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Abstract 

Since performance of conventional linear prediction (LP) 

deteriorates in formant estimation of high-pitched voices, several 

all-pole modeling methods robust to F0 have been developed. 

This study compares five such previously known methods and 

proposes a new technique, Weighted Linear Prediction with 

Attenuated Main Excitation (WLP-AME). WLP-AME utilizes 

weighted linear prediction in which the square of the prediction 

error is multiplied with a weighting function that downgrades the 

contribution of the glottal source in the model optimization. 

Consequently, the resulting all-pole model is affected more by 

the vocal tract characteristics, which leads to more accurate 

formant estimates. By using synthetic vowels created with a 

physical modeling approach, the study shows that WLP-AME 

yields improved formant frequency estimates for high-pitched 

vowels in comparison to the previously known methods. 

Index Terms: formants, linear prediction 

1. Introduction 

Linear prediction (LP) is a spectral estimation technique that is 

widely used in estimation of the vocal tract resonances, the 

formants. LP is well-suited for formant estimation due to its 

close connection to the source-filter theory of speech production 

[1]. However, the performance of conventional LP is known to 

deteriorate for high-pitched speech [2], [3]. In particular, the 

estimates of the lowest formants are biased by the spectral 

components generated by the glottal source, F0 and its 

harmonics, due to the error criterion used in conventional LP.  

Modifications to LP have been proposed in many studies in 

order to compute all-pole models that are less affected by F0 and 

its harmonics. Lee [4] studied different cost functions that give 

more weight to small residual samples while down-weighting the 

prediction error samples of large amplitude. El-Jaroudi and 

Makhoul [3] utilized the Itakura-Saito distortion measure in the 

model optimization. Ma et al. [5] developed a method, Weighted 

Linear Prediction (WLP), in which a temporal weighting 

function is used in order to reduce the biasing effect of F0. 

Rahman and Shimamura [6] suggested a cepstral domain method 

to remove the biasing effect of F0. Finally, Wang and Quatieri 

[7] proposed recently a method in which the temporal change of 

pitch is exploited to improve the spectral sampling of the vocal 

tract resonances. 

In this study, several linear predictive methods are compared 

in formant frequency estimation of high-pitched vowels. In 

addition, a new weighting function is proposed for WLP that 

downgrades the contribution of the glottal source and thereby 

yields formant estimates that are less biased by F0 and its 

harmonics. The study utilizes physical modelling of voice 

production in order to synthesize test vowels with known 

formant frequencies. With this approach, test signals are 

generated by a physical law, rather than by a parametric digital 

model similar to the all-pole model assumed in LP.  

2. Weighted linear prediction 

Weighted Linear Prediction (WLP) is a method for computing 

all-pole models by temporally weighting the square of the 

residual in the filter optimization. Hence, the contribution of 

certain pre-selected samples that are considered to be less 

desirable can be de-emphasized in the optimization. In formant 

estimation, an over-active role of the glottal source, which takes 

place when the vocal folds vibrate rapidly in high-pitched 

speech, can be regarded as this kind of a less desirable 

phenomenon. Hence, WLP is a justified choice in searching for 

linear predictive techniques robust to the effects of high pitch. 

The optimization of the WLP model can be expressed 

according to [5] as follows. The residual energy of the pth order 

WLP model can be written as 
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where ne is the residual, nW is the temporal weighting function, 

ns  is the speech signal, and )1( pkak  are the predictor 

coefficients. The residual energy is minimized between indices 

1n and 2n . In the autocorrelation method, 1n  = 1 and 2n  = N + 

p, and the signal is assumed to be zero outside [1, N]. The 

optimal WLP filter is determined by setting the partial 

derivatives of Eq. 1 with respect to each ka
 
to zero. This results 

in the WLP normal equations 
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Equation 2 can also be expressed in matrix form as 
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In [5], temporal weighting was computed from speech by using 

the short-time energy (STE) function 
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where M denotes the length of the energy window. STE enables 

a straightforward computation of weighting that, overall, over-

weights speech samples that occur after the glottal closure and 

under-weights those located in the glottal open phase [8]. 

 The excitation of the glottal source is most prominent at the 

instant of glottal closure. Therefore, one could argue that the 

biasing effect of F0 could be decreased by using WLP with a 

weighting function that downgrades the contribution of samples 

that are located near the instant of closure. One such simple 

weighting function, denoted as the Attenuated Main Excitation 

(AME), is shown in Fig. 1 together with a synthetic glottal flow 

derivative pulse. The AME window has one amplitude 

parameter, denoted by d in Fig. 1, that determines the level of 

attenuation. In addition, the function uses two relative time-

domain parameters: (1) duration quotient  %)100)/(( 1  TTDQ  

and (2) position quotient %)100)/(( 12  TTPQ . In order to 

avoid abrupt changes, the function follows a linear ramp which is 

set to a constant value (of 3 samples). By using the AME 

window as the weighting function nW  in Eq. 3, a new all-pole 

method, denoted as WLP-AME, is obtained. The WLP-AME 

calls for identifying the glottal closure instants, indicated by met  

in Fig. 1. This calls for using either electroglottography (EGG) 

or epoch extraction methods such as that described in [9]. 

 

 
 

Figure 1: Waveform of the AME function (dashed) together with 

a differentiated glottal flow (solid) synthesized with the LF-

model. Parameters of the AME function correspond to the 

fundamental period T, the duration T1 of the attenuated section, 

the time T2 between the beginning of the attenuated section and 

the position of the main excitation tme, and the amplitude d of the 

attenuated section.  

In the present study, the parameters of the AME function 

were optimized as follows. First, a set of synthetic vowels were 

generated by using the Liljencrants-Fant (LF) [10] waveform as 

an excitation. LF parameters were varied to create four 

phonation modes (modal, breathy, whispery, and creaky) 

according to [11]. F0 values of the excitation signals were varied 

between 100 Hz and 450 Hz with an increment of 50 Hz. All-

pole vocal tract models of ten synthetic English vowels were 

created according to [12]. Second, WLP-AME analysis was 

performed for all the sounds by varying the parameters shown in 

Fig. 1 as follows: (a) six different values were used for d (0.01, 

0.03, 0.05, 0.10, 0.15, and 0.20), (b) four values were used for 

DQ (20%, 40%, 60%, and 80%), and (c) six values were used for 

PQ (0%, 20%, 40%, 60%, 80%, and 100%). Third, frequencies 

of the lowest four formants were computed from each WLP-

AME filter and the estimated values were compared with the true 

ones by computing the relative formant error measure [6]. 

Finally, the parameter vector yielding the minimum formant 

error was sought for resulting in the following optimal values of 

the AME function: d = 0.01, DQ = 40%, and PQ = 80%. These 

settings were then used in all WLP-AME analyses of this study. 

3. Experiments 

The goal of the present study was to evaluate the performance of 

the WLP-based techniques described in section 2 in formant 

frequency estimation of high-pitched speech and compare WLP 

with several all-pole modeling methods. The selected methods 

are described next in this section. After this, the synthetic speech 

material is described.  

3.1. All-pole modeling methods to be compared 

The following all-pole methods were compared: (1) conventional 

LP [2] , (2) Robust Linear Prediction (RBLP) [4], (3) Discrete 

All-pole Modeling (DAP) [3], (4) Linear Prediction using 

Refined Autocorrelation (LPRA) [6], (5) Weighted Linear 

Prediction with the Short-Time Energy weighting function 

(WLP-STE) [5], and (6) Weighted Linear Prediction with 

Attenuated Main Excitation (WLP-AME) developed in this 

study.  

All the analyses were computed with the autocorrelation 

criterion using a frame length of 25 ms, Hamming windowing, 

and a first order all-zero pre-emphasis with zero at z = 0.97. The 

prediction order was set to p = 10. In addition to the prediction 

order, the methods to be compared have different parameters 

whose optimal values were selected according to previous 

studies. RBLP was computed by using Huber’s psi-function with 

c = 1.5 and the Iterative Reweighted Least Squares Algorithm 

[4]. DAP was implemented by using the value of 0.6 and 20 

iterations [3]. LPRA was computed according to [6] by using a 

cepstral window, whose length was 3.6 ms and 2.4 ms for 

vowels with F0 smaller and larger, respectively, than 200 Hz. 

WLP-STE was computed as in [5] by setting M = p. In WLP-

AME, glottal closure was estimated as the instant of the negative 

peak of the glottal area function that was available for the test 

vowels (see section 3.2). 

3.2. Test vowels synthesized with physical modeling 

Accuracy assessment of a formant estimation method calls for 

using synthetic speech with known formant values. Therefore, 

previous investigations have exclusively utilized voices 

generated by some form of source-filter modeling. This kind of 

evaluation, however, might not be truly objective because the 

test material and the methods to be assessed are based on similar 

models of human voice production. Therefore, the present study 

takes advantage of a different approach, the physical modelling 

of the speech production mechanism, in generation of the test 

utterances with known formant frequency values. 



A computational model of the speech production system was 

used to generate vowels representative of an adult male, adult 

female, and approximately a five year-old child. The voice 

source component used consisted of a kinematic representation 

of the medial surface of the vocal folds [13, 14] for which the F0, 

surface bulging, adduction, length, and thickness are control 

parameters. The vocal fold length was set to 1.6 cm for the male, 

1 cm for the female, and 0.8 cm for the child model. Similarly, 

the thickness of the vocal folds was set to 0.3 cm for the male, 

0.2 cm for the female, and 0.15 cm for the child. As the vocal 

fold surfaces are set into vibration the model produces a glottal 

area signal that is coupled to the acoustic pressures and air flows 

in the trachea and vocal tract through aerodynamic and acoustic 

considerations [15]. The resulting glottal flow was determined by 

the interaction of the glottal area with the time-varying pressures 

present just inferior and superior to the glottis.  

The vocal tract shape was specified by an area function 

representative of an [a], [i], and [æ] vowel. The area functions 

were taken from [16] for the adult male vowels and from [17] for 

the adult female vowels. The child-like area functions were not 

measured directly but rather generated with an acoustic 

sensitivity function approach [18] that mapped desired formant 

frequencies to a plausible vocal tract shape. For each vowel area 

function the vocal tract length was set to 17.5 cm for the male, 

14.1 cm for the female, and 11.4 cm for the child. The tracheal 

shape was also specified by an area function that extended from 

the glottis to the bronchi and is based on data reported in [19]. 

Although the length of trachea was scaled for the male, the 

female, and the child by the same ratios as the vocal tract 

lengths, the cross-sectional area of the trachea (i.e. shape) was 

maintained constant for all syntheses. The acoustic wave 

propagation in the subglottal and supraglottal airspaces was 

computed with a wave-reflection model that included energy 

losses due to yielding walls, viscosity, heat conduction, and 

radiation at the lips [19].  

Each of the vowels for the male, the female, and the child 

were generated with eight F0 values, ranging from 100 Hz to 450 

Hz in 50-Hz increments. Although the full range of these F0s is 

unlikely to be produced by either the male, female, or the child, 

conducting the experiment with the entire range was desirable 

for ease in comparison. Vowel duration was 0.4 seconds and F0 

was maintained constant during the utterance. Sampling 

frequency was finally set to 10 kHz. 

4. Results 

Formant estimation accuracy was quantified using the following 

straightforward error measure [6]: 
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where iF ,est is the estimated ith formant frequency extracted by 

peak-picking the underlying all-pole spectrum and iF ,tru  
denotes the true ith formant used in the physical modeling. The 

error measure given in Eq. 5 was defined separately for the 

lowest three formants (i.e. 1 ≤ i ≤ 3). In addition, the number of 

spectral peaks found in the all-pole spectra was quantified by a 

relative number, denoted by npks, defined as the proportion of the 

number of analyses showing at least three spectral peaks to the 

total number of analyses conducted.  

Results are shown for [a], [i], and [æ] in Tables 1, 2, and 3, 

respectively, by pooling together the eight F0 categories. The 

date corroborate previous findings [6, 7] according to which the 

formant estimation error is largest for the first formant (F1). In 

addition, the results indicate that RBLP and DAP yield in 

general better estimation accuracy than conventional LP. This 

improvement, however, is not consistent over all vowels and 

formants analyzed and there are cases where conventional LP 

was better than RBLP or DAP. LPRA yielded the largest 

estimation error for F1. The clearest result was observed for the 

WLP-AME analysis which yielded the smallest estimation error 

for all vowels and for all error measures. Finally, the relative 

number of those analyses where an all-pole modeling method is 

able to indicate all the three lowest formants varied between 50% 

and 100%. WLP-AME found all the three lowest resonances in 

each analyzed signal for the vowels [a] and [æ]. For [i], however, 

the close location of the second (F2) and third (F3) formant made 

it difficult for WLP-AME to distinguish the two resonances and 

they were quite often smeared into a single peak. 

An example, computed for the male vowel [æ], 

demonstrating the performance of WLP-AME is shown in Fig. 2. 

The figure shows spectra computed by conventional LP (thin 

curves), and WLP-AME (thick curves) together with the true 

formant frequencies (vertical lines). Differences between the two 

methods can be seen when the spectra computed from the low-

pitch vowels (lower curves), are compared to the spectra 

obtained from the high-pitched sounds (upper curves). For the 

three lowest F0 values, the frequencies of the four lowest 

formants are almost equal in the LP and WLP-AME spectra. 

When the F0 increases, however, drifting of the F1 estimate from 

its true value due to the biasing effect of F0 is clearly seen in the 

LP spectra. The WLP-AME spectra, however, are able to show 

formants whose positions remain almost unchanged even though 

F0 varies from 100 Hz to 450 Hz. 

 

Table 1. Formant estimation results (in %) for the [a] vowel. 

Each row corresponds to an all-pole method evaluated. Relative 

errors, defined by Eq. 5, are given for F1-F3 in columns 1–3, 

respectively. The last column includes the relative number of all-

pole analyses indicating at least three formant peaks. 

  1,errd

 

  2,errd   3,errd   pksn  

LP 11.1 5.9 1.8 79 

RBLP 10.5 6.4 1.9 75 

DAP 10.5 4.9 1.6 75 

LPRA 15.4 4.2 2.3 67 

WLP-STE 11.7 5.2 1.6 79 

WLP-AME 3.0 1.7 0.5 100 
 

Table 2. Formant estimation results (in %) for the [i] vowel. 

Each row corresponds to an all-pole method evaluated. Relative 

errors, defined by Eq. 5, are given for F1-F3 in columns 1–3, 

respectively. The last column includes the relative number of all-

pole analyses indicating at least three formant peaks.  

  1,errd

 

  2,errd   3,errd   pksn  

LP 12.6 2.8 2.4 75 

RBLP 16.3 3.2 2.3 67 

DAP 12.4 3.0 1.9 67 

LPRA 18.6 3.0 2.6 63 

WLP-STE 11.4 2.8 2.1 83 

WLP-AME 7.6 1.3 1.2 50 



Table 3. Formant estimation results (in %) for the [ae] vowel. 

Each row corresponds to an all-pole method evaluated. Relative 

errors, defined by Eq. 5, are given for F1-F3 in columns 1–3, 

respectively. The last column includes the relative number of all-

pole analyses indicating at least three formant peaks.
 

  1,errd

 

  2,errd   3,errd   pksn  

LP 9.8 4.3 4.1 100 

RBLP 9.3 4.3 3.8 100 

DAP 9.4 4.4 3.9 96 

LPRA 14.4 3.4 4.1 100 

WLP-STE 12.2 4.2 2.9 92 

WLP-AME 2.9 1.2 0.8 100 
 

 
Figure 2: All-pole spectra computed by conventional LP (thin 

curve) and WLP-AME (thick curve) from synthetic [æ] vowels of 

different F0 values. F0 rises from 100 Hz (bottom pair of 

spectra) to 450 Hz (top pair of spectra) in steps of 50 Hz. True 

formant values are shown by vertical lines. 

5. Conclusions 

Formant frequency estimation based on LP is known to 

deteriorate due to the biasing effect caused by the sparse 

harmonic structure of high-pitched sounds. In order to tackle this 

problem, several all-pole modeling methods which are robust 

with respect to F0 have been proposed. This study analyzed five 

previously known methods and proposed a new technique, 

Weighted Linear Prediction with Attenuated Main Excitation 

(WLP-AME).WLP-AME is based on weighted linear prediction 

by utilizing a time-domain function which downgrades the 

effects of the main excitation peak of the glottal flow derivative. 

With this weighting function, the contribution of those speech 

samples that are greatly affected by the glottal excitation can be 

diminished in the computation of the optimal filter coefficients. 

Consequently, the resulting all-pole model will be affected more 

by the characteristics of the vocal tract, which leads to less 

biased formant estimates. 

Results with synthetic vowels produced by a physical 

modeling approach indicated that for the great majority of the 

cases WLP-AME yielded formant estimation errors that were 

smaller than any of those computed by the five previously 

known methods. There are, however, two differences that might 

limit the use of WLP-AME. The method, like several of its 

counterparts such as RBLP and DAP, does not guarantee the 

stability of the all-pole model. In addition, WLP-AME calls for 

identifying the instants of glottal closures in order to build the 

weighting function. 
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