151, 152, 152,
152

IH5 144, 146, 147, 147, 147,
147, 147, 148, 148, 149,
150, 150, 150, 150, 151,
152

146, 147, 147, 147, 147,
148, 149, 150, 150, 150,
152

IH6 146, 147, 148, 148, 149,
151, 152, 155

146, 147, 149, 151, 152,
155

IH7 137, 141, 142, 146 137, 142, 146
IH8 143, 145, 148, 148, 148,

148, 149, 149, 150
143, 145, 148, 148, 148,
149, 149, 150

Tabla K.3. Nodes where KTorrent announces itself.

Apéndice L

Experimento 6 - Distancia al info hash
de los nodos que contienen lista de
peers

The goal of this experiment is getting data about the distance to the info hash of
nodes containing list of peers. We have performed lookups over a large set of info
hashes. This experiment has helped to observe that there are many nodes containing
list of peers which are not (or at least it is very improbable that they are) the closest
to the info hash. It studies how the results obtained in the experiment 5 affect the
distance to the info hash of nodes containing list of peers. It also provides some data
to detect suspicious situations where nodes containing list of peers are too close to
the info hash.

L.1 Goal
This experiment tries to obtain data about the distance of nodes containing list of
peers to the info hash. We ca not give a complete estimation of how the distribution
of nodes should be since they are not always the closest, as proved in the experiment
5.

L.2 Expected results
We do not expect to find node identifiers closer than 130 to the info hash. According
to the probabilities we present in Appendix F, the probability for a random node
identifier to be closer to the info hash than 130 is 2−30.

L.3 Experiment definition
• Number of info hashes to lookup: 1200.

65

66
APÉNDICE L. EXPERIMENTO 6 - DISTANCIA AL INFO HASH DE LOS NODOS

QUE CONTIENEN LISTA DE PEERS

• Number of active nodes: 1.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to obtain: number of nodes containing list of peers for every info hash.

The tools distribution and display_distribution have been used for this experi-
ment.

L.4 Results
The result of this experiment is represented graphically in Figure L.1. The distri-
bution of nodes seems to be a normal distribution, however, we do not have enough
data to corroborate this. Also, the number of nodes of distance higher than the
average is too high. The reason may be those results obtained in the experiment 5
which prove that some clients do not announce themselves in the closest nodes. As
well, it is very probable that in the lookups we did not find all the nodes containing
list of peers. The nodes containing list of peers far from the info hash have been
found casually following a particular path to the info hash. To find all the nodes
containing list of peers we should lookup all the nodes in the DHT. We observed a
total of 10768 nodes in this experiment.

With these results, we can consider suspicious nodes closer to the info hash than
130. Also, watching at the distribution, we can detect suspicious situations. For
example, a situation of nodes containing list of peers at distances 135, 137, 140,
140, 141, 141 could be normal, but if these distances were 130, 130, 131, 131, 131,
132 it would be very suspicious since it would not fit with the distribution.

Figura L.1. Distance of nodes containing list of peers to their info hash.

Apéndice M

Experimento 7 - Porcentaje de la lista
de peers contenida en los nodos en
función de su orden de distancia al info
hash

This experiment aims to see how the lists of peers are distributed among the nodes.
It observes the percentage of the list of peers contained in every node according to
its distance order to the info hash (for example, what percentage of peers has the
closest, the second closest, etc). It is not expected that they add up to 100% because
every node announces itself several times. It studies how the results obtained in the
experiment 5 affect to the distribution of the list of peers.

M.1 Expected results
The experiment 5 shows that not all the nodes follow the rules for the design. But
the three nodes to the info hash almost always get the announcements (this is also
observed in the experiment 2). So, each one of the three closest nodes to the
info hash should contain the 100% of the list of peers. In the case the three
closest nodes are limiting the size of the list of peers to make it fit in a UDP packet,
it could be less. This experiment also checks how many peers contain those nodes
which are not part of the closest because they should not contain list of peers.

M.2 Experiment definition
• Number of info hashes to lookup: 1200.

• Number of active nodes: 1.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

67

68

APÉNDICE M. EXPERIMENTO 7 - PORCENTAJE DE LA LISTA DE PEERS
CONTENIDA EN LOS NODOS EN FUNCIÓN DE SU ORDEN DE DISTANCIA AL

INFO HASH
• Data to obtain: percentage of peers contained in every list of peers according

to the distance of the node to the info hash.

The tools complete_lookup and display_list_distribution have been used for
this experiment.

M.3 Results
Due to the possible existence of limitation in the lists of peers, we have divided
the data of this experiment in three scenarios: a general view (Figure M.1), info
hashes with 50 or less peers (Figure M.2) and info hashes with more than 50 peers
(Figure M.3). The general view is based in an observation of a total of 54766 peers
contained in the lists of peers.

Even though the most of the lists of peers are contained in the three closest
nodes in all the scenarios, there is an important part of it contained nodes which
are not the closest. In the graphic of lists of peers with 50 or less peers the peers
are more contained in the three closest nodes than in the other scenarios. In the
scenario of info hashes with more than 50 peers, probably the complete list of peers
of the closest nodes is not obtained because they may be limiting it. Anyway, there
are still some nodes containing list of peers far from the info hash, but they do
not contain a high percentage of peers. The percentage of peers seems to decrease
exponentially according to the closeness order of the nodes.

Figura M.1. Distribution of the list of peers according to the closeness to the closest node to the
info hash.

M.3. RESULTS 69

Figura M.2. Distribution of the list of peers according to the closeness to the closest node to the
info hash for info hashes with 50 or less peers.

Figura M.3. Distribution of the list of peers according to the closeness to the closest node to the
info hash for info hashes with more than 50 peers.

Apéndice N

Experimento 8 - Número de mensajes
en función del número de peers

This experiment analyzes the scalability problem we presented in Chapter 3. In
a very popular info hash, the set of the three closest nodes to the info hash may
receive a huge number of messages per second generating too much traffic. This is
a scalability problem because these nodes would have more overload than the rest
in the DHT. It would also break with the principle of all nodes having the same
responsibilities in the DHT. This experiment studies how serious this problem is
and also if it may become more serious than it is.

We have positioned a node as the closest to a popular info hash to study this
problem.

N.1 Goal

This experiment intends to quantify the traffic in a node containing the list of peers
of a popular info hash. As peers have to announce periodically (as defined in [7]),
the more popular an info hash is, the more announcements the nodes containing its
list of peers will receive. Also, these nodes will receive a similar amount of get_peers
queries. This experiment intends to quantify this traffic.

N.2 Experiment definition

• Info hashes to lookup: one with 107 peers, one with 536 peers, one with 1083
peers, one with 2287 peers, one with 4001 peers, one with 6076 peers, one
with 11228 peers, one with 14760 peers and one with 33239 peers. To know
the number of peers it has been used the estimation of peers in the torrents
of The Pirate Bay.

• Number of passive nodes: 1 for each info hash.

71

72
APÉNDICE N. EXPERIMENTO 8 - NÚMERO DE MENSAJES EN FUNCIÓN DEL

NÚMERO DE PEERS

• Time for the experiment: 11 hours and 30 minutes for every info hash starting
with all of them at the same time.

• Data to measure: number of messages received of each type.

The tools incoming_traffic and incoming_traffic_statistics have been used for
this experiment.

N.3 Results

The result of the experiment is summarized in Table N.1 and Table N.2. Figure N.1
shows the growth of the total number of messages and the number of messages in
the minute with the highest incoming traffic according to the number of peers. In
the case of info hashes with few peers, the traffic is not very high. For the info hash
with 33239 the traffic is very high. The number of ping and find nodes messages
does not seem to vary according to the number of peers, those making the difference
are the get_peers and announcement messages.

If we focus on the minute with the maximum traffic and we watch the announce-
ments and the get_peers messages in that minute for the info hash with the largest
number of peers (2924 get_peers and 1320 announcements), knowing that an in-
coming get_peers message is 94 Bytes and and announcement message is 141 Bytes
(in the application level, as it can be deducted from [20]), the incoming traffic rate
is 7.5 KB/s which is not very high, however, the outgoing traffic is higher.

If we just take into account the get_peers messages for the outgoing traffic and
just count the size of the list of peers (without the application level header), knowing
that every peer is an IP address and a port number (in total 8 Bytes), and with the
size of the list of peers limited to 50 (obviously, in this case it is always 50 due to
the high number of announcements), the outgoing traffic in that minute is 19 KB/s.
This rate is quite high just for the DHT but it can be reasonable.

In the case the list of peers were not limited to 50 peers, if we suppose that in that
minute the size of the list is 10000 (if in that single minute 1320 announcements were
received, in 30 minutes it could be even higher) and for every get_peers message the
whole list is tried to be sent (even though the IP packets are fragmented and it can
carry to errors), the outgoing traffic rate for this case would be 3.72 MB/s which
is not reasonable. So, limiting the list of peers is essential to reduce the problem of
scalability. Even though the problem still exists, fixing a maximum size in the list
of peers raises its limitations.

Bearing the incoming traffic for the most popular info hash in The Pirate Bay
with a limited list of peers has been possible. However, with a list of peers without
a fix size it would have generated a huge outgoing traffic. Anyway, if a rate is
reasonable or not depends on the context where it is used. In this case we have
supposed the usage of Internet connections for domestic users, perhaps for a mobile
device those rates are not reasonable.

N.3. RESULTS 73

The growth of the number of messages seems to be linear looking at Figure N.1,
but this experiment is not large enough to prove this. The average number of
messages is almost a straight line, enough samples would probably stabilize it. A
large set of info hashes is necessary to study the growth. It would be useful in order
to estimate the traffic in info hashes with a non existing number of peers nowadays.

We performed another experiment with an info hash having about 30000 peers
as well without limiting the list of peers. The node enabled for the experiment sent
about 9.8 GB in 20 hours just for the traffic of the DHT. We decided not to carry
out again this experiment because we received a warning from Planetlab telling us
that we had to reduce the traffic rate.

Our results prove that the problem of scalability represents a threat for the DHT.
In the future info hashes with millions of peers may exist. Projects like P2P-Next
[34] (which intends to broadcast live transmissions using P2P) can originate swarms
with millions of peers in the broadcast of international events.

In the case of redirecting the incoming traffic as a DDoS attack (by using a fake
list of peers as a response for the get_peers queries), the victim node would receive
the incoming traffic corresponding to the get_peers queries. In the case of the info
hash with 33239 peers it would be 4.5 KB/s which is not a dangerous rate. An info
hash with many more peers or many nodes doing this at the same time would be
necessary to make it serious.

74
APÉNDICE N. EXPERIMENTO 8 - NÚMERO DE MENSAJES EN FUNCIÓN DEL

NÚMERO DE PEERS

Figura N.1. Number of messages according to the number of peers.

N.3. RESULTS 75

Data IH 1 IH 2 IH 3 IH 4 IH 5
Estimation of
peers

107 536 1083 2287 4001

Experiment
duration

10h 29m 10h 30m 10h 28m 10h 32m 10h 33m

Total messages 97056 88424 143447 377758 199085
Total pings 1344 1372 1810 2656 2164
Total find
nodes

48182 31824 64217 73128 78157

Total
get_peers

37691 46610 64660 236569 105727

Total an-
nouncements

9839 8618 12760 65405 13037

Announcements
for the info
hash

7452 7097 9682 61457 9373

get_peers for
the info hash

31620 42979 57071 226960 97173

Announcements
other hashes

2387 1521 3078 3948 3664

get_peers
other hashes

6071 3631 7589 9609 8554

Maximum of
messages in
one minute

929 637 1110 1886 833

Pings in that
minute

3 1 2 8 4

Find nodes in
that minute

106 71 121 168 144

get_peers in
that minute

495 431 500 1112 478

Announcements
in that minute

325 134 487 598 207

Average mes-
sages per
minute

154 140 228 598 315

Tabla N.1. Incoming messages for different info hashes (part1).

76
APÉNDICE N. EXPERIMENTO 8 - NÚMERO DE MENSAJES EN FUNCIÓN DEL

NÚMERO DE PEERS

Data IH 6 IH 7 IH 8 IH 9
Estimation of
peers

6076 11228 14760 33239

Experiment
duration

10h 31m 10h 36m 10h 34m 10h 39m

Total messages 472562 572521 645336 1711189
Total pings 2164 5298 3961 5984
Total find
nodes

67398 115781 100675 136317

Total
get_peers

323594 381844 446312 1228111

Total an-
nouncements

79406 69598 94388 340777

Announcements
for the info
hash

75980 62384 88409 330880

get_peers for
the info hash

313825 360642 431533 1201341

Announcements
other hashes

3426 7214 5979 9897

get_peers
other hashes

9769 21202 14779 26770

Maximum of
messages in
one minute

2397 2221 2215 4502

Pings in that
minute

2 8 8 8

Find nodes in
that minute

134 254 223 250

get_peers in
that minute

1367 1746 1297 2924

Announcements
in that minute

894 213 687 1320

Average mes-
sages per
minute

749 900 1018 2678

Tabla N.2. Incoming messages for different info hashes (part2).

Apéndice O

Experimento 9 - Distancia entre info
hashes y su nodo más cercano

This experiment has measured the distance between info hashes and their closest
node. This data is is useful to detect suspicious situations where nodes are too close
to an info hash. It may provide a parameter to exclude suspicious nodes.

O.1 Expected results
As the identifier space is huge and its occupation is supposed to be very small (as
we deduce in Appendix R). We do not expect to find node identifiers closer than
130 to the info hash. According to the probabilities we present in Appendix F, the
probability for a random node identifier to be closer to the info hash than 130 is
2−30.

This experiment can not be affected by clients which do not respect the rules for
the announcements because, in all the cases, the closest node to an info hash will
contain list of peers (as show the experiment 2 and the experiment 5). Independently
of which nodes are chosen for the announcements, this experiment just focuses on
the closest.

O.2 Experiment definition
• Number of active nodes: 1.

• Number of info hashes to lookup: 1200.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to measure: distance between info hashes and their closest node.

The tools complete_lookup and display_distance_closest have been used for
this experiment.

77

78
APÉNDICE O. EXPERIMENTO 9 - DISTANCIA ENTRE INFO HASHES Y SU

NODO MÁS CERCANO

O.3 Results
The result of the experiment is summarized in Table O.1 and represented graphi-
cally in Figure O.1. The distribution seems a normal distribution but our data is
not large enough to prove it. The most typical distance is 138. As there is not any
case of nodes with distance less than 131, this data can be used as a parameter to
detect suspicious situations. If we observe a node containing a list of peers which is
closer than 131 to the info hash, this node can be ignored (exists the possibility that
a random identifier is closer than 131 to an info hash, but it is very improbable. It
does not matter if the node is ignored in this case), excluding by this way suspicious
nodes (only nodes in relation with that info hash will exclude it. The rest of the
DHT will treat it as a normal node, so it will not be excluded from the DHT).

Distance Number of times
131 1 (0.11%)
132 6 (0.67%)
133 14 (1.55%)
134 26 (2.88%)
135 63 (6.98%)
136 124 (13.75%)
137 188 (20.84%)
138 227 (25.17%)
139 146 (16.19%)
140 69 (7.65%)
141 28 (3.10%)
142 7 (0.78%)
143 2 (0.22%)
144 1 (0.11%)

Tabla O.1. Distance of the closest node to the info hash to the info hash.

O.3. RESULTS 79

Figura O.1. Distance of the closest node to the info hash to the info hash.

Apéndice P

Diferencia de mensajes y
almacenamiento entre Kademlia y
Mainline DHT

Figure P.1 and Figure P.2 show the difference between a STORE query in Kadem-
lia and an ANNOUNCE_PEER query in Mainline DHT. Figure P.3 and Fig-
ure P.4 show the difference between a FIND_VALUE query in Kademlia and a
GET_PEERS query in Mainline DHT.

Figura P.1. Kademlia STORE query.

81

82
APÉNDICE P. DIFERENCIA DE MENSAJES Y ALMACENAMIENTO ENTRE

KADEMLIA Y MAINLINE DHT

Figura P.2. Mainline DHT ANNOUNCE_PEER query.

Figura P.3. Kademlia GET_VALUE query.

83

Figura P.4. Mainline DHT GET_PEERS query.

Apéndice Q

Desarrollo de las herramientas

This appendix is complemented with Appendix T which explains the methodology
used. It’s recommended to read Appendix T before this.

In this appendix we present the development of the tools and we give an overview
of their usage. All our tools have been developed using the standalone library
kadtracker (explained in Appendix T). The main reason to use kadtracker is that
we had direct contact with the developers, however, there are other reasons why we
have decided to use it. In this appendix we present all the reasons why we have
used kadtracker instead of other choices.

Q.1 Requirement of active tools

This thesis consists on an experimental view of a part of Mainline DHT based on
the analysis we present in Chapter 3. Part of the analysis we presented consists on
studying different data obtained in a lookup in Mainline DHT. By analyzing this
data, we can study the behavior of a set of nodes getting a global view of a part of
the DHT.

Q.1.1 Choices

An important part of the data to analyze in the experiments can be obtained by
looking up an info hash in the DHT. Any Mainline DHT client could perform a
lookup over an info hash. Some other experiments required lookups as well but
also other information like the identifiers of nodes providing list of peers or their
distance to the info hash.

Using a Mainline DHT client to obtain this data was not easy since they do
not usually provide the data we needed in the user interface. Furthermore, in this
thesis, watching the data was not enough, we had to process. So, a Mainline DHT
client had to be modified again in order to log this data.

85

86 APÉNDICE Q. DESARROLLO DE LAS HERRAMIENTAS

Q.1.2 Final choice

Kadtracker offered a very easy interface to do this operation and it lacks of a user
interface since it is a standalone library. Getting and processing the data we needed
by modifying another client would have been a harder task.

Q.2 Requirement of passive tools

This thesis claims to check some possible vulnerabilities in Mainline DHT. The first
requirement to test the vulnerabilities was collecting data from a node close to an
info hash, this is a common point in all of them. Also, some experiment of profiling
needs to pick up information from a node containing list of peers.

From the existing closest nodes to an info hash we could collect some data but
there is some other data that we could not. The total traffic generated in this kind
of nodes could not be studied unless they were ours. Also, we could not choose how
far the closest nodes to the info hash were. We had to study the behavior of nodes
from different distances to the info hash, it would be impossible to do that without
adding new nodes in the DHT. Then, for our experiments, we had to add new nodes
to the DHT.

Q.2.1 Choices

We could have used any Mainline DHT client to position a node in the DHT, but
clients choose a random identifier, so its position in the DHT would be random. It
would have made impossible to choose an info hash in order to contain its list of
peers. Then, we had to modify any Mainline DHT to choose its identifier.

Q.2.2 Final choice

Among all the available Mainline DHT clients to modify, we chose kadtracker for
the reasons explained in Appendix T. We modified it to choose its identifier, but
also some data had to be logged from its incoming and outgoing packets. To test the
scalability problem, we had to know the number of messages generated and their
type. We could have obtained this data by using a tool to capture the network
traffic (like Wireshark [19]). We discarded this choice because it would have taken
more time than modifying kadtracker.

The decision was modifying kadtracker to log this data itself. It was easy to find
the code where the incoming messages were received and the outgoing messages were
sent. These parts of the code were modified to log the data we needed (without
modifying any functionality).

Q.3. MODIFYING KADTRACKER 87

Q.3 Modifying kadtracker

In this thesis, the goal is not changing the functionality of the DHT client (mainly
because it has to follow the protocol). Only three modifications have been done in
the passive mode:

• Choice of the node identifier. Instead of letting the client to choose its identi-
fier randomly, the option to choose the identifier when the client is started has
been added. But, instead of applying for the identifier (which can be quite
tricky to calculate), an info hash and the log distance the node has to be from
it must be provided. This is an easy way to position nodes as close to an info
hash as wanted (otherwise the calculation should be made in advance).

• Censorship list. When a get_peers query is received, the node checks a list
with IP addresses contained in a file. If the querier’s IP address is contained
in this list, an empty list of peers is returned.

• Limit in the size of the list of peers. This change was made when it was
observed that, when the list of peers grew up to more than 50 peers, it did
not fit in a UDP packet. At the same time it was observed that many clients
returned always lists of 50 or less peers. It was decided to limit the list of peers
to the last 50 announcements. This patch has been integrated in kadtracker.

The passive node with these modifications has been called censor. The active
node has not had any functional modification, this node has been called observer.
Using these clients, in every experiment one or both of them have been modified
properly to obtain the wished results. These modifications do not affect to any func-
tionality, they have consisted on logging that data of interest for the experiments.

For the most of the experiments, another complementary tool has been developed
to display the information graphically or summarized.

Q.4 Set of tools

The most of the experiments use a pair of tools: one to log information (called
logger) and one to process the logged information (called displayer). The loggers
can be split in two groups: active loggers and passive loggers. Active loggers are
those which are a modification of the observer (providing the functionality of an
active node). Passive loggers are those which are a modification of the censor
(providing the functionality of a passive node).

Table Q.1 presents a classification of the pairs of tools with passive loggers and
Table Q.2 the same with active loggers. A summary of the purpose of every pair of
tools is given in both the tables. Each pair of tools has been used for one experiment.
The functionalities a tool needs arose in the definition of the experiments.

88 APÉNDICE Q. DESARROLLO DE LAS HERRAMIENTAS

Q.5 Tool parse_announcements
We developed another tool independent from the others. The purpose of this tool
is showing those nodes where a DHT client chooses to announce itself. All the
BitTorrent clients have to respect the message format, and their network traffic
can be captured in a pcap file (using, for example, Wireshark [19]). The tool
parse_announcements processes this pcap files and, for every lookup, shows the
distance to the info hash of nodes containing list of peers for it and the distance to
the info hash of nodes where the client chooses to announce.

This tool parses a pcap file providing an interface to get the fields of the ap-
plication level packets. The packet format in the application level is explained in
Appendix C.

Logger Displayer Result
censor - Positions a node with

a given distance to an
info hash in the DHT.
It is the base to de-
velop the other pas-
sive loggers.

announcements display_announcements_distance Displays graphically
the number of an-
nouncements received
in a node according to
its distance to the info
hash. It requires a log
for every distance to
display.

announcements display_freq_announcements Calculates the average
frequency of the an-
nouncements for every
node announcing and
displays the statistics
of these frequencies.

incoming_traffic display_incoming_traffic_statistics Summarizes the re-
ceived traffic in a node
showing the number
of received messages
for every type of mes-
sage.

Tabla Q.1. Tools with passive loggers and their purpose.

Q.5. TOOL PARSE_ANNOUNCEMENTS 89

Logger Displayer Result
complete_lookup display_list_distribution Displays how the list

of peers is distributed
among all the peers
containing it for the
given info hashes.

complete_lookup display_distance_closest Displays the average
distance between the
given info hashes and
their closest node.

complete_lookup display_average_number_nodes Displays the average
number of nodes con-
taining list of peers for
the given info hashes.

distribution display_distribution Displays the distance
between the given info
hashes and all nodes
containing list of peers
for them.

evolution display_evolution Displays how a list of
peers grows for every
node containing list of
peers for a given info
hash.

Tabla Q.2. Tools with active loggers and their purpose.

Apéndice R

Ocupación del espacio de identificadores

Positioning new nodes closer to an info hash than the closest one should be easy.
According to the estimation of nodes made in [7], the number of nodes in the DHT
is 1.3 million. It is a quite old estimation, supposing that nowadays it has grown
a lot and we overestimate it to 16, 000, 000 ≈ 224, and knowing that the identifier
space is 2160, the identifier space occupation would be approximately 224

2160 ≈ 2−136.
Supposing that nodes are uniformly distributed, the average space between two
consecutive nodes would be 2160

224 ≈ 2136.
Even though since that estimation the number of nodes had grown much more

or the distribution of nodes were not uniform, this average distance would still be
huge. In conclusion, distance between an info hash and its closest node is supposed
to be big enough to add there millions of nodes.

91

Apéndice S

Trabajos relacionados

In this appendix we present some work about BitTorrent and Mainline DHT related
with this thesis.

S.1 Profiling work

An important part of this thesis is profiling Mainline DHT. We profile some parts
of the DHT by analyzing it and checking the analysis empirically. Profiling helps
to understand more in depth how the DHT works looking at its actual behavior. It
also helps both to design some experiments and to understand their results.

In the specifications of Mainline DHT, there are two parameters which are not
very clear. The design of Kademlia explains that values should be stored in the k
closest nodes to a key (k is a free choice parameter) and fixes the expiration time in
one hour (but it says it can be modified for optimizations). In the specifications of
Mainline DHT k is equal to 8 (as asserted in [20]) and values are lists of peers, so, the
eight closest nodes to the info hash should be chosen for the announcements. But,
Crosby and Wallach [7], which analyze both Mainline DHT and Azureus DHT, say
explicitly that nodes in Mainline DHT announce in the three closest nodes to the
info hash. Crosby and Wallach [7] also assert that the frequency of announcements
is 30 minutes. The expiration time fits with the design of Kademlia since in explains
that it can be modified. However, both the definitions in the number of nodes chosen
for the announcements are inconsistent. Nevertheless, the value of these parameters
does not affect too much the rest of the analysis we made.

Existing profiling works may help to design experiments and to do some estima-
tions. For example, as we have explained in this section, [7] is the base for some
of our hypothesis. This document also gives a global profiling of different aspects
of Mainline DHT like an estimation of the total number of nodes. Although this
is a quite old data, it has been useful to calculate the approximate occupation of
the identifier space that we present in Chapter 3 (although since the estimation
the number of nodes may have changed). In [15], some aspects of Azureus DHT
are profiled, this DHT has many properties in common with Mainline DHT, some

93

94 APÉNDICE S. TRABAJOS RELACIONADOS

measurements in Azureus DHT may have a similar value in Mainline DHT.
Yu and Fang et al. [16] study the identifier distribution in KAD DHT (the DHT

of eMule [17]). KAD is also a DHT based on Kademlia and its node identifiers are
also supposed to be random, any hypothesis about KAD can be interesting to check
in Mainline DHT since they are similar DHTs. This work is very related with this
thesis since the identifier distribution is an important part of our work. In the work
of Yu and Fang et al. [16] it is interesting to watch that the repetition of node
identifiers is higher than it should. It could be interesting to study the repetition of
identifiers in Mainline DHT, it could influence in the analysis of nodes distribution.
In general, the knowledge of other DHTs can help to find solutions to problems and
arise questions that could be interesting to investigate in Mainline DHT.

S.2 Vulnerabilities

The analysis of the possible vulnerabilities we present in Chapter 3 is mainly de-
ducted from [2] and supported by [20] and [7]. Although, as said before, they have
inconsistent definitions of some parameters, both of them still support our analy-
sis. The differences they have only change the resources necessary to carry out the
vulnerabilities, and this difference is not very relevant. In these documents there is
not any documented mechanism to prevent the vulnerabilities we study. However,
it could exist any implicit mechanism to prevent them.

The most of the work about vulnerabilities in this thesis is possible due to the
possibility of choosing an identifier in Mainline DHT. In the specifications of Main-
line DHT there is no any mention to this possibility, it is just said that node iden-
tifiers should be random. Also, it is not possible to know if a single identifier is
random or not.

Azureus DHT is the other DHT of BitTorrent based on Kademlia. Even though
it is not used in this thesis, its policies about node identifiers are very interesting
in the context of this thesis. In [24] it is explained how node identifiers in Azureus
DHT are a hash of the IP address of the node. This provides a mechanism to find
nodes an identifier not calculates as a hash of the IP address. This mechanism gave
us the idea to study what the implications of choosing an identifier in Mainline
DHT are since non random identifiers can not be detected. It should be studied if
there is any reason why Mainline DHT chooses random identifiers.

S.3 Documented vulnerabilities

One of the goals of this thesis is studying some possible vulnerabilities of Mainline
DHT. Mainline DHT is something recent inside BitTorrent. The BitTorrent protocol
has several documented vulnerabilities like those presented in [11], where they show
some vulnerabilities of the protocol, [12], where they use the protocol to perform
DDoS attacks, [13], where they exploit the protocol to achieve higher download rates

S.3. DOCUMENTED VULNERABILITIES 95

and [14], where they show another exploit to get higher rates without contributing
by uploading.

For Mainline DHT, there are not many documents studying vulnerabilities. Any
document studying a vulnerability (either for BitTorrent, for Mainline DHT or for
another DHT) is useful in order to see how a vulnerability has to be analyzed and
tested. Also by reading about vulnerabilities in other DHTs we can wonder if it
would possible in Mainline DHT.

Apéndice T

Metodología

This appendix presents and justifies the decisions we made for the development of
the tools and the design of the experiments. Performing the experiments could be
achieved by different ways, we had to make some decisions for their execution. For
each decision, we evaluate the different alternatives and we try to choose the most
simple and efficient. We also identify the implications the methodology may have.
This appendix is complemented with Appendix Q, which motivates the development
of the tools and explains their usage.

T.1 Choice of technologies and resources
In Chapter 3 we present a theoretical analysis about Mainline DHT. We needed
to check experimentally this analysis throughout some experiments. These exper-
iments required a way to interact with Mainline DHT. We couldn’t find any tool
which offered the functionalities we were looking for (we explain these requirements
in Appendix Q).

We decided to develop a set of tools. We did it using a Python [33] library
which implements a Mainline DHT client called kadtracker provided by the TSLab
department of KTH. Another choice to develop the tools was modifying any existing
BitTorrent client since a lot of clients are Open Source. The reasons why we chose
kadtracker are mainly two:

1. Kadtracker is implemented in Python. BitTorrent was originally designed to
be implemented in Python, aspects like the message format (described in [20])
are described using native Python data structures (as lists, dictionaries, etc).
Using Python as programming language makes easier to understand and to
implement the protocol.

2. Kadtracker is a standalone library. This fact makes easier to modify it and
adapt it as a tool. If we adapted another BitTorrent client for our purposes,
we should locate the specific part of code necessary to modify among all the
functionalities.

97

98 APÉNDICE T. METODOLOGÍA

Kadtracker uses the version 2.5 of Python, so, a the version 2.5 or a later version
is needed to run it properly. In the development of our tools we did not add any
functionality which needed a more recent version of Python.

Some experiments required the usage of a large set of nodes (up to about 30
nodes). As nodes in the DHT may be identified by their IP address, for this kind
of experiments it was not enough to run the set of nodes in one computer. We
needed a way to run several nodes behind different IP addresses. We have used
the network Planetlab [3] to run this kind of experiments. Planetlab is a set of
computers located all around the world used to perform experiments using up to
hundreds of machines at the same time.

T.1.1 Planetlab
Planetlab is a set of computers (called nodes) located all around the world used
for investigation purposes. We got access to it throughout KTH. We had access to
hundreds of computers but we did not use more than 30 in any case.

All the nodes in Planetlab use a Unix based operating system. Furthermore, all
of them have the version 2.5 or later of Python, which is the one needed to run out
tools. Nodes in Planetlab have been chosen trying to have them distributed around
the world.

Nodes in Planetlab are supposed to stay alive during the experiments, but we
have not monitored if they face some problems during the execution of the experi-
ments like connectivity problems or system reboots.

T.2 Kadtracker
Kadtracker is a standalone library which implements a Mainline DHT client. It
offers two possible behaviors for a node in the DHT:

• Passive mode: the node stays in the DHT and responds the queries it receives.

• Active mode: the node performs lookups. Given an info hash, the node gets
its list of peers by finding those nodes containing it (in case they exist).

Every execution of a node must include the passive mode even if the node has
also an active behavior. Every node has a responsibility in the storage of lists of
peers and routing, this tasks must not be avoided. If they were avoided perhaps the
results obtained could be altered due to the lack of participation in the DHT. In
general, we tried to influence as less as possible in the normal behavior of the DHT
in order not to alter the results of the experiments.

T.3 Experiments
In order to check experimentally the analysis presented in Chapter 3, we had to
carry out some experiments. To do these experiments we developed a set of tools

T.3. EXPERIMENTS 99

modifying kadtracker. Once the tools were ready we executed the experiments. All
the experiments have been performed using Planetlab nodes.

T.3.1 Limitation in the list of peers
Something which may affect the results of the experiments is the limitation of the list
of peers to 50 peers as maximum. We discovered that a list of peers with more than
50 peers does not fit in a UDP packet. Many nodes we observed in the experiments
also limit their list of peers to 50 peers. We modified kadtracker so when a list
of peers grows up to more than 50 peers, the 50 most recent announcements are
returned. This policy intends to keep in the list of peers the highest amount of alive
nodes. Other policies could have been used like returning random peers.

We found some nodes returning list of peers with more than 50 peers. This
implies an IP packet fragmentation and many times we observed that the packets
were not received properly. We do not know if the decision of limiting the list of
peers may affect somehow to the behavior of the nodes and so to the results of the
experiments.

T.3.2 Types of experiments
The experiments can be classified into three types:

• Active experiments: are those where we generate lookup queries over an info
hash. We use an active node to execute them.

• Passive experiments: are those where we positioned a node in the DHT and
we analyze the incoming queries it gets. We use a passive node to execute
them.

• Active-passive experiments: are a combination of the other two kinds. We
position a passive node in the DHT to analyze the incoming queries and an
active node to send queries to the other.

In some passive experiments we position a node as the closest to an info hash.
They are supposed to be the closest to the info hash all the time during the ex-
periment, however, we did not check it explicitly. Nodes in the DHT are supposed
to choose their identifier randomly. The probability that a node with a random
identifier is closer to the info hash than our nodes is very reduced according to the
results we obtained in a experiment where we measured the distance between info
hashes and their closest nodes.

The passive experiments get an observation of an altered scenario, this means
that the data is collected by taking part in the scenario and not just by observing it.
Moreover, the nodes used for this experiment chose their own identifier. However,
there was not any other possible choice to watch the behavior of a node containing a
given list of peers. Any BitTorrent client with a random identifier may contain a list
of peers but to contain the list of peers we wanted we had to choose the identifier.

100 APÉNDICE T. METODOLOGÍA

Some of the active experiments which collect data from the DHT perform 10
lookups (1 every 5 seconds) over each info hash of a large set of info hashes. This
strategy may seem an aggressive way to obtain the information because a single
lookup could be enough. The reason to use this strategy is trying to give time to all
the nodes to respond and finding all the possible nodes containing the list of peers.
Some experiments did not find all the nodes containing list of peers in the first
lookup, sometimes more than one lookup was necessary. In our active experiments
it is important to find all (or at least, the most of) the nodes containing list of peers.
It is still possible that in any case we did not find all the nodes containing list of
peers.

T.3.3 Validity of experiments

When we tested the problem of censorship, no IP addresses were censored. It
consisted on trying to control a whole list of peers. Perhaps, if we had censored
the access to the list of peers to all the querying nodes, the result would have been
different.

The reason why we did not carry out censorship is that we were not able to
control a whole list of peers in any case. In case we had been able, we would have
narrowed in the problem studying different scenarios of the problem and different
usages of controlling a list of peers.

A similar case is the case of DDoS attacks. In this case we have demonstrated
that it can be serious since the incoming traffic rate in a node containing list of
peers may become huge, however, we did not provide fake lists of peers to perform
a DDoS attack. We do not know if the nodes asking for peers would have performed
the DDoS attacks but we do not know any reason why they would not since they
can not know in advance if a list of peers is fake or not.

T.4 Information management
Most of the experiments use two tools to obtain the information: a Mainline DHT
client modified to log information and a displayer to process the logged data. None of
the modifications of the clients to log information implies a functional modification.
The steps to carry out this kind of experiments are the following (also shown in
Figure T.1):

1. The modified client generates an output containing the logged data we want
to process.

2. A displayer program parses the log file, obtains the results and shows them
graphically or summarized.

The reasons why the experiments are carried out using two programs and a log
file instead of doing everything in a single program are the following:

T.5. THE LOG DISTANCE METRIC 101

Figura T.1. Schema of how the tools manage the information.

• Maximizing the independence of the DHT client with the experiment.

• Some experiments require a lot of time (up to a couple of days). If there is any
problem why a test should stop, it is preferable to have some results stored
instead of losing everything and running the experiment again.

• In case of finding an error in a displayer program, this mechanism avoids the
necessity of doing the experiment again.

• Interest on keeping the log file because, in the future, from the same exper-
iment, more information may be extracted, so, in that case, the experiment
should not be repeated again.

• The displayer programs can be used as a back end for logs generated using
other DHTs based on Kademlia.

T.5 The log distance metric
As we explained in Chapter 2, distance between an info hash and a node identifier
is measured as the bitwise XOR of both 160-bit sequences. As distances can be very
large numbers, since they belong to the interval [0, 2160), in this thesis distances are
measured using log distance.

XOR distance is the result of the bitwise XOR of two 160-bit sequences. Log
distance performs the same operation, however, the result is not the number itself
but the position (counting from the right and starting from zero) of the first bit
which is 1 (counting from the left). For example, if the distance between two
sequences is in the interval [230,231), the log distance will be 30. We show some
examples of log distance using 8-bit identifiers in Figure T.2.

Using log distance, distances will always belong to the interval [−1, 159] which is
much easier to manage than distances in the interval [0, 2160) obtained using XOR
distance. We consider the special case of log distance equal to -1 when the XOR
distance is equal to 0.

102 APÉNDICE T. METODOLOGÍA

Figura T.2. Examples of log distance using 8-bit identifiers.

Apéndice U

Planificación

This thesis had planned the following phases:

• Literature study: understanding the background and context of the work.

• Theoretical analysis: analyzing the results we expected to find with the ex-
periments.

• Understanding kadtracker: reading the code of the Mainline DHT client to
understand how it works and how we could modify it.

• First contact with the DHT: doing some modifications in the Mainline DHT
client interacting with the DHT in order to understand better how the client
worked.

• Experiments of censorship and DDoS attacks: checking experimentally the
problems of censorship and DDoS attacks.

• Analysis of results: once the results about censorship and DDoS attacks were
obtained, we had to analyze the results collected.

• Experiments of scalability: quantifying experimentally the problem of scala-
bility.

• Analysis of results: once the results of scalability were obtained, we had to
analyze the results collected.

• Summary of global results: summarizing all the results from a global context.

• Report writing: preparing the final report of the thesis.

• Presentation: preparing the final presentation of the thesis.

Table U.1 shows the estimated planning and Table U.1 shows the real time used
for the thesis. The work took longer than expected.

103

104 APÉNDICE U. PLANIFICACIÓN

Activity Weeks
Literature Study 5 weeks
Theoretical analysis 1 week
Understanding kadtracker 2 weeks
First contact with the DHT 2 weeks
Experiments of censorship and DDoS attacks 2.5 weeks
Analysis of results 1 week
Experiments of scalability 2.5 weeks
Analysis of results 1 week
Summary of global results 1 week
Report writing 6 weeks
Presentation 1 week
Estimated hours per week 25 hours
Total weeks 25 weeks
Total estimated hours 625 hours

Tabla U.1. Planning

We realized that in the experiments of censorship we were not obtaining the
results we expected so, we stopped those experiments. Then, we studied the envi-
ronment of the problem by studying other parameters experimentally in order to
design better the experiments. Once we did this, we observed that censorship was
not possible. In order to find the reason of these results, we checked the behavior of
different clients and we observed that some clients were not behaving as expected.
That explained why censorship was not possible. This result explained the reason
of some unexpected behaviors we had observed, and then, we analyzed how they
influenced the DHT. Finally we studied the problem of scalability.

It also took longer than expected writing the report. As a scientific work, jus-
tifying an motivating the ideas was harder than expected. It was different than
writing the report of a thesis about software development.

105

Activity Weeks
Literature study 5 weeks
Theoretical analysis 1 week
Understanding kadtracker 2 weeks
First contact with the DHT 1 weeks
First phase of experiments of censorship and DDoS attacks 1 week
Experiments of the environment 2 weeks
Second phase of experiments of censorship and DDoS attacks 2 weeks
Looking for a reason of the results and influence of different
behaviors of clients in the DHT

2 weeks

Analysis of results 1 week
Experiments of scalability 2 weeks
Analysis of results 1 week
Summary of global results 1 week
Report writing 9 weeks
Presentation 1 week
Estimated hours per week 25 hours
Total weeks 31 weeks
Total estimated hours 775 hours

Tabla U.2. Real work

Bibliografía

[1] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economic
of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[2] P. Maymounkov and D Mazières. Kademlia: A peer-to-peer Information Sys-
tem Based on the XOR Metric. In proceedings of IPTPS, Cambridge, MA,
IEEE, March 2002.

[3] Planetlab. http://www.planet-lab.org/ (last visited May 2010).

[4] R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classification
of Peer-to-Peer Architectures and Applications. In proceedings of the First
International Conference on Peer-to-Peer Computing, IEEE, 2002.

[5] Stoica and Ion et al. Chord: A Scalable Peer-to-peer Lookup Service for Inter-
net Applications. In proceedings of SIGCOMM (ACM Press New York, NY,
USA), 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg, Ger-
many, November 2001.

[7] S. Crosby and D. Wallach. An Analysis of BitTorrent’s Two Kademlia-Based
DHTs. In department of Computer Science, Rice University, Houston, Texas,
USA, 2007.

[8] The Pirate Bay. http://thepiratebay.org/ (last visited May 2010).

[9] Mininova. http://www.mininova.org/ (last visited May 2010).

[10] A. Legout, G. Urvoy-Kellerand and P. Michiardi. Understanding bittorrent:
An experimental perspective. Technical Report (inria-00000156, version 3 - 9
November 2005), INRIA. Sophia Antipolis, France, November 2005.

[11] K. El Defrawy, M. Gjoka and A. Markopoulou. BotTorrent: misusing BitTor-
rent to launch DDoS attacks. In proceedings of the 3rd USENIX workshop on
Steps to reducing unwanted traffic on the internet, p.1-6, Santa Clara, CA,
June 18, 2007.

107

108 BIBLIOGRAFÍA

[12] K. Cheung Sia. DDoS Vulnerability Analysis of Bit-Torrent Protocol. In UCLA
Tech. Report, Spring 2006.

[13] N. Liogkas, R. Nelson, E. Kohler and L. Zhang. Exploiting BitTorrent for fun
(but not profit). In Proc. of IPTPS, 2006.

[14] M. Sirivianos, J. H. Park, R. Chen and X. Yang. Free-riding in BitTorrent
Networks with the Large View Exploit. In Proc. of IPTPS, Bellevue, WA,
February 2007.

[15] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy and T. Anderson. Profiling
a million user dht. In proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, San Diego, California, USA, October 24-26, 2007.

[16] J. Yu, C. Fang, J. Xu, E. C. Chang and Z. Li. ID repetition in KAD. In Citeseer,
2010.

[17] eMule. http://www.emule-project.net/ (last visited May 2010).

[18] RFC 4251. The Secure Shell (SSH) Protocol Architecture.
http://www.ietf.org/rfc/rfc4251.txt.

[19] Wireshark. http://www.wireshark.org/ (last visited May 2010).

[20] BEP0005: DHT Protocol - http://www.bittorrent.org/beps/bep_0005.html
(last visited May 2010).

[21] BEP0020: Peer ID convention. http://www.bittorrent.org/beps/bep_0020.html
(last visited June 2010).

[22] Mainline - http://www.bittorrent.com/ (last visited June 2010).

[23] Azureus - http://azureus.sourceforge.net/ (last visited June 2010).

[24] M. Steiner and E. W. Biersack. Crawling Azureus. In Technical Report RR-
08-233, 2008.

[25] RFC3174. US Secure Hash Algorithm 1 (SHA1).
http://www.ietf.org/rfc/rfc3174.txt.

[26] UTorrent. http://www.utorrent.com/ (last visited June 2010).

[27] KTorrent. http://ktorrent.org/ (last visited June 2010).

[28] BitSpirit - http://bitspirit.uptodown.com (last visited June 2010).

[29] BEP0003: The BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep_0003.html (last visited June 2010).

109

[30] D. Wu, P.Dhungel, X. Hei, C. Zhang, K. W. RossUnderstanding Peer Exchange
in BitTorrent Systems. In Proc. of IEEE International Conference on Peer-to-
Peer Computing (IEEE P2P), Delft, Netherlands, Aug 2010.

[31] I. Kelényi and J. K. Nurminen. Energy aspects of peer cooperation - Measure-
ments with a mobile DHT system. In Proc. Cognitive and Cooperative Wireless
Networks Workshop in the IEEE International Conference on Communications
Beĳing, China, 2008, pp. 164 - 168, 2008.

[32] Ares. http://aresgalaxy.sourceforge.net/ (last visited June 2010).

[33] Python. http://www.python.org/ (last visited June 2010).

[34] P2P-Next. http://www.p2p-next.org/ (last visited June 2010).

Exploring Mainline DHT: an experimental
approach

ISMAEL SAAD GARCÍA

Master Thesis at TSLab
Supervisor: Raúl Jiménez
Examiner: Björn Knutsson

iii

Abstract

BitTorrent is nowadays one of the most popular object sharing P2P net-
works, it has millions of users. It provides an efficient way to distribute objects
to a large number of clients, encouraging clients who download an object to
share it with the rest.

To obtain peers to exchange an object with, recent versions of BitTorrent
start using a DHT. The DHT is a mechanism to distribute the storage of the
lists of peers participating in the distribution of the object among all the nodes
participating in the P2P network. BitTorrent has two DHTs: Mainline DHT
and Azureus DHT. We study Mainline DHT.

We study the actual generation, distribution and obtaining of lists of peers
in Mainline DHT. We make a theoretical analysis of this part of the DHT and
we compare it with the actual behavior. We obtain an experimental profile
where we identify unexpected situations and some cases where the performance
of the DHT may be improved.

Furthermore, according to our analysis, there are situations where the DHT
is vulnerable, making possible: censorship by denying the access to the object
exchange, routing traffic as a DDoS attack and a problem of scalability. We
check these problems experimentally and document them. The analysis helped
us to design the experiments which show a robustness of the DHT against
censorship and, on the other hand, a serious problem of scalability.

We also present a set of tools we have developed to interact with the DHT
in order to carry out the experiments. These tools are Open Source and they
can be used to do further investigations.

Acknowledgments

I want to thank my supervisor Raúl Jiménez and my examiner Björn Knutsson for
all their help during the development of this thesis. I also thank my colleague Sara
Dar for her support.

Thanks to my father Mahmoud Saad, my mother Teresa García and my brother
Carlos Saad who where always supporting me from the distance.

Finally, thanks to all the friends who were next to me during this fantastic time:
David, Javier, Daniel C, Miguel, Peio, Silvana, Luigi, Elena, Daniel W, Jens, Sebas-
tian, Alexandra, Paolo, Victor, Adrian, Marta, Marcos, Tony, Xandra, Luis, Pablo,
Beatriz and José.

v

Contents

Acknowledgments v

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Background summary . 1
1.2 Scope . 2
1.3 Goals . 3
1.4 Motivation . 4
1.5 Structure . 4

2 Background 5
2.1 Distributed systems . 5
2.2 P2P networks and DHTs . 7
2.3 Kademlia . 7

2.3.1 XOR distance . 7
2.3.2 Finding nodes . 8
2.3.3 Messages . 8
2.3.4 Routing table . 8

2.4 BitTorrent . 9
2.4.1 How BitTorrent works . 9

2.5 Mainline DHT . 10
2.5.1 Implementation of Kademlia 11
2.5.2 Lists of peers as values . 11
2.5.3 Messages . 11
2.5.4 Other issues . 12

3 Analysis 15
3.1 Frequency of announcements . 15

3.1.1 Expected results . 15

vi

Contents vii

3.2 Number of nodes containing list of peers 16
3.2.1 Expected results . 16

3.3 Positioning a node in Mainline DHT to contain a list of peers 17
3.3.1 Analysis . 18

3.4 Getting the control of a whole list of peers 18
3.4.1 Analysis . 18
3.4.2 Consequence . 19

3.5 Scalability of nodes containing lists of peers 20
3.5.1 Analysis . 21
3.5.2 Consequence . 21

4 Related work 23
4.1 Profiling work . 23
4.2 Vulnerabilities . 24
4.3 Documented vulnerabilities . 25

5 Methodology 27
5.1 Choice of technologies and resources 27

5.1.1 Planetlab . 28
5.2 Kadtracker . 28
5.3 Experiments . 29

5.3.1 Limitation in the list of peers 29
5.3.2 Types of experiments . 29
5.3.3 Validity of experiments . 30

5.4 Information management . 31
5.5 The log distance metric . 31

6 Tools development 33
6.1 Requirement of active tools . 33

6.1.1 Choices . 33
6.1.2 Final choice . 34

6.2 Requirement of passive tools . 34
6.2.1 Choices . 34
6.2.2 Final choice . 34

6.3 Modifying kadtracker . 35
6.4 Set of tools . 35
6.5 Tool parse_announcements . 36

7 Experiments 37
7.1 Experiment 1 - Number of nodes tracking a given swarm 37

7.1.1 Expected results . 37
7.1.2 Experiment definition . 38
7.1.3 Results . 38

viii Contents

7.2 Experiment 2 - Growth of a list of peers according to the distance of
the nodes containing it to the info hash 41
7.2.1 Expected results . 41
7.2.2 Experiment definition . 41
7.2.3 Results . 42

7.3 Experiment 3 - Frequency of announcements 45
7.3.1 Expected results . 45
7.3.2 Experiment definition . 45
7.3.3 Results . 46

7.4 Experiment 4 - Attempt of controlling a whole list of peers 49
7.4.1 Expected results . 49
7.4.2 Experiment definition . 49
7.4.3 Results . 50

7.5 Experiment 5 - Announcements from announcer’s point of view . . . 52
7.5.1 Expected results . 52
7.5.2 Experiment definition . 52
7.5.3 Results . 52

7.6 Experiment 6 - Distance to the info hash of nodes containing list of
peers . 55
7.6.1 Goal . 55
7.6.2 Expected results . 55
7.6.3 Experiment definition . 55
7.6.4 Results . 55

7.7 Experiment 7 - Percentage of the list of peers contained in nodes
according to their distance order to the info hash 57
7.7.1 Expected results . 57
7.7.2 Experiment definition . 57
7.7.3 Results . 57

7.8 Experiment 8 - Number of messages according to the number of peers 60
7.8.1 Goal . 60
7.8.2 Experiment definition . 60
7.8.3 Results . 60

7.9 Experiment 9 - Distance between info hashes and their closest node 65
7.9.1 Expected results . 65
7.9.2 Experiment definition . 65
7.9.3 Results . 65

8 Analysis of results 67
8.1 Profiling work . 67
8.2 Censorship . 68
8.3 Impact of nodes which do not follow the specifications of the DHT . 69
8.4 Scalability and DDoS attacks . 69
8.5 Detection of suspicious nodes . 70

Contents ix

9 Future work 71
9.1 Improvement of the tools and larger experiments 71
9.2 Study of anomalous behaviors . 72
9.3 Management of the list of peers . 72
9.4 Deeper study of the DHT . 73
9.5 Further study of the vulnerabilities 73

9.5.1 Sketching a solution for the problem of scalability 74
9.5.2 Preventing DDoS attacks . 74

9.6 Long term modifications . 75

10 Conclusion 77
10.1 Goal achievement . 77
10.2 Contribution . 78

10.2.1 Results . 78
10.2.2 Partial results needing more work 78
10.2.3 Observations requiring further studies 79

10.3 General conclusion . 79

A Glossary of terms 81

B Acronyms 83

C Mainline packet format 85

D Obtaining of a large set of info hashes 91

E Experiments with a set of nodes 93

F Probabilities of identifiers 95

G Identifier space occupation 97

H Classification of tools 99

Bibliography 103

List of Figures

2.1 Classic client server architecture. 5
2.2 Replicated server architecture. 6
2.3 P2P networks decentralized architecture. 6
2.4 How to obtain an object in BitTorrent. 10
2.5 Kademlia STORE query. 13
2.6 Mainline DHT ANNOUNCE_PEER query. 13
2.7 Kademlia GET_VALUE query. 14
2.8 Mainline DHT GET_PEERS query. 14

3.1 Nodes containing the list of peers. 17
3.2 Nodes containing the list of peers after the addition of new nodes. Square

shapes represent the new nodes. 19

5.1 Schema of how the tools manage the information. 31
5.2 Examples of log distance using 8-bit identifiers. 32

7.1 Number of nodes containing list of peers. 39
7.2 Announcements in the first scenario. 43
7.3 Announcements in the second scenario. 44
7.4 Announcements in the third scenario. 44
7.5 Frequency of announcements. 47
7.6 Size of list of peers in nodes containing it. Red circles are our nodes

enabled for this experiment and blue squares lines are the rest. 50
7.7 Number of nodes. The red circles are the number of nodes enabled for

this experiment and the blue squares are the total. 51
7.8 Distance of nodes containing list of peers to their info hash. 56
7.9 Distribution of the list of peers according to the closeness to the closest

node to the info hash. 58
7.10 Distribution of the list of peers according to the closeness to the closest

node to the info hash for info hashes with 50 or less peers. 59
7.11 Distribution of the list of peers according to the closeness to the closest

node to the info hash for info hashes with more than 50 peers. 59
7.12 Number of messages according to the number of peers. 62

x

List of Figures xi

7.13 Distance of the closest node to the info hash to the info hash. 66

List of Tables

2.1 Examples of XOR distance using 8-bit identifiers (part 1). 7
2.2 Examples of XOR distance using 8-bit identifiers (part 2) 8

7.1 Number of nodes containing list of peers. 40
7.2 Frequency of announcements. 48
7.3 Nodes where UTorrent announces itself. 53
7.4 Nodes where BitSpirit announces itself. 54
7.5 Nodes where KTorrent announces itself. 54
7.6 Incoming messages for different info hashes (part1). 63
7.7 Incoming messages for different info hashes (part2). 64
7.8 Distance of the closest node to the info hash to the info hash. 66

D.1 Big set of info hashes and their number of peers. 92

H.1 Tools with passive loggers and their purpose. 100
H.2 Tools with active loggers and their purpose. 101

xii

Chapter 1

Introduction

P2P (Peer-to-Peer) networks are a kind of network where all the participants have
the same responsibilities. BitTorrent is nowadays one of the most popular P2P
networks, it has millions of users. This thesis explores the actual generation, dis-
tribution and obtaining of values in a DHT (Distributed Hash Table) of the P2P
network BitTorrent [1]. We present a theoretical analysis of that part of the DHT
and we compare it with its actual behavior.

The theoretical analysis arises some vulnerabilities of the DHT about: censor-
ship of contents, using the DHT to peform DDoS attacks and a problem of scala-
bility. We have tested them empirically. In P2P networks tasks are supposed to be
equally distributed among all the participants, the vulnerabilities we study imply
a lack of equality. So, discovering vulnerabilities in a P2P network like BitTorrent
can improve the performance and security of the software in benefit of millions of
users.

1.1 Background summary

P2P (Peer-to-Peer) networks are a kind of network which intend to lack of cen-
tralized entities, so, their service responsibility is distributed among all the entities
participating on them. BitTorrent is one of the most popular P2P networks nowa-
days, it has millions of users. Its purpose is providing a distributed, scalable and
fault tolerant mechanism to share files (like software, movies, music, etc).

In BitTorrent, files are obtained following three steps: discovering the file, get-
ting nodes to download the file from (called peers) and, finally, starting the file
download as well as uploading to other peers the already downloaded parts of the
file. A list of peers of the file is provided by a centralized server (called tracker).

The existence of a tracker as a centralized entity may carry to problems of
scalability and fault tolerance. To avoid the necessity of trackers, recent versions of

1

2 CHAPTER 1. INTRODUCTION

BitTorrent tend to be trackerless by delegating this task little by little to a DHT
(Distributed Hash Table). BitTorrent has two DHTs which implement Kademlia [2]
(which is the design of a DHT): Mainline DHT (developved by [22]) and Azureus
DHT (developed by [23]). This thesis studies Mainline DHT.

Mainline DHT is a distributed mechanism to manage the lists of peers down-
loading or containing files. Each file has an identifier called info hash. When a node
starts downloading a file, it sends periodically a query (called announcement) to a
set of the closest nodes to the info hash in order to be included in the list of peers.
Therefore, the nodes which store the list of peers are chosen deterministically.

When a node wants to obtain the list of peers of a file, it asks the closest nodes
to the info hash of the file about closer nodes to the info hash until it finds those
nodes containing the list of peers.

1.2 Scope

The first part of this thesis is a profiling of a part of the DHT. When a node starts
downloading a file, sends periodically an announcement to a set of the closest nodes
to the info hash of the file in order to be included in the list of peers. Focusing on
this fact we study different aspects about it: how many nodes contain a list of peers,
how many nodes are chosen for the announcement and how they are chosen, what
is the frequency of the announcements, how lists of peers are distributed among
nodes and the distance to the info hash of nodes containing list of peers.

The profiling work is firstly analyzed theoretically, we present an analysis based
on the specifications and design of Mainline DHT. The analysis has to be checked
empirically because, even though it can provide a reasonable approach, the actual
behavior of the DHT may not match with the analysis for two reasons:

• The coexistence of different clients in the DHT: Mainline DHT is an open
P2P network, then, anyone can develop a software to join it. There are several
implementations of Mainline DHT clients coexisting, so, if they do not behave
following the specifications, they may influence the actual behavior of the
DHT.

• The popularity of some info hashes: info hashes with a large amount of peers
may imply an imbalance in the DHT (an info hash with 10 peers may influence
the DHT in a different way than a info hash with a million of peers). This
imbalance may alter the behavior of the DHT.

The second part of the thesis is studying some possible vulnerabilities deducted
in the analysis. Again, the analysis points out they are real but it is necessary to
check them empirically since, due to the reasons explained previously in this section,
the actual behavior may be different from the theoretical.

1.3. GOALS 3

All the vulnerabilities are a different point of view of the same scenario. As we
explained before, the list of peers of a file is stored in a deterministic set of nodes
(the closest to the info hash). Nodes are able to choose its position in the DHT
(as we explain in Chapter 3), then, they can position itself close to an info hash to
contain the list of peers of a file. This possibility may carry the following problems:

• Censorship: if a set of nodes agrees to position close to an info hash, they may
become the only entity responsible for the storage of the list of peers of the
file. By controlling the list of peers of an info hash, they can deny the access
to the file download to other nodes.

• DDoS attacks: a list of peers is the IP address and a TCP port of one or more
computers. Nodes asking for peers will query the IP addresses they find in the
list. So, if a node contains the list of peers of a very popular file, by providing
a fake list of peers, it can redirect all the incoming queries which ask it for
peers routing them as a DDoS attack.

• Scalability: if a node contains the list of peers of a very popular file, the
incoming and outgoing traffic it will have may be huge. In the DHT there
are millions of nodes so, if a file becomes very popular, its list of peers will be
huge and, consequently, the number of queries the nodes containing its list of
peers will receive will be huge as well.

We also present a set of tools we have developed in order to study the actual
behavior of the DHT empirically as well as the possible vulnerabilities. These tools
are Open Source so anyone can use it for any research related with Mainline DHT.

1.3 Goals

The goals this thesis intends to reach are the following:

• Comparing the theoretical analysis with the actual behavior of Mainline DHT.

• Providing an experimental profile of the actual generation, distribution and
obtaining of the lists of peers in Mainline DHT.

• Providing a set of tools to monitor Mainline DHT.

• Exploring the problem of censorship in Mainline DHT.

• Quantifying the problems of scalability and DDoS attacks in Mainline DHT.

4 CHAPTER 1. INTRODUCTION

1.4 Motivation

The main motivation of this thesis is exploring Mainline DHT. With the exploration,
we expect to get some long term results which are also a motivation for this work.
These expected long term results are:

• Finding situations where the performance of the DHT may be improved.

• Providing a profile of an unexplored area of the DHT in order to contribute
in future investigations.

• Ensuring equality in the distribution of tasks among nodes in the DHT.

• Improving the scalability in the DHT.

• Improving the security of the DHT.

1.5 Structure

This thesis is organized with the following structure: Chapter 2 explains the con-
text of the thesis, describing the concepts necessary to understand it. Chapter 3
presents all the theoretical analysis which is tested with the experiments. Chapter
4 references the work related with this thesis and all the texts which can help to
understand it better. Chapter 5 defines the methodology used for the experiments
and justifies the decisions made. Chapter 6 classifies all the tools developed and
explains their purpose. Chapter 7 shows the results obtained in the experiments.
Chapter 8 summarizes all the results of the experiments giving a global view of all of
them. Chapter 9 presents all the interesting facts found during this thesis requiring
more work. Chapter 10 explains the conclusion of the work.

Chapter 2

Background

This chapter presents the context of this thesis and all the previous knowledge
needed to understand our work. It gives an overview of the global context narrowing
in the specific points which we have studied.

2.1 Distributed systems

The classic model of service providing between computers has traditionally been
the existence of one server and several clients (as shown in Figure 2.1). This model
is used in several services. In those cases where a large number of clients apply for
the same service, this model can carry to problems of robustness and scalability. If
a server providing a service stops working or there are too many clients overloading
it, the service may become unavailable.

Figure 2.1. Classic client server architecture.

A way to prevent problems of robustness and scalability is by replicating the

5

6 CHAPTER 2. BACKGROUND

server, creating then a redundancy in the service (as shown in Figure 2.2). This so-
lution improves the robustness and scalability but still may have the same problems.
The existence of centralized entities usually implies a limit in the robustness and
scalability since they always can fail or being overloaded (even though redundancy
reduces that possibility).

Figure 2.2. Replicated server architecture.

One of the main goals of P2P (Peer-to-Peer) networks is addressing problems of
robustness and scalability by proposing a completely different architecture. They
avoid or minimize the existence of centralized entities by distributing the service
tasks among all the participants. Figure 2.3 shows the architecture of a P2P net-
works without centralized entities.

Figure 2.3. P2P networks decentralized architecture.

2.2. P2P NETWORKS AND DHTS 7

2.2 P2P networks and DHTs

As defined in [4], "a P2P (Peer-to-Peer) network is a kind of network where par-
ticipants share a part of their own hardware resources. These shared resources are
necessary to provide the service and content offered by the network. Due to this dis-
tribution, P2P networks do not require the intermediation or support of a global cen-
tralized server or authority". In P2P networks, service responsibility is distributed
among all the participants.

A DHT (Distributed Hash Table) is a mechanism to store and retrieve values
indexed by keys. This task is distributed among all the participating entities. Every
node is responsible for the storage of a set of values whose key is in a given range.
A DHT provides a mechanism to find the node or the set of nodes responsible for
the storage of a value using its key. The methodology used to manage the storage
of the (key, value) pairs is the main point in the design of a DHT. There are several
designs of DHTs among which it is possible to distinguish Chord [5], Pastry [6] or
Kademlia [2]. Kademlia is the one studied in this thesis.

2.3 Kademlia

Kademlia is a design of a DHT. On it, every value has a key associated to it which
is a 160-bit identifier. Besides, every node chooses a random 160-bit identifier when
joins the DHT. A value is stored in a set of the closest nodes to its key (this property
is one of the most important design aspects to understand the work presented in
this thesis since it is the base for part of the analysis we present in Chapter 3).

2.3.1 XOR distance

Distance between a node identifier and a key is measured as the bitwise XOR
function of both of the 160-bit sequences. Also, the XOR metric is symmetric, so
distance(x, y) = distance(y, x). Table 2.1 and Table 2.2 show some examples of
XOR distance supposing 8-bit identifiers.

The XOR metric is unidirectional because, for any given node x and distance
z > 0, there is exactly one point y such that distance(x, y) = z (as explained in [2]).

X 00000001 (1) 00001010 (10) 00000001 (1)
Y 00000010 (2) 00010100 (20) 11001000 (200)
XOR distance 00000011 (3) 00011110 (30) 11001001 (201)

Table 2.1. Examples of XOR distance using 8-bit identifiers (part 1).

8 CHAPTER 2. BACKGROUND

X 11111010 (250) 11111111 (255) 00000001 (1)
Y 11111111 (255) 00000001 (1) 11111111 (255)
XOR distance 00000101 (5) 11111110 (254) 11111110 (254)

Table 2.2. Examples of XOR distance using 8-bit identifiers (part 2)

2.3.2 Finding nodes

When a node wants to find those nodes where a value is supposed to be stored
(either to retrieve it or to send it for its storage), it has to know the value’s key.
Using this key, the node asks iteratively to the closest known nodes to the key
about closer nodes until it finds the closest nodes to the key. As the XOR metric
is unidirectional, all the lookups for the same key converge along the same path,
regardless the original node.

2.3.3 Messages

All the messages in Kademlia are sent using the UDP protocol. Kademlia consists
of four query types:

• PING: probes a node to see if it is online.

• FIND_NODE: takes a key and returns the IP address, UDP port and node
identifier of the k closest nodes to the key.

• STORE: instructs a node to store a key and its value.

• FIND_VALUE: behaves like FIND_NODE with one exception, if it is found
a node that had previously received a STORE query for the key, it returns
the stored value.

To store a (key, value) pair, a node finds the k closest nodes to the key and sends
them a STORE query. Besides, each node has to republish periodically the (key,
value) pairs it has every hour because the nodes responsible for its storage will
remove it after a fix time (which is one hour). We clarify that it is not the same to
have a (key, value) pair than being responsible for its storage.

2.3.4 Routing table

Every node in the DHT manages a routing table where information about a set of
known nodes is stored and updated. The routing table stores, for each 0 ≤ i < 160,
the IP address, UDP port and node identifier of k (this parameter is a free choice

2.4. BITTORRENT 9

in the implementation) nodes of distance in the interval [2i, 2i+1) from itself in
what they call k-bucket. This table is updated with information contained in the
incoming messages and sending ping messages to nodes on it. It tries to keep on it
those nodes which have been alive for longer.

2.4 BitTorrent

BitTorrent [1] is an object-sharing P2P network (objects are, in most of cases, files
like software, movies, music, etc). Its goal is providing an efficient way to distribute
objects to a large number of clients, encouraging clients who download an object to
share it with the rest. A client participating in the exchange of an object is called
peer of the object. When a client wants to download an object it needs a torrent
file (which is a file containing meta-data about the object). It can be downloaded,
for example, from a web server (some of the largest torrent distributors are The
Pirate Bay [8] or Mininova [9]). Once the torrent file is obtained, the client can
start downloading the object.

2.4.1 How BitTorrent works

In order to obtain an object in BitTorrent, it’s necessary to follow these steps:

1. Content discovery: getting a torrent file with metadata about the object.

2. Peer discovery: getting peers to exchange the object with.

3. Data exchange: exchanging the object with the peers.

The first setp in the object obtaining is getting a torrent file. The file is not
obtained using BitTorrent, it has to be downloaded, for example, from a web server.
Part of the data contained in a torrent file is optionally the URL of a tracker (which
is a server that assists in the communication between peers). The client uses this link
to ask the tracker for peers of the object it wants to obtain. The client establishes
a communication with the peers and it starts downloading the object, as well as
providing to other clients the chunks of the object it has. The object exchange is
performed using the BitTorrent protocol, which is explained in [1].

The peer discovery was originally performed by asking the tracker for peers,
however, trackers, as a centralized entity, may suppose a problem of scalability and
fault tolerance (even though they do not take part in the data exchange). In recent
versions of BitTorrent, the peer discovery is being delegated little by little to a
DHT. Figure 2.4 summarizes all the process of the object obtaining.

10 CHAPTER 2. BACKGROUND

Figure 2.4. How to obtain an object in BitTorrent.

The BitTorrent protocol (which is specified in [29]) is in charge of the object
exchange. The BitTorrent protocol encourages peers to upload the parts of the
objects they have. This protocol uses TCP protocol for the communications.

The set of all the peers sharing an object is called swarm. When a peer joins
the object exchange it is said that it joins the swarm. Peers can be classified in two
types: seeders and leechers. Seeders are those peers containing a complete copy of
the object. Leechers are those peers who are downloading an object and do not have
the 100% of it. Besides, each peer knows some other peers and they can exchange
the peers they know, [30] explains this mechanism.

There are several BitTorrent clients. A client is a software implementing the
BitTorrent protocol. Most of the clients implement both the BitTorrent protocol
and the DHT protocol. Although they usually still use trackers to obtain peers,
most of clients have also compatibility with the DHT and they use it to get more
peers. Some of the most popular BitTorrent clients are: UTorrent [26], BitSpirit
[27] and KTorrent [28].

2.5 Mainline DHT

There are two DHTs in BitTorrent and both of them are an implementation of
Kademlia, they are Mainline DHT (developed by [22]) and Azureus DHT (developed
by [23]). This thesis studies Mainline DHT.

2.5. MAINLINE DHT 11

2.5.1 Implementation of Kademlia

As an implementation of Kademlia, the most of the aspects in the design of Kademlia
are used in Mainline DHT, however, some details (specified in [20]) are added in
the implementation. They are the following:

• Keys are a 160-bit SHA-1 hash [25] derived from the object called info hash.
Using SHA-1 hashes ensures that it is almost impossible that two info hashes
have the same value. Beides, hash functions guarantee uniform distribution
by definition. The info hash is contained in the torrent file of the object.

• It chooses k = 8 (as we explained before, k is in Kademlia the number of nodes
stored in a k-bucket as well as the number of nodes chosen to send them a
STORE query)

• The expiration time is 30 minutes instead of one hour, as explained in [7] (the
design of Kademlia [2] specifies that this time can be modified to optimize the
DHT).

2.5.2 Lists of peers as values

In Mainline DHT, values are lists of peers, so, what provides a lookup in Mainline
DHT is a list of peers (IP address and TCP port for the BitTorrent protocol for
every peer). With this list, it is possible to join to the data exchange starting a
communication with the peers by using the BitTorrent protocol. The retrieval of a
list of peers is called get_peers lookup.

Having list of peers as values means that a node does not query another in order
to store a value, but to be included in the list of peers of the object when it joins the
data exchange. In this case, we say that this node is announcing and the query is
called announcement or announce peer. Announcements have as well an expiration
time.

Although lists of peers are values too, they are dynamic because they grow
and decrease with the announcements and their expirations. Figure 2.5 and Fig-
ure 2.6 show the difference between a STORE query in Kademlia and an AN-
NOUNCE_PEER query in Mainline DHT. Figure 2.7 and Figure 2.8 show the
difference between a FIND_VALUE query in Kademlia and a GET_PEERS query
in Mainline DHT.

2.5.3 Messages

Like Kademlia, Mainline DHT consists of four very similar query types (the packet
format of these queries is explained in Appendix C and defined in [20]):

12 CHAPTER 2. BACKGROUND

• PING: probes a node to see if it is online.

• FIND_NODE: takes an info hash and returns the IP address, UDP port and
node identifier of the k(8) closest nodes to the info hash.

• ANNOUNCE_PEER: instructs a node to be added in the list of peers of an
info hash.

• GET_PEERS: behaves like FIND_NODE with one exception, if it is found
a node that had previously received any ANNOUNCE_PEER query for the
info hash, it returns the list of peers.

2.5.4 Other issues

There is an important fact to highlight, the design of Kademlia [2] says explicitly
that values are stored in the k closest nodes to the key. In the specifications of
Mainline DHT [20], it says that chooses k = 8. According to this, in Mainline
DHT, peers should announce in the eight closest nodes to the info hash (because
the document does not say explicitly anything about the number of nodes where
a peer should announce). However, Crosby and Wallach [7] say that in Mainline
DHT nodes announce in the three closest nodes to the info hash. These definitions
are inconsistent between them. We have checked this parameter experimentally in
order to know its value.

2.5. MAINLINE DHT 13

Figure 2.5. Kademlia STORE query.

Figure 2.6. Mainline DHT ANNOUNCE_PEER query.

14 CHAPTER 2. BACKGROUND

Figure 2.7. Kademlia GET_VALUE query.

Figure 2.8. Mainline DHT GET_PEERS query.

Chapter 3

Analysis

This chapter presents the theoretical analysis that we check empirically in Chapter
7.

3.1 Frequency of announcements

The expiration time of an announcement must be the same value than its frequency
so that when it expires it is sent again. In the specifications of Mainline DHT this
value is not explicitly defined, but [7] explains that the expiration time is 30 minutes
(although the design of Kademlia [2] fixes it in one hour, it also says that it can be
modified for optimizations).

By checking this value we can compare the analysis with the actual behavior of
the DHT. Also, with this data it has been easier to design some experiments and
detect unexpected behaviors in nodes announcing.

Checking the frequency of announcements is also useful to check if nodes are
coordinated. For example, if a node has a frequency of 30 minutes and sends an
announcement to a node whose frequency is 15 minutes, as the expiration time
should be the same than the frequency of the announcements, the peer would not
be in the list of peers 15 of every 30 minutes. Knowing the expiration time of the
most of clients can give a value of frequency to help peers to stay in the lists of
peers.

3.1.1 Expected results

The design of Kademlia [2] says that the expiration time of a STORE query is one
hour, however, this value can be modified for optimizations. Crosby and Wallach
[7] say explicitly that this value is 30 minutes. The specifications of Mainline DHT

15

16 CHAPTER 3. ANALYSIS

[20] does not specify any value. This information points out that the expiration
time as well as the frequency of announcements is 30 minutes.

3.2 Number of nodes containing list of peers

According to Crosby and Wallach [7], a peer announces itself in the three closest
nodes to the info hash of the object. However, according to the design of Kademlia
[2], a node stores a value in the k closest nodes to the key (in Mainline DHT values
are the lists of peers). The specifications of Mainline DHT [20] specify that, on
it, k is equal to 8 and they do not specify explicitly the number of nodes where
a node should announce itself. These definitions are inconsistent between them.
Independently of the number of nodes for the announcement, both [7] and [2] say
that nodes announce in the closest nodes to the info hash.

We have checked this parameter experimentally in order to check the analysis
and to clear it, we present the results in Chapter 7. For the analysis presented in
this chapter we have assumed that the value of the parameter is three. Checking
this value has also been useful to design the experiment of censorship. If we know
the number of nodes containing a list of peers, the number of nodes necessary to
censor an info hash would be the same.

3.2.1 Expected results

Crosby and Wallach [7] say that nodes announce themselves in the three closest
nodes to the info hash, then, the number of nodes containing list of peers of an
info hash should be three. It could be less than three nodes in the case that one
of the nodes containing list of peers leaves the DHT and the peers have not still
announced themselves again in another node. More than three nodes containing list
of peers may exist if one new node joins the DHT closer to the info hash than those
containing the list of peers, then, new announcements will income to this node and
not anymore to the farthest one of the others.

In any case, as we have said, the number of nodes containing list of peers
should be a number close to three due to the expiration and the periodicity of
the announcements. Then, the average number of nodes containing a list of peers
should be a number close to three. Also, as all the info hashes should have about
three nodes containing its list of peers, the standard deviation in this value should
be a small number. If nodes containing list of peers stay alive for a long time this
number should be exactly three (as shown in Figure 3.1).

3.3. POSITIONING A NODE IN MAINLINE DHT TO CONTAIN A LIST OF PEERS17

Figure 3.1. Nodes containing the list of peers.

3.3 Positioning a node in Mainline DHT to contain a list
of peers

The specifications of Mainline DHT [20] explain that nodes have to choose a random
160-bit identifier. The identifier a node has will position it in a given part of
the DHT. This position in the DHT is relative, this means that depending on its
identifier, it will be closer or farther to other node identifiers and info hashes. The
design of Kademlia [2] explains that, because node identifiers are randomly chosen,
it follows that highly non-uniform distributions are unlikely.

Info hashes also follow a uniform distribution. They are a SHA-1 hash of the
content of the object. By definition, a hash function must ensure a uniform distri-
bution in its values. If all the nodes choose their identifier randomly, they will not
know in advance which lists of peers they will contain.

Azureus DHT (developed by [23]) is another DHT for BitTorrent based on
Kademlia, it has many characteristics in common with Mainline DHT. However,
in Azureus DHT, identifiers are not chosen randomly but as a hash of the IP ad-
dress of the node (as explained in [24]). Using this mechanism, it is possible to
know if a node has calculated its identifier as a hash of its IP address or not. If the
hash of the IP address is calculated, it can be compared to the identifier provided
by the node. If they match, the node has calculated its identifier as a hash of its IP
address, otherwise it has not. Nodes with an identifier which is not a hash of their
IP address can be ignored, so no communication would be established with them.
By doing this, only nodes with an identifier which is a hash of their IP address
would stay in the DHT.

In Mainline DHT, as identifiers are random, it is not possible to check if they
are have been chosen randomly or not.

18 CHAPTER 3. ANALYSIS

3.3.1 Analysis

As Mainline DHT is an open network and any client can join, the software to
implement the DHT protocol can be created by anyone. The choice of the identifier
can be modified in a BitTorrent client to choose any non random identifier. Info
hashes of objects are known since they are contained in the torrent files and they
are immutable. By this way, a node can choose an identifier in order to be close to
an info hash.

By performing a lookup over an info hash, the set of nodes containing the list of
peers of an object can be found. These nodes are supposed to be the closest to the
info hash (as defined in [2]). In the response to the lookup, they provide a list of
peers but also information about themselves as their identifier (the message format
of Mainline DHT messages is explained in Appendix C and defined in [20]).

By knowing the distance between an info hash and its closest nodes,
and being able to choose the identifier for a node, the node can be
positioned in the DHT closer to an info hash than the nodes containing
its list of peers. The node will start receiving announcements and having
a list of peers. At the same time, the farthest node to the info hash containing
list of peers will not receive announcements anymore, so its list of peers will start
decreasing when the announcements start expiring until it is empty. Then, it should
be possible to add one node to the DHT and make it contain a list of peers of a
given info hash.

An important part of the experimental work of this thesis requires to collect
some data from a node containing the list of peers of an info hash. According to
our analysis it is possible to make a node to contain any list of peers.

3.4 Getting the control of a whole list of peers

According to the analysis presented in this chapter, the number of nodes containing
list of peers of an info hash should be about three. Also, the frequency and the
expiration time of announcements should be 30 minutes. Furthermore, a node is
able to choose its identifier and position itself anywhere in the DHT.

3.4.1 Analysis

Taking into account the analysis explained in the previous sections of this chapter,
it should be possible to control a whole list of peers by following these steps:

1. Getting the info hash of the object contained in the torrent file of the object.

3.4. GETTING THE CONTROL OF A WHOLE LIST OF PEERS 19

2. Performing a lookup and finding those nodes containing a list of peers (they
should be about three).

3. Looking at their distance to the info hash and positioning three new nodes
closer to the info hash than the closest one (the situation would be as shown
in Figure 3.2)

4. Waiting the expiration time (which should be 30 minutes).

Figure 3.2. Nodes containing the list of peers after the addition of new nodes. Square shapes
represent the new nodes.

After following these steps, peers would not announce themselves anymore in
the nodes they were announcing but in the new nodes (since they would be in that
moment the three closest nodes). Then, three nodes positioned as the closest
to an info hash will be the only entities responsible for the storage of the
list of peers after the expiration time. The space between the info hash and
its closest nodes should be large enough to add there millions of nodes as we show
in Appendix G.

3.4.2 Consequence

According to the analysis, a set of nodes can control a whole list of peers. This fact
gives the possibility to these nodes of performing a bad usage of the list of peers.
This fact has some implications which may be harmful for the DHT.

3.4.2.1 Responsibility

A set of nodes controlling a whole list of peers of an object would be the only entity
responsible to let other nodes to join the swarm. When a node wants to obtain the
peers of an object, it performs a lookup in the DHT. The lookup will always carry to

20 CHAPTER 3. ANALYSIS

the nodes containing the list of peers since all lookups over the same key converge
along the same path, regardless the original node (as demonstrated in [2]). The
node will query the nodes containing the list of peers in order to join the swarm.
There is not any documented mechanism to detect suspicious nodes so the querier
can not know if those nodes have a random identifier.

3.4.2.2 Censorship

When the nodes controlling a list of peers receive get_peers queries, they may agree
to reply an empty or a fake list of peers to some nodes. If they do that, it would be
impossible to join the swarm for new nodes wanting to download the object. This
would be considered censorship due to the denial of access to the object.

It is important to clarify that a tracker may exist containing also the list of
peers for the object, if this is the case, nodes which want to join the swarm can do
it using the tracker.

3.4.2.3 DDoS attacks

There is another possible malicious usage of a list of peers. The scenario for this
vulnerability is the same than in the problem of censorship. The difference is that
it is not necessary to control the whole list of peers, one or more nodes containing
a list of peers are necessary. This malicious usage is, again, providing a fake list of
peers to the get_peers queries. If this list of peers contains an IP address to attack
and the info hash is popular (i.e. it has a lot of peers), it would perform a silent
DDoS attack (since the guilty node would not send any message to the victim IP
address).

Nodes querying for peers can not know if the address and port provided in
the list of peers corresponds to a BitTorrent client. They will send a BitTorrent
message to the victim IP address even though it corresponds to a computer without
a BitTorrent client.

If the set of nodes is positioned close to a very popular info hash, thousands of
queries can be redirected to the victim IP address. It would be hard to identify
the origin of the attack because the responsible (the nodes providing a fake list of
peers) would not take part directly in the attack.

3.5 Scalability of nodes containing lists of peers

Supposing that all the nodes in the DHT choose their identifier randomly, they
should be uniformly distributed in the DHT (as explained in [2]). The info hashes
will also be uniformly distributed in the DHT since uniformness is a property hash

3.5. SCALABILITY OF NODES CONTAINING LISTS OF PEERS 21

functions must ensure by definition. So, a node can not know in advance which
lists of peers it is going to contain. In the previous section, we have presented the
problem of using incoming queries as a DDoS attack. To do this, an info hash with
a large amount of peers is necessary. However, if no nodes are positioned close the
info hash to contain its list of peers, these incoming queries will get to the closest
nodes in that moment.

3.5.1 Analysis

This problem is another point of view of redirecting queries using the list of peers to
perform DDoS attacks. The DDoS attacks were performed when a node contained
the list of peers of a popular info hash and responded a fake list of peers to the
get_peers queries. In this case, our goal is studying how the incoming and outgoing
traffic generated in a node containing the list of peers of a very popular info hash
grows according to the number of peers.

The nodes containing the list of peers of a very popular info hash would be a
small set of nodes responsible of the storage of a huge list of peers (for example, in
The Pirate Bay [8], for every info hash stored there, there is an estimation of peers.
We could find info hashes with up to 33000 peers). These huge lists of peers can
carry to a problem of scalability. If three nodes are responsible for the storage of
a list of peers with 33000 peers, they may not be able to bear the high traffic rate
generated.

In nodes containing the list of peers of a popular info hash, the number of
announcements and get_peers queries per second can be huge making impossible
that the nodes containing the list of peers serve all the requests. The incoming
traffic for these nodes could be really high and the outgoing traffic even higher
(because find nodes and get_peers responds are pretty bigger than their queries
since they have to attach a list of nodes or peers as shown in the format message in
[20]).

3.5.2 Consequence

The imbalance generated by this problem would have three important consequences.

3.5.2.1 Equality

Although nodes were able to bear the traffic rate due to the list of peers of a very
popular info hash, this problem would break with the property of equality in P2P
networks. Nodes close to a very popular info hash would have a traffic rate due to
the DHT much higher than the most of the rest of nodes. The DHT is an effort to

22 CHAPTER 3. ANALYSIS

index the lists of peers by the equal collaboration of all the nodes, if some nodes
have a much higher traffic, the effort is not equally distributed among all the nodes.

Furthermore, a node can not know in advance which lists of peers it is going to
contain. This can suppose a high unexpected traffic in that nodes due to an info
hash that probably not related with it. We have studied this problem empirically
from a node close to a very popular info hash to observe the incoming traffic, the
result is presented in Chapter 7.

3.5.2.2 Impact

This problem may be serious in domestic Internet connections, but there are some
cases were it can be more critical. Currently, there are some studies of DHT clients
in mobile devices. These studies try to consume the less possible energy by having
a low traffic rate (like the work presented in [31]). These devices may not to be
able to face this problem. Also, the cost of some Internet connection depends on
the traffic generated. Users may not realize about the traffic generated by the DHT
because it is not something the final users should focus on. This problem could
generate a huge unexpected Internet bill.

3.5.2.3 Future

Our studies showed that the problem of scalability is not too critical with the info
hashes we found (up to 33000 peers). However, in the future, info hashes with many
more peers may exist. For example, the project P2P-Next [34], is a project which
intends to use a P2P network to broadcast live transmissions. International events
like the Eurovision festival or the Olympic Games, which are followed by millions
of people, could imply the existence of info hashes with millions of peers.

Chapter 4

Related work

In this chapter we present some work about BitTorrent and Mainline DHT related
with this thesis.

4.1 Profiling work

An important part of this thesis is profiling Mainline DHT. We profile some parts
of the DHT by analyzing it and checking the analysis empirically. Profiling helps
to understand more in depth how the DHT works looking at its actual behavior. It
also helps both to design some experiments and to understand their results.

In the specifications of Mainline DHT, there are two parameters which are not
very clear. The design of Kademlia explains that values should be stored in the k
closest nodes to a key (k is a free choice parameter) and fixes the expiration time in
one hour (but it says it can be modified for optimizations). In the specifications of
Mainline DHT k is equal to 8 (as asserted in [20]) and values are lists of peers, so, the
eight closest nodes to the info hash should be chosen for the announcements. But,
Crosby and Wallach [7], which analyze both Mainline DHT and Azureus DHT, say
explicitly that nodes in Mainline DHT announce in the three closest nodes to the
info hash. Crosby and Wallach [7] also assert that the frequency of announcements
is 30 minutes. The expiration time fits with the design of Kademlia since in explains
that it can be modified. However, both the definitions in the number of nodes chosen
for the announcements are inconsistent. Nevertheless, the value of these parameters
does not affect too much the rest of the analysis we made.

Existing profiling works may help to design experiments and to do some esti-
mations. For example, as we have explained in this section, [7] is the base for some
of our hypothesis. This document also gives a global profiling of different aspects
of Mainline DHT like an estimation of the total number of nodes. Although this
is a quite old data, it has been useful to calculate the approximate occupation of

23

24 CHAPTER 4. RELATED WORK

the identifier space that we present in Chapter 3 (although since the estimation
the number of nodes may have changed). In [15], some aspects of Azureus DHT
are profiled, this DHT has many properties in common with Mainline DHT, some
measurements in Azureus DHT may have a similar value in Mainline DHT.

Yu and Fang et al. [16] study the identifier distribution in KAD DHT (the DHT
of eMule [17]). KAD is also a DHT based on Kademlia and its node identifiers are
also supposed to be random, any hypothesis about KAD can be interesting to check
in Mainline DHT since they are similar DHTs. This work is very related with this
thesis since the identifier distribution is an important part of our work. In the work
of Yu and Fang et al. [16] it is interesting to watch that the repetition of node
identifiers is higher than it should. It could be interesting to study the repetition of
identifiers in Mainline DHT, it could influence in the analysis of nodes distribution.
In general, the knowledge of other DHTs can help to find solutions to problems and
arise questions that could be interesting to investigate in Mainline DHT.

4.2 Vulnerabilities

The analysis of the possible vulnerabilities we present in Chapter 3 is mainly de-
ducted from [2] and supported by [20] and [7]. Although, as said before, they have
inconsistent definitions of some parameters, both of them still support our analy-
sis. The differences they have only change the resources necessary to carry out the
vulnerabilities, and this difference is not very relevant. In these documents there is
not any documented mechanism to prevent the vulnerabilities we study. However,
it could exist any implicit mechanism to prevent them.

The most of the work about vulnerabilities in this thesis is possible due to
the possibility of choosing an identifier in Mainline DHT. In the specifications of
Mainline DHT there is no any mention to this possibility, it is just said that node
identifiers should be random. Also, it is not possible to know if a single identifier is
random or not.

Azureus DHT is the other DHT of BitTorrent based on Kademlia. Even though
it is not used in this thesis, its policies about node identifiers are very interesting
in the context of this thesis. In [24] it is explained how node identifiers in Azureus
DHT are a hash of the IP address of the node. This provides a mechanism to find
nodes an identifier not calculates as a hash of the IP address. This mechanism gave
us the idea to study what the implications of choosing an identifier in Mainline
DHT are since non random identifiers can not be detected. It should be studied if
there is any reason why Mainline DHT chooses random identifiers.

4.3. DOCUMENTED VULNERABILITIES 25

4.3 Documented vulnerabilities

One of the goals of this thesis is studying some possible vulnerabilities of Mainline
DHT. Mainline DHT is something recent inside BitTorrent. The BitTorrent protocol
has several documented vulnerabilities like those presented in [11], where they show
some vulnerabilities of the protocol, [12], where they use the protocol to perform
DDoS attacks, [13], where they exploit the protocol to achieve higher download rates
and [14], where they show another exploit to get higher rates without contributing
by uploading.

For Mainline DHT, there are not many documents studying vulnerabilities. Any
document studying a vulnerability (either for BitTorrent, for Mainline DHT or for
another DHT) is useful in order to see how a vulnerability has to be analyzed and
tested. Also by reading about vulnerabilities in other DHTs we can wonder if it
would possible in Mainline DHT.

Chapter 5

Methodology

This chapter presents and justifies the decisions we made for the development of
the tools and the design of the experiments. Performing the experiments could be
achieved by different ways, we had to make some decisions for their execution. For
each decision, we evaluate the different alternatives and we try to choose the most
simple and efficient. We also identify the implications the methodology may have.
This chapter is complemented with Chapter 6, which motivates the development of
the tools and explains their usage.

5.1 Choice of technologies and resources

In Chapter 3 we present a theoretical analysis about Mainline DHT. We needed
to check experimentally this analysis throughout some experiments. These exper-
iments required a way to interact with Mainline DHT. We couldn’t find any tool
which offered the functionalities we were looking for (we explain these requirements
in Chapter 6).

We decided to develop a set of tools. We did it using a Python [33] library
which implements a Mainline DHT client called kadtracker provided by the TSLab
department of KTH. Another choice to develop the tools was modifying any existing
BitTorrent client since a lot of clients are Open Source. The reasons why we chose
kadtracker are mainly two:

1. Kadtracker is implemented in Python. BitTorrent was originally designed to
be implemented in Python, aspects like the message format (described in [20])
are described using native Python data structures (as lists, dictionaries, etc).
Using Python as programming language makes easier to understand and to
implement the protocol.

27

28 CHAPTER 5. METHODOLOGY

2. Kadtracker is a standalone library. This fact makes easier to modify it and
adapt it as a tool. If we adapted another BitTorrent client for our purposes,
we should locate the specific part of code necessary to modify among all the
functionalities.

Kadtracker uses the version 2.5 of Python, so, a the version 2.5 or a later version
is needed to run it properly. In the development of our tools we did not add any
functionality which needed a more recent version of Python.

Some experiments required the usage of a large set of nodes (up to about 30
nodes). As nodes in the DHT may be identified by their IP address, for this kind
of experiments it was not enough to run the set of nodes in one computer. We
needed a way to run several nodes behind different IP addresses. We have used
the network Planetlab [3] to run this kind of experiments. Planetlab is a set of
computers located all around the world used to perform experiments using up to
hundreds of machines at the same time.

5.1.1 Planetlab

Planetlab is a set of computers (called nodes) located all around the world used
for investigation purposes. We got access to it throughout KTH. We had access to
hundreds of computers but we did not use more than 30 in any case.

All the nodes in Planetlab use a Unix based operating system. Furthermore, all
of them have the version 2.5 or later of Python, which is the one needed to run out
tools. Nodes in Planetlab have been chosen trying to have them distributed around
the world.

Nodes in Planetlab are supposed to stay alive during the experiments, but we
have not monitored if they face some problems during the execution of the experi-
ments like connectivity problems or system reboots.

5.2 Kadtracker

Kadtracker is a standalone library which implements a Mainline DHT client. It
offers two possible behaviors for a node in the DHT:

• Passive mode: the node stays in the DHT and responds the queries it receives.

• Active mode: the node performs lookups. Given an info hash, the node gets
its list of peers by finding those nodes containing it (in case they exist).

Every execution of a node must include the passive mode even if the node has
also an active behavior. Every node has a responsibility in the storage of lists of

5.3. EXPERIMENTS 29

peers and routing, this tasks must not be avoided. If they were avoided perhaps the
results obtained could be altered due to the lack of participation in the DHT. In
general, we tried to influence as less as possible in the normal behavior of the DHT
in order not to alter the results of the experiments.

5.3 Experiments

In order to check experimentally the analysis presented in Chapter 3, we had to
carry out some experiments. To do these experiments we developed a set of tools
modifying kadtracker. Once the tools were ready we executed the experiments. All
the experiments have been performed using Planetlab nodes.

5.3.1 Limitation in the list of peers

Something which may affect the results of the experiments is the limitation of the list
of peers to 50 peers as maximum. We discovered that a list of peers with more than
50 peers does not fit in a UDP packet. Many nodes we observed in the experiments
also limit their list of peers to 50 peers. We modified kadtracker so when a list
of peers grows up to more than 50 peers, the 50 most recent announcements are
returned. This policy intends to keep in the list of peers the highest amount of alive
nodes. Other policies could have been used like returning random peers.

We found some nodes returning list of peers with more than 50 peers. This
implies an IP packet fragmentation and many times we observed that the packets
were not received properly. We do not know if the decision of limiting the list of
peers may affect somehow to the behavior of the nodes and so to the results of the
experiments.

5.3.2 Types of experiments

The experiments can be classified into three types:

• Active experiments: are those where we generate lookup queries over an info
hash. We use an active node to execute them.

• Passive experiments: are those where we positioned a node in the DHT and
we analyze the incoming queries it gets. We use a passive node to execute
them.

• Active-passive experiments: are a combination of the other two kinds. We
position a passive node in the DHT to analyze the incoming queries and an
active node to send queries to the other.

30 CHAPTER 5. METHODOLOGY

In some passive experiments we position a node as the closest to an info hash.
They are supposed to be the closest to the info hash all the time during the ex-
periment, however, we did not check it explicitly. Nodes in the DHT are supposed
to choose their identifier randomly. The probability that a node with a random
identifier is closer to the info hash than our nodes is very reduced according to the
results we obtained in a experiment where we measured the distance between info
hashes and their closest nodes.

The passive experiments get an observation of an altered scenario, this means
that the data is collected by taking part in the scenario and not just by observing it.
Moreover, the nodes used for this experiment chose their own identifier. However,
there was not any other possible choice to watch the behavior of a node containing a
given list of peers. Any BitTorrent client with a random identifier may contain a list
of peers but to contain the list of peers we wanted we had to choose the identifier.

Some of the active experiments which collect data from the DHT perform 10
lookups (1 every 5 seconds) over each info hash of a large set of info hashes. This
strategy may seem an aggressive way to obtain the information because a single
lookup could be enough. The reason to use this strategy is trying to give time to all
the nodes to respond and finding all the possible nodes containing the list of peers.
Some experiments did not find all the nodes containing list of peers in the first
lookup, sometimes more than one lookup was necessary. In our active experiments
it is important to find all (or at least, the most of) the nodes containing list of peers.
It is still possible that in any case we did not find all the nodes containing list of
peers.

5.3.3 Validity of experiments

When we tested the problem of censorship, no IP addresses were censored. It
consisted on trying to control a whole list of peers. Perhaps, if we had censored
the access to the list of peers to all the querying nodes, the result would have been
different.

The reason why we did not carry out censorship is that we were not able to
control a whole list of peers in any case. In case we had been able, we would have
narrowed in the problem studying different scenarios of the problem and different
usages of controlling a list of peers.

A similar case is the case of DDoS attacks. In this case we have demonstrated
that it can be serious since the incoming traffic rate in a node containing list of
peers may become huge, however, we did not provide fake lists of peers to perform
a DDoS attack. We do not know if the nodes asking for peers would have performed
the DDoS attacks but we do not know any reason why they would not since they
can not know in advance if a list of peers is fake or not.

5.4. INFORMATION MANAGEMENT 31

5.4 Information management

Most of the experiments use two tools to obtain the information: a Mainline DHT
client modified to log information and a displayer to process the logged data. None of
the modifications of the clients to log information implies a functional modification.
The steps to carry out this kind of experiments are the following (also shown in
Figure 5.1):

1. The modified client generates an output containing the logged data we want
to process.

2. A displayer program parses the log file, obtains the results and shows them
graphically or summarized.

Figure 5.1. Schema of how the tools manage the information.

The reasons why the experiments are carried out using two programs and a log
file instead of doing everything in a single program are the following:

• Maximizing the independence of the DHT client with the experiment.

• Some experiments require a lot of time (up to a couple of days). If there is any
problem why a test should stop, it is preferable to have some results stored
instead of losing everything and running the experiment again.

• In case of finding an error in a displayer program, this mechanism avoids the
necessity of doing the experiment again.

• Interest on keeping the log file because, in the future, from the same exper-
iment, more information may be extracted, so, in that case, the experiment
should not be repeated again.

• The displayer programs can be used as a back end for logs generated using
other DHTs based on Kademlia.

5.5 The log distance metric

As we explained in Chapter 2, distance between an info hash and a node identifier
is measured as the bitwise XOR of both 160-bit sequences. As distances can be very

32 CHAPTER 5. METHODOLOGY

large numbers, since they belong to the interval [0, 2160), in this thesis distances are
measured using log distance.

XOR distance is the result of the bitwise XOR of two 160-bit sequences. Log
distance performs the same operation, however, the result is not the number itself
but the position (counting from the right and starting from zero) of the first bit
which is 1 (counting from the left). For example, if the distance between two
sequences is in the interval [230,231), the log distance will be 30. We show some
examples of log distance using 8-bit identifiers in Figure 5.2.

Using log distance, distances will always belong to the interval [−1, 159] which is
much easier to manage than distances in the interval [0, 2160) obtained using XOR
distance. We consider the special case of log distance equal to -1 when the XOR
distance is equal to 0. In later chapters, every time we refer to distance we mean
log distance.

Figure 5.2. Examples of log distance using 8-bit identifiers.

Chapter 6

Tools development

In this chapter we present the development of the tools and we give an overview
of their usage. All our tools have been developed using the standalone library
kadtracker. The main reason to use kadtracker is that we had direct contact with
the developers, however, there are other reasons why we have decided to use it. In
this chapter we present all the reasons why we have used kadtracker instead of other
choices.

6.1 Requirement of active tools

This thesis consists on an experimental view of a part of Mainline DHT based on
the analysis we present in Chapter 3. Part of the analysis we presented consists on
studying different data obtained in a lookup in Mainline DHT. By analyzing this
data, we can study the behavior of a set of nodes getting a global view of a part of
the DHT.

6.1.1 Choices

An important part of the data to analyze in the experiments can be obtained by
looking up an info hash in the DHT. Any Mainline DHT client could perform a
lookup over an info hash. Some other experiments required lookups as well but
also other information like the identifiers of nodes providing list of peers or their
distance to the info hash.

Using a Mainline DHT client to obtain this data was not easy since they do
not usually provide the data we needed in the user interface. Furthermore, in this
thesis, watching the data was not enough, we had to process. So, a Mainline DHT
client had to be modified again in order to log this data.

33

34 CHAPTER 6. TOOLS DEVELOPMENT

6.1.2 Final choice

Kadtracker offered a very easy interface to do this operation and it lacks of a user
interface since it is a standalone library. Getting and processing the data we needed
by modifying another client would have been a harder task.

6.2 Requirement of passive tools

This thesis claims to check some possible vulnerabilities in Mainline DHT. The first
requirement to test the vulnerabilities was collecting data from a node close to an
info hash, this is a common point in all of them. Also, some experiment of profiling
needs to pick up information from a node containing list of peers.

From the existing closest nodes to an info hash we could collect some data but
there is some other data that we could not. The total traffic generated in this kind
of nodes could not be studied unless they were ours. Also, we could not choose how
far the closest nodes to the info hash were. We had to study the behavior of nodes
from different distances to the info hash, it would be impossible to do that without
adding new nodes in the DHT. Then, for our experiments, we had to add new nodes
to the DHT.

6.2.1 Choices

We could have used any Mainline DHT client to position a node in the DHT, but
clients choose a random identifier, so its position in the DHT would be random. It
would have made impossible to choose an info hash in order to contain its list of
peers. Then, we had to modify any Mainline DHT to choose its identifier.

6.2.2 Final choice

Among all the available Mainline DHT clients to modify, we chose kadtracker for
the reasons explained in Chapter 5. We modified it to choose its identifier, but also
some data had to be logged from its incoming and outgoing packets. To test the
scalability problem, we had to know the number of messages generated and their
type. We could have obtained this data by using a tool to capture the network
traffic (like Wireshark [19]). We discarded this choice because it would have taken
more time than modifying kadtracker.

The decision was modifying kadtracker to log this data itself. It was easy to
find the code where the incoming messages were received and the outgoing messages
were sent. These parts of the code were modified to log the data we needed (without
modifying any functionality).

6.3. MODIFYING KADTRACKER 35

6.3 Modifying kadtracker

In this thesis, the goal is not changing the functionality of the DHT client (mainly
because it has to follow the protocol). Only three modifications have been done in
the passive mode:

• Choice of the node identifier. Instead of letting the client to choose its identi-
fier randomly, the option to choose the identifier when the client is started has
been added. But, instead of applying for the identifier (which can be quite
tricky to calculate), an info hash and the log distance the node has to be from
it must be provided. This is an easy way to position nodes as close to an info
hash as wanted (otherwise the calculation should be made in advance).

• Censorship list. When a get_peers query is received, the node checks a list
with IP addresses contained in a file. If the querier’s IP address is contained
in this list, an empty list of peers is returned.

• Limit in the size of the list of peers. This change was made when it was
observed that, when the list of peers grew up to more than 50 peers, it did
not fit in a UDP packet. At the same time it was observed that many clients
returned always lists of 50 or less peers. It was decided to limit the list of peers
to the last 50 announcements. This patch has been integrated in kadtracker.

The passive node with these modifications has been called censor. The active
node has not had any functional modification, this node has been called observer.
Using these clients, in every experiment one or both of them have been modified
properly to obtain the wished results. These modifications do not affect to any func-
tionality, they have consisted on logging that data of interest for the experiments.

For the most of the experiments, another complementary tool has been devel-
oped to display the information graphically or summarized.

6.4 Set of tools

The most of the experiments use a pair of tools: one to log information (called
logger) and one to process the logged information (called displayer). The loggers
can be split in two groups: active loggers and passive loggers. Active loggers are
those which are a modification of the observer (providing the functionality of an
active node). Passive loggers are those which are a modification of the censor
(providing the functionality of a passive node).

Appendix H classifies all the tools and summarizes their purposes. Each pair of
tools has been used for one experiment. The functionalities a tool needs arose in
the definition of the experiments. Experiments are defined in Chapter 7.

36 CHAPTER 6. TOOLS DEVELOPMENT

6.5 Tool parse_announcements

We developed another tool independent from the others. The purpose of this tool
is showing those nodes where a DHT client chooses to announce itself. All the
BitTorrent clients have to respect the message format, and their network traffic
can be captured in a pcap file (using, for example, Wireshark [19]). The tool
parse_announcements processes this pcap files and, for every lookup, shows the
distance to the info hash of nodes containing list of peers for it and the distance to
the info hash of nodes where the client chooses to announce.

This tool parses a pcap file providing an interface to get the fields of the ap-
plication level packets. The packet format in the application level is explained in
Appendix C.

Chapter 7

Experiments

This chapter presents all the experiments carried out. For each one, we define it,
we analyze it and we present its results. Some of them have used a large set of info
hashes (how these info hashes were obtained and their characterization is explained
in Appendix D). Others have used a set of nodes (the coordination of these nodes
is explained in Appendix E).

7.1 Experiment 1 - Number of nodes tracking a given
swarm

The number of nodes where a node should announce itself is not clearly defined in
the bibliography. This experiment aims to clarify it and document it. The number
of nodes containing list of peers of an info hash should be similar to that value since
the nodes chosen for the announcement have to be the closest to the info hash.

7.1.1 Expected results

According to [7], when a peer announces itself, it does it in the three closest nodes
to the info hash of the object. However, according to the design of Kademlia [2],
a node stores a value in the k closest nodes to the key and [20] specifies that in
Mainline DHT k=8. In Mainline DHT values are the lists of peers, so, nodes should
announce themselves in the 8 closest nodes to the info hash. As in the design of
Mainline DHT the number of nodes where a node should announce itself is not
specified explicitly, for this experiment we suppose that the value is three nodes, as
asserted in [7].

The number of nodes containing list of peers should be similar to the number
of nodes chosen for the announcement since the closest nodes to the info hash are
chosen for the announcement (both [7] and [2] assert it). Our deduction points out

37

38 CHAPTER 7. EXPERIMENTS

that the number of nodes containing list of peers for an info hash is about
three in all the cases.

7.1.2 Experiment definition

An active node has been used for this experiment. For every info hash, the node
has performed lookups over it and has counted the number of different nodes that
return a list of peers. A node is identified by its IP address and UDP port.

• Number of active nodes: 1.

• Number of info hashes to lookup: 1200.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to measure: number of nodes containing list of peers for every info hash.

The tools complete_lookup and display_average_number_nodes have been
used for this experiment.

7.1.3 Results

The data obtained in the experiment is summarized in Table 7.1 and represented
graphically in Figure 7.1. The result has not been as we expected. Even though the
most typical case is 5 nodes which is close to 3 and 3 is the second most typical case,
there are too many cases with too many nodes containing list of peers. The 40.23%
of the observed info hashes have more than 10 nodes containing list of peers. The
average number of nodes containing list of peers is 11.8 but the standard deviation
is 18.47, which is too high to take into account the average. According to the
expected results we show in Chapter 3, the average should be approximately 3 and
the standard deviation a small number.

7.1. EXPERIMENT 1 - NUMBER OF NODES TRACKING A GIVEN SWARM 39

Figure 7.1. Number of nodes containing list of peers.

40 CHAPTER 7. EXPERIMENTS

Number of nodes Ocurrences Percentage
1 7 0.78%
2 28 3.10%
3 76 8.43%
4 73 8.09%
5 86 9.53%
6 74 8.20%
7 63 6.98%
8 52 5.76%
9 51 5.65%
10 29 3.22%
11 23 2.55%
12 23 2.55%
13 22 2.44%
14 16 1.77%
15 14 1.55%
16 23 2.55%
17 31 3.44%
18 15 1.66%
19 16 1.77%
20 15 1.66%
21 11 1.22%
22 10 1.11%
23 18 2.00%
24 18 2.00%
25 14 1.55%
26 15 1.66%
27 12 1.33%
28 10 1.11%
29 12 1.33%
30 6 0.67%
31 7 0.78%
32 3 0.33%
33 8 0.89%
34 4 0.44%
35 1 0.11%
36 1 0.11%
37 4 0.44%
38 1 0.11%
39 4 0.44%
40+ 6 0.67%

Table 7.1. Number of nodes containing list of peers.

7.2. EXPERIMENT 2 - GROWTH OF A LIST OF PEERS ACCORDING TO THE
DISTANCE OF THE NODES CONTAINING IT TO THE INFO HASH 41

7.2 Experiment 2 - Growth of a list of peers according to
the distance of the nodes containing it to the info
hash

This experiment intends to corroborate that nodes positioned as the closest to an
info hash start having a list of peers of it and containing a big part of the list. This
experiment checks whether the result changes depending on the distance or not.

7.2.1 Expected results

The closest nodes to the info hash will receive the largest amount of an-
nouncements independently of their distance to the info hash. According
to [2] and [20], nodes announce in the closest nodes to the info hash. There is
not any mention in the bibliography about any different behavior according to the
distance of the nodes to the info hash.

7.2.2 Experiment definition

A set of nodes has been positioned close to an info hash in three different scenarios.
In every scenario, one of the nodes was the closest and consecutive pairs of nodes
had a distance between them of 2 units.

We did not check our nodes were the closest all the time, however, according
to the probabilities we present in Appendix F, the probability for a random node
identifier to have distance 0 or -1 to the info hash is 2−159, to have distance 22 or
less to the info hash 2−137 and to have distance 80 or less to the info hash 2−79. So,
it is extremely improbable that a random node is closer to the info hash than our
nodes in this experiment.

• Number of passive nodes: 11 in the first scenario, 29 in the second scenario
and 31 in the third scenario.

• First scenario: the log distance between the info hash and its the closest node
is 0.

• Second scenario: the log distance between the info hash and its the closest
node is 22.

• Third scenario: the log distance between the info hash and its the closest node
is 80.

• Log distance between consecutive pairs of nodes in every scenario: 2 (if the
distance to the info hash of the closest node is x, the distance of the second
closest is x+ 2, the distance of the third closest x+ 3, etc).

42 CHAPTER 7. EXPERIMENTS

• Number of different info hashes tested: 1. This experiment requires too much
time to be performed with a large set of info hashes. It has been chosen a
popular info hash to have a large enough set of announcements.

• Time for the experiment: 24 hours in every scenario and another 24 hours
between consecutive scenarios.

• Data to measure: number of announcements in every node as well as the
versions of the clients announcing (when they provide it).

The tools announcements and display_announcements_distance have been used
for this experiment.

7.2.3 Results

The results of this experiment are shown graphically the first scenario in Figure 7.2,
the second scenario in Figure 7.3 and the third scenario in Figure 7.4 (the Y axes in
the figures has a logarithmic scale). They show the total number of announcements
and the versions of the clients announcing.

In these experiments we use the abbreviated name of BitTorrent clients (for
example, "UT" is UTorrent). "None" are those clients which do not provide their
version (more information about the meaning of these abbreviated names can be
found in [21]).

In the scenario 1 and the scenario 3 the closest node is receiving a very small
amount of announcements. This behavior should be investigated more in depth. If
the closest node is ignored, the closest nodes are those receiving the largest amount
of announcements in all the scenarios. This result seems to be caused by UTorrent.
The rest of the clients send more or less the same number of announcements to all
the nodes.

The nodes receiving the largest amount of announcements are not only the three
closest (ignoring the closest in the scenarios 1 and 3), they are more than three in
some case. However, our goal is accomplished in this experiment, we intended to
show that the number of announcements does not depend on the distance to the
info hash of the closest nodes. We can see in all the scenarios that the number of
announcements in the closest nodes is similar.

In both the scenario 1 and the scenario 2 some points of the graphic seem to be
missing. They are not missing, this result is due to the logarithmic scale. In those
points where there graphic seems to be missing its value is 0. As there are not two
real numbers x and y such that xy = 0 we omit the value of the graphic in those
points.

7.2. EXPERIMENT 2 - GROWTH OF A LIST OF PEERS ACCORDING TO THE
DISTANCE OF THE NODES CONTAINING IT TO THE INFO HASH 43

In the scenario 3, the node with distance 120 to the info hash has a very low
number of announcements compared with the rest. We do not know the cause of
this behavior, perhaps it is due to some problem in the Planetlab node.

Independently of the versions of the clients announcing themselves, nodes which
are not part of the three closest are receiving too many announcements. This behav-
ior could be related with the limitation in the list of peers. A mechanism could exist
to detect this and choose other nodes to announce. These unexpected behaviors
are investigated in later experiments. This experiment also shows that UTorrent is
the most popular BitTorrent client, this is important since the behavior of Mainline
DHT is highly influenced by UTorrent.

Figure 7.2. Announcements in the first scenario.

44 CHAPTER 7. EXPERIMENTS

Figure 7.3. Announcements in the second scenario.

Figure 7.4. Announcements in the third scenario.

7.3. EXPERIMENT 3 - FREQUENCY OF ANNOUNCEMENTS 45

7.3 Experiment 3 - Frequency of announcements

This experiment checks if the frequency of the announcements is the expected one.
In this experiment a node has been positioned close to a popular info hash. It has
tracked the announcements it received to observe the frequency of nodes announcing
on it.

Furthermore, this parameter may serve to check if nodes are coordinated. The
frequency of announcements is supposed to be the same value than their expiration
time. If a node sends an announcement to a node with different frequency to its
frequency, it may stay out of the list of peers during some intervals of time. Giving
a popular value for the frequency may help to nodes to stay in the list of peers.

7.3.1 Expected results

According to the design of Mainline DHT, the frequency of an announcement
(as well as its expiration time) is 30 minutes as explained in [7].

7.3.2 Experiment definition

One node has been positioned in passive mode close enough to an info hash to
contain its list of peers. It has recorded all the announcements it has received and
has tracked those sent by the same node (identifying a node by its IP address and
DHT port). From all the announcements sent by the same node, it has calculated
the average time between every pair of consecutive announcements.

• Number of passive nodes: 1.

• Number of info hashes: 1 (we have chosen a popular enough info hash to get
enough announcements to obtain a reliable result).

• Distance to the info hash: 130 (being the closest one).

• Time for the experiment: 3 hours. We haven chosen a longer time because, if
a node sends an announcement, leaves the DHT, joins again afterwards and
sends another announcements, we could wrongly think that its frequency is
the time the node has left the DHT. We consider the time we have chosen is
enough to get a reliable result.

• Data to measure: average frequency of all announcements for every node
announcing.

The tools announcements and display_freq_announcements have been used for
this experiment.

46 CHAPTER 7. EXPERIMENTS

7.3.3 Results

We have observed a set of 581 different nodes announcing. The result of the exper-
iment is summarized in Table 7.2 and represented graphically in Figure 7.5. A big
part of the announcements (the 47,16%) have a frequency between 20 minutes and
35 minutes (which is as expected).

A strange result is the high number of nodes announcing in less than 5 minutes.
This behavior is unexpected and we have not found any reason for it, but it is very
improbable that this is their actual frequency and expiration time. Also in other
experiments we observed that many nodes send several announcements in some
seconds, this is probably the cause of this result. An hypothesis about this behavior
is that these nodes have restrictions in the incoming network traffic (which can be
caused, for example, by a firewall). Firewalls or routers using a NAT (Network
Address Translation) have some behavior which limit the incoming traffic in the
computer. In this case, nodes sending several announcements may not receive the
responses and that would be the reason why they send the query several times, but
it should be investigated more in depth.

In this experiment it is not possible to differ a node which stays alive and sends
announcements periodically from a node which leaves the DHT and joins again after
some time. For example, if there are two nodes announcing, the first node sends
an announcement and 30 minutes later sends another one, the second node sends
an announcement, leaves the DHT, joins again after 30 minutes and sends another
announcement, their behavior will be the same from the point of view of the node
where they announce.

For the design of a Mainline DHT client, this result suggests a frequency of
announcements of 20 minutes. Even though the expiration time of a queried node
is 30 minutes, it will probably refresh the list of peers with the announcement so
the querier will stay on it all the time.

7.3. EXPERIMENT 3 - FREQUENCY OF ANNOUNCEMENTS 47

Figure 7.5. Frequency of announcements.

48 CHAPTER 7. EXPERIMENTS

Frequency (min) Number of nodes
0 - 4 100 (17.21%)
5 - 9 13 (2.24%)
10 - 14 27 (4.65%)
15 - 19 19 (3.27%)
20 - 24 90 (15.49%)
25 - 29 116 (19.97%)
30 - 34 68 (11.70%)
35 - 39 32 (5.51%)
40 - 44 57 (9.81%)
45 - 49 18 (3.10%)
50 - 54 8 (1.38%)
55 - 59 2 (0.34%)
60 - 64 14 (2.41%)
65 - 69 0 (0.00%)
70 - 74 3 (0.52%)
75 - 79 0 (0.00%)
80 - 84 5 (0.86%)
85 - 89 1 (0.17%)
90 - 94 2 (0.34%)
95 + 6 (1.03%)

Table 7.2. Frequency of announcements.

7.4. EXPERIMENT 4 - ATTEMPT OF CONTROLLING A WHOLE LIST OF PEERS49

7.4 Experiment 4 - Attempt of controlling a whole list of
peers

This experiment checks the problem of censorship. A set of passive nodes has been
positioned closer to an info hash than those containing its lists of peers. After some
time, these nodes should take the total control of the list of peers. Besides, an active
node has been enabled to monitor the evolution of the passive nodes and check if
they get the total control of the list of peers.

We did not check if during the experiment the nodes enabled for it were all the
time the closest to the info hash, however, according to the probabilities we present
in Appendix F, the probability for a random node identifier to have 130 or less of
distance to the info hash is 2−29.

7.4.1 Expected results

When an announcement is received, after its expiration time, the peer which sent it
will be removed from the list of peers. In order to stay on the list of peers the peer
will have to send it to a set of the closest nodes to the info hash periodically, as
explained in [7]. The experiment 3 shows that after one hour, all the current entries
in a list of peers will probably have expired. The experiment 1 shows that the 82%
of the info hashes have 20 or less nodes containing list of peers. The experiment 2
shows that, if a set of nodes are the closest to an info hash, independently of their
distance, they will receive the largest amount of announcements. So, if 23 nodes
join the DHT as the closest to an info hash and they stay alive, after less
than 24 hours, they will be the only nodes containing the list of peers of
the info hash.

7.4.2 Experiment definition

• Number of passive nodes: 23.

• Distance to the info hash of the passive nodes: from 107 to 130. Each node
has been positioned in a different distance in that interval.

• Estimation of peers for the info hash: 671.

• Number of active nodes: 1.

• Frequency of lookups by the active node: 2 minutes.

• Time for the experiment: 24 hours.

• Number of info hashes: we have tried several times to control an info hash and
it has not been possible in any case. For this reason, this experiment shows a
typical case of how it has not been possible to control an info hash.

50 CHAPTER 7. EXPERIMENTS

• Data to measure: nodes containing list of peers for the info hash and the size
of their list.

The tool censor has been used for the passive nodes and the tools evolution and
display_evolution for the active node to watch the passive nodes.

7.4.3 Results

Controlling a whole list of peers of any info hash has not been possible in any case.
Even though 23 nodes have been positioned as the closest to the info hash and
they have stayed alive for 24 hours, new nodes joined all the time. Our nodes, the
nodes trying to control the info hash, have controlled the most of the list of peers,
Figure 7.6 shows it. In that figure, red circles are our nodes and blue squares are
the rest. The size of the list of peers of nodes which are not ours always tends to
be small whereas our nodes control the most of the list of peers peers. Our nodes
never have a list of peers with more than 50 nodes due to the limitation established
to make the list of peers fit in a UDP packet.

Figure 7.6. Size of list of peers in nodes containing it. Red circles are our nodes enabled for this
experiment and blue squares lines are the rest.

A clearer way to observe the result is by watching the number of nodes containing
list of peers independently of the size of list of peers. This view shows the addition
of new nodes when they are not supposed to join. Figure 7.7 shows the number of
nodes in every moment during the experiment. In this case, the red circles are the
number of nodes positioned for this experiment (our nodes) and the blue squares

7.4. EXPERIMENT 4 - ATTEMPT OF CONTROLLING A WHOLE LIST OF PEERS51

are the total number of nodes. There are two intervals of half an hour where the
control of the list of peers is almost total and another one where it is completely
total, however, there are always new nodes joining. According to the our expected
results new nodes should not join. This fact is explained in later experiments.

The number of the rest of nodes increases and decreases several times (there is
even an interval of time when they are zero). This proves that the existence of other
nodes containing list of peers is not due to a high expiration time or a lack of expi-
ration of peers in their list. The reason is probably that peers send announcements
to nodes which are not the closest.

Figure 7.7. Number of nodes. The red circles are the number of nodes enabled for this experiment
and the blue squares are the total.

52 CHAPTER 7. EXPERIMENTS

7.5 Experiment 5 - Announcements from announcer’s
point of view

Due to the results obtained in the experiment 4 (where it has not been possible to
get the total control of a list of peers in any case), this experiment seeks the reason
in the behavior of some of the most popular BitTorrent clients. This experiment
studies the distance to the info hash of nodes where some clients choose to announce.
The results obtained in the experiment 4 are probably due to some clients which do
not respect the design rules. This experiment tries to identify those clients misusing
the network.

7.5.1 Expected results

Every DHT client should announce itself in a set of the closest nodes to
the info hash (three nodes according to [7] and eight nodes according to [20]).

7.5.2 Experiment definition

• BitTorrent clients used: UTorrent, KTorrent and BitSpirit.

• Info hashes used per client: 8.

• Data to measure: distance to the info hash of nodes containing list of peers
as well as of those chosen for the announcement.

The tool parse_announcements has been used for this experiment.

7.5.3 Results

The results of this experiment are presented in Table 7.3, Table 7.4 and Table 7.5
(the info hashes used are different in every client). They are not enough to extract
a pattern of how these clients choose the nodes to announce but it is possible to
assert two facts:

• There are clients which are not announcing in three nodes as they should
(according to the specifications). In the most of the cases UTorrent announces
itself in three nodes but BitSpirit and KTorrent announce themselves in more
than three nodes the most of the times.

• There are clients which do not announce themselves only in the closest nodes.
UTorrent seems to announce itself in the three closest nodes. BitSpirit an-
nounces itself in more than three nodes but those nodes where it announces

7.5. EXPERIMENT 5 - ANNOUNCEMENTS FROM ANNOUNCER’S POINT OF
VIEW 53

itself might be the closest to the info hash. It is almost sure that KTorrent
is not choosing the closest nodes to the info hash to announce itself. Even
though it announces itself in some nodes which seem to be the closest, it also
announces itself in some nodes far from the info hash (later experiments show
that it is almost impossible that those nodes KTorrent chooses for the an-
nouncement are the closest). In some cases it announces itself in nodes with
distance 155 or 152 to the info hash, it is almost impossible that do not exist
closer nodes. The nodes KTorrent chooses for the announcements could be
those providing nodes in the lookup, but this is not sure.

In the results obtained using UTorrent we can observe one case where it sends
5 announcements, we do not know the reason of this behavior.

It would be interesting to do a complete analysis of the behavior of the most
popular clients using the DHT and describing how they actually behave. The re-
sults we have obtained are just an approach of their actual behavior.

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 134, 138, 139, 139 138, 138, 139
IH2 136, 137, 139, 139, 140 136, 137, 139
IH3 131, 137, 138, 138, 138 136, 137, 139
IH4 136, 138, 139 139, 140, 140
IH5 135, 139, 140 135, 135, 139
IH6 138, 138, 138 138, 138, 138, 139, 140
IH7 140, 140 138, 139, 140
IH8 138, 138, 139, 140, 140,

141, 141
138, 138, 139

Table 7.3. Nodes where UTorrent announces itself.

54 CHAPTER 7. EXPERIMENTS

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 137, 138, 139, 139 136, 138, 139, 139, 139,
139

IH2 132, 137, 137, 138, 139,
139, 139, 139, 140

132, 137, 137, 138, 139,
139, 139, 139, 139, 140

IH3 (no nodes) 134, 136, 138, 139, 141
IH4 134, 137, 138, 138, 138,

138
134, 137, 138, 138, 139,
139, 140

IH5 138, 140, 140, 140, 140,
140, 140, 141, 141, 141,
141

138, 140, 140, 140, 140,
141, 141

IH6 137, 138, 138, 138, 139,
139, 139, 139, 140

138, 138, 138, 139, 139,
139

IH7 138, 139 138, 139, 139, 139, 140,
140, 140, 140, 140

IH8 137, 137, 137, 137, 137,
137, 138, 139, 140

136, 137, 137, 137, 137,
138, 139

Table 7.4. Nodes where BitSpirit announces itself.

Info hash Distance of nodes con-
taining list of peers

Distance of nodes where
it announces

IH1 147, 149, 149, 149, 150,
150, 151, 151

147, 149, 149, 149, 150

IH2 144, 144, 147, 149, 149,
150, 150, 152, 155

144, 144, 149, 149, 150,
152

IH3 142, 145, 146, 146, 146,
146, 147, 147, 148

142, 146, 146, 146, 147,
147

IH4 147, 149, 151, 151, 152,
152, 152, 152, 153

149, 151, 151, 152, 152,
152

IH5 144, 146, 147, 147, 147,
147, 147, 148, 148, 149,
150, 150, 150, 150, 151,
152

146, 147, 147, 147, 147,
148, 149, 150, 150, 150,
152

IH6 146, 147, 148, 148, 149,
151, 152, 155

146, 147, 149, 151, 152,
155

IH7 137, 141, 142, 146 137, 142, 146
IH8 143, 145, 148, 148, 148,

148, 149, 149, 150
143, 145, 148, 148, 148,
149, 149, 150

Table 7.5. Nodes where KTorrent announces itself.

7.6. EXPERIMENT 6 - DISTANCE TO THE INFO HASH OF NODES CONTAINING
LIST OF PEERS 55

7.6 Experiment 6 - Distance to the info hash of nodes
containing list of peers

The goal of this experiment is getting data about the distance to the info hash of
nodes containing list of peers. We have performed lookups over a large set of info
hashes. This experiment has helped to observe that there are many nodes containing
list of peers which are not (or at least it is very improbable that they are) the closest
to the info hash. It studies how the results obtained in the experiment 5 affect the
distance to the info hash of nodes containing list of peers. It also provides some data
to detect suspicious situations where nodes containing list of peers are too close to
the info hash.

7.6.1 Goal

This experiment tries to obtain data about the distance of nodes containing list of
peers to the info hash. We ca not give a complete estimation of how the distribution
of nodes should be since they are not always the closest, as proved in the experiment
5.

7.6.2 Expected results

We do not expect to find node identifiers closer than 130 to the info hash. According
to the probabilities we present in Appendix F, the probability for a random node
identifier to be closer to the info hash than 130 is 2−30.

7.6.3 Experiment definition

• Number of info hashes to lookup: 1200.

• Number of active nodes: 1.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to obtain: number of nodes containing list of peers for every info hash.

The tools distribution and display_distribution have been used for this experi-
ment.

7.6.4 Results

The result of this experiment is represented graphically in Figure 7.8. The distri-
bution of nodes seems to be a normal distribution, however, we do not have enough

56 CHAPTER 7. EXPERIMENTS

data to corroborate this. Also, the number of nodes of distance higher than the
average is too high. The reason may be those results obtained in the experiment 5
which prove that some clients do not announce themselves in the closest nodes. As
well, it is very probable that in the lookups we did not find all the nodes containing
list of peers. The nodes containing list of peers far from the info hash have been
found casually following a particular path to the info hash. To find all the nodes
containing list of peers we should lookup all the nodes in the DHT. We observed a
total of 10768 nodes in this experiment.

With these results, we can consider suspicious nodes closer to the info hash than
130. Also, watching at the distribution, we can detect suspicious situations. For
example, a situation of nodes containing list of peers at distances 135, 137, 140,
140, 141, 141 could be normal, but if these distances were 130, 130, 131, 131, 131,
132 it would be very suspicious since it would not fit with the distribution.

Figure 7.8. Distance of nodes containing list of peers to their info hash.

7.7. EXPERIMENT 7 - PERCENTAGE OF THE LIST OF PEERS CONTAINED IN
NODES ACCORDING TO THEIR DISTANCE ORDER TO THE INFO HASH 57

7.7 Experiment 7 - Percentage of the list of peers
contained in nodes according to their distance order
to the info hash

This experiment aims to see how the lists of peers are distributed among the nodes.
It observes the percentage of the list of peers contained in every node according to
its distance order to the info hash (for example, what percentage of peers has the
closest, the second closest, etc). It is not expected that they add up to 100% because
every node announces itself several times. It studies how the results obtained in the
experiment 5 affect to the distribution of the list of peers.

7.7.1 Expected results

The experiment 5 shows that not all the nodes follow the rules for the design. But
the three nodes to the info hash almost always get the announcements (this is also
observed in the experiment 2). So, each one of the three closest nodes to the
info hash should contain the 100% of the list of peers. In the case the three
closest nodes are limiting the size of the list of peers to make it fit in a UDP packet,
it could be less. This experiment also checks how many peers contain those nodes
which are not part of the closest because they should not contain list of peers.

7.7.2 Experiment definition

• Number of info hashes to lookup: 1200.

• Number of active nodes: 1.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to obtain: percentage of peers contained in every list of peers according
to the distance of the node to the info hash.

The tools complete_lookup and display_list_distribution have been used for
this experiment.

7.7.3 Results

Due to the possible existence of limitation in the lists of peers, we have divided
the data of this experiment in three scenarios: a general view (Figure 7.9), info
hashes with 50 or less peers (Figure 7.10) and info hashes with more than 50 peers
(Figure 7.11). The general view is based in an observation of a total of 54766 peers
contained in the lists of peers.

58 CHAPTER 7. EXPERIMENTS

Even though the most of the lists of peers are contained in the three closest
nodes in all the scenarios, there is an important part of it contained nodes which
are not the closest. In the graphic of lists of peers with 50 or less peers the peers
are more contained in the three closest nodes than in the other scenarios. In the
scenario of info hashes with more than 50 peers, probably the complete list of peers
of the closest nodes is not obtained because they may be limiting it. Anyway, there
are still some nodes containing list of peers far from the info hash, but they do
not contain a high percentage of peers. The percentage of peers seems to decrease
exponentially according to the closeness order of the nodes.

Figure 7.9. Distribution of the list of peers according to the closeness to the closest node to the
info hash.

7.7. EXPERIMENT 7 - PERCENTAGE OF THE LIST OF PEERS CONTAINED IN
NODES ACCORDING TO THEIR DISTANCE ORDER TO THE INFO HASH 59

Figure 7.10. Distribution of the list of peers according to the closeness to the closest node to the
info hash for info hashes with 50 or less peers.

Figure 7.11. Distribution of the list of peers according to the closeness to the closest node to the
info hash for info hashes with more than 50 peers.

60 CHAPTER 7. EXPERIMENTS

7.8 Experiment 8 - Number of messages according to the
number of peers

This experiment analyzes the scalability problem we presented in Chapter 2. In
a very popular info hash, the set of the three closest nodes to the info hash may
receive a huge number of messages per second generating too much traffic. This is
a scalability problem because these nodes would have more overload than the rest
in the DHT. It would also break with the principle of all nodes having the same
responsibilities in the DHT. This experiment studies how serious this problem is
and also if it may become more serious than it is.

We have positioned a node as the closest to a popular info hash to study this
problem.

7.8.1 Goal

This experiment intends to quantify the traffic in a node containing the list of peers
of a popular info hash. As peers have to announce periodically (as defined in [7]),
the more popular an info hash is, the more announcements the nodes containing its
list of peers will receive. Also, these nodes will receive a similar amount of get_peers
queries. This experiment intends to quantify this traffic.

7.8.2 Experiment definition

• Info hashes to lookup: one with 107 peers, one with 536 peers, one with 1083
peers, one with 2287 peers, one with 4001 peers, one with 6076 peers, one
with 11228 peers, one with 14760 peers and one with 33239 peers. To know
the number of peers it has been used the estimation of peers in the torrents
of The Pirate Bay.

• Number of passive nodes: 1 for each info hash.

• Time for the experiment: 11 hours and 30 minutes for every info hash starting
with all of them at the same time.

• Data to measure: number of messages received of each type.

The tools incoming_traffic and incoming_traffic_statistics have been used for
this experiment.

7.8.3 Results

The result of the experiment is summarized in Table 7.6 and Table 7.7. Figure 7.12
shows the growth of the total number of messages and the number of messages in

7.8. EXPERIMENT 8 - NUMBER OF MESSAGES ACCORDING TO THE NUMBER
OF PEERS 61

the minute with the highest incoming traffic according to the number of peers. In
the case of info hashes with few peers, the traffic is not very high. For the info hash
with 33239 the traffic is very high. The number of ping and find nodes messages
does not seem to vary according to the number of peers, those making the difference
are the get_peers and announcement messages.

If we focus on the minute with the maximum traffic and we watch the announce-
ments and the get_peers messages in that minute for the info hash with the largest
number of peers (2924 get_peers and 1320 announcements), knowing that an in-
coming get_peers message is 94 Bytes and and announcement message is 141 Bytes
(in the application level, as it can be deducted from [20]), the incoming traffic rate
is 7.5 KB/s which is not very high, however, the outgoing traffic is higher.

If we just take into account the get_peers messages for the outgoing traffic and
just count the size of the list of peers (without the application level header), knowing
that every peer is an IP address and a port number (in total 8 Bytes), and with the
size of the list of peers limited to 50 (obviously, in this case it is always 50 due to
the high number of announcements), the outgoing traffic in that minute is 19 KB/s.
This rate is quite high just for the DHT but it can be reasonable.

In the case the list of peers were not limited to 50 peers, if we suppose that in that
minute the size of the list is 10000 (if in that single minute 1320 announcements were
received, in 30 minutes it could be even higher) and for every get_peers message the
whole list is tried to be sent (even though the IP packets are fragmented and it can
carry to errors), the outgoing traffic rate for this case would be 3.72 MB/s which
is not reasonable. So, limiting the list of peers is essential to reduce the problem of
scalability. Even though the problem still exists, fixing a maximum size in the list
of peers raises its limitations.

Bearing the incoming traffic for the most popular info hash in The Pirate Bay
with a limited list of peers has been possible. However, with a list of peers without
a fix size it would have generated a huge outgoing traffic. Anyway, if a rate is
reasonable or not depends on the context where it is used. In this case we have
supposed the usage of Internet connections for domestic users, perhaps for a mobile
device those rates are not reasonable.

The growth of the number of messages seems to be linear looking at Figure 7.12,
but this experiment is not large enough to prove this. The average number of
messages is almost a straight line, enough samples would probably stabilize it. A
large set of info hashes is necessary to study the growth. It would be useful in order
to estimate the traffic in info hashes with a non existing number of peers nowadays.

We performed another experiment with an info hash having about 30000 peers
as well without limiting the list of peers. The node enabled for the experiment sent
about 9.8 GB in 20 hours just for the traffic of the DHT. We decided not to carry
out again this experiment because we received a warning from Planetlab telling us
that we had to reduce the traffic rate.

62 CHAPTER 7. EXPERIMENTS

Our results prove that the problem of scalability represents a threat for the
DHT. In the future info hashes with millions of peers may exist. Projects like P2P-
Next [34] (which intends to broadcast live transmissions using P2P) can originate
swarms with millions of peers in the broadcast of international events.

In the case of redirecting the incoming traffic as a DDoS attack (by using a fake
list of peers as a response for the get_peers queries), the victim node would receive
the incoming traffic corresponding to the get_peers queries. In the case of the info
hash with 33239 peers it would be 4.5 KB/s which is not a dangerous rate. An info
hash with many more peers or many nodes doing this at the same time would be
necessary to make it serious.

Figure 7.12. Number of messages according to the number of peers.

7.8. EXPERIMENT 8 - NUMBER OF MESSAGES ACCORDING TO THE NUMBER
OF PEERS 63

Data IH 1 IH 2 IH 3 IH 4 IH 5
Estimation of
peers

107 536 1083 2287 4001

Experiment
duration

10h 29m 10h 30m 10h 28m 10h 32m 10h 33m

Total messages 97056 88424 143447 377758 199085
Total pings 1344 1372 1810 2656 2164
Total find
nodes

48182 31824 64217 73128 78157

Total
get_peers

37691 46610 64660 236569 105727

Total an-
nouncements

9839 8618 12760 65405 13037

Announcements
for the info
hash

7452 7097 9682 61457 9373

get_peers for
the info hash

31620 42979 57071 226960 97173

Announcements
other hashes

2387 1521 3078 3948 3664

get_peers
other hashes

6071 3631 7589 9609 8554

Maximum of
messages in
one minute

929 637 1110 1886 833

Pings in that
minute

3 1 2 8 4

Find nodes in
that minute

106 71 121 168 144

get_peers in
that minute

495 431 500 1112 478

Announcements
in that minute

325 134 487 598 207

Average mes-
sages per
minute

154 140 228 598 315

Table 7.6. Incoming messages for different info hashes (part1).

64 CHAPTER 7. EXPERIMENTS

Data IH 6 IH 7 IH 8 IH 9
Estimation of
peers

6076 11228 14760 33239

Experiment
duration

10h 31m 10h 36m 10h 34m 10h 39m

Total messages 472562 572521 645336 1711189
Total pings 2164 5298 3961 5984
Total find
nodes

67398 115781 100675 136317

Total
get_peers

323594 381844 446312 1228111

Total an-
nouncements

79406 69598 94388 340777

Announcements
for the info
hash

75980 62384 88409 330880

get_peers for
the info hash

313825 360642 431533 1201341

Announcements
other hashes

3426 7214 5979 9897

get_peers
other hashes

9769 21202 14779 26770

Maximum of
messages in
one minute

2397 2221 2215 4502

Pings in that
minute

2 8 8 8

Find nodes in
that minute

134 254 223 250

get_peers in
that minute

1367 1746 1297 2924

Announcements
in that minute

894 213 687 1320

Average mes-
sages per
minute

749 900 1018 2678

Table 7.7. Incoming messages for different info hashes (part2).

7.9. EXPERIMENT 9 - DISTANCE BETWEEN INFO HASHES AND THEIR
CLOSEST NODE 65

7.9 Experiment 9 - Distance between info hashes and
their closest node

This experiment has measured the distance between info hashes and their closest
node. This data is is useful to detect suspicious situations where nodes are too close
to an info hash. It may provide a parameter to exclude suspicious nodes.

7.9.1 Expected results

As the identifier space is huge and its occupation is supposed to be very small (as
we deducted in Chapter 5). We do not expect to find node identifiers closer than
130 to the info hash. According to the probabilities we present in Appendix F, the
probability for a random node identifier to be closer to the info hash than 130 is
2−30.

This experiment can not be affected by clients which do not respect the rules for
the announcements because, in all the cases, the closest node to an info hash will
contain list of peers (as show the experiment 2 and the experiment 5). Independently
of which nodes are chosen for the announcements, this experiment just focuses on
the closest.

7.9.2 Experiment definition

• Number of active nodes: 1.

• Number of info hashes to lookup: 1200.

• Number of lookups over every info hash: 10 (1 every 5 seconds).

• Data to measure: distance between info hashes and their closest node.

The tools complete_lookup and display_distance_closest have been used for
this experiment.

7.9.3 Results

The result of the experiment is summarized in Table 7.8 and represented graphically
in Figure 7.13. The distribution seems a normal distribution but our data is not
large enough to prove it. The most typical distance is 138. As there is not any case
of nodes with distance less than 131, this data can be used as a parameter to detect
suspicious situations. If we observe a node containing a list of peers which is closer
than 131 to the info hash, this node can be ignored (exists the possibility that a
random identifier is closer than 131 to an info hash, but it is very improbable. It

66 CHAPTER 7. EXPERIMENTS

does not matter if the node is ignored in this case), excluding by this way suspicious
nodes (only nodes in relation with that info hash will exclude it. The rest of the
DHT will treat it as a normal node, so it will not be excluded from the DHT).

Distance Number of times
131 1 (0.11%)
132 6 (0.67%)
133 14 (1.55%)
134 26 (2.88%)
135 63 (6.98%)
136 124 (13.75%)
137 188 (20.84%)
138 227 (25.17%)
139 146 (16.19%)
140 69 (7.65%)
141 28 (3.10%)
142 7 (0.78%)
143 2 (0.22%)
144 1 (0.11%)

Table 7.8. Distance of the closest node to the info hash to the info hash.

Figure 7.13. Distance of the closest node to the info hash to the info hash.

Chapter 8

Analysis of results

This chapters provides a summary and an analysis about all the results we obtained
in the experiments presented in Chapter 7.

8.1 Profiling work

The experiments 1, 2 and 3 study differents aspects in the behavior and distribution
of nodes containing a list of peers. They reach their goals since they have obtained
a profiling of the part of the DHT they intended to study. The experiment 5 is
another experiment of profiling which shows the reason of several unexpected found
behaviors.

The frequency of announcements observed in the experiment 3 was as we ex-
pected. However, a strange behavior was observed, many nodes sent several an-
nouncements in a small interval of time. We do not know the reason of this behavior
but we have an hypothesis: these nodes may have restrictions in the incoming net-
work traffic (which can be caused, for example, by a firewall). Firewalls or routers
using a NAT (Network Address Translation) have some behavior which limit the
incoming traffic in the computer. In this case, nodes sending several announcements
may not receive the responses and that would be the reason why they send the query
several times. But we ca not be sure this is the reason, it should be investigated
more in depth.

The experiment 5 found a reason for several unexpected results we obtained in
some other experiments. It shows that some BitTorrent clients are not following
the design rules for the announcements. BitSpirit clients are announcing in more
than three nodes in all the cases. KTorrent clients are choosing nodes to announce
itself which is almost impossible they are the closest to the info hash. Although we
only analyzed three clients, the results obtained in this experiment are enough to
find the reason of some unexpected results in other experiments.

67

68 CHAPTER 8. ANALYSIS OF RESULTS

The experiment 1 obtained a result which was not expected. It showed that
the number of nodes tracking a given swarm is higher than expected. Also, the
standard deviation of this value is too high to take into account the average. We
discovered that this result is probably due to the results of the experiment 5 which
shows that some clients send announcements to nodes which are not the closest to
the info hash.

The experiment 2 showed that the nodes receiving the largest amount of an-
nouncements are the closest to the info hash. However, nodes which are part of the
closest are receiving too many announcements. This is probably due to the results
of experiment 5 which shows that some clients send announcements to more than
three nodes.

This experiments are a first contact with the actual behavior of the DHT. With
them, we have found interesting behaviors to study but they also provide an ap-
proach to study more specific topics like the vulnerabilities.

8.2 Censorship

The experiment 4 was an attempt of censorship. The results we obtained in some of
the previous experiments provided the data to design this experiment. According
to the experiment 1, more than 12 nodes should be enough. According to the
experiment 2, their distance to the info hash did not matter (as long as they were
the closest). According to the experiment 3, in about one hour they should control
the list of peers.

Censorship was not possible in any case. Even though in one attempt there was
a small period of time when it was, there were always new nodes containing list of
peers. The reason of this result is again the result obtained in the experiment 5.
Although there are clients which announce themselves in more than three nodes,
it should still be possible to censor the info hash. But, as there are clients which
announce not only in the closest nodes, it is almost impossible to censor a list
of peers by positioning nodes as the closest to the info hash. Clients behaving
like this are those making impossible censorship. But, if, for example, an info
hash with only UTorrent peers were found, it would probably be possible to censor
it. The heterogeneity of different clients and their behaviors is making censorship
impossible.

The implicit mechanism against censorship offers an implicit security in the
DHT. Although it is due to BitTorrent clients which do not follow the specifications
of the DHT (what may be harmful for the DHT), as long as the peers of an info hash
are heterogeneous clients of BitTorrent, a protection against censorship is almost
guaranteed.

8.3. IMPACT OF NODES WHICH DO NOT FOLLOW THE SPECIFICATIONS OF
THE DHT 69

8.3 Impact of nodes which do not follow the specifications
of the DHT

As in the experiment 5 we discovered that some nodes do not follow the design
rules, the experiments 6 and 7 studied the impact in the DHT of these nodes.

The experiment 6 shows that the number of nodes containing list of peers too far
from the info hash are too many. The distribution in the distance to the info hash
of these nodes seems to be a normal distribution, the closest nodes seem to follow
it, but the farthest nodes are many more than the closest. The high number of far
nodes is probably due to the result of the experiment 5. However, the distance of
the closest nodes can not be altered by a behaviors not following the design since
nodes seem to announce always in them. This is the motivation for the experiment
9.

The experiment 7 analyzes the distribution of the list of peers among the nodes
containing it. The result shows that the three closest nodes are those containing
the most of the list of peers. However, there are nodes containing list of peers
which are not part of the closest. The percentage of the list of peers they contain
seems to decrease exponentially according to the distance order to the info hash.
An hypothesis for this result is that some clients announce themselves in the nodes
they find in the lookup. In [2] it is demonstrated that if the DHT has n nodes, the
number of hops to find a value is O(log(n)). This could explain the exponential
decrease.

8.4 Scalability and DDoS attacks

The experiment 8 checks the problems of scalability and DDoS attacks. It shows
that, in very popular info hashes, the impact of the incoming traffic in the closest
node to the info hash is not too critial with the info hashes we found (having up to
33000 peers), it is a reasonable rate for a usual domestic connection, but still too
much just for the DHT. The problem of the outgoing traffic is more serious. The
traffic rates are not reasonable. As the list of peers for a popular info hash becomes
very large, the outgoing messages become huge.

In order to reduce the impact of this problem, we propose an easy solution.
It consists on limiting the size of the list of peers in the get_peers responses. As
studied along this thesis, a list of more than 50 peers does not fit in a UDP packet.
The option of limiting it to 50 peers raises the limit of the scalability problem.
With this solution, the traffic of the most popular info hash we found has been
borne. Even though this solution reduces the problem, it still exists and generates
too much traffic just for the DHT.

In the future info hashes with millions of peers may exist. Projects like P2P-

70 CHAPTER 8. ANALYSIS OF RESULTS

Next [34] (which intends to broadcast live transmissions using P2P networks) can
originate swarms with millions of peers in the broadcast of international events.
Also, BitTorrent has nowadays millions of users, if some day there is an extremely
popular info hash it could have millions of peers as well. The traffic in the nodes
containing the list of peers of this kind of info hashes would make the problem much
more serious. We provide some data to estimate the traffic they would generate in
the results of the experiment 8.

8.5 Detection of suspicious nodes

The experiment 9 arises with the results of the experiment 6. The experiment 6
shows the distribution of distances of nodes containing list of peers, however, the
number of nodes too far from the info hash is higher than expected. The distribution
seems a normal distribution for nodes which are not too far, this data can help to
detect suspicious nodes.

As the distance of the closest nodes to an info hash is not affected by behaviors
which do not follow the design, it can provide a non altered measure. Measuring
the distance between an info hash and its closest node can give a parameter to
detect nodes suspiciously close to an info hash. The data obtained seems to have
a normal distribution in these distances. Also, the distribution can help to check
if a set of the closest nodes to an info hash fits in the distribution. It can help to
detect suspicious nodes. We have not found nodes closer to the info hash than 131
and the most typical distance is 138.

Chapter 9

Future work

The work of this thesis studies an unexplored part of Mainline DHT. There is
not much previous work related with the investigations we made. In this chapter
we present all the things that it would be interesting to study according to the
experience of this thesis.

9.1 Improvement of the tools and larger experiments

The beginning of the work was the development of a set of tools. Some experiments
have not been too exhaustive. Some results are significant but they can not be
taken as an assertion since they should check a larger part of the DHT (for the
experiments like experiment 1, the experiment 6 or the experiment 9). So, part of
the immediate future work is doing big enough experiments to give a global and
a complete view of Mainline DHT. These experiments would probably require an
improvement of the tools to make them more efficient due to the huge quantity of
information they should manage.

The tools have not been tested with such a huge quantity of information like
that which could be obtained monitoring the whole DHT. Probably, the first im-
provement needed would be related with the log files. These files have a human
readable format, which is very useful to check the results before processing them.
But the storage could be much more reduced enabling different levels of log files. It
could be added a level of logs which stored information to make it easy to read by
a script and using less storage.

71

72 CHAPTER 9. FUTURE WORK

9.2 Study of anomalous behaviors

One of the important facts discovered in this thesis has been that some BitTorrent
clients do not follow the specifications of the DHT (as shown in the experiment
5). The coexistence of many different implementations and their behaviors makes
wrong some theoretical assumptions deducted from the design, influencing in the
behavior of the DHT. Some of these different behaviors are beneficial (for example,
the experiment 5 shows that, as there are clients which do not choose only the closest
nodes to an info hash for the announcements, it is almost impossible to censor the
info hash) but on the other hand they generate extra traffic.

There are anomalous behaviors that seem to be harmful for the DHT (like those
clients found in the experiment 3 which send several announcement messages at
the same time when only one is necessary). These unexpected behaviors should be
investigated more in depth or the developers should be contacted. They can be a
bug or perhaps there is any reason and it could be possible to document it and to
propose it as an improvement.

Some of the anomalous behaviors discovered are the following:

• The number of nodes where a node chooses to announce itself is not the same
in all the BitTorrent clients (as shown in the experiment 5).

• Some BitTorrent clients choose nodes which are not part of the closest to the
info hash to announce themselves (as shown in the experiment 5).

• Clients announcing themselves send several announcements in a few seconds
(as shown in the experiment 3).

• Some clients responding to a get_peers query provide a list of peers with
repeated peers (as observed in several experiments).

9.3 Management of the list of peers

A very important fact (which at the beginning did not seem so important) is the
management of the list of peers. At the beginning we discovered that lists of peers
with more than 50 peers do not fit in a UDP packet. There are two alternatives
to solve this problem: limiting the size of the list of peers or fragmenting the IP
packets to be reassembled in the destination. The experiment 8 was shown that the
scalability problem is highly reduced using a limited list of peers. But this solution
may have some implications which were not discovered. It should be analyzed if
this limitation in the list of peers is influencing the behavior of the DHT somehow.

Some policies to manage a limited list of peers should be studied. In the case
of this thesis, the list consisted of the last 50 announcements, but perhaps some

9.4. DEEPER STUDY OF THE DHT 73

better policies can be defined (like choosing random peers, or fragmenting packets
even though the whole list is not sent, or checking if the peers are alive). An
exhaustive study of different policies should be done because we have proved that
the management of the list of peers can be a critical point in the DHT. This study
should also take into account the BitTorrent protocol where peers who have joined
the data exchange can exchange peers in order to get more peers (as explained in
[30]).

9.4 Deeper study of the DHT

In this thesis we have studied a specific part of the DHT and, with it, we have
discovered situations which are interesting to study. Before this thesis we did not
have too much data about the acual behavior of the DHT. By looking at its actual
behavior we have understood what is really happening on it.

We have not studied the whole DHT but a specific part of it. It would be
very useful to obtain a global profile of more aspects. We have demonstrated that
there are clients which do not follow the specifications, this fact implies an actual
DHT which does not match with the theoretical model. Working on a DHT whose
behavior is unknown can invalidate theoretical works. For example, if someone did
a simulation of the DHT using only UTorrent clients, the data obtained might not
be representative since it would have an unreal view of the DHT. For the same
reason, it is also very important to study the proportion in the usage of BitTorrent
clients in the DHT (in the experiment 2 we provide some data about this).

In deeper studies we would probably find more unexpected behaviors caused
by different BitTorrent clients. It would be very useful to obtain a classification
of clients and their behaviors (for example, classifying for every client: number of
nodes where it chooses to announce, maximum size of the list of peers, frequency of
announcements, etc). This data would be very useful for other investigations. For
example, if we had had this data when we did the analysis, we would have known
that censorship was almost impossible.

We propose two kind of works for studying the DHT: looking at its actual state
and looking at the behavior of the individual clients. A complete profile of both
the sides would provide a very complete source of information. This information
could be used for proposing improvements, identifying clients abusing the network,
finding more vulnerabilities, etc.

9.5 Further study of the vulnerabilities

Although the experiment 8 proved that the scalability problem is not too critical,
the problem still exists. Maybe in an info hash with a million of peers, nodes

74 CHAPTER 9. FUTURE WORK

containing the list of peers could not bear the traffic generated. We provide data
in the results of the experiment 8 to estimate the traffic of non existing info hashes
nowadays.

9.5.1 Sketching a solution for the problem of scalability

A mechanism to solve the problem of scalability should distribute tasks of the
storage of the list of peers in more or less nodes according to the size of the swarm.
It should be a mechanism which intended that all the nodes in the DHT had a
similar traffic due to the DHT.

A complete solution could be performed from those nodes providing the closest
nodes to the info hash in the lookup. They could detect that too many nodes are
looking for the closest nodes and limit somehow the access to them. It would be a
mechanism to make dynamic the set of nodes containing list of peers. But this kind
of solution could carry to a denial of access to those nodes. A complete solution
should be defined and studied.

Something which could help solving the problem is caching the values in the
DHT. In the design of Kademlia [2] there is an explanation of how values in Kademlia
can be cached. They explain that, as all lookups converge along the same path,
caching alleviates hot spots. This is not carried out in Mainline DHT. This solution
would be easy to implement if values in the DHT were static, however, in Mainline
DHT they are dynamic so implementing it would not be immediate.

9.5.2 Preventing DDoS attacks

Another point of view of the scalability problem, as explained in the experiment 8,
is the possibility of providing fake lists of peers to perform a DDoS attack. This
vulnerability still exists. It would have the same impact on the victim node than
the impact of the incoming traffic in the scalability problem (since the incoming
traffic would be somehow redirected to the victim node).

The experiment 8 showed that the incoming traffic is not a too critial problem in
the scalability problem, so it would not be that serious in the DDoS attacks as well.
However, if many users agree to position nodes close to several popular info hashes
it could be a serious problem. We provide some parameters in the experiments
of this thesis to find suspicious nodes. These parameters should be refined with
bigger experiments. However, nodes still can be part of the closest without being
suspiciously close to the info hash. A complete solution (which would be the same
for the scalability problem) should be proposed.

9.6. LONG TERM MODIFICATIONS 75

9.6 Long term modifications

Something that should be fixed is the possibility of choosing the identifier of a node
when it is supposed to be random that we studied in Chapter 3. A mechatnism to
detect if an identifier is random or not would solve several problems.

One possible solution is making compulsory to calculate the identifier as a hash
of the IP address of the node (like in Azureus [24]). It would permit checking if
a node has chosen its identifier by the right way. If a node does not follow it, it
should be ignored and no communication should be established with it.

The problem of adapting this solution is that all the nodes in the DHT should
start using it at the same time, this is hard due to the coexistence of many different
clients. It would suppose a global change but a transition could be established. In
the transition, nodes could try to keep on their routing tables nodes with a right
identifier. After some time using this solution, nodes with a right identifier could
start ignoring those with a wrong identifier.

Chapter 10

Conclusion

This chapter presents the conclusion extracted from the results obtained in the
experiments and, in general, from the experience of the development of this thesis.
It also compares the results with the goals of the thesis and explains the contribution
of this work.

10.1 Goal achievement

In Chapter 1 we proposed a set of goals. This section compares the results with the
goals in order to show that they have been achieved.

In Chapter 3 we presented a theoretical analysis about the generation, distri-
bution and obtaining of lists of peers in the DHT. The experiments presented in
Chapter 7 explore this part of the DHT and compare the results with the analysis.
The combination of all the experiments presents a global view of this part of the
DHT.

We have developed a set of tools to interact with the DHT, they are presented
in Chapter 6. These tools have served for testing the theoretical analysis presented
in Chapter 3. The tools are Open Source so anyone can use them for further
investigations.

The experiment 4 explores the problem of censorship. It shows that censorship
was not possible in any case and we show the reasons in the experiment 5, this
experiment shows that there is an implicit mechanism against censorship. The
experiment 8 quantifies the problems of scalability and DDoS attacks. It shows
that the problem of scalability is serious for the outgoing traffic and proposes a
solution to reduce its impact by limiting the size of the list of peers. It also shows
that the problem of DDoS attack is not too critical if only one user intends to do it
with the info hashes we found.

77

78 CHAPTER 10. CONCLUSION

We have reached our goals but the exploration of Mainline DHT has arisen a
lot of work interesting to do (they are presented in Chapter 9).

10.2 Contribution

This section presents all the contribution arisen with the work of this thesis.

10.2.1 Results

Providing a set of tools to monitor Mainline DHT. The tools we have devel-
oped (which are presented in Chapter 3) can be used or adapted to collect different
data from the DHT. Their usage can be useful for future investigations like the
future work proposed in Chapter 9 or new ones related with Mainline DHT. These
tools are Open Source so anyone can access them.

Proving that censorship is almost impossible by adding a set of nodes
as the closest to an info hash. The experiment 4 shows that censorship hasn’t
been possible in any case. Documenting why this vulnerability is not possible is an
important contribution to the community since the analysis presented in Chapter
3 pointed out it was possible. The experiment 5 documents that it has not been
possible because there are nodes which do not announce in the three closest nodes
to the info hash.

Demonstrating that a node close to a very popular info hash may
suffer a huge unexpected traffic rate. We documented in the experiment 8
that some nodes in the DHT may suffer a traffic rate much higher than the rest
due to the DHT. Even though this traffic may not be very critical for some users
nowadays, detecting that some nodes have to bear a much higher traffic than others
is an important contribution since it breaks the equality of the DHT.

10.2.2 Partial results needing more work

Providing a mechanism to reduce the problem of scalability. In the exper-
iment 8 we propose a mechanism to reduce the impact of the problem of scalability
by limiting the size of the list of peers. This mechanism is useful for developers so
they adapt it to their Mainline DHT clients. As it does not need to be implemented
in all the clients at the same time, it is an easy way to improve the software.

Providing some guidelines to fix the problems of scalability and DDoS
attacks. In Subsection 9.4.1 we provide some baselines for solutions of these prob-
lems. Currently they are not too critical with the improvement proposed, but in
the future they should be taken into account. In the experiment 8 we also provide
data to estimate the traffic in non existing info hashes nowadays.

10.3. GENERAL CONCLUSION 79

10.2.3 Observations requiring further studies

Finding clients which do not follow the specifications of the DHT. We
found out some clients which do not follow the speficitations as we show in the
experiment 3 (which shows that some clients do not respect the frequency for the
announcements) and the experiment 5 (which shows that some clients do not an-
nounce in the three closest nodes to the info hash). These inconsistencies suppose
a lack of fairness in the DHT since some clients are using it in a different way than
others.

Demonstrating that a list of peers can be used to perform a DDoS
attack and providing data to detect suspicious nodes. In the experiment 8
we showed how nodes containing list of peers could perform DDoS attacks. This
problem is not too critical but it can become more serious in the future. In the
experiment 6 and the experiment 9 we provide some data in order to find malicious
nodes and by looking at their distance to the info hash.

10.3 General conclusion

This section presents some general conclusion extracted from all the work done in
this thesis.

The correct working of BitTorrent is based on the equal cooperation
of all the participants. Identifying and avoiding situations which do not
respect this principle helps to ensure the equality of all the nodes. We have
analyzed, documented and proposed solutions for some vulnerabilities in Mainline
DHT. Our study helps developers to improve the security and correct behavior of
their BitTorrent clients. There are millions of users of BitTorrent clients nowadays,
an improvement in such a popular software is a contribution to all of them. This
work also helps to find and exclude malicious users. The result of this thesis helps
to keep the equality in BitTorrent.

Proposing individual changes for clients is easy, but global changes are
hard in a DHT like Mainline DHT. If a global change has to be adapted in the
whole DHT at the same time it is almost impossible to carry it out. The existence
of many different clients and versions makes this coordination very hard. But a
transition for global changes may be reasonable. If a global change is proposed, a
transition period can be established by using an intermediate solution temporarily.

Every solution or improvement should be documented. Although a solution is
not implemented, it can help to warn people of problems and to take it into account
in new designs of DHTs. All the documentation of problems in Mainline DHT can
be taken further to improve any other DHT or new designs or versions of DHTs.

The influence of UTorrent in Mainline DHT is very important. The

80 CHAPTER 10. CONCLUSION

experiment 2 showed that UTorrent is probably the most popular client with an
important difference of usage with the rest. UTorrent seems to follow all the speci-
fitations for the announcements. Probably, global changes should start in this client
because UTorrent nodes are a very important part of Mainline DHT.

Some of the problems presented in this thesis exist due to the possi-
bility of choosing the identifier for a node instead of a random one. This
property has been a very important point in this thesis. In the future, mechanisms
to ignore those nodes which choose their identifier should exist.

Studying actual aspects of Mainline DHT can be a help to under-
stand the theory and to make hypothesis. We read some papers presenting
experimental perspectives of Mainline DHT at the beginning of the thesis and they
were very useful to understand better the protocol. This thesis can also help to
understand in depth how Mainline DHT works. Also, some hypothesis done in this
thesis deducted from the design were wrong. Better hypothesis can be made taking
into account both the theory and the actual behavior of the DHT.

Appendix A

Glossary of terms

• DDoS attack: a denial-of-service attack (DoS attack) or distributed denial-
of-service attack (DDoS attack) is an attempt to make a computer resource
unavailable to its intended users.

• DHT: a structured overlay that uses key-based routing for put and get index
operations and in which each peer is assigned to maintain a portion of the
index.

• Hash: a hash function is any well-defined procedure or mathematical function
that converts a large, possibly variable-sized amount of data into a small
datum.

• Info hash: 160-bit SHA-1 hash of an object.

• IP address: an Internet Protocol (IP) address is a numerical label that is
assigned to devices participating in a computer network that uses the Internet
Protocol for communication between its nodes.

• Key: sequence of bits used to index a value, usually much smaller than the
value.

• Leecher: a peer or any client that does not have 100% of the object.

• Node: computer connected to the Internet running a BitTorrent client using
the DHT.

• Object: chunk of data.

• P2P: Peer-to-Peer systems are distributed systems consisting of intercon-
nected nodes able to self-organize into network topologies with the purpose of
sharing resources such as content, CPU cycles, storage and bandwidth, capa-
ble of adapting to failures and accommodating transient populations of nodes

81

82 APPENDIX A. GLOSSARY OF TERMS

while maintaining acceptable connectivity and performance, without requiring
the intermediation or support of a global centralized server or authority.

• Peer: an end system, node, or host that is a member of a P2P system.

• Seeder: a seeder is a peer that has a complete copy of the torrent and still
offers it for upload.

• SHA-1: is a cryptographic hash function designed by the National Security
Agency (NSA) and published by the NIST as a U.S. Federal Information
Processing Standard. SHA stands for Secure Hash Algorithm.

• Swarm: together, all peers (including seeders) sharing a torrent. For example,
six ordinary peers and two seeders make a swarm of eight.

• Torrent: a small meta-data file which contains information about the object to
download, not the object itself. It is downloaded from a web site (BitTorrent
file extension is .torrent). Part of the meta-data is the info hash of the object.

• Tracker: server on the Internet that coordinates the action of BitTorrent
Clients. Upon opening a torrent, the tracker is contacted and a list of peers
to connect to is received. Throughout the transfer, the client will query the
tracker, telling it how much it has downloaded and uploaded and how much
before finishing.

• Value: chunk of data indexed by a key.

Appendix B

Acronyms

• DDoS: Distributed Denial of Service.

• DHT: Distributed Hash Table.

• IP: Internet Protocol.

• P2P: Peer-to-Peer.

• SHA: Secure Hash Algorithm.

• TCP: Transmission Control Protocol.

• UDP: User Datagram Protocol.

• URL: Uniform Resource Locator.

83

Appendix C

Mainline packet format

The packet format defined here is extracted from [20].

PING query:

"t": token
"y": "q"
"q": "ping"
"a": "id": sender_id

"t": parameter is a token.
token: transaction ID.
"y": the query contains two additional keys: "q" and "a".
"q": the message is a query.
"ping": the query is a ping query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.

PING response:

"t": token
"y": "r"
"r": "id": responder_id

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response.
"r": there are returned values.

85

86 APPENDIX C. MAINLINE PACKET FORMAT

"id": parameter is an identifier.
responder_id: node identifier of the responder.

FIND_NODE query:

"t": token
"y": "q"
"q": "find_node"
"a": "id": sender_id

"target": target_node

"t": parameter is a token.
token: transaction ID.
"y": the query contains two additional keys: "q" and "a".
"q": message is a query.
"find_node": the query is a find_node query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.
"target": parameter is the node to find.
target: identifier of the node to find.

FIND_NODE response:

"t": token
"y": "r"
"r": "id": responder_id

"nodes": info_node_1
info_node_2
...
info_node_8

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response.
"r": returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"nodes": parameter is a list of nodes.
info_node_i: information about node i (identifier, IP address and UDP port) com-
pacted.

87

GET_PEERS query:

"t": token
"y": "q"
"q": "get_peers"
"a": "id": sender_ID

"info_hash": target_info_hash

"t": parameter is a token.
token: transaction ID .
"y": the query contains two additional keys: "q" and "a".
"q": message is a query.
"get_peers": the query is a get_peers query.
"a": there are arguments.
"id": parameter is an identifier.
sender_id: node identifier of the querier.
"info_hash": parameter is an info hash.
target_info_hash: info hash to get_peers.

GET_PEERS response if the queried node has no peers (in that case will provide closer nodes):

"t": token
"y": "r"
"r": "id": responder_id

"token": token_ann
"nodes": info_node_1

info_node_2
...
info_node_8

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the response contains an additional key: "r".
"r": the message is a response (must be the same sent in the query).
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"token": parameter is a token to send in case the querier wants to announce.
token_ann: value of the token.
"nodes": parameter is a list of nodes.
info_node_i: information about node i (identifier, IP address and UDP port) com-

88 APPENDIX C. MAINLINE PACKET FORMAT

pacted.

GET_PEERS response if the queried node has peers:

"t": token
"y": "r"
"r": "id": responder_id

"token": token_ann
"values": peer_1

peer_2
...
peer_n

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the message contains an additional key: "r".
"r": message is a response.
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.
"token": parameter is a token to send in case the querier wants to announce.
token_ann: value of the token.
"values": parameter is a list of peers.
peer_i: information about peer i (IP address and TCP port) compacted.

ANNOUNCE_PEER query:

"t": token
"y": "q"
"q": "announce_peer"
"a": "id": sender_ID

"info_hash": info_hash_ann
"port": TCP_port
"token": token_gp

"t": parameter is a token.
token: transaction ID.
"y": the message contains two additional keys: "q" and "a".
"q": message is a query.
"announce_peer": the query is an announce_peer query.
"a": there are arguments.
"id": parameter is an identifier.

89

sender_id: node identifier of the querier.
"info_hash": parameter is the info hash of the announcement.
info_hash_ann: value of the info hash.
"port": parameter is TCP port of the BitTorrent protocol.
TCP_port: value of the TCP port.
"token": parameter is the token provided in the get_peers query.
token_gp: value of the token.

ANNOUNCE_PEER response:

"t": token
"y": "r"
"r": "id": responder_id

"t": parameter is a token.
token: transaction ID (must be the same sent in the query).
"y": the message contains an additional key: "r".
"r": message is a response.
"r": there are returned values.
"id": parameter is an identifier.
responder_id: node identifier of the responder.

Appendix D

Obtaining of a large set of info hashes

Some of the experiments had to use a large set of info hashes in order to get reliable
results, for this kind of experiments we have used a set of 1200 info hashes obtained
from The Pirate Bay [8]. The way to get them has been using the following Unix
command:

wget http://thepiratebay.org/browse/100/ -r -x --no-parent

This command retrieves all the files contained in the folder browse/100 of the
webpage. In the webpage, it is possible to see that all the torrents are contained in
folders with the prefix /browse/100, /browse/200, etc. So, repeating this command
for five or six times, a large set of html files containing info hashes is obtained.
Once all this html files have been downloaded, it is necessary to parse them and get
the info hash from them (it was previously checked that it was contained there).
In all of them it is part of the line 155 of the file. To get it, it is been used the
following Unix command:

sed ’155q;d;’ file.html | sed -n ’s/.*\([a-f0-9]\{40\}\).*/\1/p’

The first part (before the vertical bar) gets the line number 155 of the file and uses it
as input for the second command. The second command parses that line searching
a sequence of 40 hexadecimal digits and prints it.
With this, we have developed a Python script to parse all the downloaded files and
print all the info hashes in a single file.

A summary of the number of peers for this set of info hashes is summarized in
D.1. The number of peers is all those peers observed in all the lookups.

91

92 APPENDIX D. OBTAINING OF A LARGE SET OF INFO HASHES

Number of peers Number of info hashes
0 298

1-49 658
50-99 61
100-149 47
150-199 41
200-249 30
250-299 20
300-349 15
350-399 6
400-449 9
450-499 6
500-549 1
550-599 2
600-649 3
650-699 1
700+ 2

Table D.1. Big set of info hashes and their number of peers.

Appendix E

Experiments with a set of nodes

Some of the experiments require a set of nodes. In order to perform this exper-
iments, some of the nodes of the Planetlab network have been used. Planetlab
provides access to hundreds of computers all around the world and with different
IP addresses. For some experiments up to 30 nodes have been used at the same
time.
Nodes have been accessed using SSH [18]. We have used one node to coordinate
the others, by using SSH, this node sends commands included in the Unix SSH
command to the other nodes.

93

Appendix F

Probabilities of identifiers

• XOR distance is the result of the bitwise XOR of two sequences. Log distance
performs the same operation, however, the result is not the number itself but
the position (counting from the right and starting from zero) of the first bit
which is 1 (counting from the left).

• In an identifier space of a bits, log distances belong to the interval [−1, a).

• Two sequences have a log distance of −1 between them in an identifier space
of a bits if they are equal (i.e. they have a bits equal).

• Two sequences have a log distance of a−1 between them in an identifier space
of a bits if their first left bit is different.

• Two sequences have a log distance of d between them where 0 ≤ d < a− 1 in
an identifier space of a bits if their first a − d − 1 left bits are equal and the
next one is different.

• The probability that two random sequences of n bits are equal is 1
2n .

• The probability of two random sequences to have a log distance equal to −1
between them in an identifier space of a bits is 1

2a .

• The probability of two random sequences to have a log distance equal to a−1
between them in an identifier space of a bits is 1

2 .

• The probability of two random sequences to have a log distance equal to d
between them where 0 ≤ d < a − 1 in an identifier space of a bits is the
probability that their first a − d − 1 left bits are equal and the next one is
different.

• The probability of two random sequences to have a log distance equal to
d between them where 0 ≤ d < a − 1 in an identifier space of a bits is

1
2a−d−1 ∗ 1

2 = 1
2a−d

95

96 APPENDIX F. PROBABILITIES OF IDENTIFIERS

• The probability of two random sequences to have a log distance equal or less
to d between them in an identifier space of a bits is the probability that they
have the a− d− 1 or more left bits in common and one different.

• The probability of two random sequences to have a log distance equal or less
to d between them where 0 ≤ d < a − 1 in an identifier space of a bits is
1

2a +
∑d
i=0

1
2a−i = 2d−a+1.

Appendix G

Identifier space occupation

Positioning new nodes closer to an info hash than the closest one should be easy.
According to the estimation of nodes made in [7], the number of nodes in the DHT
is 1.3 million. It is a quite old estimation, supposing that nowadays it has grown a
lot and it is about 17, 000, 000 ≈ 224, and knowing that the identifier space is 2160,
the identifier space occupation would be approximately 224

2160 ≈ 2−136. Supposing
that nodes are uniformly distributed, the average space between two consecutive
nodes would be 2160

224 ≈ 2136.

Even though since that estimation the number of nodes had grown much more
or the distribution of nodes were not uniform, this average distance would still be
huge. In conclusion, distance between an info hash and its closest node is supposed
to be big enough to add there millions of nodes.

97

Appendix H

Classification of tools

Table H.1 presents a classification of the pairs of tools with passive loggers and
Table H.2 the same with active loggers. A summary of the purpose of every pair of
tools is given in both the tables.

99

100 APPENDIX H. CLASSIFICATION OF TOOLS

Logger Displayer Result
censor - Positions a node with

a given distance to an
info hash in the DHT.
It is the base to de-
velop the other pas-
sive loggers.

announcements display_announcements_distance Displays graphically
the number of an-
nouncements received
in a node according to
its distance to the info
hash. It requires a log
for every distance to
display.

announcements display_freq_announcements Calculates the average
frequency of the an-
nouncements for every
node announcing and
displays the statistics
of these frequencies.

incoming_traffic display_incoming_traffic_statistics Summarizes the re-
ceived traffic in a node
showing the number
of received messages
for every type of mes-
sage.

Table H.1. Tools with passive loggers and their purpose.

101

Logger Displayer Result
complete_lookup display_list_distribution Displays how the list

of peers is distributed
among all the peers
containing it for the
given info hashes.

complete_lookup display_distance_closest Displays the average
distance between the
given info hashes and
their closest node.

complete_lookup display_average_number_nodes Displays the average
number of nodes con-
taining list of peers for
the given info hashes.

distribution display_distribution Displays the distance
between the given info
hashes and all nodes
containing list of peers
for them.

evolution display_evolution Displays how a list of
peers grows for every
node containing list of
peers for a given info
hash.

Table H.2. Tools with active loggers and their purpose.

Bibliography

[1] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economic
of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[2] P. Maymounkov and D Mazières. Kademlia: A peer-to-peer Information Sys-
tem Based on the XOR Metric. In proceedings of IPTPS, Cambridge, MA,
IEEE, March 2002.

[3] Planetlab. http://www.planet-lab.org/ (last visited May 2010).

[4] R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classification
of Peer-to-Peer Architectures and Applications. In proceedings of the First
International Conference on Peer-to-Peer Computing, IEEE, 2002.

[5] Stoica and Ion et al. Chord: A Scalable Peer-to-peer Lookup Service for Inter-
net Applications. In proceedings of SIGCOMM (ACM Press New York, NY,
USA), 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg, Ger-
many, November 2001.

[7] S. Crosby and D. Wallach. An Analysis of BitTorrent’s Two Kademlia-Based
DHTs. In department of Computer Science, Rice University, Houston, Texas,
USA, 2007.

[8] The Pirate Bay. http://thepiratebay.org/ (last visited May 2010).

[9] Mininova. http://www.mininova.org/ (last visited May 2010).

[10] A. Legout, G. Urvoy-Kellerand and P. Michiardi. Understanding bittorrent:
An experimental perspective. Technical Report (inria-00000156, version 3 - 9
November 2005), INRIA. Sophia Antipolis, France, November 2005.

[11] K. El Defrawy, M. Gjoka and A. Markopoulou. BotTorrent: misusing BitTor-
rent to launch DDoS attacks. In proceedings of the 3rd USENIX workshop on

103

104 BIBLIOGRAPHY

Steps to reducing unwanted traffic on the internet, p.1-6, Santa Clara, CA,
June 18, 2007.

[12] K. Cheung Sia. DDoS Vulnerability Analysis of Bit-Torrent Protocol. In UCLA
Tech. Report, Spring 2006.

[13] N. Liogkas, R. Nelson, E. Kohler and L. Zhang. Exploiting BitTorrent for fun
(but not profit). In Proc. of IPTPS, 2006.

[14] M. Sirivianos, J. H. Park, R. Chen and X. Yang. Free-riding in BitTorrent
Networks with the Large View Exploit. In Proc. of IPTPS, Bellevue, WA,
February 2007.

[15] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy and T. Anderson. Profiling
a million user dht. In proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, San Diego, California, USA, October 24-26, 2007.

[16] J. Yu, C. Fang, J. Xu, E. C. Chang and Z. Li. ID repetition in KAD. In Citeseer,
2010.

[17] eMule. http://www.emule-project.net/ (last visited May 2010).

[18] RFC 4251. The Secure Shell (SSH) Protocol Architecture.
http://www.ietf.org/rfc/rfc4251.txt.

[19] Wireshark. http://www.wireshark.org/ (last visited May 2010).

[20] BEP0005: DHT Protocol - http://www.bittorrent.org/beps/bep_0005.html
(last visited May 2010).

[21] BEP0020: Peer ID convention. http://www.bittorrent.org/beps/bep_0020.html
(last visited June 2010).

[22] Mainline - http://www.bittorrent.com/ (last visited June 2010).

[23] Azureus - http://azureus.sourceforge.net/ (last visited June 2010).

[24] M. Steiner and E. W. Biersack. Crawling Azureus. In Technical Report RR-
08-233, 2008.

[25] RFC3174. US Secure Hash Algorithm 1 (SHA1).
http://www.ietf.org/rfc/rfc3174.txt.

[26] UTorrent. http://www.utorrent.com/ (last visited June 2010).

[27] KTorrent. http://ktorrent.org/ (last visited June 2010).

[28] BitSpirit - http://bitspirit.uptodown.com (last visited June 2010).

105

[29] BEP0003: The BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep_0003.html (last visited June 2010).

[30] D. Wu, P.Dhungel, X. Hei, C. Zhang, K. W. RossUnderstanding Peer Exchange
in BitTorrent Systems. In Proc. of IEEE International Conference on Peer-to-
Peer Computing (IEEE P2P), Delft, Netherlands, Aug 2010.

[31] I. Kelényi and J. K. Nurminen. Energy aspects of peer cooperation - Measure-
ments with a mobile DHT system. In Proc. Cognitive and Cooperative Wireless
Networks Workshop in the IEEE International Conference on Communications
Beĳing, China, 2008, pp. 164 - 168, 2008.

[32] Ares. http://aresgalaxy.sourceforge.net/ (last visited June 2010).

[33] Python. http://www.python.org/ (last visited June 2010).

[34] P2P-Next. http://www.p2p-next.org/ (last visited June 2010).

