

Edinburgh Research Explorer

Object Action Complexes as an Interface for Planning and Robot
Control

Citation for published version:
Geib, C, Mourao, K, Petrick, R, Pugeault, N, Steedman, M, Krüger, N & Wörgötter, F 2006, 'Object Action
Complexes as an Interface for Planning and Robot Control'. in IEEE-RAS Humanoids-06 Workshop:
Towards Cognitive Humanoid Robots.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
IEEE-RAS Humanoids-06 Workshop: Towards Cognitive Humanoid Robots

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28995669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/object-action-complexes-as-an-interface-for-planning-and-robot-control(d6fa2b97-34d0-4bfe-a431-6a757591c66c).html

Object Action Complexes as an Interface for
Planning and Robot Control

Christopher Geib, Kira Mourão, Ron Petrick,
Nico Pugeault, and Mark Steedman

School of Informatics
University of Edinburgh

Edinburgh EH8 9LW, Scotland
Email: cgeib@inf.ed.ac.uk

Norbert Krueger
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark
DK-5230 Odense M, Denmark

Florentin Wörgötter
Institute for Informatics
University of Göttingen

37083 Göttingen, Germany

Abstract— Much prior work in integrating high-level artificial
intelligence planning technology with low-level robotic control has
foundered on the significant representational differences between
these two areas of research. We discuss a proposed solution to
this representational discontinuity in the form of object-action
complexes (OACs). The pairing of actions and objects in a single
interface representation captures the needs of both reasoning
levels, and will enable machine learning of high-level action
representations from low-level control representations.

I. I B

The different representations that are effective for continu-
ous control of robotic systems and the discrete symbolic AI
presents a significant challenge for integrating AI planning
research and robotics. These areas of research should be able
to inform one another. However, in practice, many collabo-
rations have foundered on the representational differences. In
this paper, we propose the use of object-action complexes[1]
to address the representational difference between these rea-
soning components.

The representations used in the robotics community can
be generally characterized as vectors of continuous values.
These vectors may be used to represent absolute points in
three dimensional space, relative points in space, joint angles,
force vectors, and even world-level properties that require real-
valued models [2]. Such representations allow system builders
to succinctly specify robot behavior since most if not all, of
the computations for robotic control are effectively captured
as continuous transforms of continuous vectors over time. AI
representations, on the other hand, have focused on discrete
symbolic representations of objects and actions, usually us-
ing propositional or first-order logics. Such representations
typically focus on modeling the high-level conceptual state
changes that result from action execution, rather than the low-
level continuous details of action execution.

Neither of the representational systems alone cover the
requirements for controlling deliberate action, however, both
levels seem to be required to produce human level behavioral
control. Our objective is to propose an interface representation
that will both allow the effective exchange of information
between these two levels and the learning of high level action
representations on the basis of the information provided by

the robotic control system.
Any such representation must provide clear semantics, and

be easily manipulable at both levels. Further it must leverage
the respective strengths of the two representation levels. In
particular, the robotic control system’s access to the actual
physical state of the world through its sensors and effectors
is essential to learning the actions the planning system must
reason about. Each low-level action executed by the robot of-
fers the opportunity to observe a small instantiated fragment of
the state transition function that the AI action representations
must capture. Therefore, we propose that the robotic control
system provide fully instantiated fragments of the planning
domains state transition function, that is captured during low-
level execution, to the high-level AI system to enable the
learning of abstract action representations. We will call such
a fragment an instantiated state transition fragment (ISTF),
and define it to be a situated pairing of an object and an
action that captures a small, but fully instantiated, fragment of
the planning domain’s state transition function. The process
of learning domain invariants from repeated, reproducible
instances of very similar ISTFs will result in generalizations
over such instances that we will call object-action complexes
(OACs). To see how this is done, the rest of this paper will
first discuss a detailed view of a robot control system, then
we will discuss an AI planning level description of the same
domain. We will then more formally define ISTFs and OACS,
show how ISTFs can be produced by the robot control system,
and how OACs relate to the AI planning level description. We
will then discuss the learning of OACs on the basis of ISTFs.

To do all this, we require a particular domain for the robot
to interact with. Imagine a relatively standard but simple robot
control scenario illustrated in Figure 1. It consists of an arm
with a gripper, a table with two light colored cubes and one
dark colored cube. The robot has the task of placing the cubes
into a box, also located on the table. We will also assume the
robot is provided with a camera to view the objects in the
domain. However, at the initial stage, the system does not
have any knowledge of those objects. The only initial world
knowledge available to the system is provided by the vision
module, and the hard-coded action reflexes that this visual
input can elicit.

ttotterd
Typewritten Text
Geib, C., Mourao, K., Petrick, R., Pugeault, N., Steedman, M., Krüger, N., & Wörgötter, F. (2006). Object Action Complexes as an Interface for Planning and Robot Control. In IEEE-RAS Humanoids-06 Workshop: Towards Cognitive Humanoid Robots.

Fig. 1. Illustration of how object classes are discovered from basic
uninformed reflex actions.

II. V- R D D O
A

We assume a vision front-end based on an Early Cognitive
Vision framework (see [3]) that provides a scene representation
composed of local 3D edge descriptors that outline the visible
contours of the scene [4]. Because the system lacks knowledge
of the objects that make up the scene, this visual world
representation is unsegmented: descriptors that belongs to one
of the objects in the scene are not explicitly distinct from the
ones belonging to another object, or to the background (this is
marked by question marks in Figure 1-2). This segmentation
problem has been largely addressed in the literature [5], [6],
[7]. However, while these segmentation methods are purely
vision-based and do not require of the agent to interact with
the scene they are unsatisfying for our purpose because they
assume certain qualities from the objects in order to segment
them: e.g., constant color or texture, moving objects, etc.

Instead we will approach the problem from another angle:
we will assume that the agent is endowed with a basic reflex
action [8] (Figure 1-3) that is elicited directly by specific visual
feature combinations in the unsegmented world representation.
The outcome of these reflexes will allow the agent to gather
further knowledge about the scene. This information will be
used to segment the visual world into objects and identify their
affordances.

We will only consider a single kind of reflex here: the
agent tries to grasp any planar surface in the scene.1 The
likely locations of such planar surfaces are inferred from the
presence of a coplanar pair of edges in the unsegmented visual
world. This type of reflex action is described in [8]. Every time
the agent executes such a reflex, haptic information allows
the system to evaluate the outcome: either the grasp was
successful and the gripper is holding something, or it failed
and the gripper closed on thin air. A failed attempt drives
the agent to reconsider its original assumption (the presence
of a graspable plane at this location in the scene), whereas
a successful attempt confirms the feasibility of this reflex.
Moreover, once a successful grasp has been performed, the
agent has gained physical control over some part of the scene

1Note that other kind of reflex actions could be devised to enable other
basic actions than grasping.

(i.e. the object grasped, Figure 1-4). If we assume that we
know the full kinematics of the robot’s arm (which is true for
an industrial robot), it is then possible to segment the grasped
object from the rest of the visual world as it is the only part
that moves synchronously with the arm of the robot. At this
point a new “object” relevant for the higher level planning
model is “born”.

Having physical control of an object allows the agent
to segment it and to visually inspect it under a variety of
viewpoints and construct an internal representation of the full
3D shape of the object (see [9]). This shape can then be stored
as the description of newly discovered class A (Figure 1-
5) that affords grasp-reflex-A encoding the initial reflex that
“discovered” the object.

The object held in the gripper is the first instance a1 of the
class A. The agent can use its new knowledge of class A to
reconsider its interpretation of the scene: using a simple object
recognition process (based on the full 3D representation of the
class), all other instances (e.g., in our example a2) of the class
in the scene are identified and segmented from the unknown
visual world.

Thus through a reflex-based exploration of the unknown
visual world object classes can be discovered by the system
until it achieves an informed, fully segmented representation of
the world, where all objects are instances of symbolic classes
and carry basic affordances.

To distinguish the specific successful instances of the robot’s
reflexes, we will refer to the specific instance of the reflex that
was successful for the object as a particular motor program.
Note that such motor programs are defined relative to a portion
of an object, in our example, the surface that was grasped.
We will extend this by assuming all motor programs can be
defined relative to some object.

The early cognitive vision system [4], the grasping reflex
[8] as well as the accumulation mechanism [9] that together
provides a segmentation of the local feature descriptors into
independent objects currently exist in one integrated system
that we will use as a foundation for this architecture.

III. R AI P A
As we have noted, we can also model this robot domain

scenario using a formal AI representation. In this case, we
will formalize the robot domain using the Linear Dynamic
Event Calculus (LDEC) [10], [11], a logical language that
combines aspects of the situation calculus with linear and
dynamic logics, to model dynamically-changing worlds[12],
[13], [14].

Our LDEC representation will define the following actions.

Definition 1: High-Level Domain Actions
• grasp(x) – move the gripper to pick up object x,
• ungrasp(x) – release the object x in the gripper,
• moveEmptyGripperTo(`) – move an empty gripper to the

specified location `,
• moveFullGripperTo(`) – move a full gripper to the spec-

ified location `.

These actions represent higher level counterparts of some
of the motor programs available to the robot controller, but
already these actions incorporate elements of the state of the
world that are not part of robotic control representations of
actions. For instance, ungrasp models an action that is quite
similar to a motor program that performs this operation. Ac-
tions like moveEmptyGripperTo and moveFullGripperTo, on
the other hand, are much more abstract and encode information
about the state of the world (i.e. the gripper is empty or full).
Note that in this case the actions partition the low-level “move
gripper” motor-programs into two separate actions that, as we
will see, can more readily be learned from the available ISTFs.
This representation will also allow us to bypass the learning
of the conditional effects[15] of such actions.

Our LDEC representation will also include a number of
high-level properties.

Definition 2: High-Level Domain Properties
• graspable(x) – a predicate that indicates whether an

object x is graspable or not,
• gripperLoc = ` – a function that indicates the current

location of the gripper is `,
• objInGripper = x – a function that indicates the object in

the gripper is x; x is nil if the gripper is empty,
• objLoc(x) = ` – a function that indicates the location of

object x is `.
Finally, we also specify a set of “exogenous” domain proper-
ties.

Definition 3: Exogenous Domain Properties
• over(x) = ` – a function that returns a location ` over

the object x,
• locOnTable(`1) = `2 – a function that returns a location
`2 relative to the table (e.g., on the table or in a box) for
another location `1 above the table.

Like the properties in Definition 2, the exogenous properties
model high-level features of the domain. However, unlike
domain properties that are directly tracked by the high-level
AI model; exogenous properties are information provided to
the high-level AI system by some external (possibly lower
level) source. (We will say more about exogenous properties
in Section VI.)

Using these actions and properties we can write LDEC
axioms that capture the dynamics of the robot scenario de-
scribed in Table I). Action precondition axioms describe the
properties that must hold of the world to apply a given action
(i.e., affordances), while the effect axioms characterize what
changes as a result of the action. These axioms also encode
the STRIPS assumption: fluents that aren’t directly affected
by an action are assumed to remain unchanged by that action
[16].

We note our LDEC axiomatization is readily able to accom-
modate the indexical, or relative information. For example,
an instantiated function like over(box1) represents a form of
indexical knowledge, rather than a piece of definite infor-
mation like the coordinates of the box in three dimensional
space. Moreover, our LDEC axiomatization can model spatial

TABLE I
LDEC A H-L D A

LDEC Action Precondition Axioms

objInGripper = nil ∧ graspable(x)⇒ affords(grasp(x))
objInGripper = x ∧ x , nil⇒ affords(ungrasp(x))
objInGripper = nil⇒ affords(moveEmptyGripperTo(`))
objInGripper = x ∧ x , nil⇒ affords(moveFullGripperTo(`))

LDEC Effect Axioms{
affords(grasp(x))

}
([

grasp(x)
]
objInGripper = x ∧ gripperLoc = objLoc(x){

affords(ungrasp(x))
}
([

ungrasp(x)
]
objInGripper = nil ∧ objLoc(x) = locOnTable(objLoc(x)){

affords(moveEmptyGripperTo(`))
}
([

moveEmptyGripperTo(`)
]
gripperLoc = `{

affords(moveFullGripperTo(`))
}
([

moveFullGripperTo(`)
]
gripperLoc = ` ∧ objLoc(objInGripper) = `

relationships expressed with respect to objects. For instance,
moveFullGripperTo(over(box1)) can represent an action in-
stance that moves the object in the gripper to a location “over
box1”

Intuitively, the information encoded in a collection of LDEC
axioms captures a generalization of the information in a
larger set of ISTFs. The action precondition axioms capture
information from the initial state of an ISTF and the action
executed, while the effect axioms capture the generalities for
the initial state to final state mappings from an ISTFs. As such
we believe they can be learned from the ISTFs.

It is easy to show that this representation supports high-level
planning. For instance, with these axioms it is trivial for an
AI planner to construct the following simple plan:[
grasp(obj1); moveFullGripperTo(over(box1)); ungrasp(obj1)

]
,

to put an object obj1 into box1, from a state in which the
robot’s gripper is empty. However, building even this sort of
simple plan from first principles is well beyond the capability
of the robot controller alone.

So far we have shown that a low level robot controller is
capable of producing ISTFs for a domain, we have shown a
way an AI level planner could formalize the same domain,
and we have shown the necessity of using the AI planner
with the robot controller to produce high level behavior. In the
remainder of the paper we will outline a process whereby we
can learn the AI level representation from the ISTFs produced
by the robot controller.

IV. B R C P ISTF
OAC

With these two views of the problem in hand, we now,
consider how we can bridge the two representational levels.
We see that we can obtain a wealth of object-centric infor-
mation each time the robotic system successfully grasps an
object: the object grasped, the type of grasping reflex used, the
relative position of the gripper, the fact that the object has been

effectively grasped and is now in the gripper instead of being
on the table, etc. This association of before and after states
of a particular “grasp” motor program with a specific domain
object meets our definition of an ISTF. It completely describes
a fragment of the planning domain’s transition function.

We more formally define an ISTF as a tuple〈
si,mp j,Ob jmpi , si+1

〉
comprised of the initial sensed

state of the world si, a motor program instance mp j, the
whole object containing the component the motor program
was defined relative to Ob jmpi , and the state that results from
executing the motor program si+1. Keep in mind that the state
representations for this ISTF contain all of the information
the robot has about the two states of the world. Some of
which may be relevant some of which may be completely
irrelevant to the outcome of the action.

It will be the task of the learning module to abstract
away this irrelevant information from the ISTFs to produce
OACs that contain only the relevant instantiated information
needed to effectively predict the applicability of the action
and the likely effects of the action. This is only possible if the
system is provided with multiple encounters with reproducible
ISTFs. Thus as the system repeatedly interacts with the world
it is presented with multiple very similar ISTFs which it
generalizes into OACs, thereby learning a representation that
is not unlike the one we specified in the previous section.

On this basis, we define an OAC as a generalized ISTF
tuple:

〈
S i,MP j,Ob jk, S i+1

〉
comprised of two abstracted states

(S i and S i+1) a set of motor programs MP j, and an object
class Ob jk. The initial state of the world, S i, is abstracted
to contain only those properties that are necessary for any of
the set of motor-programs in MP j when acting on an object
of class Ob jk to result in an state that is satisfied but the
abstracted state definition S i+1. Thus such an OAC contains
all of the information found in our initial LDEC definitions
for this domain.

Given the parallels to LDEC representations how are OACs
different? The answer to this is, a very subtle point. OACs
constrain the kinds of LDEC rules that can be learned. First
OACs distribute information in a subtly different manner than
LDEC rules. An OAC contains information normally found in
two different parts of the LDEC representation. By bringing
together information found in precondition rules with the
effect rules and the object in question they allow learning to
take place that previously couldn’t have been accomplished.
Second the heavy use of the object and the object centeredness
of OACS produce LDEC representations that easily lend
themselves to a simple forward looking planning algorithm
that is heavily directed by the affordances of the available
objects. Third and finally the use of OACs constrains the
LDEC representations to a simple form of axioms that are
easier to learn. For example, without more complex machinery,
OACs induced from ISTFs are not able to create action repre-
sentations with conditional effects. Learning such conditional
effects of actions is a significant problem for other approaches.

1

0

0

1

0

1

0

0

0 1 0 1 0 1 00

1

0

0

1

0

1

0

0

0 1 0 1 0 1 00

θ3 θ3 θ3 θ3 θ3 θ3 θ3 θ3

Fig. 2. Hetero-associative net: Storage and Retrieval

V. L A R

The ability of a low level robotic control system to identify
world-level objects only takes us part of the way to kind of
representation we have just described. We must learn from
the ISTFs coherent, high-level actions. Our current proposal
for learning such action representations involves the use of
Willshaw nets or Associative Nets(AN).

ANs were first was described in [17], [18] following early
work by [19] and [20] extended by [21] and [22]. They
illustrate three basic properties which are characteristic of
mechanisms involved in phenomena of human memory and
attention: 1) non-localized storage (“Distributivity”), 2) recov-
ery of complete stored patterns from partial or noisy input
(“Graceful Degradation”), and 3) effective functioning even in
the face of damage (“Holographic Memory”).

ANs associate pairs of input and output vectors using a grid
of horizontal input lines and vertical output lines with binary
switches (triangles) at the intersections (Figure 2). To store
an association between the input vector and the output vector,
switches are turned on (black triangles) at the intersection of
lines which correspond to a 1 in both input and output patterns.

To retrieve the associate of the input, a signal is sent down
each input line corresponding to a 1 in the input. When this
signal encounters an “on” switch, it increments the signal on
the corresponding output line by one. The output lines are
then thresholded at a level corresponding to the number of
“on” bits in the input. If we store an input pattern with itself as
output (an auto-associative net), ANs can be used to complete
partial patterns, as needed to recall perceptually non-evident
properties of objects, such as the fact that the red cube on
the table affords grasping. This is exactly the information
that is encoded in action precondition axioms. Further it is
worthwhile to notice that all of the information needed for this
AN is available in each new instance of an ISTF. In this case,
the input and output patterns for the AN are the same: the
initial state, action, and object for a cluster of reproducable
ISTFs observed in the course of interacting with the world.
We thereby use repeated presentations of very similar ISTFs
(clustered by action and object) to train auto-associative ANs
to effectively store and retrieve associations between the LDEC
action precondition axioms and the property of affording such

LDEC operators.
Now consider the LDEC style effect axioms. Rather than

using an auto-associative net we can use a hetero-associative
network for this task. In this case, we again use the initial
state, action, and object as the input pattern from each ISTF,
however as the output pattern we use the resulting state from
the ISTF. This will allow us to learn and retrieve the state-
change transitions associated with LDEC operators, with states
represented as sparse vectors of relevant facts or propositions.

Thus, we hypothesize that such associations can be learned
in ANs using repeated presenations of reproducable ISTFs
using the Perceptron Learning Algorithm (PLA). We replace
the binary AN switches with continuous valued switches and
use multiple ISTFs that have the same action, object, and
resulting state and the PLA to adjust the weights on the
relevant switches. We believe that such an approach can learn
consistent state changes or actions, and learn the association
between preconditions and associated affordances.

More specifically, in the envisioned scenario, as the robot
controller explores the world, successful grasps will produce
ISTFs. On the basis of multiple reproducable experiences
of particular ISTFs we can learn the instantiated versions
of the precondition axioms and the effect axioms for the
robots actions. The resulting state in each ISTF will vary only
in terms of the object-type grasped and the grippers pose.
Further, the invariants can be learned as a basis for classifying
the world into object classes and action types. As we have
discussed, identifiers for actions-types can then be associated
with the input conditions for the action via an auto-associative
net. Such affordances are added by adding new input and
output lines to the net for the new affordance, and using the
existing learning algorithm.

This network can be presented with a possibly incomplete
set of properties representing the current state of the world, and
used to retrieve a complete model of the world state, including
non-perceptually available associates including the affordances
and object classes.(Figure 3) For ease of exposition, in this
and the following figures we will continue to show weights
of 0 and 1. The full pattern including affordances can then be
input to the other hetero-associative net, and used to retrieve
the effects of carrying out particular actions. (Figure 4).

If the output states and affordances are the same following
two different grasp actions for a particular input state, then
clearly the effects (as far as the learner and planner are
concerned) of the two grasps are the same for that input. If the
effects are the same for all inputs then the grasps are equivalent
and can be collapsed together. We discuss this next.

A. Learning Multiple Grasp Actions

Recall from our discussion of the high-level action grasp
that at the lower level there may in fact be many low-level
grasps available to the robot at any point. While many of these
grasping actions may have effects that are indistinguishable
from one another, there will also be grasping actions that
result in very different effects. Given this, and our desire
to avoid the difficulties of learning actions with conditional

Fig. 3. Retrieval of affords(grasp(x)) from objInGripper = nil∧ graspable(x)
in the loaded auto-associative net

Fig. 4. Retrieval of effect grasp(x) from the hetero-associative net

effects, it becomes clear that we will need multiple grasp
actions at the higher level of abstraction. To distinguish these
actions and their effects during planning and learning we
will introduce multiple predicates indicating “graspability” by
particular motor programs.

Our learning process now operates as follows: when an
object is “born” at the lower level of representation (See
Section II), the message for the addition of the object (e.g.,
obj23) should include an identifier for the specific action that
was executed (e.g., grasp28, grasp95, etc.) as well as asserting
the existence of a new predicate indicating the object has that
action as an affordance (e.g., affords(grasp28(obj23))).2 This
predicate is added to the AN and can be used for learning.

2Although we only consider grasping actions, we assume other actions,
such as pushing, also result in the “birth” of an object-affordance complex.

We make the strong assumption that the invariants of the
domain map onto the input units of the associative network,
which we assume in animals have evolved to this end and for
the robot must be built in, are such as to ensure that when
distinct low-level motor programs are indistinguishable at the
higher level of abstraction, they will automatically be classified
as instances of a single action.

VI. U L A A R

We have described a process that results in learning ab-
stracted action representations that should be close to the
LDEC representations we have sketched for this domain.
However, by abstracting the actions in this way there remains
a number of open concerns we must address.

a) Using Learned Action Knowledge with New Objects:
All new objects are initially associated with “new” actions.
Our problem is to associate a previously unseen motor-
program object pair with an existing high-level action or to
mark it as a new action that must be learned at the high level.

b) Using Learned Action Knowledge for Execution: It
will be necessary to convert our learned abstract actions to
specific motor programs for execution. Keeping the list of
the motor program-object pairs abstracted by each high-level
action should address this issue. Since all abstracted pairs for
a given action should be equivalent, we suggest selecting any
one that matches the object bound in the high level plan.

c) Learning Exogenous Domain Properties: Although
we have described a process for learning certain domain
properties, the question remains as to how we will learn the
exogenous properties given in Definition 3. For the present we
simply assume the presence of over as an exogenous domain
property that is computed by a lower level function.

VII. C

This paper has argued that object-action complexes (OACs)
grounded from instantiated actions in robot control-space, can
be used as an interface between the very different represen-
tation languages of robot control and AI planning. We have
shown that OACS can be embodied in an Associative Net, and
that they can be learned by a very simple machine-learning
algorithm. Almost all of these claims are unproven but we
offer them as defining a research program that we shall be
pursuing in the coming years in order to combine existing
robot platforms and existing planners based on LDEC and
other situation/event calculi.

R

[1] B. Hommel, J. Müsseler, G. Aschersleben, and W. Prinz, “The theory
of event coding (tec): A framework for perception and action planning.”
Behavioral and Brain Sciences, vol. 24, pp. 849–878, 2001.

[2] R. Murray, Z. Li, and S. Sastry, A mathematical introduction to Robotic
Manipulation. CRC Press, 1994.

[3] N. Krüger, M. V. Hulle, and F. Wörgötter, “Ecovision: Challenges in
early-cognitive vision,” International Journal of Computer Vision, 2006.

[4] N. Pugeault, F. Wörgötter, , and N. Krüger, “Multi-modal scene recon-
struction using perceptual grouping constraints,” in Proceedings of the
5th IEEE Computer Society Workshop on Perceptual Organization in
Computer Vision, New York City June 22, 2006 (in conjunction with
IEEE CVPR 2006), 2006.

[5] J. Shi and J. Malik, “Motion segmentation and tracking using
normalized cuts,” in ICCV, 1998, pp. 1154–1160. [Online]. Available:
citeseer.nj.nec.com/shi98motion.html

[6] F. Moscheni, S. Bhattacharjee, and M. Kunt, “Spatiotemporal segmen-
tation and based on region merging,” IEEE transactions on Pattern
Analysis and Machine Intelligence, 1998.

[7] Y. Deng and B. Manjunath, “Unsupervised segmentation of color-texture
regions in images and videos,” IEEE transactions on Pattern Analysis
and Machine Intelligence, 2001.

[8] D. Aarno, J. Sommerfield, D. Kragic, N. Pugeault, S. Kalkan,
F. Wörgötter, D. Kraft, and N. Krüger, “Integration of elementary
grasping actions and second order 3d feature relations for early reactive
grasping,” submitted to 2006 IEEE-RAS International Conference on
Humanoid Robots, submitted.

[9] N. Krüger, M. Ackermann, and G. Sommer, “Accumulation of object
representations utilizing interaction of robot action and perception,”
Knowledge Based Systems, vol. 15, pp. 111–118, 2002.

[10] M. Steedman, “Temporality,” in Handbook of Logic and Language,
J. van Benthem and A. ter Meulen, Eds. Amsterdam: North Hol-
land/Elsevier, 1997, pp. 895–938.

[11] ——, “Plans, affordances, and combinatory grammar,” Linguistics and
Philosophy, vol. 25, pp. 723–753, 2002.

[12] J. McCarthy and P. J. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,” Machine Intelligence, vol. 4, pp.
463–502, 1969.

[13] D. Harel, “Dynamic logic,” in Handbook of Philosophical Logic, volume
II, D. Gabbay and F. Guenthner, Eds. Dordrecht: Reidel, 1984, pp.
497–604.

[14] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp.
1–102, 1987.

[15] E. P. D. Pednault, “ADL: Exploring the middle ground between STRIPS
and the situation calculus,” in Proceedings of the First International
Conference on Principles of Knowledge Reprensentation and Reasoning
(KR-89, R. J. Brachman, H. J. Levesque, and R. Reiter, Eds. San Mateo,
CA: Morgan Kaufmann Publishers, 1989, pp. 324–332.

[16] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

[17] D. Willshaw, P. Buneman, and C. Longuet-Higgins, “Non-holographic
associative memory,” Nature, vol. 222, pp. 960–962, 1969.

[18] D. Willshaw, “Holography, association and induction,” in Parallel Mod-
els of Associative Memory, G. Hinton and J. Anderson, Eds. Hillsdale,
NJ: Erlbaum, 1981, pp. 83–104.

[19] K. Steinbuch, “Die lernmatrix,” Kybernetik, vol. 1, pp. 36–45, 1961.
[20] J. Anderson, “A memory storage model utilizing spatial correlation

functions,” Kybernetik, vol. 5, pp. 113–119, 1968.
[21] F. T. Sommer and G. Palm, “Bidirectional retrieval from associative

memory,” in Advances in Neural Information Processing Systems, M. I.
Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10. The MIT Press,
1998.

[22] T. Plate, “Holographic reduced representations: Convolution algebra for
compositional distributed representations,” in Proceedings of the 12th
International Joint Conference on Artificial Intelligence, San Mateo CA.
San Francisco, CA: Morgan Kaufmann, 1991, pp. 30–35.

