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Abstract

In this report, we first address the minimum-time control problem of structurally

persistent timed continuous Petri Net systems (ContPN). In particular, an ON-OFF

controller is proposed to drive the system from a given initial marking to the final marking

in minimum-time. The controller is developed first for the discrete-time system ensuring

that all transitions are fired as fast as possible in each sampling period until the required

total firing counts are reached. After that, they are stopped suddenly. By taking the limit

of the sampling period, the controller for continuous-time systems is obtained. Simplicity

and the fact that it ensures minimum-time are the main advantages of the controller. A

manufacturing system is taken as case study to illustrate the control strategy.

In a distributed controlled system, normally a complex dynamic system, the controllers

are not centralized in one location, but are distributed in subsystems. We try to apply

the ON-OFF controller into the distributed control of large scale systems modeled with

timed continuous Petri net. The original net system is first structurally decompose into

smaller subnets through sets of places. Then the ON-OFF controller is applied in con-

trolling each subsystem. Algorithms are proposed to compute admissible control laws for

the local subsystems in a distributed way. It is proved that with that control laws, the

final state can be reached in minimum time.

Keyword: Petri nets, minimum-time control, distributed control
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Chapter 1

Introduction

Petri Nets (PN) is a well known paradigm used for modeling, analysis, and synthesis of

discrete event systems (DES). With strong facility to depict the sequence, concurrency,

conflict and other synchronous relationships, it is widely applied in the industry, for the

analysis of manufacturing, traffic, and software systems, etc. Similar to other modeling

formalisms for DES, it also suffers from the state explosion problem. To overcome it, a

classical relaxation technique called fluidification can be used.

Continuous Petri nets [7, 19] are fluid approximations of classical discrete Petri nets

obtained by removing the integrality constrains, which means the firing counter vector

and consequently the marking is no longer restricted to be in the naturals but relaxed

into the non-negative real numbers. An important advantage of this relaxation is that

more efficient algorithms for their analysis, e.g., reachability and controllability [14, 10]

problems can be used.

Different approaches have been proposed in the literature for the control of different

classes of ContPNs, e.g., First-Order Hybrid Petri nets [5] or finite server semantics [2]

etc. In this work, the minimum-time control problem of timed continuous Petri nets

under infinite server semantics is considered. For this class of systems several control

approaches have been considered. In [14], the steady state control and optimal steady state

control are studied. Model Predictive Control (MPC) is used for optimal control problem

in [13] assuming a discrete-time model. In [24], a Lyapunov-function-based dynamic

control algorithm is studied while in [3] an efficient heuristics for minimum-time control

is proposed.

Here, we design an ON-OFF controller for structurally persistent ContPN systems.

With this controller, we will prove that the system is driven from an initial marking to a

final one in minimum-time. The basic idea of the proposed control strategy is to fire every

transition as fast as possible until the required total firing count is achieved (ON), and

then it is stopped (OFF). This kind of controller has been studied in the case of linear

systems [16, 21] and it is proved to be minimum-time in some cases. Unfortunately our
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system is only piecewise linear and the classical results can not be applied.

In the context of distributed systems, distributed timed automata is discussed in [11].

In [25], the author proposed a method for the modeling and decomposition of the large

and complex discrete event manufacturing systems, where a Petri net based controller

is distributed in machines and exchanges signals with coordinators. An architecture for

distributed implementation of Petri nets in control applications is proposed in [17]. A

distributed control strategy is designed in [8] for forbidden state avoidance for discrete

event systems which are modeled as Petri nets.

Coming back to the continuous Petri nets, in [4], a reachability control problem of

timed distributed continuous Petri net system is considered, which is composed of several

subsystems that communicate through channels modeled by places. The proposed algo-

rithm allows the subsystems to reach their respective target markings at different time

instants and keep them as long as required.

In this work, the distributed control of large scale systems which are modeled with

timed continuous Petri nets is addressed. As a starting point of this research topic, it

is assumed the systems we handle are modeled with marked graphs. The idea is first

structurally decomposing a large scale system into smaller ones, then applying the ON-

OFF controller to each subsystem. Algorithms are proposed to computer the local control

law separately. It is proved that with these control laws all the local controllers work

independently, and the final state can be reached in minimum time.

This report is organized as follows: Chapter 2 briefly recalls some basic concepts on

ContPN and implicit places which will be used in the approximation of systems. In

Chapter 3, an ON-OFF controller is proposed to drive the structurally persistent Petri

net system from the initial state to final state in minimum-time. Chapter 4 tries to apply

the ON-OFF controller to the distributed control of large scale systems modeled with

ContPN marked graphs. Some conclusions can be found in Chapter 5



Chapter 2

Basic concepts

The reader is assumed to be familiar with basic Petri net concepts (see [7, 19] for a gentle

introduction).

2.1 Continuous Petri Nets

Definition 2.1.1. A continuous Petri net system is a pair 〈N ,m0〉 where N = 〈P, T,Pre,Post〉

is a net structure where:

• P and T are the sets of places and transitions respectively.

• Pre,Post ∈ R
|P|×|T|
≥0 are the pre and post matrices.

• m0 ∈ R
|P|
≥0 is the initial marking (state).

For v ∈ P ∪ T, the sets of its input and output nodes are denoted as •v and v•,

respectively. Let pi, i = 1, . . . , |P | and tj, j = 1, . . . , |T| denote the places and transitions.

Each place can contain a non-negative real number of tokens, this number represents the

marking of the place. The distribution of tokens in places is denoted by m. A transition

tj ∈ T is enabled at m iff ∀pi ∈
• tj, m(pi) > 0 and its enabling degree is given by

enab(tj,m) = min
pi∈•tj

{

m(pi)

Pre(pi, tj)

}

which represents the maximum amount in which tj can fire. Transition tj is called k-

enabled under marking m, if enab(t,m) = k. An enabled transition tj can fire in any real

amount α, with 0 < α ≤ enab(tj,m) leading to a new state m′ = m + α · C(·, tj) where

C = Post − Pre is the token flow matrix and C(·, j) is its jth column.

If m is reachable from m0 through a finite sequence σ, the state (or fundamental)

equation is satisfied: m = m0 +C ·~σ, where ~σ ∈ R
|T|
≥0 is the firing count vector, i.e., ~σ(tj)

is the cumulative amount of firings of tj in the sequence σ.
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If for all p ∈ P , |p•| = 1 then N is called structurally persistent PN , in the sense that

independently by the initial marking, the net has no conflict.

Property 2.1.1. [12] Let 〈N ,m0〉 be a structurally persistent PN system. If tj is k-

enabled at m, it will remain k-enabled until tj is fired.

In timed continuous Petri net(ContPN) the state equation has an explicit dependence

on time: m(τ) = m0 + C · ~σ(τ) which through time differentiation becomes ṁ(τ) =

C · ~̇σ(τ). The derivative of the firing sequence f(τ) = ~̇σ(τ) is called the firing flow.

Depending on how the flow is defined, many firing semantics appear, being the most used

ones infinite and finite server semantics [19]. For a broad class of Petri nets it is shown

that infinite server semantics offers better approximation than finite server semantics [15].

This paper deals with infinite server semantics for which the flow of a transition tj at time

τ is the product of the firing rate, λj, and the enabling degree of the transition at m(τ)

f(tj, τ) = λj · enab(tj,m(τ)) = λj · min
pi∈•tj

{

m(pi, τ)

Pre(pi, tj)

}

(2.1)

For the sake of clarity, τ will be omitted in the rest of the report when there is no

confusion: f(tj), m and m(pi) will be used instead of f(tj, τ), m(τ) and m(pi, τ).

2.2 Implicit places and continuous marked graphs

A place p is called implicit when it is never the unique place restricting the firing of

its output transitions. Hence, an implicit place can be removed without affecting the

behavior of the rest of the system, i.e., the language of firing sequences of the original

system is preserved [18].

Normally, implicit places are decided by the structure but also depend on their initial

markings. The places that can be made implicit (with a proper initial marking) for any

initial marking of the rest of the system are called structurally implicit places. For the

subclass of structurally implicit places whose minimal initial marking can be deduced

from the marking of other places is said to be marking structurally implicit places, which

is formally characterized as the following:

Definition 2.2.1. [20] Let N = 〈P ∪ p, T,Pre,Post〉. The place p is marking struc-

turally implicit place, iff there exists y ≥ 0, such that C(p, T ) = y · C(P, T ).

For strongly connected marked graphs, a marking structurally implicit place p verifies:

C(p, ·) =
∑

pj∈π

C(pj, ·) for ∀π ∈ P(te, ts) (2.2)
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Figure 2.1: Marked Graph and Marking Structurally Implicit Places, with initial marking

m0(p1) = m0(p7) = m0(p9) = m0(p12) = m0(p14) = m0(p15) = 1.

where te, ts is input and output transition of p respectively, P(te, ts) is the set of simple

paths (i.e., the paths without repeated node) from te to ts [6].

It is proved in [6] that, given a marking structurally implicit place pe,s, the minimal

initial marking to make pe,s implicit is:

m0(pe,s) = mmin
0 (pe,s) = min







∑

pj∈π

m0(pj)|π ∈ P(te, ts)







(2.3)

Example 2.2.1. Fig. 2.1 shows a marked graph. It is easy to observe that from t12 to t4

there exist two simple paths, π1 = {t12p15t13p16t1p1t2p3t4}, π2 = {t12p15t13p16t1p2t3p4t4}.

Therefore, P(t12, t4) = {π1, π2}.

With respect to P(t12, t4), the added place p12,4 is marking structurally implicit with

input transition t12 and output transition t4. Similarly, if considering the path from t5 to

t11, π3 = {t5p6t6p7t7p8t8p10t9p11t10p12t11}, p5,11 is the corresponding marking structurally

implicit place. There is a loop path from t11, π4 = {t11, p13, t10, p12, t11}, therefore p11,11 is

constructed which forms a self loop.

In order to compute minimal initial marking to make p12,4 implicit, the sum of mark-

ings in each path from t12 to t4 is considered. Because the sum of markings of places in

π1 is 2, while for π2 it is 1, according to (2.3), the minimal is chosen, so one token should

be put into p12,4. Similarly, two tokens in p5,11, and one token in p11,11

When the net system is considered as continuous, the minimal intial marking makings

of marking structurally implicit places can also be calculated using (2.3). The similar

proof can be constructed as in [6], just noticing the fact that in continuous marked graphs

a transition is not fireable iff one of its input place is empty, which is the same for the

discrete ones.

Minimum-time Control for Structurally Persistent Continuous Petri Nets and
The Application in Distributed Control



Chapter 3

Minimum-time Control for

Structurally Persistent ContPN

3.1 Problem Statement

We now consider net systems subject to external control actions, and assume that the

only admissible control law consists in slowing down the firing speed of transitions [19].

Under this assumption, the controlled flow of a ContPN system is denoted as: w(τ) =

f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ). The overall behavior of the system is ruled by:

ṁ = C · (f(τ) − u(τ)). In this work, we assume that every transition is controllable (tj

is uncontrollable if the only control that can be applied is u(tj) = 0).

The problem we deal with in this work is: how to design a control action u that drives

the system from the initial marking m0 to the desired final marking mf in minimum-time?

Example 3.1.1. Fig. 3.1 shows a structurally persistent and unbounded ContPN . As-

sume m0 = [1 0 0 0 0]T , λ = [1 1 1 1]T , and the desired final marking mf = [0.3 0.4 0.3 0.4 0.4]T .

Considering the model as untimed, the following firing sequence ensures the reachability

of the final marking: σ = t1(0.8)t2(0.5)t3(0.5)t4(0.1). Looking at the system as timed and

considering σ, one can think to reach the final marking in the following way:

(i) fire first as fast as possible t1 and stop the other transitions; since
∫ 1.61

0
f(t1)dτ = 0.8,

this firing takes 1.61 time units;

t1 t2 t4

p2

p3

p1

t2

t3

p4

p5

Figure 3.1: Structurally Persistent Petri Net System

10



3. Minimum-time Control for Structurally Persistent ContPN 11

(ii) open t2 until the integral of its flow is equal to 0.5 and stop the other transitions;

this firing takes 0.98 time unit because
∫ 0.98

0
f(t2)dτ = 0.5;

(iii) stop all transitions and fire only t3 until its flow integral is 0.5; this will take 0.98

time unit because
∫ 0.98

0
f(t3)dτ = 0.5;

(iv) finally, open only t4 for 0.22 time unit because
∫ 0.22

0
f(t4)dτ = 0.1.

The previous strategy on the time system corresponds to the following control actions

u(τ):

(i) u(τ) = [0 f(t2) f(t3) f(t4)]
T for 0 ≤ τ ≤ 1.61;

(ii) u(τ) = [f(t1) 0 f(t3) f(t4)]
T for 1.61 < τ ≤ 2.59;

(iii) u(τ) = [f(t1) f(t2) 0 f(t4)]
T for 2.59 < τ ≤ 3.57;

(iv) u(τ) = [f(t1) f(t2) f(t3) 0]T for 3.57 < τ ≤ 3.79;

(v) if τ > 3.79, u(τ) = f(τ), i.e., all transitions are stopped.

With this control actions, the system can reach the final marking in 3.79 time units, but

as it will be shown, this is not a minimum-time controller because actions are unnecessarily

sequentialized.

3.2 Minimum-time Controller

In this section, an ON-OFF controller is proposed for structurally persistent ContPN

systems and it will be shown that it is a minimum-time controller. We will first present

some assumptions, then the controller is designed for both discrete-time and continuous-

time ContPN .

3.2.1 Minimal Firing Count Vector

In general, a marking m can be reached from m0 by using different firing sequences. For

example, if the net is consistent and m is reached with σ, it is also reached when firing

a T-semiflow α ≥ 0 times before (or interleaved with) σ. Here we introduce the notion

of minimal firing count vector, and prove that it is unique under some assumptions for

persistent nets.

Minimum-time Control for Structurally Persistent Continuous Petri Nets and
The Application in Distributed Control
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Figure 3.2: A non Structurally Persistent Petri Net System

Definition 3.2.1. Let 〈N ,λ,m0〉 be a ContPN system and mf be a reachable marking

through a sequence σ, i.e., mf = m0 + C · ~σ. The firing count vector ~σ is said to be

minimal if for any T-semiflow x, ||x|| 6⊆ ||~σ||, where || · || stands for the support of a

vector, i.e., the index of the elements different than zero.

Example 3.2.1. Let us consider the net system in Fig. 3.2 that is not structurally per-

sistent because p•1 = {t1, t2}, and p•2 = {t3, t6}. Assume m0 = [1 0 0 0]T and mf =

[0 0 0 1]T . Firing the sequence σ1 = t1(1)t3(1) (~σ1 = [1 0 1 0 0 0]T ) from m0 the ob-

tained marking is mf . The same marking is obtained by firing σ2 = t1(1)t6(1)t1(1)t3(1)

(~σ2 = ~σ1 + [1 0 0 0 0 1]T ) since [1 0 0 0 0 1]T is a T-semiflow. Therefore, ~σ1 is a mini-

mal firing count vector, while ~σ2 is not. Normally, the minimal firing count vector is not

unique. For this net, ~σ3 = [0 1 0 1 0 0]T (σ3 = t2(1)t4(1)) is another minimal firing count

vector leading to mf .

Proposition 3.2.1. Let 〈N ,m0〉 be a structurally persistent PN system and mf be a

reachable marking. If one of the following assumption is satisfied, there exits a unique

minimal firing count vector ~σ.

(A1) The matrix C has full rank;

(A2) The ContPN is strongly connected and consistent.

Proof. Suppose there exist two minimal firing count vectors ~σ1 and ~σ2, then (1) mf =

m0 + C · ~σ1, (2) mf = m0 + C · ~σ2. Subtracting (2) from (1), we obtain:

C · (~σ1 − ~σ2) = C · ~σ12 = 0

If (A1) is satisfied, we must have ~σ12 = 0, so ~σ1 = ~σ2(6= 0, if mf 6= m0).

If (A2) is satisfied, there is only one minimal T-semiflow [22], denoted by x > 0. ~σ12

may have negative elements, but we can always find an α ≥ 0, such that ~σ12 + α · x ≥ 0.

Since C · (~σ12 + α · x) = 0 and ~σ12 + α · x ≥ 0, it is a T-semiflow. Therefore, there exists

β > 0 such that ~σ12 + α ·x = β ·x, implying ~σ12 = (β −α) ·x. If β −α = 0 then ~σ1 = ~σ2
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which is impossible by assumption. If β −α > 0 then ~σ1 = ~σ2 + (β − α) ·x > (β − α) ·x.

Therefore, ~σ1 is not a minimal firing count vector. Similarly, if β − α < 0 then ~σ2 is not

a minimal firing count vector.

Hence, for a structurally persistent system under assumption (A1) or (A2), any con-

troller driving the system to mf must follow the minimal firing count vector plus even-

tually a T-semiflow. If we are interested in the minimum-time controller then it should

follow only the minimal firing count vector since the firing of a T-semiflow will be fired

independently, before the minimal firing sequence and this firing takes time. In the fol-

lowing we will show that among all possible controllers having the integral of firing flow

equal to the minimal firing count vector, the one corresponding to the ON-OFF strategy

provides the minimum-time controller.

3.2.2 Minimum-time controller: Discrete-time Case

Sampling the continuous-time ContPN system with a sampling period Θ, we obtain the

discrete-time ContPN [13] given by:

m(k + 1) = m(k) + C · w(k) · Θ

0 ≤ w(k) ≤ f(k) (3.1)

Here m(k) and w(k) are the marking and controlled flow at sampling instant k, i.e.,

at τ = k · Θ. Let u(tj, k), f(tj, k) and w(tj, k) denote the control action, flow and

controlled flow of transition tj. The firing count of tj in kth sampling period is denoted

by sk(tj) = w(tj, k) · Θ.

Property 2.1.1 shows that for structurally persistent systems if two transitions t1 and

t2 are enabled at the same time, the order of firing is not important (i.e., both sequences

t1t2 and t2t1 are fireable).

Example 3.2.2. Let us consider again the net system in Fig. 3.1 but now as discrete-

time with Θ = 0.2. Assume m0 = m(0) = [0 1 1 1 1]T , λ = [1 1 1 1]T and mf =

[0.2 1.1 0.9 0.9 0.9]T . The minimal firing count vector in this case is ~σ = [0 0.1 0.1 0.2]T .

The following controlled flow ensures the reaching of mf in two sampling periods:

• At k = 0: w(t1, 0) = w(t4, 0) = 0 and w(t2, 0) = w(t3, 0) = 0.5. Then t2, t3 are

fired in an amount 0.5 · Θ = 0.1 and t1 and t4 are stopped. The system reaches

m(1) = [0 0.9 0.9 1.1 1.1]T .

• At k = 1: w(t1, 1) = w(t2, 1) = w(t3, 1) = 0 and w(t4, 1) = 1. Then t1, t2 and t3 are

stopped while t4 is fired in an amount 1 · Θ = 0.2. After this sampling period, mf

is reached.

Minimum-time Control for Structurally Persistent Continuous Petri Nets and
The Application in Distributed Control



Under this control law, t2 and t3 are fired before t4. Since t4 is 1-enabled at m0 it can

be fired first and mf is still reached. Therefore, another control law corresponding to the

same minimal firing count vector is:

• At k = 0: w(t1, 0) = w(t2, 0) = w(t3, 0) = 0 and w(t4, 0) = 1. Hence, t1, t2

and t3 are stopped, and t4 is fired in an amount 1 · Θ = 0.2. Now, m(1) =

[0.2 1.2 1 0.8 0.8]T .

• At k = 1: w(t1, 1) = w(t4, 1) = 0 and w(t2, 1) = w(t3, 1) = 0.5. Hence, t2 and t3

are fired in an amount 0.1 while t1 and t4 are stopped.

Definition 3.2.2. Let 〈N ,λ, Θ,m0〉 be a discrete-time ContPN system and mf be a

reachable final marking with a firing count vector ~σ. Then, transition tj is said to be

sufficiently fired in the kth sampling period if one of the following conditions holds:

• sk(tj)
def

= w(tj, k) · Θ = f(tj, k) · Θ, i.e., u(tj, k) = 0,

• 0 < sk(tj) ≤ f(tj, k) · Θ and sk(tj) +
k−1
∑

i=0

si(tj) = ~σ(tj).

In the first case tj is fired in the maximal amount, while in the second case it is the last

firing of tj in the corresponding sequence.

For instance, let us examine the first control law in Ex. 3.2.2 for k = 0. Transition

t4 is not sufficiently fired, because ~σ(t4) = 0.2 (should fire in an amount of 0.2) but

s0(t4) = w(t4, 0) ·Θ = 0 (it is not fired). On the other hand t2 and t3 are sufficiently fired

at k = 0 because s0(t2) = s0(t3) = 0.1 = ~σ(t2) = ~σ(t3).

In control theory, an ON-OFF controller is a controller that switches abruptly between

two states. It is frequently used in minimum-time problems and actually optimal control

in many cases [16, 9]. Here we design an ON-OFF controller for structurally persistent

Petri nets and prove that it is the minimum-time controller for such systems.

Definition 3.2.3. Let 〈N ,λ, Θ,m0〉 be a structurally persistent discrete-time ContPN

system and mf be a reachable final marking with the corresponding minimal firing count

vector ~σ. An ON-OFF controller is defined as: u(tj, k) =
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0 if
k−1
∑

i=0

si(tj) + f(tj, k) · Θ ≤ ~σ(tj) (a)

f(tj, k) if
k−1
∑

i=0

si(tj) = ~σ(tj) (b)

f(tj, k) −
~σ(tj)−

k−1
∑

i=0

si(tj)

Θ

if
k−1
∑

i=0

si(tj) < ~σ(tj) and (c)

k−1
∑

i=0

si(tj) + f(tj, k) · Θ > ~σ(tj)

(3.2)

Assuming at k = 0,
k−1
∑

i=0

si(tj) = 0.

(a) says that before reaching the required total firing count ~σ(tj), we simply let tran-

sition tj to fire free, i.e. u(tj, k) = 0; (b) means once ~σ(tj) is reached, the transition is

completely stopped, i.e. u(tj, k) = f(tj, k); (c) represents the last firing of tj but cannot

fire at maximum speed to not overpass ~σ(tj). After all the transition are stopped, the

system will stay in the final marking.

The basic idea of the ON-OFF controller is that in each sampling period k, every

transition is sufficiently fired.

Proposition 3.2.2. Let 〈N ,λ, Θ,m0〉 be a structurally persistent discrete-time ContPN

system and mf be a reachable final marking with the corresponding minimal firing count

vector ~σ. The ON-OFF controller is the minimum-time controller driving the system to

mf .

Proof. We will prove that whenever there exists a controller G driving the system to

mf , it consumes at least the time of the ON-OFF controller. This will imply that the

ON-OFF controller is the minimum-time controller.

Assume a non ON-OFF controller G. Hence, there exists a transition tj that is not

sufficiently fired in a sampling period k. In other words, tj has to be fired later in a

sampling period l, l > k. Let us assume, without loss of generality, that tj is not fired

between the kth and the lth sampling period. It is always possible to “move” some amount

of firing from the lth sampling period to the kth one until tj becomes sufficiently fired in

k. According to Property 2.1.1 this move does not affect the fireability of the other

transitions. Iterating the procedure, all transitions can be made sufficiently fired in all

sampling periods and the obtained controller is an ON-OFF one.

Obviously, the number of discrete-time periods necessary to reach the final marking

after moving firings from a sampling period l to another one k with k ≤ l is at least the

same. Hence the number of sampling steps is not higher with the ON-OFF controller.
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3.2.3 Minimum-time controller: Continuous-time Case

Definition 3.2.4. Let 〈N ,λ,m0〉 be a structurally persistent continuous-time ContPN

system, and mf be a reachable final marking with the minimal firing count vector ~σ. An

ON-OFF controller is defined as:

u(tj) =

{

0 if
∫ τ−

0
w(tj)dτ < ~σ(tj) (a)

f(tj) if
∫ τ−

0
w(tj)dτ = ~σ(tj) (b)

(3.3)

(a) means that if ~σ(tj) is not reached then tj is completely ON, i.e., u(tj) = 0; else (b),

tj is completely OFF, i.e., u(tj) = f(tj).

Corollary 3.2.1. Let 〈N ,λ,m0〉 be a structurally persistent continuous-time ContPN

system, and mf be a reachable final marking with the corresponding minimal firing count

vector ~σ. The ON-OFF controller given by 3.3 is the minimum-time one driving the

system to mf .

Proof. If we take sampling period Θ → 0 in Def. 3.2.3, the ON-OFF controller in Def. 3.2.4

is obtained. According to Proposition 3.2.2, this is the minimum-time controller.

Let us notice that once a place of a continuous-time ContPN is marked, it will take

infinite time to be emptied (like the discharging of a capacitor in an electrical RC-circuit).

Therefore, the ON-OFF controller of a structurally persistent net is the minimum-time

controller if no place is emptied during the trajectory from m0 to mf . Otherwise, the

final marking is reached at the limit, in infinite time. For example, to reach mf = [0 0 1]T

in the net system in Fig. 3.3, p1 has to be emptied while p2 should be marked first and

then emptied. Hence, mf is reached at the limit. Nevertheless, if mf = [0.5 0.5 0]T (that

is not strictly positive), can be reached in finite time since there exists a trajectory no

emptying any place, i.e., firing t1 in an amount 0.5.

t1 t2 t3p2 p3p1

Figure 3.3: ContPN with m0 = [1 0 0]. Assume mf = [0 0 1].

Example 3.2.3. Let’s consider the same problem in Ex. 3.1.1 (Fig. 3.1) but with an

ON-OFF controller. The marking mf is reached in 1.65 time units comparing with 3.79

time units in Ex. 3.1.1 where a different (pure sequentialized) controller with the same

minimal firing count vector is applied. The marking trajectory is in Fig. 3.4.
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Figure 3.4: Marking trajectories

3.3 Case Study

Let’s consider the net system in Fig. 3.5, which models a table factory system (taken

from [22]).

0.5

t1p1

p2

p3

p4

0.5

0.5

0.5

0.5

0.5

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

t2

t3

t4

t5

t6

t7

t8

t9

t10
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Other factory

Board maker

Old Leg-

maker

New leg-
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Assembler

Painting line

2

4

2

Figure 3.5: Persistent PN model of a table factory system. Assume the firing rate of

every transition to be equal to 1.

The system consists of several parts, including board maker, leg maker, assembler,

painting line and is modeled by a weighted structurally persistent ContPN . Suppose

in the initial marking m0(p1) = m0(p2) = m0(p3) = m0(p4) = 1, m0(p6) = m0(p8) =

m0(p10) = m0(p12) = m0(p16) = m0(p19) = 0.5, and the other places are empty. Assume

mf be mf (p3) = mf (p17) = 0.1, mf (p4) = mf (p5) = 0.2, mf (p13) = 0.15, and all the

other places with marking equal to 0.25. The corresponding minimal firing count vector

~σ = [0.85 0.85 1.0 0.9 0.6 0.6 0.75 0.65 0.45 0.2 0.35 0.10].
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Applying ON-OFF on the system under continuous time, Fig. 3.6 shows the stopping

time instants of transitions. After t9 is stopped at 4.28 time units, all the places are at

the final state value.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
0

0.5

1

1.5

2

2.5

3

3.5

4
4.28

T
im

e

Figure 3.6: Stopping time instants

Fig. 3.7 shows the marking trajectory of place p3, p13, p14 and p17. Taking p17 as a

example, it reaches the final state at 4.19 time units. That makes sense, because the

marking of p17 is dependent on transitions t5, t10 and t11, which are stopped at 2.9, 3.24

and 4.19 time units, respectively. When t11 is stopped, the system has reached the final

state.
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Figure 3.7: Marking trajectories



Chapter 4

Distributed Control of Large Scale

Systems

In this chapter, we address how to apply the minimum-time ON-OFF contorlle to dis-

tributed control of large scale systems. The more detailed content of this chapter can be

found in Appendix A([23]).

4.1 Problem Statement

The classical centralized control theory has been proved inefficient for large scale dis-

tributed systems, in which the communication delay, time synchronization problems be-

come significant. Therefore distributed or decentralized control is extensively explored in

recent decades. In a distributed controlled system, normally a complex dynamic system,

the controllers are not centralized in one location, but are distributed in the subsystems,

while typically, each controller can only access local resources and limited information

from its neighbor subsystems.

Under the framework of ContPN, the large scale system is decomposed into subsys-

tems that are modeled with ContPNs and controlled by the local controllers. Each local

controller can obtain informations from its neighbor subsystems through interface places

and transitions. The problem we deal with in this chapter is: how to design the control

action for each local controller which works independently, and drives the system from

initial marking m0 to final marking mf (in minimum-time). Large net systems are first

decomposed according to sets of places, after that, adequate control actions for using

ON-OFF controller are computed locally.
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4.2 Structural Decomposition of Marked Graphs

In this section we adapt the decomposition methods developed in [6]. The idea is the

following: given a strongly connected marked graph N , it is first split into two subnets

N1 and N2 according to a set of places B ⊆ P , after that the complemented subnets (CN )

are derived through adding interface transitions and marking structurally implicit places.

Definition 4.2.1. Let N = 〈P, T,Pre,Post〉 be a strongly connected marked graph,

B ⊆ P is said to be a cut iff there exists subnet Ni = 〈Pi, Ti,Prei,Posti〉, i = 1, 2, such

that:

(i) T1 ∪ T2 = T , T1 ∩ T2 = ∅

(i) P1 ∪ P2 = P , P1 ∩ P2 = B

(ii) P1 =• T1 ∪ T •
1 , P2 =• T2 ∪ T •

2

where U =• B ∪B• is said to be interface, which is partitioned into U1, U2, such that

U1 ∪ U2 = U , Ui = Ti ∩ U .

Example 4.2.1. N1, N2 (the dotted part is not included) in Fig. 4.1 are the subnets

obtained from the marked graph in Fig. 2.1, which is cut by B = {p5, p14}, with the

interface U = {t4, t5, t11, t12} and U1 = {t4, t12}, U2 = {t5, t11}.

t2

t1

t3

t4 t5

t11t12t13

p1

p2

p3

p5 p6

p14p15p16

p4 p5,11

p11,11

(a) N1(dotted part not in-

cluded) and CN 1(dotted part

included)

t4 t5 t6 t7
t8

t9t10t11t12

p5 p6 p7

p8

p9

p10p11

p12

p13

p14

p12,4

p5,11

(b) N2(dotted part not included) and

CN 2(dotted part included)

Figure 4.1: Cutting of marked graph

After cutting, the two subsystems N1, N2 are independent of the rest of system,

because all the constraints from the rest of the system are removed, therefore different

behaviors are introduced. The complemented subnet is obtained after adding marking

structurally implicit places as approximations of other parts of the system.

Definition 4.2.2. Let N = 〈P, T,Pre,Post〉 be a strongly connected marked graph,

Ni = 〈Pi, Ti,Prei,Posti〉 be the subnets associated with a cut B. The complemented
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subnet CN i is obtained from Ni by adding transitions in Uj and the marking structurally

implicit places with respect to the paths P(te, ts) in Nj, te, ts ∈ Uj, i, j = 1, 2, i 6= j. The

set of places being added to Ni is denoted by IPi .

In Fig. 4.1, the complemented subnet CN 1 is obtained after adding U2 = {t5, t11}

and IP1 = {p5,11, p11,11} to N1, while CN 2 is obtained after adding U1 = {t4, t12} and

IP2 = {p12,4} to N2. Notice that cut B and interface U are shared in both subnets.

In order to calculate the initial marking of pe,s making it implicit, we have to find

out the minimal path from te to ts such that (2.3) is satisfied. There are some efficient

algorithms developed in literatures which can be used to search the minimal path, for

example the algorithm of Floyd-Warshall [1] with a computation complexity of O(|T |3),

where |T | is the number of transitions.

Sometimes for a complex system, only one cut is not sufficient, because the comple-

mented subsets are still difficult to handle. Therefore, the above decomposition process

needs to be executed in multiple hierarchical levels. Fig. 4.2 presents the complemented

subnets obtained from cutting CN 2 in Fig. 4.1(b) one more time, with B = {p6, p12, p13}.

After this two level cutting, the original system is decomposed into three: CN 1, CN 21

and CN 22. It should be noticed that the order of cutting is not important, for example

in this case, if it is first cut with B = {p6, p12, p13}, then with B = {p5, p14} the exactly

same subnets are obtained.

t4 t5 t6

t10t11t12

p5 p6

p12

p13

p14

p12,4
p6,10

(a) CN 21

t5 t6 t7
t8

t9t10t11

p6 p7

p9

p10p11

p12

p13

p11,5

p8

(b) CN 22

Figure 4.2: Complemented subnets: second cut from CN 2

4.3 Application of the minimum-time Controller in

Distributed Control

Our goal is to decompose a large scale system into smaller subsystems, and drive the

system to the final state with the local controllers. In this section we will show that if the

system is decomposed with the methods we present in section 4.2, and applying ON-OFF

to each subsystem, the final state can be reached in minimum time.

Minimum-time Control for Structurally Persistent Continuous Petri Nets and
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Because marked graphs is a subclass of structurally persistent nets, this ON-OFF

strategy can be applied. The problem is in a large distributed system, each local controller

can only access limited resources from its neighbors, so the global control law (minimal

firing count vector) can not be obtained directly. In the following parts, it is presented

how to calculate it in a distributed way.

The idea is the following: minimal firing count vector is first calculated in each com-

plemented subnet, since these firing count vectors may not be fireable when considering

the global state of the system, then algorithms are proposed for constructing the global

minimal firing count vectors without knowing the structures of subsystems.

In the sequel, we denote ~σ the minimal firing count vector driving N from m0 to mf

and ~σi the firing count vector computed from CN i for reaching mi
f from mi

0, where mi
0

and mi
f are initial and finial markings in CN i, projected from CN .

Let us consider the case when the system is decomposed hierarchically. For a com-

plemented subnet CN i, if ~σ(tj) = ~σi(tj), tj ∈ Ti, then CN i is said to be critical. Firing

count vectors ~σ1 and ~σ2 are said to be compatible if ~σ1(tj) = ~σ2(tj), tj ∈ U . Define

operator ⊕ the merge of ~σ1, ~σ2 if they are compatible, such that, ~σ12 = ~σ1⊕~σ2, ∀t ∈ Ti,

~σ12(t) = ~σi(t), i = 1, 2.

Two complemented subnets are neighbors if they share a cut. Because every time

we split one net into two parts, each complemented subnets has at least one neighbor.

We will prove it is possible to make pairs of minimal firing vectors of neighbors to be

compatible and obtain ~σ after merging all of them.

Proposition 4.3.1. Let 〈N ,m0〉 be a live marked graph, and decomposed into n subnets.

Assuming CN q, 1 ≤ q ≤ n is critical complemented subnet, there exist xi, i = 1, 2, ..., n

such that:

~σ =
n

⊕

i=1

(~σi + xi · 1) (4.1)

and if i = q, xi = 0, else xi ≥ 0.

Proof. See [23]

It is clear ~σi + xi · 1 can be fired in CN i and the corresponding final marking is

reached. If applying the ON-OFF controller to the transitions in each subnet Ni with

control action ~σi + xi · 1, the final state of system is approached in minimum-time. Now

what needs to be done is designing an effective algorithm for searching a critical subnet,

and calculating corresponding xi.

Here we propose an algorithm for searching CN q based on the graph G = 〈V,W 〉,

depicting the relations among complemented subnets, in which each node v represents a
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subnet, there are arcs between two nodes if the corresponding subnets are neighbors. The

weight of the arc from vi to vj is w(vi, vj) = ~σi(t) − ~σj(t), t ∈ U , negative weight is also

allowed here. Denote W (vi, vj) the sum of the weights on the simple path from vi to vj.

Algorithm 1 Search a critical subnet

Input: G = 〈V,W 〉

Output: A node vq ∈ V

1: Label all the nodes in V as new ;

2: while more than one node in V is labeled as new do

3: Choose a node vi from V which is labeled as new ;

4: for j = 1 to n do

5: if W (j, i) has not been calculated then

6: calculate W (i, j);

7: if W (i, j) > 0 then

8: label vj as old ;

9: else if W (i, j) < 0 then

10: label vi as old ;

11: break;

12: end if

13: end if

14: end for

15: if j = n and vi is labeled as new then

16: return vi;

17: end if

18: end while

19: return The last node in V that is labeled as new

As for the calculation of xi in (4.1), it is actually equal to the sum of weights of arcs

in the path from node vi to node vq [23]. Then the overall procedure for the distributed

control of a large scale system can be described as:

1: Structurally decomposition;

2: Construct the graph G = 〈V,W 〉;

3: Search a critical subnet CN q using Algorithm 1;

4: Compute x(i): the relative difference of CN q to CN i;

5: Apply ON-OFF controller to Ni with control action ~σi + x(i) · 1.

Minimum-time Control for Structurally Persistent Continuous Petri Nets and
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Chapter 5

Conclusions

In this report, an ON-OFF controller is designed for structurally persistent ContPN

systems which can drive the system from an initial marking to an final one in minimum-

time. The idea behind is extremely simple and efficient: the final marking can be reached

with different firing count vectors, but we only focus on the minimal one. In the framework

of discrete-time systems, we design the ON-OFF controller, such that all transitions are

fired as fast as possible, and suddenly stopped when the total firing counts are reached.

Special attention should be paid to the last sampling period before stopping in order to

prevent the total firing count to be exceed. It is proved that with this controller the final

marking is reached in minimum-time. By considering the limit (going to zero) of the

sampling period, the results are extended to continuous time systems.

Distributed control could be a solutions for control of systems that are too complex

to handle with centralized controller or the deployments of systems are physically dis-

tributed. We focus on distributed control of large scale systems that are modeled with

timed continuous marked graphs, aiming to drive the system from initial marking to de-

sired final marking. The model is first decomposed into subnets with sets of places, then

making structurally implicit places are introduced to obtain complemented subnets and

control laws can be computed in a distributed way. After that, ON-OFF control is applied

in each subnet, and final marking is reached in minimum time. One of the main future

work will be applying this control method to more general nets structures, for example

structurally persistent nets, where the decomposition method and approximation strategy

should be reconsidered.
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Appendix A

Distributed Control of Large Scale

Systems Modeled with ContPN
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