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Abstract

This paper describes speech intelligibility enhancement for hidden Markov
model (HMM) generated synthetic speech in noise. We present a method for
modifying the Mel cepstral coefficients generated by statistical parametric
models that have been trained on plain speech. We update these coefficients
such that the Glimpse Proportion – an objective measure of the intelligibil-
ity of speech in noise – increases, while keeping the speech energy fixed. An
acoustic analysis reveals that the modified speech is boosted in the region
1-4kHz, particularly for vowels, nasals and approximants. Results from lis-
tening tests employing speech-shaped noise show that the modified speech
is as intelligible as a synthetic voice trained on plain speech whose duration,
Mel cepstral coefficients and excitation signal parameters have been adapted
to Lombard speech from the same speaker. Our proposed method does not
require these additional recordings of Lombard speech. In the presence of a
competing talker, both modification and adaptation of spectral coefficients
give more modest gains.
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1. Introduction

In a conversation, humans vary the way they perceive and produce speech
according to context. Humans are able to modulate various properties of their
speech in order to maintain successful communication in varying contexts,
including changes in the listening environment (Picheny et al., 1985; Summers
et al., 1988; Lindblom, 1990; Howell et al., 2006; Patel and Schell, 2008; Cooke
and Lu, 2010).

For machines, that communicate using speech, to achieve human-like lev-
els of intelligibility in varying contexts, they must also adjust appropriate
properties of their speech output. Currently, systems such as Text-To-Speech
(TTS) synthesisers are ‘deaf’ to the context: they speak in the same way,
regardless of the listening environment.

In this work we focus solely on automatic strategies to improve speech
intelligibility in the presence of additive background noise. In particular
we are interested in increasing the intelligibility in noise of synthetic speech
generated by a TTS system which employs statistical parametric models –
‘Hidden Markov Model (HMM)-based’ speech synthesis (Zen et al., 2009).
We work under the assumption that the noise signal is available and under
the constraint that the signal to noise ratio (SNR) should remain fixed i.e.,
our intelligibility enhancement method should not merely increase the overall
energy level of a utterance. An additional important design constraint is to
create intelligible voices without relying on the availability of natural speech
produced under matched conditions, since this approach is unlikely to scale
to different SNRs and noise types. Our proposed method requires only con-
ventional speech recordings made in quiet conditions, of the type normally
used to build TTS systems.

In a quiet listening environment, the intelligibility of state-of-the-art HMM-
generated synthetic speech can be as good as that of natural speech (Yam-
agishi et al., 2008). However, in noisy environments, unmodified synthetic
speech tends to reduce in intelligibility to a much greater extent than unmod-
ified natural speech (King and Karaiskos, 2010). By modifying the synthetic
speech, either via the statistical models or the acoustic features, it is possible
to control the characteristics of the generated speech without the need for
new data and so generate synthetic speech that is more intelligible in noise
than the natural speech used for training (King and Karaiskos, 2010; Suni
et al., 2010; Bonardo and Zovato, 2007). One way to do this is to reproduce
some of the acoustic changes observed, in many previous studies, of natural
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speech produced in noise: so-called Lombard speech. Another strategy is to
use this data through voice conversion techniques (Langner and Black, 2005)
and adaptation techniques (Raitio et al., 2011). Work has also been done for
the generation of hyper articulated synthetic voices (B. Picart, 2011; Nicolao
et al., 2012) that come into the spectrum of clear speech rather than speech
specifically produced to counteract the effects of noise.

Lombard speech is speech produced by a talker who is simultaneously
listening to noise. It is more intelligible than speech produced in quiet, when
each are played to listeners mixed with the same noise and at the same SNR
that the talker was experiencing (Summers et al., 1988; Junqua, 1993; Lu
and Cooke, 2008). It has also been found that Lombard speech has distinct
acoustic differences to speech produced in quiet: overall intensity increases,
fundamental frequency increases, flatter spectral tilt (more energy at high
frequencies), speaking rate changes (longer vowels / shorter consonants) and
formants tend to shift (F1 increased F2 decreased) (Summers et al., 1988;
Junqua, 1993; Hansen, 1996; Garnier et al., 2006; Lu and Cooke, 2008). It
remains relatively unclear which of these acoustic changes improve intelligi-
bility (and why), or how and to what extent these changes depend on the
noise signal. As a consequence, it is non-trivial to use the known properties
of Lombard speech to automatically improve the intelligibility of (synthetic)
speech in noise.

In this work we present a method to increase the intelligibility of synthetic
speech in noise. The method modifies speech automatically according to
the known noise characteristics. Rather than using knowledge about speech
production in noise (e.g., Lombard speech, as above), we use well-established
models of speech perception in noise. Using these models we can obtain
reliable estimates of the impact that noise has on the intelligibility of speech;
these models also give reliable estimates for modified speech.

Approaches that have been proposed to modify natural speech accord-
ing to the noise signal include: modification of the local signal-to-noise ratio
(SNR) (Sauert and Vary, 2006; Tang and Cooke, 2010) and objective mea-
sure based spectral power optimisation using the Speech Intelligibility Index
(Sauert and Vary, 2011), a genetic algorithm optimisation for spectral weight-
ing based on the Glimpse Proportion (GP) (Cooke, 2006; Tang and Cooke,
2012) and an optimisation algorithm based on a spectro-temporal measure
based on a multi stage perceptual model Taal et al. (2012).

In previous work, we have demonstrated that simple changes in the spec-
tral domain (McLoughlin and Chance, 1997) can result in significant gains in
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Figure 1: The glimpse proportion measure.

intelligibility for HMM-generated synthetic speech across a variety of noise
and SNR conditions (Valentini-Botinhao et al., 2011a). On the other hand,
changes to fundamental frequency and spectral peaks were not as effective.
In the same study we also evaluated a number of objective intelligibility
measures, to discover how well they could predict these gains. Taking into
consideration both performance and computational complexity, we selected
the Glimpse Proportion (GP) measure (Cooke, 2006) as being most suitable
for the current task. We then proposed a method to extract cepstral coeffi-
cients which maximized the GP measure (Valentini-Botinhao et al., 2012a).
Although we obtained intelligibility gains using these extracted cepstral co-
efficients to train a TTS voice, we also observed distortions in the synthetic
speech. Because this method is applied at feature extraction time it requires
a new model to be trained for each different noise type (and potentially each
SNR) and consequentially cannot handle fluctuating noise. Our solution to
this was to modify the generated speech instead (Valentini-Botinhao et al.,
2012b), by modifying the Mel cepstral coefficients. In this paper we present
the full development of this idea plus a detailed analysis of how the modifi-
cation actually changes the synthetic speech. We also provide the complete
mathematical derivation of the method.

In Section 2 we define the utilized Mel cepstral coefficients and Section 3
we show how the GP measure operates. Section 4 shows in detail how we re-
formulate GP so that it is completely defined by the Mel cepstral coefficients,
then Section 5 describes how to use this approximated measure as part of
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Figure 2: The spectro temporal excitation pattern (STEP) calculation for time frame
t and frequency channel f , where IIR1, f refers to the infinite impulse response (IIR)
Gammatone filter, IIR2 is the smoothing filter and ζf is the gain that normalizes the
Gammatone filter responses across frequency channels.

a method to modify these coefficients. We then present in Sections 6 and 7
convergence and acoustic analyses as well as subjective intelligibility scores
for two different listening evaluations. Conclusions are given in Section 8.

2. Mel cepstral coefficients

We can represent the spectrum H(ejω) by a M -th order Mel cepstral
coefficient set {cm}Mm=0 (Fukada et al., 1992):

H(ejω) = exp
M∑
m=0

cme
−jm ω̃ (1)

ω̃ = tan−1
(1− α2) sinω

(1 + α2) cosω − 2α
(2)

where α is the warping factor that controls the frequency scaling.
We can choose α such that ω̃ spans the frequency axis on a particular

scale, such as for instance the Mel scale, creating so-called Mel cepstral co-
efficients (Fukada et al., 1992). When using the Mel scale warping we can
represent the spectrum envelope with fewer coefficients than when using a
linear frequency scale, without a loss in quality.

According to eq.(1), the magnitude spectrum is defined by the Mel cep-
stral coefficients as follows:

|H(ejω)| = exp
M∑
m=0

cm cos(mω̃) (3)
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3. The glimpse proportion measure

The Glimpse Proportion measure was originally proposed in the context
of the Glimpse model for speech perception in noise (Cooke, 2003). The
model is based on the ability of humans to obtain information from those
time-frequency regions where speech is less masked by noise and therefore
less distorted (Cooke, 2003).

The GP measure (Cooke, 2006) is based on this concept: in a noisy
environment, humans focus their auditory attention on ‘glimpses’ of speech
that are not masked by noise. Rather than being a correlation, a distance
or a ratio, the GP is based on detection: to measure the number of available
glimpses of a given speech signal in a given noise, we need the speech and
noise signals to be available separately.

The GP correlates well with subjective scores for intelligibility of natural
speech in noise (Cooke, 2006). In our own experiments, we also observed
similar behaviour for the intelligibility of HMM-generated speech in noise
(Valentini-Botinhao et al., 2011b) even when that speech has been modified
(Valentini-Botinhao et al., 2011a). In that experiment, we modified param-
eters such as the fundamental frequency (F0) and spectral tilt to emulate
Lombard speech properties; even under such modifications, GP was a rea-
sonable intelligibility predictor (Valentini-Botinhao et al., 2011a). In all these
different scenarios, GP outperformed most other measures in terms of accu-
rate predictions of intelligibility of speech in noise. An attractive property
of GP is that its implementation does not require any time delays.

The GP measure is simply the proportion of spectro-temporal regions, so
called ‘glimpses’, where speech is more energetic than noise. To detect such
glimpses we compare speech and noise using the spectro-temporal excitation
pattern (STEP) representation as shown in Figure 1. To represent a signal in
terms of STEP – see Figure 2 – we first decompose its waveform into different
frequency channels using a Gammatone filterbank whose central frequencies
are linearly spaced on the Equivalent Rectangular Bandwidth (ERB) scale
(Moore and Glasberg, 1996). For each channel, the temporal envelope is
extracted with an absolute value operation, smoothed with a low pass filter
and then averaged across limited time intervals. A glimpse is detected in a
time frequency region when the speech STEP value in that region is higher
than the noise value.

The parameters that define the GP measure are: the range of the Gam-
matone filters’ centre frequencies (100-7500 Hz), the number of Gammatone
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filters Nf (55 filters), the temporal integration time for the smoothing filter
(8 ms), the size of the time frame (30 ms) and its period (10 ms).

4. Proposed GP approximation

In this section we show how we can approximate the GP measure so that
it is completely defined by the short term magnitude spectrum of speech and
consequently by the sequence of Mel cepstral coefficients.

To obtain a closed and differentiable formula that relates spectral param-
eters to the GP measure we make the following approximations and corre-
spondences:

• the input signals are no longer the signal waveforms of speech and noise
but the short term magnitude spectrum calculated from the short-time
Mel cepstral coefficients of speech and from the short-time discrete
Fourier transform of noise (approximation)

• the previous approximation implies that all operations are carried out
in the frequency domain rather than the time domain (correspondence)

• the filtering operations in the time domain are replaced by multiplica-
tions in the frequency domain with a truncated version of the frequency
responses of the infinite impulse response filters (approximation due to
the truncation)

• the absolute value in the time domain is replaced by a power opera-
tion that can be represented in the frequency domain as the circular
convolution operation (approximation)

• the hard threshold detection of glimpses is replaced by a soft decision
threshold defined by a sigmoid function (generalization)

The proposed approximated GP measure is then given by:

GP =
100

NfNt

Nt∑
t=1

Nf∑
f=1

L(yspt,f − y
ns
t,f ) (4)
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Figure 3: Proposed approximation for STEP calculation (Valentini-Botinhao et al., 2012a).

where the following scalars are defined as:
yspt,f STEP approximation for speech

at analysis window t and frequency channel f
ynst,f STEP approximation for noise

at analysis window t and frequency channel f
Nt number of time frames
Nf number of frequency channels
t analysis window index
f frequency channel index
L(.) a logistic sigmoid function defined as:

L(x) =
1

1 + e−ηx
(5)

where η defines the slope of the curve.

The STEP approximation as seen in Figure 3 is given by:

yspt,f =
1

N
(Gfht N© Gfht)

> S b (6)

where:
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N number of frequency bins of the spectrum

ht =
[
|Ht(ω1)| . . . |Ht(ωN)|

]>
vector Nx1 - magnitude spectrum of windowed speech
signal s at analysis window t

Gf = diag
([
gf,1 . . . gf,N

])
matrix NxN - diagonal matrix, diagonal contains the
Gammatone filter frequency response for frequency
channel f

S = diag
([

s1 . . . sN
])

matrix NxN - diagonal matrix, diagonal contain the
frequency response of the smoothing filter

b =
[
b1 . . . bN

]
vector Nx1 - coefficients of average filter

N© circular convolution operation dimension N

5. GP-based Mel cepstral modifications

In this section we show how to modify a sequence of Mel cepstral coeffi-
cients generated by a statistical model, such that the GP measure increases.

Although the formulation of the problem allows for the extension to other
types of spectral parametrization such as the Mel Generalized Cepstral coeffi-
cients (MGC) (Koishida et al., 1996) we can not guarantee that the synthesis
filter to be built with modified MGCs is stable. Stability is always guarantee
for any value of Mel cepstral coefficients though. To modify the MGC pa-
rameters it is necessary to first transform them into a representation where
stability is easily ensure like the MGC-LSP as proposed in (Koishida et al.,
2000).

5.1. Cost function

To increase glimpses at a certain analysis window t we first define the
following cost function:

GPt(ct) =
100

Nf

Nf∑
f=1

L(yspt,f (ct)− y
ns
t,f ) (7)
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The optimal spectral parameter vector ct = [ct,1 ct,2 . . . ct,M ]> would
then be given by:

c∗t = argmaxGPt(ct) (8)

5.2. Steepest descent solution
The update equation for Mel cepstral coefficients using steepest descent

is given by:

c(i+1) = c(i) + µ∆c(i) (9)

= c(i) + µ∇GP
(i)
t (ct) (10)

where ∆c(i) is the Mel cepstral coefficient increment in iteration i, ∇GP
(i)
t (ct)

is the gradient of the function defined in eq.(7) in iteration i and µ is the
stepsize.
From now on we will drop the iteration index (i) and the argument (ct) for
clarity. We can find the gradient vector as follow:

∇GPt =
∂GPt
∂ct

=
100

Nf

Nf∑
f=1

∂L(yspt,f − ynst,f )
∂ct

(11)

=
100

Nf

Nf∑
f=1

∂L(yspt,f − ynst,f )
∂yspt,f

∂yspt,f
∂ct

(12)

The first term in the summation of eq.(12) can be written as:

∂L(yspt,f − ynst,f )
∂yspt,f

= ηL(yspt,f − y
ns
t,f )
[
1− L(yspt,f − y

ns
t,f )
]

(13)

The second term in the summation of eq.(12) is given by:

∂yspt,f
∂ct

=
∂ht
∂ct

∂yspt,f
∂ht

(14)

The first term on the right of eq.(14) is a matrix of dimension MxN defined
as:

∂ht
∂ct

= Hct =


∂|Ht(ω1)|
∂ct,1

∂|Ht(ω2)|
∂ct,1

. . . ∂|Ht(ωN )|
∂ct,1

∂|Ht(ω1)|
∂ct,2

∂|Ht(ω2)|
∂ct,2

. . . ∂|Ht(ωN )|
∂ct,2

...
∂|Ht(ω1)|
∂ct,M

∂|Ht(ω2)|
∂ct,M

. . . ∂|Ht(ωN )|
∂ct,M
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When the spectrum is modelled by Mel cepstral coefficients as in eq.(1), the
elements of this matrix are defined as:

{Hct}m,k =
∂|Ht(ωk)|
∂ct,m

= |Ht(ωk)| cos(mω̃k) (15)

where k is the index for the spectrum frequency bin. The second term of
eq.(14) depends on the definition of the STEP approximation in eq.(6) and
it is then given by:

∂yspt,f
∂ht

=
∂lt,f
∂ht

∂yspt,f
∂lt,f

(16)

=
1

N

∂lt,f
∂ht

S b (17)

=
1

N

∂Gfht
∂ht

∂lt,f
∂Gfht

S b (18)

=
1

N
Gf

∂lt,f
∂Gfht

S b (19)

=
1

N
Gf (2 ΓN N© Gfht)S b (20)

where lt,f = (Gfht N© Gfht) and ΓN is the identity matrix of dimension N .
The operation (ΓN N© Gfht) defines a matrix NxN of the following form:

e1 N© (Gfht)
>

e2 N© (Gfht)
>

...
eN N© (Gfht)

>


where en is the n-th column of the identity matrix ΓN .

Connecting eqs.(13), (15) and (20), the gradient vector is given by:

∇GPt =
100

NfN

Nf∑
f=1

ηL(yspt,f − y
ns
t,f )
[
1− L(yspt,f − y

ns
t,f )
]

(21)

HctGf (2 ΓN N© Gfht)S b
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5.3. Energy normalization

In this section we explain how to reformulate the optimization problem
in order to keep the overall energy of speech constant. For clarity, we drop
the index t in the equations and use the continuous representation of the
spectrum H(ejω).

Let us first define the quantity we refer to here as the overall energy of
speech in a certain time frame:

N−1∑
n=0

|s(n)|2 = ψ (22)

From Parseval’s theorem we have that:

N−1∑
n=0

|s(n)|2 =
1

2π

∫ π

−π
|S(ejω)|2 dω = ψ (23)

where S(ejω) is the discrete time Fourier transform of time signal s(n).
This can be related to the spectral envelope H(ejω) and the frequency

representation E(ejω) of the excitation signal:

ψ =
1

2π

∫ π

−π
|H(ejω)E(ejω)|2 dω (24)

We can assume that |E(ejω)| is constant over the frequency domain for
both voiced and unvoiced segments. For voiced speech segments this is true
if the size of the analysis window is set to two pitch periods and for unvoiced
segments this is true because at these segments the excitation signal is white
noise. Under this assumption and considering that the cepstral extraction
method does not modify the excitation signal we can assume that in order
to keep the energy in the time domain constant it is sufficient to keep the
following constant:

ψ =
1

2π

∫ π

−π
|H(ejω)|2 dω (25)

The maximization of the glimpse function as given in eq.(5.1) should then
be solved subject to the above constraint. Solving a nonconvex optimization
problem is however a hard task. One feasible (possible) solution is to perform
at each iteration of the Steepest Descent method an energy normalization
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Figure 4: GP-based Mel cepstral coefficient modification using steepest descent with en-
ergy normalization.

operation and alter the objective function and consequentially the gradient
vector accordingly. Figure 4 shows this solution. To explain how the gradient
should be modified we first need to define the operation that normalizes the
energy of the spectrum.

The following operation modifies the spectrum |H(ejω)| with overall en-
ergy ψ so that the resulting spectrum |H ′(ejω)| has an overall energy equal
to ψ′:

|H ′(ejω)| = |H(ejω)|√
1
ψ′

∫ π
−π |H(ejω)|2dω

=
|H(ejω)|√

ψ
ψ′

(26)

In order to modify the gradient we need to calculate the impact of this
operation in the Mel cepstral coefficient domain. The normalization opera-
tion transforms a set of Mel cepstral coefficients cm that model the spectrum
|H(ejω)| with overall energy ψ, into parameters c′m that model a spectrum

13



|H ′(ejω)| with overall energy equal to ψ′ in the following way:

|H ′(ejω)| = |H(ejω)|√
ψ
ψ′

=

exp
M∑
m=0

cm cos(mω̃)

exp
[

log
√

ψ
ψ′

] (27)

= exp
[( M∑

m=0

cm cos(mω̃)
)
− 0.5 log

( ψ
ψ′

)]
(28)

= exp
M∑
m=0

c′m cos(mω̃) (29)

The energy-normalized Mel cepstral coefficients c′m are then given by:

c′m =

{
c0 − 0.5 log

(
ψ
ψ′

)
m = 0

cm m 6= 0
(30)

Only the c0 coefficient changes, so we can write the energy normalized mag-
nitude spectrum as:

|H ′(ejω)| = |K ′||D(ejω)| (31)

where K ′ = exp(c′0) and D(ejω) = exp
M∑
m=1

cme
−jm ω̃.

If ψ is equal to ψ′, i.e. the energy-normalization operation has no impact
on the spectrum, we can see that c′m is equal to cm. The only term in
the gradient vector ∇GP that needs to be adjusted is the one given by
eq.(15). To show how this term changes we adopt the discrete representation
H(ω1), . . . , H(ωN) of the spectrum. Eq.(25) is then approximated to:

ψ =
N∑
j=1

|H(ωk)|2 (32)

With the energy normalization operation, the derivative in eq.(15) becomes:

14



∂|H ′(ωk)|
∂cm

=
∂|K ′||D(ωk)|

∂cm
(33)

=
∂|K ′|
∂cm

|D(ωk)|+ |K ′|
∂|D(ωk)|
∂cm

(34)

= |K ′| ∂c
′
0

∂cm
|D(ωk)|+ |K ′||D(ωk)| cos(mω̃k) (35)

= |H ′(ωk)|
∂c′0
∂cm

+ |H ′(ωk)| cos(mω̃k) (36)

= |H ′(ωk)|
( ∂c′0
∂cm

+ cos(mω̃k)
)

(37)

The derivative term in the previous equation is given by:

∂c′0
∂cm

=
∂c0
∂cm
− 0.5

ψ′

ψ

1

ψ′
∂ψ

∂cm
(38)

=
∂c0
∂cm
− 1

ψ

N∑
l=1

|H(ωl)|2 cos(mω̃l) (39)

=
∂c0
∂cm
− 1

ψ′

N∑
l=1

|H ′(ωl)|2 cos(mω̃l) (40)

∂c′0
∂cm

=

{
0.0 m = 0

− 1
ψ′

∑N
l=1 |H ′(ωl)|2 cos(mω̃l) m 6= 0

(41)

The derivative in eq.(15) becomes then:

∂|H ′(ωk)|
∂cm

=


|H ′(ωk)| m = 0

|H ′(ωk)|
(

cos(mω̃k)

− 1
ψ′

∑N
l=1 |H ′(ωl)|2 cos(mω̃l)

)
m 6= 0

(42)

Using this new gradient calculation we can assume that the energy within
each time frame is kept fixed during the optimization process. This also
implies that there is no signal energy being reallocated across time.
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5.4. Distortion control

A detection based measure like the GP (or the SNR) predicts the effect
of additive distortions by comparing the levels of speech and the distortion
(in this case noise), not requiring any reference undistorted speech signal.
These measures can not predict the effect that modifying speech has on the
intelligibility of the noisy mixture. An issue we face then when using the
GP measure as an optimization criterion on its own is the need to limit the
distortions caused by the modifications.

To define an audible distortion we use the Euclidian distance between the
STEP representations of modified and unmodified speech. Including this as
an explicit constraint is unfortunately rather cumbersome, so instead we use
it as a stopping criterion. We also hypothesize that limiting the frequency
resolution of the modifications should generate fewer distortions. This is
implemented simply by setting the gradient vector for higher dimensions to
zero, and so the method modifies only the first few Mel cepstral coefficients,
which represent the coarse properties of the spectrum.

6. First evaluation

In this section we present the details of how the statistical parametric
models were built, an analysis of convergence, an acoustic analysis, then the
design and results of our first listening experiment. In this first experiment we
also test the idea of restricting the frequency resolution of the modifications
by updating only the first few Mel cepstral coefficients.

6.1. Voice building

We used two different datasets recorded by the same British male speaker:
normal (plain, read-text) speech data and Lombard speech. The Lombard
speech was recorded while speech-modulated noise (modulated by the speech
from a different male speaker (Dreschler et al., 2001)) was played over head-
phones at a absolute value of 84 dBA.

Table 1 presents the eight different voices we built for this evaluation. The
baseline unmodified voice N was created from a high quality average voice
model adapted to 2803 sentences of the normal speech database (three hours
of material). Building a speaker-dependent voice was not possible because
the normal speech dataset was not sufficiently phonetically balanced due to
the reading material used for the recordings. The modified voices N-M59,
N-M10 and N-M2 were created from voice N by modifying all, just the first
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Voice Adaptation Modification

N - -
N-M59 - all coefficients
N-M10 - first 10 coefficients
N-M2 - first 2 coefficients
N-L only spectrum -
L all features -
L-E all and extrapolated -
L-E-M2 all and extrapolated first 2 coefficients

Table 1: Voices built for the evaluation. All voices were trained using plain natural speech.
The “adaptation” column specifies whether each model was adapted to Lombard speech
data (noting that “all features” includes duration and excitation parameters). The “modi-
fication” column specifies whether the proposed GP-based Mel cepstral modifications were
performed on the parameters generated by the models.

ten (c1 until c10), or just the first two (c1 and c2) Mel cepstral coefficients
using the proposed method, as described in the previous section.

We built the other set of voices N-L, L, L-E and L-E-M2 using the Lom-
bard speech portion of the database in addition. Lombard voice L was built
by further adapting all parameters (duration, excitation, spectral) of voice
N using 780 sentences from the Lombard speech dataset (53 minutes). The
reason for not building a voice only with the Lombard dataset was again the
lack of phonetic balance in the dataset. Voice N-L was also created from
voice N by adapting this time only the Mel cepstral coefficients (i.e., spectral
model parameters) to the Lombard data. Voices L-E and L-E-M2 are ver-
sions of voice L where we extrapolated the adaptation in all dimensions at an
extrapolation factor of 1.2 for Mel cepstral coefficients and 1.35 for duration
(voice L-E), and then further modified the two first Mel cepstral using the
proposed method (voice L-E-M2).

We trained and adapted the models using the described data sampled
at a rate of 48 kHz. We extracted the following acoustic features: 59 Mel
cepstral coefficients (α= 0.77), Mel scale F0 and 25 aperiodicity energy bands
extracted using STRAIGHT (Kawahara et al., 1999). We used a hidden
semi-Markov model as the acoustic model. The observation vectors for the
spectral and excitation parameters contained static, delta and delta-delta
values, with one stream for the spectrum, three streams for F0 and one for
the band-limited aperiodicity. We applied the Global Variance method (Toda
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Figure 5: Convergence of (top) GP and (bottom) distortion, averaged over one sentence.
Distortion is measured as the percentage increase in the Euclidian distance between the
STEP representation of original and modified spectrum.

and Tokuda, 2007) to compensate for the over smoothing effect caused by
the statistical nature of the acoustical modelling.

For the GP-based Mel cepstral modifications we set the following values
for the STEP calculation: 55 Gammatone filters with centre frequencies cov-
ering the range of 50-7500 Hz (because the noise signal used for testing was
sampled at 16 kHz, and so the audio bandwidth was 8 kHz), 8 ms of tempo-
ral integration time for the smoothing filter and frame length and period of
30 and 10ms. For the steepest descent optimization we used a normalized
step size defined at each iteration i as µ(i) =µ/||∇GP

(i)
t || (where µ= 0.4 for

N-M59 and µ= 0.8 for N-M10 and N-M2). As stopping criteria we use both
error convergence and a maximum threshold set to 10 % of relative increase
in distortion. We define distortion here as the Euclidian distance between
the original and the modified STEP representation of speech.

6.2. Convergence analysis

Figure 5 shows the convergence of the GP and distortion values. We can
see that, as GP increases, distortion also increases as expected, and that the
algorithm is well-behaved (i.e., it converges to a stable value within a rea-
sonable number of iterations). The algorithm is frame-based, meaning that
the stopping criteria are applied on a per-frame basis. For individual frames,

18



Voice Duration Pauses F0 mean Spectral tilt
(secs.) (secs.) (Hz) (dB/oct.)

N
2.11 0.16 104.5

-2.24
N-M2 -1.88

L 2.80 0.19 145.0 -1.70

Table 2: Acoustic properties observed in normal N, modified N-M2 and lombard L voices
average across the whole set of sentences used in the listening test (Valentini-Botinhao
et al., 2012b).

the convergence is somewhat less smooth-looking than that illustrated in the
figure. On average, 5 iterations are sufficient to meet one or other of the
stopping criteria for each frame, and more often than not it is the distortion
criterion that is met.

6.3. Acoustic analysis

We now examine the impact of the modification at sentence and phone
unit levels in terms of GP values and the long term average spectrum (LTAS).
The LTAS is calculated as the power spectral density averaged across time
frames of 10 ms length and 50 % overlap. This averaged representation is
then presented in (dB). First we present a broad analysis across the whole
set of sentences used in the listening experiment. Table 2 shows the average
duration of speech and pauses, average F0 and average spectral tilt across
all sentences used in the listening test for the normal (N), modified (N-M2)
and Lombard (L) voices. As expected, the Lombard voice produces sentences
with longer duration and longer pauses, greatly increased F0 mean and flatter
spectral tilt. The modified voice N-M2 produces speech with flatter spectral
tilt, though not to the same extent as the Lombard voice.

For a more detailed inspection of the proposed method in operation, Fig-
ure 6 shows the glimpses (in black) detected in the presence of speech-shaped
noise at −4 dB SNR for (from left to right) a sentence generated by the un-
modified voice N and the modified voices N-M59, N-M10 and N-M2. The
glimpses are shown in the STEP domain. We can see that the glimpsed re-
gions become larger and that new glimpses start to appear when we modify
all, just the first ten and the first two Mel cepstral coefficients. We also
see that when we modify fewer coefficients, the new glimpses tend to be in
more coherent regions, creating larger glimpses rather than scattered small
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Figure 6: Glimpses detected on the STEP time-frequency representation in speech-shaped
noise at a SNR of −4 dB for a sentence generated by (a) unmodified voice N and modified
voices (b) N-M59 (c) N-M10 and (d) N-M2

glimpses. This is an expected and desired result of modifying only those
coefficients that define the coarse shape of the log magnitude spectrum.

Figure 7 shows the GP value for each frame as defined in eq.(7) for the
same sentence as shown in Figure 6, generated by the unmodified voice N,
the modified voice N-M2 and the Lombard adapted voice L. We observe
that, although the number of glimpses on average increases, the increase
in glimpses differs between segments. Since the noise that was driving this
modification is stationary, this variation comes from the speech signal itself:
the different spectral shapes of the various phonetic units will result in fewer
or greater numbers of glimpses. In this example sentence, the number of
glimpses hardly increases in fricatives and stops, whereas the most substantial
increases happen in vowels and nasals. This does not mean that fricatives
and stops are not being modified though, but does mean that the proposed
method fails to create more glimpses of them for the listener. Although we
are not aiming to recreate the Lombard effect we present the curve obtained
from the voice L in the bottom plot of Figure 6. The curve shows less GP
increases for vowels while fricatives GP values are slightly higher..
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Figure 7: The GP measure across the different frames of the sentence “The birch canoe slid
on the smooth planks” generated by the original unmodified voice N versus the modified
voice N-M2 (top) and the Lombard adapted voice L (bottom), in the presence of speech-
shaped noise at −4 dB. The horizontal axis gives the phone segmentation in the combilex
phoneset.

For a further detailed analysis we computed the gain in (dB) of the LTAS
of voice N-M2 over and above the LTAS of the original unmodified voice N,
averaged across all test sentences, for speech-shaped noise at −4 dB. Figure
8 shows the overall pattern of spectral gain at a sentence level and Figures
9 and 10 present the gain calculated for different phonetic classes averaged
over all tokens of that class in the test set.

From Figure 8, we observe that, compared to voice N, voice N-M2 exhibits
enhanced energy in the region of 1-4 kHz and attenuated below 1 kHz. One
clear observation we can make when comparing the gains for specific phone
classes as displayed in Figures 9 and 10 is that the curves as well as the gain
values vary substantially across different phonetic classes. In the first group
(vowels, nasals and approximants) the gains are at least five times larger than
those obtained for the second group (fricatives, affricates and stops). This is
a consequence of the shapes and values of the unmodified speech LTAS for
these classes.
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Figure 8: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice
N calculated (for speech-shaped noise) at a sentence level and averaged across the set of
senteces used in the listening test.

From the gain curves of the first group displayed in Figure 9 we can see a
similar pattern across vowels, nasals and approximants: a large enhancement
varying from 8 to 12 dB in the frequency region between approximatively
800 Hz (this number varies across the different classes) and 5 kHz as well as a
apparent attenuation of around 2 dB for the lower frequency region. For both
vowels and approximants we see also a clear gain region between 5-8 kHz that
is separated by a gain valley at approximately 5 kHz. The shapes of these gain
curves follow the shape of the LTAS of these phonetic classes, for instance
we can see a bump from 5-8kHz in the vowels and approximants. The nasals
are the units that are most strongly enhanced reaching a maximum of 12 dB
gain which can be explained by the fact that they seem to be highly energetic
with an even less flat spectrum than the other sounds.

A similar trend for vowels, nasals and liquids can be seen in a study
performed on Lombard speech of 5 male Spanish native speakers Castellanos
et al. (1996) although we did not find this trend in the Lombard database
that we recorded from our speaker.

The gains obtained for the other class (stops, fricative and affricates)
are, as previously stated, much smaller. For both stops and fricatives an
average maximum of 2 dB increase was found and the region most enhanced
is between 1-5 kHz as seen for the other group. The affricates show even lower
gains and narrow enhanced regions between 1-3 kHz with a valley around
2 kHz.
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Figure 9: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice
N calculated (for speech-shaped noise) averaged across (a) vowels (b) nasals (c) approxi-
mants.

6.4. Listening experiments design

In this listening test we evaluated the intelligibility of the eight different
synthetic voices listed in Table 1 mixed with two noises: speech-shaped (ssn)
and speech from a single competing female speaker (cs). To obtain similar
intelligibility scores across each noise and to avoid ceiling effects, we mixed
each noise at two different SNRs: -4 dB for ssn and -14 dB for the cs. These
SNRs were chosen to give approximately 50 % word accuracy for natural
speech of the same speaker with the same material (Cooke et al., 2013).

32 native English speakers listened to the noisy samples over headphones
in soundproof booths. Each participant typed in what he or she heard for
a total of six different sentences per condition, i.e., voice and noise type (16
conditions). Each sentence could only be played once and the same sentence
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Figure 10: Gain in (dB) of the LTAS of voice N-M2 over the LTAS of unmodified voice
N calculated (for speech-shaped noise) averaged across (a) stops (b) fricatives and (c)
affricates sounds.

was never played again in the same listening test. We used the first ten
sets of the Harvard sentences (IEEE, 1969). The Harvard sentences are a
group of 720 sentences organized in sets of 10, where each set is designed
to be phonetically-balanced. The sentences are also a better representative
of everyday speech as oppose to the semantically unpredictable sentences
used in other TTS intelligibility listening experiments (King and Karaiskos,
2010). Another one of the sets was used as a practice session done prior to
the experiment. All words were considered when calculating the subjective
word accuracy rate.

6.5. Results and discussion

We present the mean word accuracy rate (WAR) obtained for each voice
when mixed with speech-shaped noise (Figure 11) and a competing talker
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Figure 11: Word accuracy rates for speech-shaped noise (Valentini-Botinhao et al., 2012b).

(Figure 12), along with 95 % confidence intervals.
In the case of ssn, higher intelligibility gains are obtained when we just

modified the first few Mel cepstral coefficients (N-M2): coarser frequency
modifications were more effective than fine-grained ones (N-M10, N-M59).
The best voice generated with modified Mel cepstral coefficients (N-M2) was
more intelligible than the Lombard spectral-adapted voice (N-L), and has
the advantage of requiring no additional recordings. The fairest comparison
system for N-M2 is N-L, since both modify only the spectrum (and not
duration or excitation parameters).

The voice which adapts all model parameters to Lombard speech (L)
works well, extrapolated adaptation adds a further gain (L-E) and a fur-
ther improvement can be obtained by following this with the proposed Mel
cepstral modification (L-E-M2).

As we can see in Figure 12 voices with only spectral modifications (N-
M59, N-M10, N-M2 and N-L) obtain only modest gains in the presence of a
competing speaker. Higher gains were obtained by the fully adapted Lombard
voices (L, L-E, L-E-M2), although the proposed method does not provide
additional gains on top of voices L or L-E. This suggests that changes in the
spectral envelope contribute less to intelligibility gain than duration or F0

modifications, for this type of masker noise. Given the non-stationary nature
of this masker, we would expect a temporal energy re-allocation strategy (e.g.,
taking advantage of quiet or silent regions in the noise signal) to be more
effective than reallocating energy across different frequencies.
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Figure 12: Word accuracy rates for competing talker (Valentini-Botinhao et al., 2012b).

7. Large scale evaluation

Taking the most successful approach based on the proposed method from
the last experiment (i.e., the one used to create voice N-M2), we proceeded
to evaluate its performance in a larger experiment with more listeners. We
compared it to two natural voices – recordings from the normal and Lom-
bard speech dataset – and two other synthetic voices built from normal and
Lombard speech. This evaluation was part of the large scale listening experi-
ment described in (Cooke et al., 2013) that used 154 native English speakers.
Cooke et al. (2013) also compared several other methods to enhance the in-
telligibility of natural and synthetic speech in noise. Here we show only
the results for our synthetic speech entries, alongside the results for natural
normal and Lombard speech.

7.1. Voice building

Using the same natural speech database described in our previous exper-
iment we built three voices for this evaluation. For consistency with (Cooke
et al., 2013), we will refer to these voices as TTS, TTSGP and TTSLomb,
which correspond to the voices described as N, N-M2 and L above, except for
a small difference in the way one voice was used to generate speech. Specif-
ically, we limited the duration modifications induced by voice TTSLomb so
that the maximum overall duration increase was no more than half a second
per sentence – this was necessary to conform to the rules of the experiment
described in (Cooke et al., 2013).

7.2. Acoustic analysis

We present in Table 3 various acoustic properties calculated per sentence
then averaged across the test set: duration changes, prosody changes (in
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duration F0 mean F0 range spectral tilt loudness
(secs.) (Hz) (Hz) (dB/oct.) (sone)

Natural speech
Normal 2.06 107.1 34.60 -2.14 11.43
Lombard 2.32 136.8 46.74 -1.83 11.96

Synthetic speech
TTS

1.95 104.5 22.45
-2.26 10.96

TTSGP -1.90 12.43
TTSLomb 2.43 145.2 42.55 -1.71 12.06

Table 3: Acoustic properties of the two natural voices (Normal, Lombard) and the three
synthetic voices (TTS, TTSGP, TTSLomb).

terms of F0 mean and range), spectral tilt and loudness, calculated using
the ISO-532B method (ISO 532, 1975). The F0 range was calculated as the
difference between the 80th and 20th percentiles.

The acoustic changes found here for the natural and synthetic speech
data are similar to what has been reported in other studies of Lombard
speech data: relative increases in sentence duration (12% natural and 25%
synthetic), F0 mean (27% and 39%) and F0 range (35% and 90%), flatter
spectral tilt (14% and 24%) and increase in loudness (5% and 13%).

The voice TTSGP presents on average a flatter spectral tilt when com-
pared to the TTS voice (16% flatter). TTSGP is slightly louder than the
TTSLomb, a relative increase of 13% over the TTS voice. Duration and F0

remain unchanged, because only the spectral parameters were modified.

7.3. Listening experiment design

To evaluate these voices across a range of SNRs, the five different voices
listed in Table 3 were mixed with speech-shaped noise (ssn) and a competing
female speaker (cs). The noises were mixed at preselected signal to noise
ratios (SNRs) chosen (using a pilot test) to achieve approximately 25, 50
and 75% word accuracy rates in natural unmodified speech (-9 dB, -4 dB,
1 dB for speech-shaped noise and -21 dB, -14 dB, -7 dB for competing talker).

In total, 154 native English speakers listened to the noisy samples over
headphones in sound-isolated booths. 180 sentences from the Harvard cor-
pus were used in a balanced arrangement, such that listeners never heard
the same sentence more than once. Each pair of participants between them
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Figure 13: Word accuracy rates for natural voices (Normal, Lombard) and synthetic voices
(TTS, TTSLomb, TTSGP) mixed with speech-shaped noise at SNR = 1dB (left), SNR
=-4dB (middle), SNR =-9dB (right) (Valentini-Botinhao et al., 2012c).

listened to 5 different sentences of each noise/SNR/voice combination. The
subjective word accuracy rates were computed per sentence and – in a proce-
dure improved over the previous listening test – counting only content words
(i.e., the words ‘a’, ‘the’, ‘in’, ‘to’, ‘on’, ‘is’, ‘and’, ‘of’, ‘for’ were excluded
from scoring).

7.4. Results and discussions

Figures 13 and 14 show the word accuracy rates (WARs) of the five voices
mixed with speech-shaped noise and competing speaker for each SNR tested.

As we can see there is quite a large difference in performance between
natural and synthetic voices. In other words, the intelligibility of synthetic
speech is much more strongly degraded in the presence of additive noise,
compared to natural speech. However, this gap can be closed to a large
extent when we modify the spectral envelope using our proposed technique,
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Figure 14: Word accuracy rates for natural voices (Normal, Lombard) and synthetic voices
(TTS, TTSLomb, TTSGP) mixed with a female competing speaker at SNR = -7dB (left)
SNR =-14dB (middle), SNR =-21dB (right) (Valentini-Botinhao et al., 2012c).

or when we adapt to Lombard data. The gains obtained when going from
natural to Lombard are much larger in the case of the synthetic speech than
for the natural speech (average across SNRs: 47% vs. 17% for ssn; 42% vs.
13% for cs).

The proposed method, which does not required re-training of the synthesis
models, created a voice (TTSGP) that provides intelligibility gains over a
normal synthetic voice (TTS). The word accuracy rates obtained by the
TTSGP voice are comparable to those obtained with the TTSLomb voice,
in the case of speech-shaped noise, even though the proposed method does
not modify duration or F0, and requires no additional data. Averaged across
SNRs, the relative gains obtained by TTSGP over the TTS voice were 44% for
ssn and 5% for cs. Once again, we see that in the presence of a competing
talker masker, only moderate improvements are observed, suggesting the
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Figure 15: Equivalent intensity change relative to natural speech, for the case of speech-
shaped noise. LSD indicates Fisher’s least significant different converted to dB via the
psychometric function for this masker. Adapted from (Cooke et al., 2013).

greater importance of prosody and duration in this condition.
The method employed in (Cooke et al., 2013) uses a psychometric function

which means we are able to express the change in intelligibility in terms of
“equivalent intensity change” relative to normal natural speech, which is
an intuitively appealing way of presenting the results on a dB scale. This
is shown in Figures 15 and 16 for ssn and cs. We can see the effective
loss (in dB) of using synthetic speech compared to natural speech (average
across SNR: TTS −4.3 dB for ssn and −5.9 dB for cs) and how this loss
can be substantially mitigated by we modifying the synthetic voice spectral
envelope using our proposed method (TTSGP −1.8 dB for ssn and −5.6 dB
for cs ) or by adapting the models to Lombard speech from the same speaker
(TTSLomb −1.9 dB for ssn and −2.7 dB for cs).

8. Conclusions

We have presented a method for increasing the intelligibility of HMM-
generated synthetic speech in the presence of noise, based on the glimpse
proportion measure. The method operates on the Mel cepstral coefficients
generated by acoustic models which have been previously trained only on
natural read speech collected in quiet conditions, of the type normally used
to build text-to-speech systems. The method updates the Mel cepstral co-
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Figure 16: Equivalent intensity change relative to natural speech, for the case of competing
speaker noise. LSD indicates Fisher’s least significant different converted to dB via the
psychometric function for this masker. Adapted from (Cooke et al., 2013).

efficients iteratively via gradient descent such that the glimpse proportion
increases, without changing the overall energy. We have observed that sen-
tences generated with such modified Mel cepstral coefficients have a boost
in frequencies between 1-4 kHz and that this boost is highly dependent on
the phonetic units (vowels and nasals are more more enhanced than frica-
tives and stops). Results with a speech-shaped noise masker show that the
modified voice is as intelligible as a synthetic voice trained with plain speech
then adapted to Lombard speech. When mixed with a competing talker the
gains are more modest for both the proposed method and for adaptation to
Lombard speech.

While speech intelligibility increases, naturalness and quality might have
been compromised, specially when modified speech is heard in clean condi-
tions. To decrease the artefacts that could arise from the frame-by-frame
processing we would like to exploit a few ideas. One of such would be to ap-
ply the optimization method to the static components of the spectral models
instead so the maximum likelihood parameter generation could smooth the
differences between the consecutive frames of modified spectral parameters.
We would also like to investigate whether updating the spectral coefficients
at a slower analysis window rate can decrease such artefacts while still main-
taining intelligibility gains. To evaluate this it is in our plans to perform
preference listening tests in clean and noisy conditions as well as task ori-
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ented experiments that would allow a longer expose to modified speech. On-
going and future work also includes a more extensive comparison with a
wider variety of other intelligibility enhancement methods, and investigation
of methods that can reallocate energy across time.
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