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Abstract

A recent publication introduced a newway to define all 𝑘-step linearmultistepmethods of order 𝑘
and 𝑘+1, in a parametric form that builds in variable step-size. In this framework it is possible to
continuously change method and step-size, making it possible to create better behaving adaptive
numerical solvers. In this thesis general numerical solvers based on this framework have been
implemented, utilizing variable step-size and variable order, based on control theory and digital
filters. To test and analyze the solvers, libraries of test problems, methods and filters have been
implemented. In the analysis, the solvers were also compared to commercial (Matlab) solvers.
The conclusion of this investigation is that the solvers show potential to become competitive in
the field.
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Notation and indexing

The following indexing and notationwill be used in this report (a bold typeface indicates a vector):

Notation Definition

𝒙(𝑡) The exact solution.

𝑡𝑖 Time point 𝑖. The indexing is starting at 0.
𝑡0 The initial time point.

𝑡f The final time point.

𝒙𝑖 The numerical approximation of 𝒙(𝑡𝑖).
𝑝 The order of a method.

𝑘 The number of steps used by a method (𝑘-step method).

ℎ𝑖 The 𝑖:th step-size, where ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖.

𝑟𝑖 The 𝑖:th step-size ratio, where 𝑟𝑖 = ℎ𝑖+1/ℎ𝑖.

𝑷𝑖 The defining polynomial belonging to step 𝑖, see Section II.2.

TOL The tolerance supplied to the solver.

𝜃𝑗 The 𝑗:th component of the parameter vector defining a particular method.

𝐸𝑘 The class of explicit methods of order 𝑘, see Section II.2.

𝐼𝑘 The class of implicit methods of order 𝑘, see Section II.2.

𝐼+
𝑘 The class of implicit methods of order 𝑘 + 1, see Section II.2.
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Special terms and abbreviations

The following abbreviations and special terms will be used in this report:

Abbreviation/Term Definition

ODE Ordinary Differential Equation

RHS-function Right Hand Side Function

LMM Linear Multistep Method

AB Adams–Bashforth family of methods

AM Adams–Moulton family of methods

BDF Backward differentiation formula

EDF Explicit differentiation formula

SMFP-combination Solver-Method-Filter-Problem combination

Starter The method/methods used in the start phase to be able to start the mul-
tistep method.

Initial predictor Special predictor used only in the start phase.

Main predictor The predictor used during the whole integration (except the start phase).

Reference solution The solution we use as reference to the solution created by our solver
such that we can calculate, for example, the global error. If an analyt-
ical solution exists, then this is used as reference solution, otherwise a
reference solver is used to create a reference solution.

Reference solver A solver (including settings) used to calculate a reference solution. The
supplied tolerance is chosen very strict.
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Many interesting and important problems in science and engineering, involve the task of solv-
ing initial value problems, that is, problems consisting of one initial value and one differential
equation. These problems may either be the main focus of a scientific or engineering endeavor,
or smaller parts of a much more daunting problem.

With a little imagination one can to conjure up a large number of scenarios where the corre-
sponding problems either lack analytical solutions, or have analytical solutions that are too time-
consuming too derive. This creates the need for ways to approximate the solution, which can be
done using numerical methods.

Numerical methods for solving initial value problems have been known for a long time. One of
the most famous examples, the forward Euler method, was introduced as early as 1768 by Leonard
Euler in his Institutionum calculi integralis [7]. Since then, more sophisticated methods have been
developed. Especially two groups have been coming to play a major role in various numerical
solver implementations, namely Runge–Kuttamethods and linear multistep methods, of which the
latter is the focus of this thesis.

Traditional linear multistep methods utilize a pre-determined equidistant grid, on which the so-
lution points are calculated. Since the methods only produce approximate solutions, a difference
between the exact solution and the solution given by a certain method will exist. However, this
error varies at the different time steps depending both on which part of the solution the method
approximates, and on the size of the grid spacing. It is desirable to be able to control the size of
the error throughout the integration process, which has led to various extensions of these tradi-
tional methods, and methods using an adaptive grid (variable step-size) have been constructed.
When discussing this subject it is important to separate between variable step-size linear multi-
step methods and numerical solvers using fixed step-size linear multistep methods, but that can vary
the grid. In the former case, the variability of the step-size is built into the numerical method. In
the latter case, it is not, but instead a regridding is done by using interpolation.

Until now, no unified way, or framework, to construct these variable step-size linear multistep
methods have existed. However, in recent work by Arévalo and Söderlind [1], such a framework
was constructed. In this framework, traditional fixed step-size methods appear as special cases
by restricting the step-size, to a pre-fixed value.

In addition to methods utilizing variable step-size, there is a need for a mechanism to regulate
this step-size, such that a user demanded accuracy is achieved. Traditionally, this has been done
using heuristic schemes lacking a sound foundation. A better approach is to utilize discrete
control theory to create step-size regulators, which both have a satisfactory behavior, and can be
analyzed using tools developed within the field of control theory. This has previously been done
for Runge–Kutta methods with great success [8, 9]. The regulators are built using digital filters,
which ensures an appropriate behavior of the step-size regulation if chosen wisely.

Nowadays, numerical solvers usually are order-adaptive as well, meaning that during the inte-
gration the current method is changed to a method of a different order. By changing the order
in this fashion, it is possible to achieve better efficiency and accuracy. A new algorithm, based
on control theory and step-size regulators, to change order mid-integration, has been proposed
by Söderlind [24]. This algorithm has previously only been tested on specially crafted test data.

The purpose of this thesis is to investigate the concepts mentioned above, and in the process
construct a software package containing solvers and tools that implement these concepts, and
in which the user is able to choose among many numerical methods and filters. Specifically we
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want to answer the following questions:

• Does the use of digital filters to control the step-size give good results when implemented
in conjunction with linear multistep methods?

• Do different combinations of solvers, methods, filters and problems behave equally well,
or are some combinations preferred?

• Is the proposed algorithm used for order change working as expected when implemented
in a numerical solver based on linear multistep methods?

• Have the implemented solvers — based upon the concepts investigated in this thesis — the
potential to compete with already widely used numerical solvers?

Thework involved to answer these questions can be divided into four parts: one background part
(containing both theoretical background and implementation decisions not specifically concern-
ing step-size or order regulation), one part investigating the step-size regulation process, one
part investigating the order regulation process, and a last part containing conclusions and areas
of interest in future work. The first and last parts were written by both authors, whereas the
other two parts were written separately.

A complete multistep solver is a complex device. It consists of many different parts that have
to work smoothly together. By adjusting one part, it is easy to undo another. This has led to a
tight connection between what started out as two separate theses. This and the large amount of
shared theoretical background are the main reasons for this being one unified work, with two
main parts: one dealing with the step-size regulation and the other one with order regulation.
We must stress though, that the parts dealing with the two different regulation processes have
been written separately, and the results within these parts are due to their respective author.

A major part of our work is the implementation part, in which we constructed a Matlab software
package built upon a prototype which was written by Arévalo and Söderlind [1] as a proof of
concept. This software package mainly consists of:

• Three types of solvers using variable step-size and fixed order

• Three corresponding solvers using variable order

• A problem library

• A method library

• A filter library

After completing the implementation part, experimental work was done, consisting in running
tests on different problems. These results were used to analyze our solvers, finding strengths and
weaknesses, and suggesting further development.

In addition, theoretical work has been done, consisting in filter stability analysis, and analysis
coupled to the constructed solvers. Both these theoretical contributions were necessary parts
for making implementation decisions, but in addition to this the analysis of the filters directly
contributes to fulfilling the goal of answering the two questions related to step-size regulation; by
using theoretical tools the author has immediately excluded large classes of filters with unwanted
behavior.
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II.1. LINEAR MULTISTEP METHODS

II.1. Linear Multistep Methods

Linearmultistepmethods (LMMs) are a specific class of numericalmethods used to solve ordinary
differential equations (ODEs). We will consider initial value problems in semi-explicit form,

{
𝒙̇ = 𝒇(𝑡, 𝒙)
𝒙(0) = 𝒙0

, 𝑡 ∈ [𝑡0, 𝑡f ]. (II.1)

A method belonging to this class, calculates an approximation, 𝑥𝑖, of the exact solution, 𝒙(𝑡𝑖),
to the ODE at a time point 𝑡𝑖. The function 𝒇(𝑡, 𝒙) — which may be scalar or vector valued
— is customarily placed on the right-hand side of the equality sign, and is therefore called the
right-hand side function (RHS-function).

The idea behind these methods is to use several previously calculated values to increase the
quality of the solution. Common for all multistep methods (with a fixed step-size¹) is that they
can be written on the form

𝑘

∑
𝑖=0

𝛼𝑘−𝑖𝒙𝑛−𝑖 = ℎ
𝑘

∑
𝑖=0

𝛽𝑘−𝑖𝒇(𝑡𝑛−𝑖, 𝒙𝑛−𝑖), (II.2)

where 𝑘 indicates the number of previous solution points used to calculate the new solution point
𝒙𝑛. Assuming that 𝛼𝑘 ≠ 0, we call this a 𝑘-step method. Such a method can be either explicit, if
𝛽𝑘 = 0, or implicit, if 𝛽𝑘 ≠ 0.
Let the order of consistency of a LMM be denoted 𝑝. There are multiple equivalent ways to define
the order, but some of them can only be applied to fixed step-size methods. The definition used in
this thesis is as follows: An LMM is of order 𝑝, if for all systems of equations to which the solutions
are polynomials of degree 𝑝 or less, the method generates the exact solution.

II.1.1. Interpolation conditions

One technique used to construct LMMs is to use interpolation. Here we construct a polynomial,
𝑷 , which interpolates another function 𝒈 at several points such that

∀𝑚 ∈ {0, 1, … , 𝑚𝑗} ∶ 𝑷 (𝑚)(𝑡𝑛−𝑗) − 𝒈(𝑚)(𝑡𝑛−𝑗) = 𝟎, for some 𝑗 ∈ {1, 2, … , 𝑘} (II.3)

where 𝑚𝑗 is the highest order derivative used for interpolation in the point 𝑡𝑛−𝑗 . This kind of
interpolation is called Hermite interpolation, or in the case when all 𝑚𝑗 = 0, Lagrange interpola-
tion. The constructed polynomial, 𝑷 , is then used as an approximation of 𝒈 in the time interval
𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛], and the approximated solution point is defined as 𝒙𝑛 = 𝑷 (𝑡𝑛).
A famous example of such numerical methods are the Adams–Bashforth methods, which use the
identity

𝒙(𝑡𝑛) = 𝒙(𝑡𝑛−1) + ∫
𝑡𝑛

𝑡𝑛−1

𝒙̇(𝜏)𝑑𝜏 = 𝒙(𝑡𝑛−1) + ∫
𝑡𝑛

𝑡𝑛−1

𝒇(𝜏, 𝒙)𝑑𝜏 (II.4)

¹There exists multiple ways of extending LMMs so that they use a variable step-size [11, p. 109, 10, p. 397], but how
this is done is outside the scope of this thesis. The formulation used in this thesis described in Section II.2 has no
need of such an extension, as the formulation from the beginning is based upon a variable step-size being used.
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II.2. PARAMETERIZATION OF MULTISTEP METHODS

where 𝒇(𝑡, 𝒙) is approximated as a polynomial by using interpolation conditions on the points
𝒙(𝑡𝑛−𝑗) with 𝑗 = {1, 2, … , 𝑘}, and every 𝑚𝑗 = 0. The true solution 𝒙(𝑡𝑛−𝑗) is then replaced
by the approximated values 𝒙𝑛−𝑗 for 𝑗 = {0, 1, … , 𝑘}. From this algorithm, the coefficients in
Equation II.2 may be derived [11, pp. 19-20].

II.1.2. Implicit collocation condition

In addition to interpolation conditions, there are implicit collocation conditions, that is, conditions
on solution points that are not yet approximated. A numerical method constructed by an implicit
collocation condition is called implicit; however, note that this type of condition alone is never
enough to uniquely determine the polynomial 𝑃 (𝑡). In the case of LMMs, the only available
implicit condition, according to Equation II.2, is

̇𝑷 (𝑡𝑛) − 𝒇(𝑡𝑛, 𝑷 (𝑡𝑛)) = 0. (II.5)

A simple example of a linear multistep method using an implicit collocation condition is the
implicit Euler method, which can be derived by approximating the solution by a first degree
polynomial fulfilling the following collocation conditions

𝑷 (𝑡𝑛−1) − 𝒙𝑛−1 = 0, (II.6)
̇𝑷 (𝑡𝑛) − 𝒇(𝑡𝑛, 𝑷 (𝑡𝑛)) = 0. (II.7)

Traditionally, one area where implicit collocation conditions are extensively used, is when deal-
ing with implicit Runge-Kutta methods [11, pp. 43-47]. Such methods often have more than one
implicit collocation condition, unlike LMMs.

II.2. Parameterization of multistep methods

As alreadymentioned, this thesis is based on the theory developed by CarmenArévalo andGustaf
Söderlind [1]. In their article they create a general approach to the construction of linear multi-
step methods, where variable step-size is built in from the start. Each method is characterized
using a fixed number of interpolation and implicit collocation conditions that define a piecewise
polynomial 𝑷 , here called the defining polynomial. The theory covers all linear 𝑘-step methods
of maximal order, i.e., 𝑝 = 𝑘 and 𝑝 = 𝑘 + 1. These methods can be divided into three classes:

Class I 𝐸𝑘 methods. These methods are explicit and of order 𝑝 = 𝑘.
Class II 𝐼𝑘 methods. These methods are implicit and of order 𝑝 = 𝑘.
Class III 𝐼+

𝑘 methods. These methods are implicit and of order 𝑝 = 𝑘 + 1.
Every method is associated with a parameter vector 𝜽 with elements 𝜃𝑖 ∈ (−𝜋/2, 𝜋/2]. The
dimension of this vector, 𝑛𝜃 , depends on the method class. Every method is uniquely determined
by this vector in combination with the method class, as explained later.

The indexing of 𝒙 and ℎ is shown in Figure II.1, where ℎ𝑖 = 𝑡𝑖+1−𝑡𝑖. All filled points are previously
calculated, and the unfilled, 𝑥𝑛, is the next point to be calculated.
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II.2. PARAMETERIZATION OF MULTISTEP METHODS

To further specify these classes we need some notation and a few definitions. Let 𝛱𝑝 denote the
space of polynomials of degree 𝑝. We define the following:

State slack

𝒔𝑛−𝑗 = 𝑷𝑛(𝑡𝑛−𝑗) − 𝒙𝑛−𝑗 , 𝑗 = 0, … , 𝑘 (II.8)

Derivative slack

𝒔′
𝑛−𝑗 = ̇𝑷𝑛(𝑡𝑛−𝑗) − 𝒇(𝑡𝑛−𝑗 , 𝒙𝑛−𝑗), 𝑗 = 0, … , 𝑘 (II.9)

Slack balance condition

𝒔𝑛−𝑗−1 cos 𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′
𝑛−𝑗−1 sin 𝜃𝑗 = 0, 𝜃𝑗 ∈ (−𝜋/2, 𝜋/2], 𝑗 = 1, … , 𝑘 − 1 (II.10)

where 𝑷𝑛 is the defining polynomial of the method used in the 𝑛:th point, see the illustrations
in Figure II.2 and Figure II.3. With these definitions, a further specification of the three method
classes can now be made:

Class I 𝐸𝑘 methods. Explicit of order 𝑘, 𝑛𝜃 = 𝑘 − 1. The defining polynomial at step 𝑛, 𝑷𝑛 ∈ 𝛱𝑘,
is uniquely determined by the following conditions

⎧⎪
⎨
⎪⎩

𝒔𝑛−1 = 0
𝒔′

𝑛−1 = 0
𝒔𝑛−𝑗−1 cos 𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′

𝑛−𝑗−1 sin 𝜃𝑗 = 0, 𝜃𝑗 ∈ (−𝜋/2, 𝜋/2], 𝑗 = 1, … , 𝑘 − 1
(II.11)

Class II 𝐼𝑘 methods. Implicit of order 𝑘, 𝑛𝜃 = 𝑘. The defining polynomial at step 𝑛, 𝑷𝑛 ∈ 𝛱𝑘, is
uniquely determined by the following conditions

⎧⎪
⎨
⎪⎩

̇𝑷𝑛(𝑡𝑛) = 𝒇(𝑡𝑛, 𝑷𝑛(𝑡𝑛))
𝒔𝑛−1 cos 𝜃0 + ℎ𝑛−1𝒔′

𝑛−1 sin 𝜃0 = 0, 𝜃0 ∈ (−𝜋/2, 𝜋/2]
𝒔𝑛−𝑗−1 cos 𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′

𝑛−𝑗−1 sin 𝜃𝑗 = 0, 𝜃𝑗 ∈ (−𝜋/2, 𝜋/2], 𝑗 = 1, … , 𝑘 − 1
(II.12)

Class III 𝐼+
𝑘 methods. Implicit of order 𝑘 + 1, 𝑛𝜃 = 𝑘 − 1. The defining polynomial at step 𝑛,

𝑷𝑛 ∈ 𝛱𝑘+1, is uniquely determined by the following conditions

⎧⎪
⎪
⎨
⎪
⎪⎩

̇𝑷𝑛(𝑡𝑛) = 𝒇(𝑡𝑛, 𝑷𝑛(𝑡𝑛))
𝒔𝑛−1 = 0
𝒔′

𝑛−1 = 0
𝒔𝑛−𝑗−1 cos 𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′

𝑛−𝑗−1 sin 𝜃𝑗 = 0, 𝜃𝑗 ∈ (−𝜋/2, 𝜋/2], 𝑗 = 1, … , 𝑘 − 1

(II.13)

It can be shown that the coefficients of the defining polynomials are uniquely determined by the
ratio between the step-sizes (how this is done for 𝐼+

𝑘 can be seen in [1], and the process is similar
for the other method classes). Therefore another useful quantity, the step-size ratio, is introduced.
It is defined as

𝑟𝑖 ≡
ℎ𝑖+1
ℎ𝑖

. (II.14)

and will be used throughout this report.

27
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𝑥𝑛−6

𝑥𝑛−5

𝑥𝑛−4 𝑥𝑛−3

𝑥𝑛−2

𝑥𝑛−1
𝑥𝑛

ℎ𝑛−6 ℎ𝑛−5 ℎ𝑛−4 ℎ𝑛−3 ℎ𝑛−2 ℎ𝑛−1

Figure II.1. The indexing of the calculated points 𝑥𝑖 and the step-sizes ℎ𝑗 . The filled points
are already calculated, and the unfilled one, 𝑥𝑛, is the next point in line to be calculated.

𝑥𝑛−6

𝑥𝑛−5

𝑥𝑛−4 𝑥𝑛−3

𝑥𝑛−2

𝑥𝑛−1
𝑥𝑛

𝑃𝑛(𝑡𝑛)

𝑡𝑛−6 𝑡𝑛−5 𝑡𝑛−4 𝑡𝑛−3 𝑡𝑛−2 𝑡𝑛−1 𝑡𝑛

Figure II.2. (Explicit case) 𝑃𝑛 is the defining polynomial used to calculate the new point
𝑥𝑛. It is constructed according to the conditions given in Equation II.11, using 𝑘 previous
solution points, and the corresponding time derivatives. Here 𝑘 = 3. The three points
inside the dashed ellipse, and the corresponding time derivatives, are used to construct 𝑃𝑛.
To get the value of 𝑥𝑛, the polynomial is evaluated in the corresponding time point, i.e.,
𝑥𝑛 ≡ 𝑃𝑛(𝑡𝑛).

𝑥𝑛−6

𝑥𝑛−5

𝑥𝑛−4 𝑥𝑛−3

𝑥𝑛−2

𝑥𝑛−1
𝑥𝑛

𝑡𝑛−6 𝑡𝑛−5 𝑡𝑛−4 𝑡𝑛−3 𝑡𝑛−2 𝑡𝑛−1 𝑡𝑛

Figure II.3. (Implicit case) 𝑃𝑛 is the defining polynomial used to calculate the new point
𝑥𝑛. It is constructed according to the conditions given in Equation II.12 or Equation II.13
depending onmethod class, using 𝑘 previous solution points, the corresponding time deriva-
tives, and the time derivative corresponding to 𝑥𝑛. Here 𝑘 = 3. The three known points
inside the dashed ellipse, their corresponding time derivatives, and the time derivative of
𝑥𝑛 (an implicit collocation condition), is used to construct 𝑃𝑛. To get the value of 𝑥𝑛, the
polynomial is evaluated in the corresponding time point, i.e., 𝑥𝑛 ≡ 𝑃𝑛(𝑡𝑛).
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II.3. Stability region of LMMs

Stability analysis is generally done for the fixed step-size case. As our solvers require very smooth
step-size changes, it is possible to extend the stability analysis to our case. In the rest of the article
we will assume fixed step-size when talking about stability regions.

An LMM has two generating/characteristic polynomials 𝜌 and 𝜎, defined as [10, p. 370]

𝜌(𝜉) = 𝛼𝑘𝜉𝑘 + 𝛼𝑘−1𝜉𝑘−1 + ⋯ + 𝛼0, (II.15)
𝜎(𝜉) = 𝛽𝑘𝜉𝑘 + 𝛽𝑘−1𝜉𝑘−1 + ⋯ + 𝛽0. (II.16)

With these two we can further construct the so-called stability polynomial 𝑄 of an LMM, given
by [6]

𝑄(𝜉, 𝑧) = 𝜌(𝜉) − 𝑧𝜎(𝜉), (II.17)

where 𝜉, 𝑧 ∈ ℂ.

A crucial requirement for a method to be usable, is zero-stability, since only then is it possible
for the numerical solution to converge to the exact solution when the step-size tends to zero. An
LMM is called zero-stable, if the following two conditions are satisfied:

1. The roots of 𝜌 lie on or within the unit circle.

2. The roots of 𝜌 on the unit circle are simple.

Another important concept is absolute stability. Belonging to everymethod is a region of absolute
stability, ℛ. This is a region in the complex plane, basically telling us how to choose our step-size
ℎ, such that the result stays stable, meaning that the error is kept at a reasonable value throughout
the integration. This notion is derived using the test equation 𝑥̇ = 𝜆𝑥, and defined as all 𝑧 = 𝜆ℎ
in the complex plane, where every root 𝜉𝑖 of the stability polynomial 𝑄 — corresponding to the
LMM in question — satisfies |𝜉𝑖| ≤ 1 [6]. Stiff problems require methods with large stability
regions so that the step-size is not restricted by stability requirements.

The stability region of a method, can be depicted by drawing the corresponding root locus curve.
This is the set of all 𝑧 = 𝜆ℎ in the complex plane, where exactly one root 𝜉𝑖 of the stability
polynomial 𝑄 satisfies |𝜉𝑖| = 1, and the other roots satisfy |𝜉𝑗| < 1. This is a closed curve,
constituting the boundary of the stability region, given by

𝑧 = 𝜌(𝑒−𝑖𝜙)
𝜎(𝑒−𝑖𝜙) , 𝜙 = [0, 2𝜋[. (II.18)

The root locus curve divides the complex plane into two or more areas — more than two when
the curve is crossing itself. To deduce which belong to the stability region, one has to check the
roots of the stability polynomial 𝑄 in all areas. As said before, the roots shall satisfy |𝜉𝑖| ≤ 1
inside the stability region. As an example we show the root locus curves and the stability regions
for a few explicit LMMs (see Figure II.4 and Figure II.5).
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Figure II.4. The first five figures show the root locus curves and the stability regions for
AB1–AB5. The root locus curves are the black lines, while the stability regions are the
shaded areas only. The last figure (row 3, col 2) shows the stability regions related to each
other. The higher the order of the AB-method, the smaller the stability region. Notice the
special 𝑦-scaling in the sub-figure showing AB5.
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Figure II.5. The first five figures show the root locus curves and the stability regions for
the family of methods EDF1–EDF5 [2]. The root locus curves are the black lines, while the
stability regions are the shaded areas only. The last figure (row 3, col 2) shows the stability
regions related to each other. The higher the order of the EDF-method, the smaller the
stability region. Notice the special 𝑦-scaling in the sub-figure showing EDF5.
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II.4. Errors and error constants of LMMs

II.4.1. Types of errors

In the context of multistep methods there are three types of errors which are of interest [20]:

• The global error

• The local error

• The local truncation error

The global error at a point is the difference between the solution obtained by the solver and the
true solution at the same point. Due to errors introduced in each point the solution will drift
from the true solution. The global error is the quantity one usually wants to control; however,
due to the error accumulation, it is hard to do so [20].

Instead the local behavior is monitored. The local error at a point is the difference between the so-
lution obtained by the solver, and the solution to the differential equation which passes through
the previously calculated point. By controlling this error the global error may indirectly be con-
trolled, as the global error is an accumulation of local errors. However, since a multistep method
uses more than one previously calculated point, and these points generally do not belong to the
same solution curve, a direct estimation of this quantity will be hard make. Instead, one normally
estimates the local truncation error, which is the local error assuming that all 𝑘 previously calcu-
lated solution points are exact. In this thesis when the term local error is used it always refers to
the local truncation error.

II.4.2. Error constants in the fixed step-size case

When creating a linear multistep method, there is a lot of different properties to consider. One
important accuracy property is the order of the method, 𝑝, which tells us at what rate the error
tends to zero as ℎ tends to zero. However, it is also important to consider the error constant 𝐶 ,
which is a measure of the magnitude of the principal error term (see first term on the RHS in
II.19).

It can be shown that the local error 𝒙(𝑡𝑖) − 𝒙𝑖 at time point 𝑡𝑖 of an LMM can be written as [10, p.
372]

𝒙(𝑡𝑖) − 𝒙𝑖 = 𝛼−1
𝑘 𝐶𝑝+1ℎ𝑝+1𝒙(𝑝+1)(𝑡𝑖−𝑘) + 𝒪(ℎ𝑝+2), (II.19)

assuming that the 𝑘 previous solution points 𝒙𝑖−𝑘, 𝒙𝑖−𝑘+1, … , 𝒙𝑖−1 are exact. In the constant
step-size case 𝐶𝑝+1 is given by

𝐶𝑝+1 = 1
(𝑝 + 1)!

⎛
⎜
⎜
⎝

𝑘

∑
𝑖=0

𝛼𝑖𝑖𝑝+1 − (𝑝 + 1)
𝑘

∑
𝑖=0

𝛽𝑖𝑖𝑝
⎞
⎟
⎟
⎠

, (II.20)

where 𝑘 is the number of steps used by the method.
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The constant 𝐶𝑝+1 is often used whenmeasuring the global error, though not directly, one usually
scales it according to [10, p. 373]

𝐶 =
𝐶𝑝+1
𝜎(1) . (II.21)

In Figure II.6 we see the value of the scaled error constant 𝐶 for a few different method classes.
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Figure II.6. The scaled error constants 𝐶 for methods of order 1 to 5 of the method families
AB (Adams—Bashforth), AM (Adams—Moulton), EDF (Explicit Differentiation Formula) [2]
and BDF (Backward Differentiation Formula).

II.4.3. Error constants in the variable step-size case

The concepts above can also be extended to cover LMMswith variable step-size. Wewill consider
methods written on the following form

𝑘

∑
𝑖=0

𝛼𝑛,𝑘−𝑖𝒙𝑛−𝑖 = ℎ𝑛−1

𝑘

∑
𝑖=0

𝛽𝑛,𝑘−𝑖𝒇(𝑡𝑛−𝑖, 𝒙𝑛−𝑖) (II.22)

where the coefficients, 𝛼𝑛,𝑘−𝑖 and 𝛽𝑛,𝑘−𝑖, now depend on the step-size ratios given by the step-size
sequence {ℎ𝑗}𝑛−1

𝑗=𝑛−𝑘.
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We then define the linear difference operator, belonging to a method as

ℒ(𝒙, 𝑡, 𝒉) ≡
𝑘

∑
𝑖=0 (

𝛼𝑛,𝑘−𝑖𝒙 (
𝑡 −

𝑖

∑
𝑗=1

ℎ𝑛−1
𝑅𝑛−2

𝑛−𝑗 )
− ℎ𝑛−1𝛽𝑛,𝑘−𝑖𝒙̇ (

𝑡 −
𝑖

∑
𝑗=1

ℎ𝑛−1
𝑅𝑛−2

𝑛−𝑗 ))
(II.23)

where 𝒉 is a vector containing the elements {ℎ𝑗}𝑛−1
𝑗=𝑛−𝑘, and 𝑅𝑗

𝑖 is defined as

𝑅𝑗
𝑖 ≡

ℎ𝑗+1
ℎ𝑖

= 𝛱 𝑗
𝑘=𝑖𝑟𝑘. (II.24)

By using Taylor expansion around 𝑡 we get

ℒ(𝒙, 𝑡, 𝒉) =
𝑘

∑
𝑖=0

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝑛,𝑘−𝑖 ∑
𝑞≥0

(−∑𝑖
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )
𝑞

𝑞! ℎ𝑞
𝑛−1𝒙(𝑞)(𝑡) (II.25)

−𝛽𝑛,𝑘−𝑖 ∑
𝑞≥0

(−∑𝑖
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )
𝑞

𝑞! ℎ𝑞+1
𝑛−1𝒙(𝑞+1)(𝑡)

⎞
⎟
⎟
⎟
⎟
⎠

=
𝑘

∑
𝑖=0

𝛼𝑛,𝑘−𝑖𝒙(𝑡)+ (II.26)

+ ∑
𝑞≥1

𝒙(𝑞)

𝑞! ℎ𝑞
𝑛−1

⎛
⎜
⎜
⎝

𝑘

∑
𝑖=0

𝛼𝑛,𝑘−𝑖 (
−

𝑖

∑
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )

𝑞

− 𝑞
𝑘

∑
𝑖=0

𝛽𝑛,𝑘−𝑖 (
−

𝑖

∑
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )

𝑞−1⎞
⎟
⎟
⎠

.

For a method of order 𝑝, this means that all terms where 𝑞 ≤ 𝑝 disappear, and we may rewrite
the expression above as

ℒ(𝒙, 𝑡, 𝒉) = 𝒙(𝑝+1)(𝑡)ℎ𝑝+1
𝑛−1

̃𝐶𝑝+1 + 𝒪(ℎ𝑝+2
𝑛−1) (II.27)

where ̃𝐶𝑝+1 is a constant, only depending on the method and the step-size ratios, given by ²

̃𝐶𝑝+1 =
⎛
⎜
⎜
⎝

𝑘

∑
𝑖=0

𝛼𝑛,𝑘−𝑖
(𝑝 + 1)! (

−
𝑖

∑
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )

𝑝+1

−
𝑘

∑
𝑖=0

𝛽𝑛,𝑘−𝑖
𝑝! (

−
𝑖

∑
𝑗=1

1
𝑅𝑛−2

𝑛−𝑗 )

𝑝⎞
⎟
⎟
⎠

. (II.28)

The following lemma states an important fact about the local error:
Lemma II.4.1. Assume that

𝒙𝑛−𝑖 = 𝒙
(

𝑡 −
𝑖

∑
𝑗=1

ℎ𝑛−1
𝑅𝑛−2

𝑛−𝑗 )
, for 0 < 𝑖 ≤ 𝑘,

i.e., the previous solution points are exact. Then

𝒙(𝑡𝑛) − 𝒙𝑛 = (𝛼𝑛,𝑘I − ℎ𝑛−1𝛽𝑛,𝑘
𝜕𝒇
𝜕𝒙 (𝑡𝑛, 𝜼))

−1
ℒ(𝒙, 𝑡𝑛, 𝒉), (II.29)

where 𝜕𝒇
𝜕𝒙 (𝑡𝑛, 𝜼) is the Jacobian of 𝒇 , row-wise evaluated at possibly different points on the line

segment 𝒙(𝑡𝑛) − 𝒙𝑛.

²Note that this error constant will not be the same, even for the fixed step-size case, as the one used in Equation II.19.
This difference is due to the higher order derivative being evaluated in different points.
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Proof. The proof follows the same outline as used for fixed step-size methods in [10, p. 369]. By
using the assumption that the previous solution points are exact, and inserting Equation II.23
into Equation II.22, we get

ℒ(𝒙, 𝑡𝑛, 𝒉) = 𝛼𝑛,𝑘(𝒙(𝑡𝑛) − 𝒙𝑛) − ℎ𝑛−1𝛽𝑛,𝑘 (𝒇(𝑡𝑛, 𝒙(𝑡𝑛)) − 𝒇(𝑡𝑛, 𝒙𝑛)) (II.30)

Now, by applying the mean value theorem (in the case of 𝒇 being a vector valued function, this
is done element-wise, where each vector element is regarded as a scalar function of multiple
variables) we get

ℒ(𝒙, 𝑡𝑛, 𝒉) = 𝛼𝑛,𝑘(𝒙(𝑡𝑛) − 𝑥𝑛) − ℎ𝑛−1𝛽𝑛,𝑘
𝜕𝒇
𝜕𝒙 (𝑡𝑛, 𝜼)(𝒙(𝑡𝑛) − 𝒙𝑛) (II.31)

⟺

𝒙(𝑡𝑛) − 𝒙𝑛 = (𝛼𝑛,𝑘I − ℎ𝑛−1𝛽𝑛,𝑘
𝜕𝒇
𝜕𝒙 (𝑡𝑛, 𝜼))

−1
ℒ(𝒙, 𝑡𝑛, 𝒉) (II.32)

By combining Equation II.27 and II.29, we can approximate the local error for small ℎ𝑛−1 as

𝒙(𝑡𝑛) − 𝒙𝑛 ≈ 𝛼−1
𝑛,𝑘

̃𝐶𝑝+1ℎ𝑝+1
𝑛−1𝒙(𝑝+1)(𝑡𝑛). (II.33)

II.5. Demands on a solver

When designing an initial value problem (IVP) solver — that is, stand-alone software used to
solve IVPs — a number of things need to be taken into consideration for the end result to turn
out well. The different demands we have on a solver often affect each other and trade-offs have
to be made, so a list of demands and their priority is of great importance. There are different
opinions on this subject, but in this section we present and argue for our view. The following list
contains what we regard as the most important issues, in order of importance:

1. Stability

2. Accuracy

3. Robustness

4. Tolerance proportionality

5. Efficiency

6. User friendliness

II.5.1. Stability

First and foremost in the list is stability. Stability is the most important aspect, because without
it the approximate solution will not converge to the exact solution. If the underlying method is
not zero-stable we can not achieve convergence [10, p. 392], which is the aim of any numerical
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method. Nevertheless, not only the numerical method needs to be stable, but also the implemen-
tation of all parts of the solver need to work stably together. For example, step-sizes must be
chosen such that they remain inside the stability region.

II.5.2. Accuracy

A numerical solution needs to have a certain degree of accuracy for it to be useful. For example,
let us assume that we have a solver that always returns the value 1. This solver is stable and
efficient, however not useful since it says that the solution to every problem is 1 at all times.
Therefore, an inability to achieve good accuracy makes for a poor solver.

Another important aspect on the subject accuracy, is for the user to have the ability to change
the degree of accuracy, since a decrease in demanded accuracy means that less work has to be
done. In some situations the user might need quick results, but not a high degree of accuracy,
and in other cases as high an accuracy as possible might be needed.

II.5.3. Robustness

Here the term robustness or computational stability is used to mean that small changes in the
experimental setup (such as using different compilers or underlying platforms) will not intro-
duce large changes in the result, and as has previously been argued in [27], this improves re-
producibility and is therefore important when evaluating numerical software. A good example
of robustness is the ability to give trustworthy results even when the tolerance is adjusted. For
example, when we choose a stricter tolerance, we want the accuracy of the solution to improve
and the work to increase. If this is not the case, then the solver is said to be non-robust. We argue
that this also has value in production environments, where deployment in different hardware or
software settings may be performed or where underlying infrastructure may be replaced with
time.

II.5.4. Tolerance proportionality

As a user of a particular numerical solver, the only tool you may have to influence the accuracy
of the solution, is the value of the tolerance. What a user expects is that when the supplied
tolerance is made more stringent, the solution will be more accurate. A good solver should be
able to recreate the relation

log(𝐸) = 𝑘 log(TOL) + log(𝐴), (II.34)

where 𝐸 is the global error of the solution, 𝑘 ∈ ℝ+, log(𝐴) ∈ ℝ and TOL is the supplied tolerance.
Optimally 𝑘 = 𝐴 = 1, though if this is not the case it is easy to scale and calibrate the tolerance
internally such that it becomes the case. As long as the global error produced by the solver is
proportional to TOL𝛼

e — where the index ’e’ stands for external, i.e., the supplied tolerance, and
𝛼 ∈ ℝ+ — this is simply a matter of rescaling the tolerance according to

TOL1 = TOL1/𝛼
e , (II.35)
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and use TOL1 internally. This will theoretically result in the relation

log(𝐸) = log(TOL) + log(𝐵), (II.36)

where log(𝐵) ∈ ℝ. By scaling the tolerance by 𝐵 according to

TOLi = TOL1
𝐵 , (II.37)

the new internally used tolerance TOLi should result in the relation

log(𝐸) = log(TOLe) ⟺ 𝐸 = TOLe. (II.38)

II.5.5. Computational efficiency

Needless to say there are multiple reasons for wanting fast computations with a low demand on
resources. However, this aspect has to take a backseat, since the previous ones affect the degree
of confidence in the computational result, whereas this does not. However, this is of course not
unimportant. One can easily imagine multiple situations where a lack of efficiency renders a
solver unsatisfactory for a certain task.

II.5.6. User friendliness

Instead of computational resources, this issue deals with human resources. Whether or not com-
putational efficiency should be prioritized over user friendliness is largely a matter of the specific
use case of the solver. In many situations, a user is not interested in the details of the code, but
only in a trustworthy, easy-to-use tool to solve the real problem at hand. By creating a solver
that lacks user friendliness, one problem at hand for the user might become two.

A factor we stress here, is that user friendliness in many situations may not only involve how
easy to use the solver is, but also how easily the code can be modified. This is an area where
optimizing the code for computational efficiency often results in a code base which is harder to
read andmodify. We argue that a code like the one constructed in this thesis, meant for numerical
research purposes, should be made as modular as possible, such that special parts of the code (for
example, the step-size control) can be replaced easily. Using a modular code like this, it is easy to
make comparisons between for example error control system 1 and error control system 2. Instead
of doing a lot of rewriting, two tests using the same main solver, but two different error control
systems can be made, by only changing the function name of the control system in the main
solver. This will not only make a change in error control system faster, but also make the tests
more reliable since the rest of the code is untouched.

II.6. Error estimation

To be able to control the step-size in an ODE solver, the solver needs an indication of the size of
the error, such that it can decide whether to decrease or increase the step-size. This indication is
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given by an error estimator which produces an error estimate. As has been discussed in Section II.4,
the quantity that is normally monitored is the local error. The rest of this section will describe
how this error estimation process works.

II.6.1. Construction of error estimators

Theestimation of the error follows the same basic principle in all three types of solvers considered
here. The polynomial constructed to calculate the previous step, 𝑷𝑛−1(𝑡), is evaluated at 𝑡𝑛 to
create a prediction value, 𝒙pred

𝑛 = 𝑷𝑛−1(𝑡𝑛). The norm of the difference between this value and
the solution value, 𝒙𝑛 = 𝑷𝑛(𝑡𝑛), is then used as an error estimate

𝑒𝑛 = ‖𝒙𝑛 − 𝒙pred
𝑛 ‖. (II.39)

Although this principle is used for all three solvers, wewill show that the underlyingmechanisms
making this a possible error estimate are different.

II.6.2. Error estimation for explicit solvers

The following part will, for the sake of clarity, only deal with the one-dimensional case, however
the arguments are easily extended to the multidimensional case.

In the case of an explicit method used in combination with the error estimator described in Equa-
tion II.39, the evaluation of the previous polynomial 𝑃𝑛−1 in the new time point 𝑡𝑛, is equivalent
to using the same method as in point 𝑛 − 1 but taking a longer step. This is due to the lack
of implicit conditions, and therefore only previously calculated solution points will affect the
construction of 𝑃𝑛−1(𝑡). The step-size used to calculate the prediction value will be given by

ℎpred = ℎ𝑛−1 + ℎ𝑛 = (
1

𝑟𝑛−1
+ 1) ℎ𝑛. (II.40)

Let 𝑥(𝑡𝑛) denote the exact solution for the problem with initial condition 𝑥(𝑡𝑛−2) = 𝑥𝑛−2. Now,
under the assumption that all previous solution points, including 𝑥𝑛−1, are exact, the local errors
for the new solution point 𝑥𝑛 and the predictor point 𝑥pred can be modeled as

⎧⎪
⎨
⎪⎩

𝑥(𝑡𝑛) − 𝑥𝑛 = ̃𝐾ℎ𝑝+1
𝑛 (II.41a)

𝑥(𝑡𝑛) − 𝑥pred
𝑛 = ̂𝐾 (ℎpred

𝑛 )
𝑝+1

= ̂𝐾 (
1

𝑟𝑛−1
+ 1)

𝑝+1
ℎ𝑝+1

𝑛 (II.41b)

by using the approximation of the local error in Equation II.33, where ̃𝐾 and ̂𝐾 are constants
given by (note that the 𝛼-coefficients will have different indexation, due to originally being used
to calculate the solution at different time-steps)

̃𝐾 = 𝛼−1
𝑛,𝑘

̃𝐶𝑝+1𝑥(𝑝+1)(𝑡𝑛), (II.42)
̂𝐾 = 𝛼−1

𝑛−1,𝑘
̂𝐶𝑝+1𝑥(𝑝+1)(𝑡𝑛), (II.43)
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and ̃𝐶𝑝+1 is the error constant belonging to the method with polynomial 𝑃𝑛 and ̂𝐶𝑝+1 is the
error constant belonging to the method with polynomial 𝑃𝑛−1 (since they are depending on the
step-size ratio, they will not be constant throughout the integration).

Subtracting Equation II.41a from Equation II.41b results in

𝑥𝑛 − 𝑥pred
𝑛 = ̂𝐾 (

1
𝑟𝑛−1

+ 1)
𝑝+1

ℎ𝑝+1
𝑛 − ̃𝐾ℎ𝑝+1

𝑛 = (
̂𝐾
̃𝐾 (

1
𝑟𝑛−1

+ 1)
𝑝+1

− 1)
̃𝐾ℎ𝑝+1

𝑛 (II.44)

⟺
𝑥𝑛 − 𝑥pred

𝑛
̂𝐾
̃𝐾 ( 1

𝑟𝑛−1
+ 1)

𝑝+1
− 1

= ̃𝐾ℎ𝑝+1
𝑛 . (II.45)

By substituting this back into Equation II.41a we get

𝑥(𝑡𝑛) − 𝑥𝑛 = 𝑥𝑛 − 𝑥pred
𝑛

̂𝐾
̃𝐾 ( 1

𝑟𝑛−1
+ 1)

𝑝+1
− 1

. (II.46)

This can be compared to Equation II.39, where the error estimate is set to ‖𝑥𝑛 − 𝑥pred
𝑛 ‖.

Now, under the assumption that 𝑟𝑛−1 ≈ 1, which is reasonable to assume for a well controlled
process, this becomes

𝑥(𝑡𝑛) − 𝑥𝑛 ≈
̃𝐾

̂𝐾 ⋅ 2𝑝+1 − ̃𝐾
(𝑥𝑛 − 𝑥pred

𝑛 ) (II.47)

𝑥𝑛−6

𝑥𝑛−5

𝑥𝑛−4 𝑥𝑛−3

𝑥𝑛−2

𝑥𝑛−1
𝑥𝑛

𝑃𝑛(𝑡𝑛)

𝑃𝑛−1(𝑡𝑛)

𝑥pred
𝑛

𝑒𝑛

ℎ𝑛−1

ℎpred
𝑛−1 = ℎ𝑛−2 + ℎ𝑛−1

𝑡𝑛−6 𝑡𝑛−5 𝑡𝑛−4 𝑡𝑛−3 𝑡𝑛−2 𝑡𝑛−1 𝑡𝑛

Figure II.7. An example showing how the error is estimated for a 3-step explicit method
is calculated. First the point 𝑥𝑛−1 is calculated by using the points encircled by the dashed
line. Then the same points are used to calculate another solution point, 𝑥pred

𝑛 . Then the
correct new solution point, 𝑥𝑛, is calculated by using the points encircled by the solid line.
The distance, 𝑒𝑛, between 𝑥𝑛 and 𝑥pred

𝑛 is calculated by using some appropriate norm, and
this is then used as the error estimate.

An illustration of this error estimation process can be seen in Figure II.7.

39



II.6. ERROR ESTIMATION

II.6.3. Error estimation for implicit solvers

The implicit solvers use a different mechanism for estimating the error. Instead of using the same
method, as in the case of the explicit solvers, the estimation process will be equivalent to using an
explicit method of the same order to calculate the prediction value, which is essentially a Milne
device. Why this is the case will be stated below in the form of two theorems with accompanying
proofs.

Theorem II.6.1. Let 𝐼𝑘 be an implicit 𝑘-step method of order 𝑘, defined by the parameter vector 𝜽.
Then the way of estimating the error described in Equation II.39, is equivalent to using an explicit
method of order 𝑘 to calculate the prediction value. The method’s parameter vector, ̂𝜽, is the vector
corresponding to the first 𝑘 − 1 elements of 𝜽.

Proof. Let 𝑷𝑚(𝑡) be the defining polynomial of 𝐼𝑘, constructed to calculate the solution 𝒙𝑚 at
time 𝑡𝑚. We will now show that this polynomial fulfills all conditions for an 𝐸𝑘-method (Equa-
tion II.11), with the change of index 𝑛 = 𝑚 + 1. A polynomial fulfilling the conditions in Equa-
tion II.11 is guaranteed to be unique, and therefore 𝑷𝑚(𝑡) is the same polynomial one would have
got if it was constructed by using the conditions for the explicit method.

The slack condition is trivial, because 𝒙𝑚 = 𝑷𝑚(𝑡𝑚) we have

𝒔𝑛−1 = 𝒙𝑛−1 − 𝑷𝑚(𝑡𝑛−1) = 𝒙𝑛−1 − 𝒙𝑚 = 𝒙𝑛−1 − 𝒙𝑛−1 = 0. (II.48)

The slack derivative condition is also fulfilled, because from the implicit collocation condition in
Equation II.12 we have ̇𝑷𝑚(𝑡) = 𝒇(𝑡𝑚, 𝒙𝑚), which gives us

𝒔′
𝑛−1 = ̇𝑷𝑚(𝑡𝑛−1) − 𝒇(𝑡𝑛−1, 𝒙𝑛−1) = 𝒇(𝑡𝑛−1, 𝒙𝑛−1) − 𝒇(𝑡𝑛−1, 𝒙𝑛−1) = 0. (II.49)

The slack balance conditions are also fulfilled

𝒔𝑛−𝑗−1 cos 𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′
𝑛−𝑗−1 sin 𝜃𝑗 = 𝒔𝑚−𝑗 cos 𝜃𝑗 + ℎ𝑚−𝑗𝒔′

𝑚−𝑗 sin 𝜃𝑗 = 0, 𝑗 = 1, … , 𝑘 − 1
(II.50)

where the last equality follows from the slack balance conditions in Equation II.12. Lastly, the
polynomial is of degree 𝑘, which gives the explicit method the order 𝑘.

One thing to be noted is that in Equation II.50 the index 𝑗 could have been allowed to take the
value 𝑘 as well, but because this does not increase the degree of the polynomial, no order is
gained from this.

Theorem II.6.2. Let 𝐼+
𝑘 be an implicit 𝑘-step method of order 𝑘+1, defined by the parameter vector

𝜽. Then the way of estimating the error described in Equation II.39 is equivalent to using an explicit
method of order 𝑘 + 1 defined by ̂𝜽 to calculate the prediction value, where the first component in ̂𝜽
can be arbitrarily chosen, and the rest of the components are the same as the ones in 𝜽.

Proof. Let 𝑷𝑚(𝑡) be the polynomial constructed to calculate the solution 𝒙𝑚 at time 𝑡𝑚. We will
now show that this polynomial fulfills all conditions in Equation II.11, with the change of index
𝑛 = 𝑚 + 1. A polynomial fulfilling the conditions in Equation II.11 is guaranteed to be unique,
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II.7. CONSTRUCTION OF TEST PROBLEMS

and therefore 𝑷𝑚(𝑡), is the same polynomial one would have got if it was constructed by using
the conditions for the explicit method.

In the same way as in the proof of Theorem II.6.1 we get that

𝒔𝑛−1 = 0 (II.51)
𝒔′

𝑛−1 = 0 (II.52)
𝒔𝑛−𝑗−1 cos ̂𝜃𝑗 + ℎ𝑛−𝑗−1𝒔′

𝑛−𝑗−1 sin ̂𝜃𝑗 = 0, 𝑗 ∈ [2, 𝑘] (II.53)

from Equation II.13. It remains to show that the slack balance condition for 𝑗 = 1 is fulfilled.

The interpolation conditions in Equation II.13 forces 𝑷𝑚(𝑡) to both pass through, 𝒙𝑛−2 and have
the same derivative ̇𝑷𝑚(𝑡𝑛−2) = 𝒇(𝑡𝑛−2, 𝒙𝑛−2) in this point. This is the point used in the first slack
balance condition in Equation II.11. This in turn means that in this case the chose of parameter
for this slack balance condition does not matter. The first slack balance condition is automatically
fulfilled due to how the sequence of solution points was calculated.

Describing this with formulas

𝒔𝑚−1 = 𝒔𝑛−2 = 0, (II.54)
𝒔′

𝑚−1 = 𝒔′
𝑛−2 = 0, (II.55)

which gives us

𝒔𝑛−2 cos ̂𝜃1 + ℎ𝑛−2𝒔′
𝑛−2 sin ̂𝜃1 = 0 ⋅ cos ̂𝜃1 + ℎ𝑛−2 ⋅ 0 ⋅ sin ̂𝜃1 = 0, (II.56)

and therefore the slack balance condition is fulfilled, regardless of the choice of ̂𝜃1. The order
follows from the degree of 𝑷𝑚(𝑡) which is 𝑘 + 1, and therefore gives the order 𝑘 + 1.

II.7. Construction of test problems

Whenworking with ODEs it might be hard to test your solver on them due to the fact that most of
the usual ODEs used for tests have no analytical solution. If you for example want to investigate
the global error created by your solver, your reference solution will be the solution created by
another (or the same) solver using very tight tolerances. Nevertheless, since this is not the real
solution, you can not always be certain that the results reflect reality. Sometimes it might be the
reference solver doing a bad job. A good idea in these cases, is to use ODEs with known analytical
solutions. For this purpose, it is possible to construct ODEs, such that we know the analytical
solution and at the same time are able to change the stiffness and nonlinearity of the system [26].

The method consists in choosing a function 𝒇(𝑡), and constructing the following IVP:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝒙̇ = 𝝋(𝒙 − 𝒇(𝑡)) + ̇𝒇 (𝑡),
𝝋(𝒚) = 𝜇𝐴𝒚 + 𝛾𝒈(𝒚),
𝒈(0) = 𝟎,
𝒙(0) = 𝒇(0),

(II.57)
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where 𝜇, 𝛾 ∈ ℝ, 𝐴 ∈ ℝ𝑛×𝑛 and is constant, 𝒈 is a function of the form 𝒈 ∶ ℝ𝑛×1 → ℝ𝑛×1 and
𝒚 ∈ ℝ𝑛×1. It can be shown that the solution to this IVP is 𝒙 = 𝒇(𝑡) by testing it:

𝒙̇ = 𝝋(𝒇(𝑡) − 𝒇(𝑡)) + ̇𝒇 (𝑡)
= 𝝋(0) + ̇𝒇 (𝑡)
= ̇𝒇 (𝑡)
= 𝒙̇,

𝒙(0) = 𝒇(0)

The first term in 𝝋 is the linear term. By changing the matrix 𝐴 and the scalar 𝜇, you are able to
change the stiffness of the problem. This due to the fact that the eigenvalues of the system will
change. The second term is the nonlinear one. By changing 𝒈 and 𝛾 you are able to change the
nonlinearity of the system.

When using an implicit solver, we need the Jacobian of the problem in question. The Jacobian to
Equation II.57 is given by

𝐽 = 𝐽𝝋(𝒚) = 𝐴𝜇 + 𝛾𝐽𝒈(𝒚). (II.58)

II.8. Construction of the solvers

One essential part of this thesis, is the implementation part. This section explains themost crucial
parts of our solvers (except the changing order part) in a structured way. For more information
about the structuring of our Matlab package see Section A.1.

Our Matlab software package consists of three fixed order solvers and corresponding three vari-
able order solvers. Those of variable order are built on the same principles as those of fixed order,
with the addition that they use one more phase, the order control phase. More about how the or-
der control works can be read in Section IV.2. This phase was developed entirely by the second
author.

The six solvers are called pmme, pmmeVarOrd, pmmi, pmmiVarOrd, pmmip and pmmipVarOrd,
where those ending in VarOrd are the corresponding variable order codes. The first pair, pmme
and pmmeVarOrd, are explicit non-stiff solvers using a class I method. Their defining polynomial
at step 𝑖 in our implementation is defined as

𝑷𝑖(𝑡) = 𝒄𝑘(𝑡 − 𝑡𝑖−1)𝑘 + ⋯ + 𝒄1(𝑡 − 𝑡𝑖−1) + 𝒄0. (II.59)

The second pair, pmmi and pmmiVarOrd, are implicit stiff solvers using a class II method. Their
defining polynomial at step 𝑖 in our implementation is defined as

𝑷𝑖(𝑡) = 𝒄𝑘(𝑡 − 𝑡𝑖)𝑘 + ⋯ + 𝒄1(𝑡 − 𝑡𝑖) + 𝒄0. (II.60)

The third pair, pmmip and pmmipVarOrd, are implicit non-stiff solvers using a class III method.
The defining polynomial of these in step 𝑖 is in our implementation defined as

𝑷𝑖(𝑡) = 𝒄𝑘+1(𝑡 − 𝑡𝑖−1)𝑘+1 + ⋯ + 𝒄1(𝑡 − 𝑡𝑖−1) + 𝒄0. (II.61)
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Startup phase

If

Integrate one step

Step-size control

Rejection/Acceptance

Order control

End phase

𝑡 < 𝑡f

𝑡 ≥ 𝑡f

Figure II.8. Flow chart depicting a high level view of the solvers
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For all six solvers the whole integration process can be divided into five/six major parts (which
are depicted in Figure II.8):

• Startup phase

• Integration of one step

• Step-size control

• Rejection/Acceptance

• Order control (is omitted for fixed order solvers)

• End phase

The implementation details of each of these parts (and a few other things) are described below
(except for the part dealing with order control which is described in Section IV.2). The startup
phase and the end phase are just special cases of the other phases, and because of this we choose
to describe the other parts first, even though they do not appear first in the control flow of the
solvers.

In this implementation section we will use the term acceptance sequence, meaning the sequence
of steps that are already calculated and accepted. With the term step we mean the solution, the
step-size and the error estimate belonging to one iteration in the solver. In the beginning of the
integration process, the acceptance sequence will be empty. Every time a step is accepted, the
sequence will be updated with information about the newly accepted step. In the end of the
integration process, the acceptance sequence is what will be returned to the user.

II.8.1. Integrating one step

It is important to note that in this phase the calculated solution is not necessarily accepted. Let
us call it a trial integration. If the step is accepted or not will be determined in the next phase. It
is not until we know that a step is accepted that we add it to the acceptance sequence.

Let us assume that we are at step 𝑛, i.e., 𝑛 − 1 steps have already been accepted and added to the
acceptance sequence. The purpose of this phase is to calculate the coefficient vector, ̄𝒄𝑛, contain-
ing all coefficients 𝒄0, 𝒄1 … belonging to the defining polynomial at step 𝑛, 𝑷𝑛 (see Equation II.59,
II.60 and II.61). This is done by solving the equation system consisting of the equations defining
the specific class used (see page 27). In the case of the two solvers belonging to class 𝐸𝑘, this
will lead to a linear system of equations. In this case Matlab’s backslash(\)-operator³, which uses
different types of solvers depending on the matrix in question [14], is used to solve the system.

In the case of the implicit solvers, the equations will lead to a non-linear system of equations.
This system is solved by using a modified version of Newton’s method, where the modification
consists in the Jacobian only being evaluated once — which takes place before the iterations are
started — and then reused in all iterations. The implemented function uses two stopping criteria:

‖ ̄𝒄𝑖
𝑛 − ̄𝒄𝑖−1

𝑛 ‖∞ < TOL
10 or 𝑖 ≥ 12, (II.62)

³The \-operator can also be used by calling the function mldivide().
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where 𝑖 is the iteration index, ̄𝒄𝑖
𝑛 is the coefficient vector calculated in the 𝑖th iteration, and TOL

is the supplied tolerance described in Subsection II.8.2. For this method to work, we need the
Jacobian of the RHS-function and an initial guess.

The evaluation of the Jacobian is done in one of two ways: The user has the possibility of sup-
plying the Jacobian; if this is done, then this function is used (which makes it possible to use
the analytical Jacobian). Otherwise the Jacobian is calculated numerically by using the following
first order central difference scheme on every component:

𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝑓𝑖(𝑡, 𝒙 + ℎ𝑗 ⋅ 𝒆𝑗) − 𝑓𝑖(𝑡, 𝒙 − ℎ𝑗 ⋅ 𝒆𝑗)

2ℎ𝑗
, (II.63)

where 𝑓𝑖 is the 𝑖:th component of 𝒇 , ℎ𝑗 is the chosen step size in the 𝑥𝑗-direction and 𝒆𝑗 is the
natural basis vector in direction 𝑗.

The initial guess supplied to the numerical method is the coefficient vector, ̄𝒄𝑛−1, belonging to
the defining polynomial in the previously accepted step, i.e., the coefficient vector belonging to
𝑷𝑛−1. In the current implementation, the constructed polynomials do not share the same local
coordinate system (see Figure II.9 and II.10), which might slow down the rate of convergence
of Newton’s method. This problem could be solved either by using the same local coordinate
system for all polynomials when constructing them, or by transforming the coefficients of 𝑷𝑛−1
such that they are expressed using the same local coordinate system as 𝑷𝑛. Further investigations
would have to be made about this subject, to see whether or not these approaches are profitable.

𝑡𝑛−2 𝑡𝑛−1 𝑡𝑛
𝑡 (global coordinates)

0 ℎ𝑛−2
𝑡(𝑛−1) (local coordinates for 𝑃𝑛−1)

0 ℎ𝑛−1
𝑡(𝑛) (local coordinates for 𝑃𝑛)

Figure II.9. A depiction of the local coordinate systems used by the constructed polynomi-
als 𝑃𝑛−1 and 𝑃𝑛, and their relation to the global coordinate system, where the polynomials
belong to the class 𝐸𝑘 or 𝐼+

𝑘 .

𝑡𝑛−1 𝑡𝑛
𝑡 (global coordinates)

0 ℎ𝑛−1
𝑡(𝑛−1) (local coordinates for 𝑃𝑛−1)

−ℎ𝑛−1 0
𝑡(𝑛) (local coordinates for 𝑃𝑛)

Figure II.10. A depiction of the local coordinate systems used by the constructed polynomi-
als 𝑃𝑛−1 and 𝑃𝑛, and their relation to the global coordinate system, where the polynomials
belong to the class 𝐼𝑘.

When the coefficient vector is calculated, we evaluate the polynomial 𝑷𝑛 at 𝑡𝑛, giving us the new
solution point 𝒙𝑛, i.e., 𝒙𝑛 = 𝑷𝑛(𝑡𝑛). Once again, the solution point is not yet accepted.
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II.8.2. Step-size control

A commonly used approach when it comes to controlling the error in numerical solvers, is to use
the elementary controller [25]

ℎ𝑛+1 = (
𝜃 ⋅ TOL

𝑒𝑛 )
1/𝑝

ℎ𝑛, 𝜃 < 1, (II.64)

where 𝜃 is a safety factor, ℎ𝑛 is the step-size at step 𝑛, 𝑒𝑛 is the error estimate at step 𝑛, TOL
is the supplied tolerance and 𝑝 is the order of the method used. As long as 𝑒𝑛 is smaller than
the tolerance, the step will be accepted. When the error estimate instead grows larger than the
tolerance, the step will be rejected. This choice of implementation will often result in many
rejections, which is unwanted since it will disturb the control process. This way of controlling
the error will often lead to solvers with poor robustness. Another way of controlling the error
in a numerical solver, is explained below and used in our implementation.

The step-size control phase of the solvers is done using digital filters based on control theory.
These filters use previously calculated errors and step-sizes to decide a new step-size for the next
step — digital filters are described in Section III.1.

After a new solution, 𝒙𝑛, has been calculated (see previous section), the defining polynomial used
to calculate the previous step, 𝑷𝑛−1, is evaluated at the current time point, 𝑡𝑛, to get a prediction,
𝒙pred

𝑛 . This prediction is then used to calculate an estimation of the local error, 𝑒𝑛, by taking the
difference between it and the new point 𝒙𝑛 (this is described in more detail in Section II.6). The
error estimate is given by

𝑒𝑛 = ‖𝒙𝑛 − 𝒙pred
𝑛 ‖ = ‖𝑷𝑛(𝑡𝑛) − 𝑷𝑛−1(𝑡𝑛)‖, (II.65)

where ‖ ∙ ‖ is a user supplied norm — which defaults to ‖ ∙ ‖∞ if no norm is supplied by the user.
This error estimate, together with previous error estimates and previous step-size ratios are fed
to the filter, which returns a new step-size ratio 𝑟𝑛−1 (not yet accepted).

In some cases — for example in the beginning — there are not enough previous error estimates
to feed to the filter. In these cases the so called elementary controller is used instead — since it
only needs the latest error estimate, 𝑒𝑛 — giving us the new step-size ratio as⁴

𝑟𝑛−1 = (
TOL

𝑒𝑛 )
1/𝑝

(II.66)

where 𝑝 is the order of the multistep method being used.

II.8.3. Rejection/Acceptance

Even when a proper step-size filter is used, situations might arise in which the estimated error
corresponding to a step becomes unacceptably large. In these cases we have to reject the step
and start anew.
⁴The index of 𝑟 is as correctly stated 𝑛 − 1 at step 𝑛. See Page 7 for more information about notation.
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This is the phase where we decide if 𝑥𝑛 should be rejected or not. We do not use the actual error
estimate 𝑒𝑛 to make this decision, but instead we use the step-size ratio 𝑟𝑛−1 as an indicator of
the size of the error. Depending on the size of 𝑟𝑛−1, three different paths can be taken, i.e., the
𝑟-interval is divided into three subintervals 𝑟𝐼 , 𝑟𝐼𝐼 and 𝑟𝐼𝐼𝐼 , defined according to

𝑟𝐼 = {𝑟 < 𝑟min}, (II.67)
𝑟𝐼𝐼 = {𝑟min ≤ 𝑟 ≤ 𝑟max}, (II.68)

𝑟𝐼𝐼𝐼 = {𝑟 > 𝑟max}, (II.69)

where 𝑟min ≤ 1 and 𝑟max ≥ 1. In our code the default values of these are 𝑟min = 0.8 and 𝑟max = 1.2,
which means that the controller is allowed to decrease/increase a step-size by at most 20% at
every step. These three cases are discussed below.

Case I: 𝑟𝑛−1 ∈ 𝑟𝐼
In the case when 𝑟𝑛−1 ∈ 𝑟𝐼 , we have an indication of a large error, which results in a rejection of
𝑥𝑛. This is therefore called the rejection interval.

If step 𝑛 is rejected one time, the previous step-size ratio 𝑟𝑛−2 is overridden by 𝑟min (see Fig-
ure II.11), and the step is then recalculated using the new step-size ℎ̃𝑛−1 = 𝑟minℎ𝑛−2. If the filter
now suggests an acceptable step-size ratio ̃𝑟𝑛−1, the step is accepted and the integration continues
as before. If instead the new step-size ratio ̃𝑟𝑛−1 also is smaller than the limit 𝑟min, the previous
step-size ratio ̃𝑟𝑛−2 is once again decreased, but this time by 5%. This is repeated until the new
step is accepted, or the new step-size becomes too small, which happens when

ℎ̃𝑛−1
𝑡f − 𝑡0

< 10−16, (II.70)

in which case the integration is aborted and reported as failed to the user.

The method of regulating the step-size after rejections, by decreasing it 5% at a time, will some-
times result in a value for the step-size ratio which deviates largely from the original value pro-
posed by the controller. Because of this extreme override, the control sequence is regarded as
destroyed, and further regulation using the same step-size sequence is inadvisable. Instead the
regulation process is restarted by using the filter described in Equation II.66 until enough new
error estimates and step-sizes have been calculated, and then the use of the main filter is resumed
(in the fixed order solvers the option to turn off this behavior, and continue to use the main filter
all the time, is available).

Case II: 𝑟𝑛−1 ∈ 𝑟𝐼𝐼
The case 𝑟𝑛−1 ∈ 𝑟𝐼𝐼 is an indication that the error is within acceptable bounds. In this interval
the step is accepted, which means that the step is not on trial anymore. Now 𝒙𝑛, 𝑒𝑛 and ℎ𝑛−1 are
added to the acceptance sequence.

Case III: 𝑟𝑛−1 ∈ 𝑟𝐼𝐼𝐼
The case 𝑟𝑛−1 ∈ 𝑟𝐼𝐼𝐼 is an indication of an error that is too small. There are reasons (e.g., stability)
not to allow too large increases of the step-size. The difference between this interval and the
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𝑥𝑛−3

𝑥𝑛−2 𝑥𝑛−1 𝑥𝑛
𝑥̃𝑛

ℎ𝑛−3 ℎ𝑛−2 ℎ𝑛−1 = 𝑟𝑛−2ℎ𝑛−2

ℎ̃𝑛−1 = 𝑟minℎ𝑛−2

𝑟𝑛−1ℎ𝑛−1

̃𝑟𝑛−1ℎ̃𝑛−1

𝑟𝑛−1 < 𝑟min
̃𝑟𝑛−1 ≥ 𝑟min

Figure II.11. A situation when the step with the solution 𝑥𝑛 is rejected, because the new
step-size ratio 𝑟𝑛−1 proposed by the filter is too small. In this case a new solution 𝑥̃𝑛 must
be calculated. The solver stops and overrides the previous suggested step-size ratio 𝑟𝑛−2 by
𝑟min. It then calculates 𝑥̃𝑛, and asks the filter for a new step-size ratio ̃𝑟𝑛−1. If ̃𝑟𝑛−1 ≥ 𝑟min
the new solution is accepted and the solver continues as normal. If the step still is rejected
the previous step-size ratio is decreased by 5%.

previous one is that instead of adding 𝑟𝑛−1 to calculate the new step-size, we use 𝑟max to do it.
Everything else is exactly as in the previous case.

In contrast to the case when the step was rejected, the interference with the controller is not as
large in this case, and therefore the regulation using the main filter is continued.

The intervals 𝑟𝐼𝐼 and 𝑟𝐼𝐼𝐼 form the acceptance interval.

II.8.4. Start up phase

There are three major problems which need to be solved in the startup phase of the solver:

1. An initial step-size must be determined

2. For a 𝑘-step method, 𝑘 starting values must be provided.

3. There is no previous polynomial which can be used to calculate an error estimate.

How to estimate the initial step-size is outside the scope of this thesis. We use an algorithm (and
code) which among other things estimates the Lipschitz constant to calculate an initial step-size
[1]. One important thing to note about this algorithm is that it is not deterministic, but contains
a part that uses a small random perturbation, which can lead to slightly varying results in some
cases. This randomness will affect the reproducibility of results, but the user is able to set the
initial step-size as an option.

The second problem is one that affects all multistep solvers, and one common approach is to
either start with a 1-step method, then change to a 2-step method and continue increasing the
number of steps like this until the 𝑘-step method can be used. Another common approach is to
use a Runge-Kutta method to integrate until there are 𝑘 steps, and then switch to the multistep
method. The solvers pmme/pmmeVarOrd and pmmip/pmmipVarOrd use the latter solution, which
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is implemented by calling Matlab’s solver ode45 with the following parameters

relTol = TOL (II.71)
absTol = TOL ⋅ 10−3 (II.72)

where TOL is the tolerance used by our solver.

For some stiff problems this does not produce a good enough accuracy for the first steps, and
therefore ode15s is used instead with the same settings in pmmi/pmmiVarOrd.

The last problem is not common to all multistep solvers, but is a consequence of the way the
error is estimated in this case (see Section II.6). In the case of solvers of the type 𝐼𝑘 this problem
has an easy and natural solution. From Theorem II.6.1 on page 40, we know that there exists
an explicit 𝑘-step method which could be used instead of the old polynomial, and therefore we
construct this in accordance with the theorem.

In the cases of solvers of types 𝐸𝑘 and 𝐼+
𝑘 there are unfortunately no such simple solutions. There

is no corresponding theorem for solvers of type 𝐸𝑘 and although Theorem II.6.2 is a correspond-
ing theorem for solvers of type 𝐼+

𝑘 the explicit method which can be constructed in this case
needs 𝑘 + 1 steps. In these two cases we have chosen to not enable the step-size control mecha-
nism until 𝑘 + 1 steps have been generated, at which point there exists a previously constructed
polynomial.

The lack of a previous polynomial also has another consequence for the implicit solvers; these
solvers need polynomial coefficients which can be fed as a starting guess into Newton’s method.
Once again the case is simple for solvers of the type 𝐼𝑘: the coefficients of the polynomial which
was constructed by using an explicit method to estimate the error are used. For solvers of the
type 𝐼+

𝑘 the problem is solved in the following way:

1. A solver of the type 𝐸𝑘 (in this case using the Adams–Bashforth method) is used to con-
struct a polynomial of degree 𝑘. Let the coefficients be denoted {𝒄𝑖}𝑘

𝑖=0, where 𝒄0 is the
coefficient of the 0-degree term.

2. The polynomial is then extended to a polynomial of degree 𝑘 + 1, by adding another term
𝒄𝑘+1, which initially is set to 𝟎.

3. The extended polynomial is then fed as an initial guess to Newton’s method.

The scheme above is chosen because it seems to generate a guess which is good enough to make
the solver produce an acceptable step (not always on the first try though, but after adjusting the
step-size); no detailed investigation of this issue has been done.

II.8.5. End phase

The end phase is reached when 𝑡 ≥ 𝑡f . In the case of 𝑡 > 𝑡f , the last step in the acceptance
sequence is too long, since we want to hit the end point 𝑡f . A new point is calculated at the time
point 𝑡f , replacing the too long step.
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II.8.6. Division by zero protection

In some parts of the code the division operation will be performed with divisors which may be
equal to 0 (for example when the relative error is calculated). To protect against this, a small
number 𝜀, with the same sign as the divisor, is added to it, i.e.,

numerator
divisor + 𝜀 (II.73)

where |𝜀| is set to 10−16.

II.8.7. Anti-windup

A controller works best when it is not tampered with. If you override a controller, it will start
to compensate for the externally imposed instructions. Take our error controller as an example.
We let it run free until the output 𝑟new passes one of the limits 𝑟max and 𝑟min. In these cases,
instead of using the recommendation of the controller, we override it. If no anti-windup scheme
is applied at this point, the output signal 𝑟 might behave badly, since the controller will try to
regain control of the process.

In our case, when 𝑟new < 𝑟min, we have an indication of a large error. The step is rejected, which
means that the step-size is decreased. Our anti-windup scheme is to restart the controller. What
happens is that the information about previous errors and previous step-size ratios is eliminated,
which means that the main controller can not be used. Instead the elementary controller (see
Equation II.66) is used until we have enough information to go back to using the main controller.

In the case of 𝑟new > 𝑟max we currently do not use any anti-windup scheme. The reason is that
the error is too small and not too large, which means that we do not expect stability problems. A
different approach would be to use the same anti-windup scheme as in the case of 𝑟new < 𝑟min.

II.8.8. Solver options

At this state, the solvers are experimental, meaning that they are meant for numerical research
and used by scientists in the same field. For this reason, the user is able to change a lot of parame-
ters and settings. An interesting thing to investigate is, for example, if some solver-method-filter-
problem (SMFP) combinations are better than others. The options available are the following:

Tolerance The user is able to supply the tolerance. The step-size controller will use this as a
set-point for the local error at every step.

Method name The user is able to choose what method to be used by the solver, by supplying
the name of it. Available method names are given in Table II.1.

Method vector Theuser is also able to choose amethod by supplying the correspondingmethod
vector. This makes it possible to run the solvers with infinitely many unique methods, due
to this newway of parameterize LMMs. Another useful aspect is that newly created LMMs
can be tested immediately, given that the 𝜃-vector is known, without any new implemen-
tation. This makes it possible to experiment with various SMFP-combinations.
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Filter name The user is able to choose what filter to be used by the step-size controller, by
supplying the corresponding name. Available filter names are given in Table II.2.

Filter vector The user is able to choose a filter by supplying the corresponding filter vector,
which gives the possibility of running the solvers with infinitely many unique filters.

Step-size ratio interval The user is able to choose the step-size ratio boundaries 𝑟min and 𝑟max.
It can be shown (theoretically) that different methods may become unstable at different
step-size ratio values [10, 1]. This option creates the opportunity to investigate the values
of these instability barriers further.

Error mode The user is able to choose what error mode to be used internally when calculating
the error estimation at every time step. The available choices are absolute error mode and
relative error mode.

Filter mode The user is able to choose between two filter modes: Error Per Unit Step (EPUS)
mode and Error Per Step (EPS) mode. More information on this subject can be found in
Section III.1.

Initial step-size The user is able to set the initial step-size. This allows the user to investigate
how long it takes for different SMFP-combinations to stabilize when initial step-sizes are
set too large and too small.

Error norm The user is able to choose how to calculate the error estimation by supplying a
general norm function. As a default, the infinity norm is used, but measuring the error of
amultidimensional function is not straightforward. Some problems need special treatment.
In some cases there might be advantages in measuring the error of only one component,
while in other cases the different components might need different error weights.

No anti-windup scheme The user is able to turn off the anti-windup scheme. This means that
after a step is rejected, the previously calculated error estimates will not be thrown away,
but instead used, as usual, to calculate the future error estimates. This option makes it
possible to investigate whether this anti-windup scheme is a good choice of algorithm.

Supply analytical solution The user is able to supply the exact solution of the RHS-function,
which will then be used to estimate the error at every step. This option makes it possible to
give the controller the actual local error. By using this option, it is possible to investigate
the behavior of the controller in more detail.

Supply analytical Jacobian In the implicit solvers, the user is able to supply the analytical
Jacobian. If no analytical Jacobian is supplied, the Jacobian needed by the solver will be
calculated numerically (for more information see Subsection II.8.1).
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Table II.1. The methods that are implemented in our method library. The name under
Method is what the user supplies to the solver in order to choose a particular method.

Method 𝐼𝑘 order 𝑘 𝑛𝜃 tan(𝜃𝑗), 𝑗 = 0 ∶ 𝑘 − 1

BDF𝑘 [10] 𝑘 ≤ 6 𝑘 𝑘 {0}0∶𝑘−1

Kregel [5] 3 3 3 154/543 −11/78 0 — —

Rockswold [21] 3 3 3 1/3 2/3 1 — —

Method 𝐼+
𝑘 order 𝑘 𝑛𝜃 tan(𝜃𝑗), 𝑗 = 1 ∶ 𝑘 − 1

AM𝑘 [10] 𝑘 + 1 𝑘 𝑘 − 1 {∞}1∶𝑘−1

dcBDF𝑘 [2] 𝑘 + 1 𝑘 𝑘 − 1 {(𝑗 + 1)/(𝑘 + 1)}1∶𝑘−1

Milne2 [10] 3 2 1 1/3 — — — —

Milne4 [10] 5 4 3 4/15 ∞ ∞ — —

IDC23 [2] 4 3 2 7/6 ∞ — — —

IDC24 [2] 5 4 3 26/15 ∞ ∞ — —

IDC34 [2] 5 4 3 4/5 33/20 ∞ — —

IDC45 [2] 6 5 4 28/45 11/10 32/15 ∞ —

IDC56 [2] 7 6 5 43/84 6/7 29/21 55/21 ∞

Method 𝐸𝑘 order 𝑘 𝑛𝜃 tan(𝜃𝑗), 𝑗 = 1 ∶ 𝑘 − 1

AB𝑘 [10] 𝑘 𝑘 𝑘 − 1 {∞}1∶𝑘−1

EDF𝑘 [2] 𝑘 𝑘 𝑘 − 1 {𝑗 + 1}1∶𝑘−1

Nyström3 [10] 3 3 2 −2/3 ∞ — — —

Nyström4 [10] 4 4 3 −5/3 ∞ ∞ — —

Nyström5 [10] 5 5 4 −133/45 ∞ ∞ ∞ —

EDC22 [2] 3 3 2 14/3 ∞ — — —

EDC23 [2] 4 4 3 49/6 ∞ ∞ — —

EDC33 [2] 4 4 3 7/2 39/4 ∞ — —

EDC24 [2] 5 5 4 1121/90 ∞ ∞ ∞ —

EDC34 [2] 5 5 4 53/10 219/10 ∞ ∞ —

EDC45 [2] 6 6 5 193/45 121/10 692/15 ∞ ∞
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Table II.2. The filters that are implemented in our filter library. The Filter name is what the
user supplies to the solver in order to choose a particular filter. Filter classes and parameters
are defined and explained in Section III.1.

Filter name Filter class 𝜅𝛽1 𝜅𝛽2 𝜅𝛽3 −𝛼2 −𝛼3 Classification

H211D [25] H0211 1/2 1/2 — −1/2 — low-pass, dead-beat

H211𝑏 [25] H211 1/𝑏 1/𝑏 — −1/𝑏 — low-pass

H211PI [25] H211PI 1/6 1/6 — 0 — low-pass, PI

PI3333 [26] H210PI 2/3 −1/3 — 0 — PI

PI3040 [26] H210PI 7/10 −4/10 — 0 — PI

PI4020 [26] H210PI 3/5 −1/5 — 0 — PI

H312D [25] H0312 1/4 1/2 1/4 −3/4 −1/4 low-pass, dead-beat

H312𝑏 [25] H312 1/𝑏 2/𝑏 1/𝑏 −3/𝑏 −1/𝑏 low-pass

H312PID [25] H312PID 1/18 1/9 1/18 0 0 low-pass, PID

H321D [25] H0321 5/4 1/2 −3/4 1/4 3/4 low-pass, dead-beat

H321 [25] H321 1/3 1/18 −5/18 5/6 1/6 low-pass
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III.1. Variable step-size implementation using digital filters

One way to implement variable step-size in a numerical solver is by the use of control and filter
theory [25]. A discrete closed loop control system (see Figure III.1) is built making it possible to
control the step-size and therefore also the error in a good way.

Filter, 𝐶(𝑞) Process, 𝐺(𝑞) = 𝜅

log 𝜑

log ℎlog 𝜖 log 𝑒

−1

Figure III.1. Block diagram of a discrete closed loop control system, making it possible to
control the step-size in a numerical solver.

This control action can be described by the following formula:

log ℎ = 𝐶(𝑞)(log 𝜖 − log 𝑒), (III.1)

where ℎ is the step-size sequence, 𝑞 is the forward-shift operator (𝑞ℎ𝑛 = ℎ𝑛+1), 𝐶(𝑞) is the con-
trol transfer function, 𝜖 is the set-point sequence which is usually set to TOL and 𝑒 is the error
sequence (the sequence of error estimates). Furthermore, we assume that the local error of our
multistep method is described by the asymptotic model [25]

𝑒𝑛 = 𝜑𝑛ℎ𝜅
𝑛 , (III.2)

where the subscript 𝑛 denotes the number of the current step, 𝜑𝑛 denotes the norm of the principal
error function, and 𝜅 is a scalar taking one of two values depending on what error mode we use.
If 𝑝 is the order of convergence of the numerical method, then 𝜅 = 𝑝 + 1 when error per step
— the error for the specific step-size ℎ𝑛, which makes it harder to compare it to other methods,
problems etc., since the steps taken vary in length — (EPS) mode is used and 𝜅 = 𝑝 when error
per unit step — the error for a unit step, which gives us the ability to compare the error to other
methods etc., since the same step length is used — (EPUS) mode is used.

Taking the logarithm of Equation III.2, will give us the following relation:

log 𝑒 = 𝜅 log ℎ + log 𝜑. (III.3)

Combining Equation III.1 and Equation III.3 will make it possible to uncouple log 𝑒 and log ℎ,
resulting in:

log 𝑒 = 𝐸𝜖(𝑞) log 𝜖 + 𝐸𝜑(𝑞) log 𝜑, (III.4)
log ℎ = 𝐻𝜖(𝑞) log 𝜖 + 𝐻𝜑(𝑞) log 𝜑. (III.5)
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where the closed loop transfer functions 𝐸𝜖 , 𝐸𝜑, 𝐻𝜖 and 𝐻𝜑 are given by:

𝐸𝜖(𝑞) = 𝜅𝐶(𝑞)
1 + 𝜅𝐶(𝑞) , (III.6)

𝐸𝜑(𝑞) = 1
1 + 𝜅𝐶(𝑞) , (III.7)

𝐻𝜖(𝑞) = 𝐶(𝑞)
1 + 𝜅𝐶(𝑞) , (III.8)

𝐻𝜑(𝑞) = − 𝐶(𝑞)
1 + 𝜅𝐶(𝑞) . (III.9)

Of these functions, we are mostly interested in 𝐸𝜑(𝑞) and 𝐻𝜑(𝑞), since these are coupled to log 𝜑.
𝐸𝜑(𝑞) is called the error transfer map, and 𝐻𝜑(𝑞) is called the step-size transfer map.

From basic control theory it is well known that the control function, 𝐶(𝑞), has to include the
factor 1/(𝑞 − 1) for the controller to be able to adapt to the set-point [25] — the desired/target
value. This factor is called the integral part or the integrator. Let us nowwrite the control function
as

𝐶(𝑞) = 𝑃 (𝑞)
(𝑞 − 1)𝑄(𝑞) , (III.10)

where 𝑃 and 𝑄 are polynomials of order 𝑝D − 1, and 𝑝D is the order of the closed loop dynamics.
𝑃 and 𝑄 can generally be written as

𝑃 (𝑞) =
𝑝D

∑
𝑗=1

𝛽𝑗𝑞𝑝D−𝑗 , 𝑄(𝑞) = 𝑞𝑝D−1 +
𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗 . (III.11)

Sometimes we will use the short version “𝑟:th order filter” to mean “a filter where 𝑝𝐷 = 𝑟”.
Substituting Equation III.11 and Equation III.10 into Equation III.1 gives us

log ℎ = 1
(𝑞 − 1)

∑𝑝D
𝑗=1 𝛽𝑗𝑞𝑝D−𝑗

𝑞𝑝D−1 + ∑𝑝D
𝑗=2 𝛼𝑗𝑞𝑝D−𝑗

(log 𝜖 − log 𝑒) (III.12)

⟺

(
𝑞𝑝D−1 +

𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗
)

(𝑞 − 1) log ℎ =
𝑝D

∑
𝑗=1

𝛽𝑗𝑞𝑝D−𝑗 log (
𝜖
𝑒) (III.13)
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By letting the latest index in the sequences be 𝑛, we will get

(
𝑞𝑝D−1 +

𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗
)

(𝑞 − 1) log ℎ𝑛−𝑝D+1 =
𝑝D

∑
𝑗=1

𝛽𝑗𝑞𝑝D−𝑗 log
(

𝜖𝑛−𝑝D+1
𝑒𝑛−𝑝D+1 )

(III.14)

⟺

(
𝑞𝑝D−1 +

𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗
)

(𝑞 log ℎ𝑛−𝑝D+1 − log ℎ𝑛−𝑝D+1) =
𝑝D

∑
𝑗=1

𝑞𝑝D−𝑗 log
(

𝜖𝑛−𝑝D+1
𝑒𝑛−𝑝D+1 )

𝛽𝑗

(III.15)

⟺

(
𝑞𝑝D−1 +

𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗
)

(log ℎ𝑛−𝑝D+2 − log ℎ𝑛−𝑝D+1) =
𝑝D

∑
𝑗=1

log (
𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.16)

⟺

(
𝑞𝑝D−1 +

𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗
)

log
(

ℎ𝑛−𝑝D+2
ℎ𝑛−𝑝D+1 )

=
𝑝D

∑
𝑗=1

log (
𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.17)

⟺

𝑞𝑝D−1 log
(

ℎ𝑛−𝑝D+2
ℎ𝑛−𝑝D+1 )

+
𝑝D

∑
𝑗=2

𝛼𝑗𝑞𝑝D−𝑗 log
(

ℎ𝑛−𝑝D+2
ℎ𝑛−𝑝D+1 )

=
𝑝D

∑
𝑗=1

log (
𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.18)

⟺

log (
ℎ𝑛+1
ℎ𝑛 ) +

𝑝D

∑
𝑗=2

𝑞𝑝D−𝑗 log
(

ℎ𝑛−𝑝D+2
ℎ𝑛−𝑝D+1 )

𝛼𝑗

=
𝑝D

∑
𝑗=1

log (
𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.19)

⟺

log (
ℎ𝑛+1
ℎ𝑛 ) +

𝑝D

∑
𝑗=2

log (
ℎ𝑛+2−𝑗
ℎ𝑛+1−𝑗 )

𝛼𝑗
=

𝑝D

∑
𝑗=1

log (
𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.20)

⟺

(
ℎ𝑛+1
ℎ𝑛 ) ⋅

𝑝D

∏
𝑗=2 (

ℎ𝑛+2−𝑗
ℎ𝑛+1−𝑗 )

𝛼𝑗
=

𝑝D

∏
𝑗=1 (

𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
(III.21)

⟺

(
ℎ𝑛+1
ℎ𝑛 ) =

𝑝D

∏
𝑗=1 (

𝜖𝑛+1−𝑗
𝑒𝑛+1−𝑗 )

𝛽𝑗
⋅

𝑝D

∏
𝑗=2 (

ℎ𝑛+2−𝑗
ℎ𝑛+1−𝑗 )

−𝛼𝑗
(III.22)

In our case the set-point 𝜖 will be constant, it will be kept at the tolerance, giving us:

ℎ𝑛+1 =
𝑝D

∏
𝑗=1 (

𝜖
𝑒𝑛+1−𝑗 )

𝛽𝑗
⋅

𝑝D

∏
𝑗=2 (

ℎ𝑛+2−𝑗
ℎ𝑛+1−𝑗 )

−𝛼𝑗
ℎ𝑛. (III.23)

If we substitute Equation III.10 into Equation III.7 and Equation III.9 we get

𝐸𝜑(𝑞) = (𝑞 − 1)𝑄(𝑞)
(𝑞 − 1)𝑄(𝑞) + 𝜅𝑃 (𝑞) , 𝐻𝜑(𝑞) = − 𝑃 (𝑞)

(𝑞 − 1)𝑄(𝑞) + 𝜅𝑃 (𝑞) , (III.24)
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where the denominator of 𝐸𝜑(𝑞) and 𝐻𝜑(𝑞) is called the characteristic polynomial 𝐾(𝑞), and
𝐾(𝑞) = 0 is called the characteristic equation. In order for the filter to be stable, the roots 𝑞𝑖 of
this equation have to be strictly inside the unit circle in the complex plane, i.e., |𝑞𝑖| < 1 where 𝑞𝑖
is the 𝑖:th root of 𝐾(𝑞) = 0 [25].

Another important thing when it comes to controllers is to choose what frequencies to filter. Let
us assume that the objective is to remove the frequency 𝜔. The solution to this problem is to let
the transfer function in question, 𝑇 , have a root at 𝑒𝑖𝜔. In our case we can choose how to filter
the step-size sequence and the error sequence. What we would like is to make 𝐻𝜑(𝑞) a low pass
filter, since this will result in a smooth step-size curve. This is done by forcing 𝐻𝜑(𝑒𝑖𝜔) to be zero
at 𝜔 = 𝜋.

III.1.1. The categorization and notation of digital filters

A digital filter can be categorized according to the following basic notation system

H[ ]𝑝D𝑝A𝑝F[ ],

where 𝑝D is called the order of dynamics, 𝑝A is called the order of adaptivity at 𝑞 = 1, 𝑝F is called
the filter order at 𝑞 = −1 and [ ] is a placeholder that might be empty. Given the first three
parameters we know the following about the closed control function 𝐶 , and the polynomials 𝑃
and 𝑄:

• The order of dynamics 𝑝D – This value tells us that the order of the polynomials 𝑃 and 𝑄
is 𝑝D − 1.

• The order of adaptivity 𝑝A –This value tells us that (𝑞 −1)𝑝A−1 is a factor of the polynomial
𝑄, i.e., that 𝐶(𝑞) has 𝑝A poles at 𝑞 = 1.

• The filter order 𝑝F – This value tells us that (𝑞 + 1)𝑝F is a factor of the polynomial 𝑃 , i.e.,
that 𝐶(𝑞) has 𝑝F roots at 𝑞 = −1 (when 𝑝F > 0 we have a step-size sequence low pass
filter).

Some special kinds of filters worth mentioning are:

Dead-beat controllers
These controllers have all its poles at 𝑞 = 0. They are denoted by

H0𝑝D𝑝A𝑝F,

where the zero subscript indicates that the controller is a dead-beat controller.

PID controllers
A PID controller is a Proportional–Integral–Derivative controller, which means that the
feedback control signal — the signal steering the process — is determined by aweighted sum
of three terms: one term proportional to the error, one term proportional to the integrated
error, and the last term proportional to the differentiated error. The controller has the
general transfer function

𝐶(𝑞) = 𝑞−1
(𝑘I

𝑞
𝑞 − 1 + 𝑘P + 𝑘D

𝑞 − 1
𝑞 ) , (III.25)
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where 𝑘I, 𝑘P, and 𝑘D are the integral gain, the proportional gain, and the derivative gain.
By restructuring the function to have the form in Equation III.10, we can identify the
parameters 𝛼𝑖 and 𝛽𝑖, and use the recursive formula for the step-size sequence given in
Equation III.23. This will result in

ℎ𝑛+1 = (
𝜖
𝑒𝑛 )

𝑘I+𝑘P+𝑘D

(
𝜖

𝑒𝑛−1 )
−(𝑘P+2𝑘D)

(
𝜖

𝑒𝑛−2 )
𝑘D

ℎ𝑛, (III.26)

i.e., 𝑝D = 3, 𝛼2 = 𝛼3 = 0, 𝛽1 = 𝑘I + 𝑘P + 𝑘D, 𝛽2 = −(𝑘P + 2𝑘D), and 𝛽3 = 𝑘D. This type of
controller is denoted by

H3𝑝A𝑝FPID.

PI controllers
A PID controller with 𝑘D = 0 becomes a PI controller with the following functions

𝐶(𝑞) = 𝑞−1
(𝑘I

𝑞
𝑞 − 1 + 𝑘P) , (III.27)

ℎ𝑛+1 = (
𝜖
𝑒𝑛 )

𝑘I+𝑘P

(
𝜖

𝑒𝑛−1 )
−𝑘P

ℎ𝑛, (III.28)

and the following parameters

𝑝D = 2, (III.29)
𝛼2 = 0, (III.30)
𝛽1 = 𝑘I + 𝑘P, (III.31)
𝛽2 = −𝑘P. (III.32)

This type of controller is denoted by

H2𝑝A𝑝FPI.

III.1.2. Filters of 1st order dynamics

A filter of 1st order dynamics denoted by H1𝑝A𝑝F will have the following polynomials 𝑃 and 𝑄:

𝑃 (𝑞) = 𝛽1, 𝑄(𝑞) = 1, (III.33)

which will result in the following transfer functions:

𝐶(𝑞) = 𝛽1
(𝑞 − 1) , 𝐻𝜑(𝑞) = −𝛽1

(𝑞 − 1) + 𝜅𝛽1
, 𝐸𝜑(𝑞) = (𝑞 − 1)

(𝑞 − 1) + 𝜅𝛽1
. (III.34)

This will further result in the following step-size sequence:

ℎ𝑛+1 = (𝜖/𝑒𝑛)𝛽1ℎ𝑛. (III.35)

The only possibility for 𝑝A and 𝑝F is 𝑝A = 1 and 𝑝F = 0, i.e., there is only one type of filter of 1st
order dynamics, namely H110. The root of its characteristic equation is

𝑞 = 1 − 𝜅𝛽1. (III.36)
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For this type of filter to be stable the following has to be fulfilled

−1 < 1 − 𝜅𝛽1 < 1 (III.37)
⟺

𝜅𝛽1 ∈ ]0, 2[. (III.38)

The smaller we choose 𝜅𝛽1, the smoother the step-size sequence becomes and the slower the
homogeneous solution decays. Notice that this is not a low pass filter, hence this will not be
used in the simulations later on. When 𝛽1 = 1/𝜅 we call the controller the elementary controller.

III.1.3. Filters of 2nd order dynamics

A filter of 2nd order dynamics, denoted by H2𝑝A𝑝D, will have the following polynomials 𝑃 and
𝑄:

𝑃 (𝑞) = 𝛽1𝑞 + 𝛽2, 𝑄(𝑞) = 𝑞 + 𝛼2, (III.39)

which will result in the following transfer functions:

𝐶(𝑞) = 𝛽1𝑞 + 𝛽2
(𝑞 − 1)(𝑞 + 𝛼2) , (III.40)

𝐻𝜑(𝑞) = −(𝛽1𝑞 + 𝛽2)
𝑞2 + (𝛼2 + 𝜅𝛽1 − 1)𝑞 + (𝜅𝛽2 − 𝛼2) , (III.41)

𝐸𝜑(𝑞) = (𝑞 − 1)(𝑞 + 𝛼2)
𝑞2 + (𝛼2 + 𝜅𝛽1 − 1)𝑞 + (𝜅𝛽2 − 𝛼2) . (III.42)

This will lead to the following step-size sequence:

ℎ𝑛+1 = (𝜖/𝑒𝑛)𝛽1(𝜖/𝑒𝑛−1)𝛽2(ℎ𝑛/ℎ𝑛−1)−𝛼2ℎ𝑛. (III.43)

The only possibilities for 𝑝A and 𝑝F are 𝑝A = 1, 2 and 𝑝F = 0, 1, i.e., there are only four types of
filters of 2nd order dynamics namely H210, H211, H220 and H221. Since H210 and H220 are not
low pass filters, we will only analyze H211 and H221.

The roots of all 2nd order filters are

𝑥 = 1
2 (−𝛼2 − 𝛽1𝜅 + 1 ± √(𝛼2 + 𝛽1𝜅 − 1)2 − 4(𝛽2𝜅 − 𝛼2)) . (III.44)

Stability analysis of H221
H221 has the parameters 𝛼2 = −1 and 𝛽1 = 𝛽2. From Equation III.44 we get the roots

𝑥± = 1
2 (1 − 𝛽1𝜅 + 1 ± √(−1 + 𝛽1𝜅 − 1)2 − 4(𝛽1𝜅 + 1))

= 1
2 (2 − 𝛽1𝜅 ± √(𝛽1𝜅)2 − 8𝛽1𝜅) . (III.45)

The root 𝑥+ only takes values ≥ 1, which means that no stable H221 filter exists.
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Stability analysis of H211
H211 has the parameters 𝛼2 ≠ −1 and 𝛽1 = 𝛽2. From (III.44) we get the roots

𝑥± = 1
2 (−𝛼2 − 𝛽1𝜅 + 1 ± √(𝛼2 + 𝛽1𝜅 − 1)2 − 4(𝛽1𝜅 − 𝛼2)) . (III.46)

Let us use the following notations

𝐴+ = {(𝛼2, 𝛽1𝜅) ∶ |𝑥+| < 1}, (III.47)
𝐴− = {(𝛼2, 𝛽1𝜅) ∶ |𝑥−| < 1}, (III.48)

i.e., 𝐴+ (𝐴−) is the stability region in which 𝑥+ (𝑥−) is stable. The intersection of these two, i.e.,

𝐴 = 𝐴+ ∩ 𝐴− (III.49)

is the stability region for all existing H211 filters. This region is given by

𝐴 = {(𝛼2, 𝛽1𝜅) ∶ 𝛽1𝜅 > 0, 𝛼2 < 1, 𝛽1𝜅 < 𝛼2 − 1}, (III.50)

see Figure III.2.

One special subfamily of H211 is H211𝑏. These filters have good frequency responses and well
situated poles. Corresponding 𝛼’s and 𝛽’s are

𝛽1 = 𝛽2 = 1
𝑏𝜅 , 𝛼2 = 1

𝑏 , (III.51)

resulting in the following roots of the characteristic equation

𝑞 = 0, 1 − 2/𝑏. (III.52)

These filters are stable for 𝑏 > 1. If the second pole is negative, we get an oscillatory closed loop
impulse response. This is highly unwanted, so for our simulations later on we choose 𝑏 ≥ 2. The
stability domain of this family is marked with a continuous line in Figure III.2.

Stability analysis of PI filters
H2𝑝A𝑝FPI has the parameters 𝛼2 = 0, 𝛽1 = 𝑘I + 𝑘P and 𝛽2 = −𝑘P. From Equation III.44 we get
the roots

𝑥± = 1
2 (−𝛽1𝜅 + 1 ± √(𝛽1𝜅 − 1)2 − 4𝛽2𝜅)

= 1
2 (−𝑘I − 𝑘P𝜅 + 1 ± √(𝑘I𝜅 + 𝑘P𝜅 − 1)2 + 4𝑘P𝜅) . (III.53)

The corresponding stability region is given by

𝐴 = {(𝑘I𝜅, 𝑘P𝜅) ∶ |𝑥±| ≤ 1}

= {(𝑘I𝜅, 𝑘P𝜅) ∶ 𝑘P𝜅 < −𝑘I𝜅
2 + 1, 𝑘P𝜅 > −1, 𝑘I𝜅 > 0}, (III.54)

and can be seen seen in Figure III.3.
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Figure III.2. The stability region of the family H211 (The dashed borderline is not included).
The continuous line represents the domain of all stable H211𝑏 filters.
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Figure III.3. The stability region of PI controllers (The dashed line is not included). The
continuous line is the domain of all stable H211PI filters.
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III.1.4. Filters of 3rd order dynamics

A filter of 3rd order dynamics denoted H3𝑝A𝑝D will have the following polynomials 𝑃 and 𝑄:

𝑃 (𝑞) = 𝛽1𝑞2 + 𝛽2𝑞 + 𝛽3, 𝑄(𝑞) = 𝑞2 + 𝛼2𝑞 + 𝛼3, (III.55)

which will result in the following transfer functions:

𝐶(𝑞) = 𝛽1𝑞2 + 𝛽2𝑞 + 𝛽3
(𝑞 − 1)(𝑞2 + 𝛼2𝑞 + 𝛼3) , (III.56)

𝐻𝜑(𝑞) = −(𝛽1𝑞2 + 𝛽2𝑞 + 𝛽3)
𝑞3 + (𝛼2 + 𝜅𝛽1 − 1)𝑞2 + (𝛼3 − 𝛼2 + 𝜅𝛽2)𝑞 + (𝜅𝛽3 − 𝛼3) , (III.57)

𝐸𝜑(𝑞) = (𝑞 − 1)(𝑞2 + 𝛼2𝑞 + 𝛼3)
𝑞3 + (𝛼2 + 𝜅𝛽1 − 1)𝑞2 + (𝛼3 − 𝛼2 + 𝜅𝛽2)𝑞 + (𝜅𝛽3 − 𝛼3) , (III.58)

which further will result in the following step-size sequence:

ℎ𝑛+1 = (𝜖/𝑒𝑛)𝛽1(𝜖/𝑒𝑛−1)𝛽2(𝜖/𝑒𝑛−2)𝛽3(ℎ𝑛/ℎ𝑛−1)−𝛼2(ℎ𝑛−1/ℎ𝑛−2)−𝛼3ℎ𝑛. (III.59)

The only possibilities for 𝑝A and 𝑝F are 𝑝A = 1, 2, 3 and 𝑝F = 0, 1, 2, i.e., there are nine types of
3rd order filters. Though, we only focus on the ones that are low pass filters, i.e., H311, H312,
H321, H322, H331 and H332. It is easily shown that no stable H322, H331 and H332 filters exist,
therefore we focus on stability analysis of H311, H312 and H321.

The characteristic polynomial of a 3rd order filter is always real — the coefficients are real — and
of degree 3, which means that it can be factored in the following way:

(𝑞 + 𝑐)(𝑞2 + 𝑎𝑞 + 𝑏) = 𝑞3 + (𝑎 + 𝑐)𝑞2 + (𝑏 + 𝑎𝑐)𝑞 + 𝑐𝑏, (III.60)

where 𝑎, 𝑏, and 𝑐 are real constants. To have a stable filter, all roots have to be strictly inside the
unit circle, which in the terms of 𝑎, 𝑏, and 𝑐 means that

|𝑞1| = | − 𝑎/2 + √𝑎2/4 − 𝑏| < 1, (III.61)

|𝑞2| = | − 𝑎/2 − √𝑎2/4 − 𝑏| < 1, (III.62)
|𝑞3| = |𝑐| < 1. (III.63)

Equation III.61 and Equation III.62 gives us the stability region 𝑇 for root 1 and 2 (see Figure III.4)

We now wish to express 𝑐 as a function of 𝑎, 𝑏, and either 𝛼𝑖 or 𝛽𝑖.

Stability analysis of H321
The parameters of the filters H321 are

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛼2 = 𝑦 − 1
𝛼3 = −𝑦
𝜅𝛽1 = 𝑥1
𝜅𝛽2 = 𝑥1 + 𝑥2
𝜅𝛽3 = 𝑥2

(III.64)
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Figure III.4. The stability region of root 1 and 2 for a 3rd order filter (the dashed line is not
included).

This gives us the characteristic equation

𝑞3 + (𝑦 − 2 + 𝑥1)𝑞2 + (𝑥1 + 𝑥2 − 2𝑦 + 1)𝑞 + (𝑦 − 𝑥2). (III.65)

By comparison with Equation III.60, we get the following system of equations:

⎧⎪
⎨
⎪⎩

𝑦 − 2 + 𝑥1 = 𝑎 + 𝑐
𝑥1 + 𝑥2 − 2𝑦 + 1 = 𝑏 + 𝑎𝑐
𝑦 + 𝑥2 = 𝑐𝑏

⟺
⎧
⎪
⎨
⎪
⎩

𝑐 = −3 + 𝑏 − 𝑎 − 4𝑥2
1 − 𝑎 − 3𝑏

𝑦 = 𝑐𝑏 − 𝑥2
𝑥1 = 𝑏 + (𝑎 + 2𝑏)𝑐 − 1 − 3𝑥2

(III.66)

The stability region for the filters H321, 𝐴(𝑥2), is the intersection of 𝑇 and 𝐵, where 𝐵 is the
stability region for the third root 𝑐, i.e.,

𝐴(𝑥2) = 𝑇 ∩ 𝐵 where 𝐵 = {(𝑎, 𝑏) ∶ | − 3 + 𝑏 − 𝑎 − 4𝑥2|
|1 − 𝑎 − 3𝑏| < 1}. (III.67)

Calculation of the linear constraints in 𝐵 will result in four cases

Case I
(−3 + 𝑏 − 𝑎 − 4𝑥2) < (1 − 𝑎 − 3𝑏)

where
−3 + 𝑏 − 𝑎 − 4𝑥2 > 0, 1 − 𝑎 − 3𝑏 > 0

Case II
(−3 + 𝑏 − 𝑎 − 4𝑥2) < −(1 − 𝑎 − 3𝑏)

where
−3 + 𝑏 − 𝑎 − 4𝑥2 > 0, 1 − 𝑎 − 3𝑏 < 0
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Case III
−(−3 + 𝑏 − 𝑎 − 4𝑥2) < (1 − 𝑎 − 3𝑏)

where
−3 + 𝑏 − 𝑎 − 4𝑥2 < 0, 1 − 𝑎 − 3𝑏 > 0

Case IV
−(−3 + 𝑏 − 𝑎 − 4𝑥2) < −(1 − 𝑎 − 3𝑏)

where
−3 + 𝑏 − 𝑎 − 4𝑥2 < 0, 1 − 𝑎 − 3𝑏 < 0

After some calculations we get that 𝐵 = 𝐵1 ∪ 𝐵2, where

𝐵1 = {(𝑎, 𝑏) ∶ 𝑏 > 𝑥2 + 1, 𝑏 > −𝑎 − 1 − 2𝑥2}, (III.68)
𝐵2 = {(𝑎, 𝑏) ∶ 𝑏 < 𝑥2 + 1, 𝑏 < −𝑎 − 1 − 2𝑥2}, (III.69)

and

cl(𝐵1) ∩ cl(𝐵2) = {𝑃M} = {(−3𝑥2 − 2, 𝑥2 + 1)}, (III.70)

𝑃M ∶ (−3𝑥2 − 2, 𝑥2 + 1)

𝑏 = −𝑎 − 1 − 2𝑥2

𝑏 = 𝑥2 + 1

𝐵1

𝐵2

a

b

Figure III.5. The stability region for root 3. The dashed lines do not belong to the set.

where cl is the closure operator. It is easy to see that if none of the points 𝑃1, 𝑃2 and 𝑃3 belongs
to 𝐵, then the stability region 𝐴(𝑥2) = 𝑇 ∩ 𝐵 will be empty. We check if and when the points
𝑃1, 𝑃2 and 𝑃3 are inside 𝐵1 and 𝐵2.

𝑃1 = (−2, 1) ∈ 𝐵1 if the following is true

{
1 > 𝑥2 + 1
1 > 2 − 1 − 2𝑥2

⟹ No solution (III.71)

𝑃1 = (−2, 1) ∈ 𝐵2 if the following is true

{
1 ≤ 𝑥2 + 1
1 ≤ 2 − 1 − 2𝑥2

⟹ No solution (III.72)

67



III.1. VARIABLE STEP-SIZE IMPLEMENTATION USING DIGITAL FILTERS

𝑃2 = (2, 1) ∈ 𝐵1 if the following is true

{
1 > 𝑥2 + 1
1 > −2 − 1 − 2𝑥2

⟺ −2 < 𝑥2 < 0 (III.73)

𝑃2 = (2, 1) ∈ 𝐵2 if the following is true

{
1 < 𝑥2 + 1
1 < −2 − 1 − 2𝑥2

⟹ No solution (III.74)

𝑃3 = (0, −1) ∈ 𝐵1 if the following is true

{
−1 > 𝑥2 + 1
−1 > −1 − 2𝑥2

⟹ No solution (III.75)

𝑃3 = (0, −1) ∈ 𝐵2 if the following is true

{
−1 < 𝑥2 + 1
−1 < −1 − 2𝑥2

⟺ −2 < 𝑥2 < 0 (III.76)

I.e., for the stability region 𝐴(𝑥2) to be nonempty, −2 < 𝑥2 < 0. In this case 𝑃2 ∈ 𝐵1 and 𝑃3 ∈ 𝐵2.
Further we check if and when 𝑃M = (−3𝑥2 − 2, 𝑥2 + 1) ∈ 𝑇 .

⎧⎪
⎨
⎪⎩

𝑥2 + 1 < 1
𝑥2 + 1 > −3𝑥2 − 2 − 1
𝑥2 + 1 > 3𝑥2 + 2 − 1

⟺
{

𝑥2 < 0
𝑥2 > −1

(III.77)

This gives us two cases:

Case I When −1 < 𝑥2 < 0 the stability region (see Figure III.6) is given by 𝐴 = 𝐴𝐼 = 𝐴𝐼
1 ∪ 𝐴𝐼

2 ,
where

𝐴𝐼
1 = {(𝑎, 𝑏) ∶ 𝑏 < 1, 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1 − 2𝑥2, 𝑏 > 𝑥2 + 1}, (III.78)

𝐴𝐼
2 = {(𝑎, 𝑏) ∶ 𝑏 < 𝑥2 + 1, 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1, 𝑏 < −𝑎 − 1 − 2𝑥2}. (III.79)

Case II When −2 < 𝑥2 ≤ −1 the stability region (see Figure III.7) is given by 𝐴 = 𝐴𝐼𝐼 =
𝐴𝐼𝐼

1 ∪ 𝐴𝐼𝐼
2 , where

𝐴𝐼𝐼
1 = {(𝑎, 𝑏) ∶ 𝑏 < 1, 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1 − 2𝑥2}, (III.80)

𝐴𝐼𝐼
2 = {(𝑎, 𝑏) ∶ 𝑏 < 𝑥2 + 1, 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1}. (III.81)
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𝐴𝐼
1

𝐴𝐼
2

a

b

Figure III.6. The stability region of a H321 filter when −1 < 𝑥2 < 0. The dashed lines do
not belong to the set.

𝐴𝐼𝐼
1

𝐴𝐼𝐼
2

a

b

Figure III.7. The stability region of a H321 filter when −2 < 𝑥2 ≤ −1. The dashed lines do
not belong to the set.
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Substituting everything back, will result in that all stable H321 will have coefficients of the fol-
lowing form

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝛼2 = (
−3 + 𝑏 − 𝑎 − 4𝑥2

1 − 𝑎 − 3𝑏 ) 𝑏 − 𝑥2 − 1

𝛼3 = − (
−3 + 𝑏 − 𝑎 − 4𝑥2

1 − 𝑎 − 3𝑏 ) 𝑏 + 𝑥2

𝜅𝛽1 = 𝑏 + (𝑎 + 2𝑏) (
−3 + 𝑏 − 𝑎 − 4𝑥2

1 − 𝑎 − 3𝑏 ) − 1 − 3𝑥2

𝜅𝛽2 = 𝑏 + (𝑎 + 2𝑏) (
−3 + 𝑏 − 𝑎 − 4𝑥2

1 − 𝑎 − 3𝑏 ) − 1 − 2𝑥2

𝜅𝛽3 = 𝑥2

where
{

(𝑎, 𝑏) ∈ 𝐴(𝑥2) = 𝐴1 ∪ 𝐴2
−2 < 𝑥2 < 0

(III.82)

Stability analysis of H312
The parameters for H312 are given by

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛼2 = 𝑦1
𝛼3 = 𝑦2
𝜅𝛽1 = 𝑥
𝜅𝛽2 = 2𝑥
𝜅𝛽3 = 𝑥

where 𝛼2 ≠ −𝛼3 − 1. (III.83)

By doing the corresponding analysis as in the previous part we get that for a filter of this class
to be stable −5/4 < 𝑦2 < 3/4. Furthermore, we get two cases:

Case I When −5/4 < 𝑦2 ≤ −1/4 the stability region (see Figure III.8) is given by 𝐴 = 𝐴𝐼 =
𝐴𝐼

1 ∪ 𝐴𝐼
2 , where

𝐴𝐼
1 = {(𝑎, 𝑏) ∶ 𝑏 < 1, 𝑏 > 𝑎 − 1, 𝑏 > 𝑎 + 0.5 − 2𝑦2}, (III.84)

𝐴𝐼
2 = {(𝑎, 𝑏) ∶ 𝑏 < 0.25 + 𝑦2, 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1}. (III.85)

Case II When −1/4 < 𝑦2 < 3/4 the stability region (see Figure III.9) is given by 𝐴 = 𝐴𝐼𝐼 =
𝐴𝐼𝐼

1 ∪ 𝐴𝐼𝐼
2 , where

𝐴𝐼𝐼
1 = {(𝑎, 𝑏) ∶ 𝑏 < 1, 𝑏 > 𝑎 − 1, 𝑏 > 0.25 + 𝑦2, 𝑏 > 𝑎 + 0.5 − 2𝑦2}, (III.86)

𝐴𝐼𝐼
2 = {(𝑎, 𝑏) ∶ 𝑏 < 0.25 + 𝑦2, 𝑏 < 𝑎 + 0.5 − 2𝑦2 𝑏 > −𝑎 − 1 𝑏 > 𝑎 − 1}. (III.87)

Substituting everything back will result in that all stable H312 will have coefficients of the fol-
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𝐴𝐼
1

𝐴𝐼
2

a

b

Figure III.8. The stability region for H312 when −5/4 < 𝑦2 ≤ −1/4. The dashed lines do
not belong to the set.

𝐴𝐼𝐼
1

𝐴𝐼𝐼
2

a

b

Figure III.9. The stability region for H312 when −1/4 < 𝑦2 < 3/4. The dashed lines do not
belong to the set.
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lowing form:

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝛼2 = 3𝑦2 + (2𝑏 − 𝑎) (
4𝑦2 − 𝑏 − 𝑎
1 + 𝑎 − 3𝑏 ) − 𝑏

𝛼3 = 𝑦2

𝜅𝛽1 = (
4𝑦2 − 𝑏 − 𝑎
1 + 𝑎 − 3𝑏 ) 𝑏 + 𝑦2

𝜅𝛽2 = 2 (
4𝑦2 − 𝑏 − 𝑎
1 + 𝑎 − 3𝑏 ) 𝑏 + 2𝑦2

𝜅𝛽3 = (
4𝑦2 − 𝑏 − 𝑎
1 + 𝑎 − 3𝑏 ) 𝑏 + 𝑦2

where
{

(𝑎, 𝑏) ∈ 𝐴(𝑦2)
−5/4 < 𝑦2 < 3/4

(III.88)

The family H312𝑏
H312𝑏 are filters of third order dynamics with

𝛽1 = 𝛽3 = 1
𝑏𝜅 , 𝛽2 = 2

𝑏𝜅 , 𝛼2 = 3
𝑏 , 𝛼3 = 1

𝑏 . (III.89)

The closed loop poles of this family are

𝑞 = 0, 0, 1 − 4/𝑏. (III.90)

For stability we need 𝑏 ∈]2, ∞[, but if we do not want it to oscillate, we need to restrict it further
with 𝑏 ≥ 4 (recommended value 𝑏 = 8).
Stability analysis of H311
The parameters are given by

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝛼2 = 𝑦1
𝛼3 = 𝑦2

𝜅𝛽1 = 𝑥1
𝜅𝛽2 = 𝑥1 + 𝑥2
𝜅𝛽3 = 𝑥2

where 𝑦1 ≠ −𝑦2 − 1. (III.91)

Let us denote 𝑦1 − 𝑦2 with 𝑦. By doing the same kind of analysis we did for H321, we will get
the result that −5/2 < 𝑦 < 3/2 for the stability region to be nonempty. This gives us a stability
region 𝐵(𝛼3, 𝛼2) (see Figure III.10) given by

𝐵(𝛼3, 𝛼2) = {(𝛼3, 𝛼2) ∶ 𝛼2 < 𝛼3 − 1
2, 𝛼2 > 𝛼3 − 5

2, 𝛼2 ≠ −𝛼3 − 1}. (III.92)

Further analysis will result in three different cases

Case I When −5/2 < 𝑦 < −1/2 the stability region (see Figure III.11) is given by 𝐴 = 𝐴𝐼 , where

𝐴𝐼 = {(𝑎, 𝑏) ∶ 𝑏 > 𝑎 − 2𝑦 − 1
2 , 𝑏 > −𝑎 − 1, 𝑏 < 1}. (III.93)

Case II When −1/2 ≤ 𝑦 < 1/2 the stability region (see Figure III.12) is given by 𝐴 = 𝐴𝐼𝐼 , where

𝐴𝐼𝐼 = {(𝑎, 𝑏) ∶ 𝑏 > 𝑎 − 2𝑦 − 1
2 , 𝑏 > −𝑎 − 1, 𝑏 < 1, 𝑎 < 1 − 2𝑦}. (III.94)
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

𝛼2 = 𝛼3 − 1
2

𝛼2 = 𝛼3 − 5
2

𝛼2 = −𝛼3 − 1

𝛼3

𝛼 2

Figure III.10. The stability region for 𝛼2 and 𝛼3. The dashed lines do not belong to the set.

𝐴𝐼

a

b

Figure III.11. The stability region for H311 when −5/2 < 𝑦 < −1/2. The dashed lines do
not belong to the set.
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𝐴𝐼𝐼

a

b

Figure III.12. The stability region for H311 when −1/2 ≤ 𝑦 < 1/2. The dashed lines do not
belong to the set.

𝐴𝐼𝐼𝐼

a

b

Figure III.13. The stability region for H311 when 1/2 ≤ 𝑦 < 3/2. The dashed lines do not
belong to the set.
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Case III When 1/2 ≤ 𝑦 < 3/2 the stability region (see Figure III.13) is given by 𝐴 = 𝐴𝐼𝐼𝐼 , where

𝐴𝐼𝐼𝐼 = {(𝑎, 𝑏) ∶ 𝑏 > −𝑎 − 1, 𝑏 < 1, 𝑎 < 1 − 2𝑦}. (III.95)

Substituting everything back will result in that all stable H311 will have coefficients of the fol-
lowing form

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝛼2 = 𝑦1
𝛼3 = 𝑦2

𝜅𝛽1 = 𝑏 + (𝑎 − 𝑏) (
2(𝑦1 − 𝑦2) + 𝑏

1 − 𝑎 + 𝑏 ) + 𝑦1 − 2𝑦2

𝜅𝛽2 = 𝑎 (
2(𝑦1 − 𝑦2) + 𝑏

1 − 𝑎 + 𝑏 ) + 𝑏 + 𝑦1 − 𝑦2

𝜅𝛽3 = (
2(𝑦1 − 𝑦2) + 𝑏

1 − 𝑎 + 𝑏 ) 𝑏 + 𝑦2

where
{

(𝑎, 𝑏) ∈ 𝐴(𝑦1 − 𝑦2)
(𝑦2, 𝑦1) ∈ 𝐵(𝑦2, 𝑦1)

(III.96)

III.1.5. Summary of available filters

The filters discussed in the previous sections of part III, are summarized in Table III.1. This table
shows all available filters of order one to three.

Table III.1. The whole set of filters where 1 ≤ 𝑝D ≤ 3. The classes marked by TTT are
non-empty, containing low pass filter, and those marked TTT are less interesting since the
corresponding filters are not low pass filters.

𝑝D 𝑝A 𝑝F name low pass filter? empty or not?

1 1 0 H110 No Not empty
2 1 0 H210 No Not empty
2 1 1 H211 Yes Not empty
2 2 0 H220 No Not empty
2 2 1 H221 Yes EMPTY
3 1 0 H310 No Not empty
3 1 1 H311 Yes Not empty
3 1 2 H312 Yes Not empty
3 2 0 H320 No Not empty
3 2 1 H321 Yes Not empty
3 2 2 H322 Yes EMPTY
3 3 0 H330 No Not empty
3 3 1 H331 Yes EMPTY
3 3 2 H332 Yes EMPTY
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III.2. Stiffness

When numerically integrating an ODE, it is expected that the step-size at a time point is depend-
ing on how much the system varies at that point, since too long steps where a lot of variations
occur will result in bad resolution. Numerical solvers using error control will take care of this.
However, sometimes the error control system will get the indication of a large error even when
the solution to the system is smooth, which also will result in a smaller step-size. This phe-
nomenon is what we call stiffness.

The stiffness of a system of equations has for long been a phenomenon intuitively understood.
Numerical analysts know the symptoms, and how to deal with them. They generally agree upon
the fact that it has something do with stability, rather than accuracy, however no precise math-
ematical definition has been accepted. Various stiffness measures have been proposed using the
eigenvalues 𝜆𝑖, 𝑖 = 1, 2, … , 𝑛 of the local Jacobian of the ODE, for example,

1. The stiffness index 𝐿 given by [4]

𝐿 = max
𝑖

|Re(𝜆𝑖)|. (III.97)

If 𝐿 is large, then the problem is considered stiff.

2. The stiffness ratio 𝑆 given by [22, 4]

𝑆 =
max

𝑖
|Re(𝜆𝑖)|

min
𝑖

|Re(𝜆𝑖)|
. (III.98)

If 𝑆 is large, then the problem is considered stiff.

These stiffness measurements are adequate in some cases, but have been shown to not be general
enough.

A new proposal to the phenomenon is given in [23]. This definition is what is used throughout
the report.

Let a general ordinary differential equation (ODE) be given by:

𝒙̇ = 𝒇(𝑡, 𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ𝑛, 𝑡0 ≤ 𝑡 ≤ 𝑡f .

The stiffness of it can differ with every time point 𝑡; we call 𝑠(𝑡) the stiffness indicator at 𝑡. This
measure can be calculated as follows [23]:

Let 𝐽 be the Jacobian belonging to 𝑓 . The first step is to symmetrize 𝐽 :

𝐷(𝑡) = 𝐽(𝑡) + 𝐽(𝑡)𝑇

2 . (III.99)

Let the ordered eigenvalues of 𝐷(𝑡) be 𝜆1(𝑡) ≤ 𝜆2(𝑡) ≤ ... ≤ 𝜆𝑛(𝑡). The stiffness indicator 𝑠 is then
defined as the mean value of the two extreme eigenvalues, i.e.,

𝑠(𝑡) = 𝜆1(𝑡) + 𝜆𝑛(𝑡)
2 . (III.100)
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If 𝑠(𝑡) is nonnegative, we say that the problem is non-stiff at this time point. Otherwise, the
problem might be stiff depending on the magnitude of |𝑠(𝑡)|. As the value of |𝑠(𝑡)| grows, the
stiffness increases. The question is: What is ’small’ and ’large’ in this context?

To be able to quantify stiffness, we need a new stiffness measure. Since stiffness depends on both
eigenvalues and integration time 𝑇 = 𝑡f − 𝑡0, a new measure ̂𝑠 can be introduced by normalizing
the integration interval. We introduce the new variable 𝜃 = 𝑡/𝑇 , and call it the interval unit
variable. With the use of this variable, 𝑃 is expressed as

𝑑𝒙
𝑑𝜃 = 𝑇 𝒇(𝜃𝑇 , 𝒙), 𝒙(0) = 𝒙0, 𝜃 ∈ [0, 1], (III.101)

which further gives us

̂𝑠(𝑡) = 𝑇 𝜆1(𝑡) + 𝜆𝑛(𝑡)
2 = 𝑇 𝑠(𝑡), (III.102)

where ̂𝑠 is called the normalized stiffness indicator [23]. There is a caveat though: the dependency
of ̂𝑠 on the integration time 𝑇 , makes it possible tomake any problem infinitely stiff by integrating
for a very long time. Also, this makes it possible to say that, for example, the Lotka–Volterra
problem is stiffer than the Oregonator, by integrating the Lotka–Volterra problem over many
cycles. By only using this measure for an appropriate integration time (for example, in the case
of a periodic problem, letting the integration time be limited to one period), problems like these
can be avoided.

A problem is called stiff, if any part of the corresponding integration interval is stiff according to
this theory.

III.3. Test library

To test the three different solvers, a test library implemented by the author was used (the imple-
mentation can be found at [3]). This library consists of both stiff and non-stiff problems, using
the definition of stiffness given in [23]. Throughout this report we are going to use the following
definition of problem:
Definition III.3.1. A problem consists of one function 𝒇 , one time span [𝑡0, 𝑡f ], and one initial
condition 𝒙0, making up the initial value problem (IVP)

𝒙̇ = 𝒇(𝑡, 𝒙), 𝒙(0) = 𝒙0, 𝑡 ∈ [𝑡0, 𝑡f ] where 𝒙 ∈ ℝ𝑛.

This means that when we refer to the problem HIRES, we mean the RHS-function, the time span
(where the integration is required) and the initial condition, as given in Subsection III.3.1. In
some cases, the RHS-function contains a parameter. For example, problem 8, Van der Pol, has the
parameter 𝜇. Thus, when we refer to this problem, we allow any value of 𝜇, unless specifically
mentioned, as in Van der Pol using 𝜇 = 1.
Problems 1-11 are chosen from Bari’s test library (see [12]), problem 12 — Lotka–Volterra — is a
well known test problem, problem 13 —The flame propagation problem — is taken from [15] and
the problems 14-17 are chosen from ODELab [18]. The theoretical background and mathematical
descriptions of all of these problems, can be found in this section.
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III.3.1. Problem 1: The HIRES problem

The name HIRES is short for High Irradiance RESponse. The problem originates from plant phys-
iology, modeling the involvement of light in morphogenesis. More precisely, it models the high
irradiance responses of photomorphogenesis on the basis of phytochrome, by means of a chem-
ical reaction involving eight reactants. This problem consists of 8 non-linear ODEs.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,
where

𝒙 ∈ ℝ8, 0 ≤ 𝑡 ≤ 321.8122 s.
Component 𝑥𝑖 models the concentration (unit: mol) of the 𝑖:th reactant in the process over time
(unit: seconds) (see Table III.2 for reactant correspondence). The RHS-function 𝑓 is defined as:

𝒇(𝒙) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘6𝑥3 + 𝑜𝑘𝑠
𝑘1𝑥1 − (𝑘2 + 𝑘3)𝑥2

−(𝑘1 + 𝑘6)𝑥3 + 𝑘2𝑥4 + 𝑘5𝑥5
𝑘3𝑥2 + 𝑘1𝑥3 − (𝑘2 + 𝑘4)𝑥4

−(𝑘1 + 𝑘5)𝑥5 + 𝑘2𝑥6 + 𝑘2𝑥7
𝑘4𝑥4 + 𝑘1𝑥5 − 𝑘2𝑥6 + 𝑘−𝑥7 − 𝑘+𝑥6𝑥8

−(𝑘2 + 𝑘− + 𝑘∗)𝑥7 + 𝑘+𝑥6𝑥8
(𝑘2 + 𝑘− + 𝑘∗)𝑥7 − 𝑘+𝑥6𝑥8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (III.103)

where 𝑘1, ..., 𝑘6, 𝑘+, 𝑘−, 𝑘∗ and 𝑜𝑘𝑠
are reaction parameters given in Table III.2. The initial condi-

tion is given by:

𝒙0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)T . (III.104)

Table III.2. Reaction parameters, compound correspondence and description of the differ-
ent compounds.

Reaction parameters Correspondence Description

𝑘1 = 1.71 𝑥1 [Pr] Pr Red absorbing form of phytochrome
𝑘2 = 0.43 𝑥2 [Pfr] Pfr Far red absorbing form of phytochrome
𝑘3 = 8.32 𝑥3 [PrX] X Receptor I
𝑘4 = 0.69 𝑥4 [PfrX] X’ Receptor II
𝑘5 = 0.035 𝑥5 [PrX’] E Enzyme
𝑘6 = 8.32 𝑥6 [PfrX’] PrX Pr bound by X
𝑘+ = 280 𝑥7 [PfrX’E] PfrX Pfr bound by X
𝑘− = 0.69 𝑥8 [E] PrX’ Pr bound by X’
𝑘∗ = 0.69 PfrX’ Pfr bound by X’
𝑜𝑘𝑠

= 0.0007 PfrX’E Pfr bound by X’ and partially influenced by E

The eight solution components to this problem can be seen in Figure III.14. Notice the different
𝑦-scaling, and the fact that we in the case of some of the components have zoomed in on the
time interval [0, 5] with the reason that this is the interval where the components in question
are varying.
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Figure III.14. The 8 solution components of HIRES as a function of time. Notice the differ-
ent 𝑦-scaling and the fact that some of the components are zoomed in on the time interval
[0, 5] (the part where these components vary).
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III.3.2. Problem 2: The pollution problem

This IVP is connected to the air pollution model developed atTheDutch National Institute of Pub-
lic Health and Environmental Protection (RIVM). More precisely it models the chemical reaction
part of this air pollution model, and consists of 25 chemical reactions and 20 reacting compounds.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ20, 0 ≤ 𝑡 ≤ 60 s.

Component 𝑥𝑖 models the concentration (unit: mol) of the 𝑖:th substance in the process as a
function of time (unit: seconds) (see Table III.3 for substance correspondence). The RHS-function
𝒇 is defined as:

𝒇(𝒙) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− ∑𝑗∈{1,10,14,23,24} 𝑟𝑗 + ∑𝑗∈{2,3,9,11,12,22,25} 𝑟𝑗
−𝑟2 − 𝑟3 − 𝑟9 − 𝑟12 + 𝑟1 + 𝑟21

−𝑟15 + 𝑟1 + 𝑟17 + 𝑟19 + 𝑟22
−𝑟2 − 𝑟16 − 𝑟17 − 𝑟23 + 𝑟15

−𝑟3 + 2𝑟4 + 𝑟6 + 𝑟7𝑟13 + 𝑟20
−𝑟6 − 𝑟8 − 𝑟14 − 𝑟20 + 𝑟3 + 2𝑟18

−𝑟4 − 𝑟5 − 𝑟6 + 𝑟13
𝑟4 + 𝑟5 + 𝑟6 + 𝑟7

−𝑟7 − 𝑟8
−𝑟12 + 𝑟7 + 𝑟9

−𝑟9 − 𝑟10 + 𝑟8 + 𝑟11
𝑟9

−𝑟11 + 𝑟10
−𝑟13 + 𝑟12

𝑟14
−𝑟18 − 𝑟19 + 𝑟16

−𝑟20
𝑟20

−𝑟21 − 𝑟22 − 𝑟24 + 𝑟23 + 𝑟25
−𝑟25 + 𝑟24

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (III.105)

where 𝑟𝑖 is the 𝑖:th auxiliary variable defined in Table III.3. The initial condition is given by:

𝒙0 = (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0)T . (III.106)

The 20 solution components to this problem can be seen in Figure III.15—III.17. Notice the differ-
ent 𝑦-scaling, and the fact that we in some of the sub-figures have zoomed in on the time interval
[0, 1] with the reason that this is the only part of the interval where the components in question
are varying.
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Table III.3. The auxiliary variables 𝑟𝑖, the parameter values 𝑘𝑖 and the compound corre-
spondence to the variables 𝑥𝑖

Auxiliary variables Parameter values Compounds

𝑟1 = 𝑘1 ⋅ 𝑥1 𝑘1 = 0.350 𝑥1 [NO2]
𝑟2 = 𝑘2 ⋅ 𝑥2 ⋅ 𝑥4 𝑘2 = 0.266 ⋅ 102 𝑥2 [NO]
𝑟3 = 𝑘3 ⋅ 𝑥5 ⋅ 𝑥2 𝑘3 = 0.123 ⋅ 105 𝑥3 [O3P]
𝑟4 = 𝑘4 ⋅ 𝑥7 𝑘4 = 0.860 ⋅ 10−3 𝑥4 [O3]
𝑟5 = 𝑘5 ⋅ 𝑥7 𝑘5 = 0.820 ⋅ 10−3 𝑥5 [HO2]
𝑟6 = 𝑘6 ⋅ 𝑥7 ⋅ 𝑥6 𝑘6 = 0.150 ⋅ 105 𝑥6 [OH]
𝑟7 = 𝑘7 ⋅ 𝑥9 𝑘7 = 0.130 ⋅ 10−3 𝑥7 [HCHO]
𝑟8 = 𝑘8 ⋅ 𝑥9 ⋅ 𝑥6 𝑘8 = 0.240 ⋅ 105 𝑥8 [CO]
𝑟9 = 𝑘9 ⋅ 𝑥11 ⋅ 𝑥2 𝑘9 = 0.165 ⋅ 105 𝑥9 [ALD]
𝑟10 = 𝑘10 ⋅ 𝑥11 ⋅ 𝑥1 𝑘10 = 0.900 ⋅ 104 𝑥10 [MEO2]
𝑟11 = 𝑘11 ⋅ 𝑥13 𝑘11 = 0.220 ⋅ 10−1 𝑥11 [C2O3]
𝑟12 = 𝑘12 ⋅ 𝑥10 ⋅ 𝑥2 𝑘12 = 0.120 ⋅ 105 𝑥12 [CO2]
𝑟13 = 𝑘13 ⋅ 𝑥14 𝑘13 = 0.188 ⋅ 10 𝑥13 [PAN]
𝑟14 = 𝑘14 ⋅ 𝑥1 ⋅ 𝑥6 𝑘14 = 0.163 ⋅ 105 𝑥14 [CH3O]
𝑟15 = 𝑘15 ⋅ 𝑥3 𝑘15 = 0.480 ⋅ 107 𝑥15 [HNO3]
𝑟16 = 𝑘16 ⋅ 𝑥4 𝑘16 = 0.350 ⋅ 10−3 𝑥16 [O1D]
𝑟17 = 𝑘17 ⋅ 𝑥4 𝑘17 = 0.175 ⋅ 10−1 𝑥17 [SO2]
𝑟18 = 𝑘18 ⋅ 𝑥16 𝑘18 = 0.100 ⋅ 109 𝑥18 [SO4]
𝑟19 = 𝑘19 ⋅ 𝑥16 𝑘19 = 0.444 ⋅ 1012 𝑥19 [NO3]
𝑟20 = 𝑘20 ⋅ 𝑥17 ⋅ 𝑥6 𝑘20 = 0.124 ⋅ 104 𝑥20 [N2O5]
𝑟21 = 𝑘21 ⋅ 𝑥17 ⋅ 𝑥6 𝑘21 = 0.210 ⋅ 10
𝑟22 = 𝑘22 ⋅ 𝑥19 𝑘22 = 0.578 ⋅ 10
𝑟23 = 𝑘23 ⋅ 𝑥1 ⋅ 𝑥4 𝑘23 = 0.474 ⋅ 10−1

𝑟24 = 𝑘24 ⋅ 𝑥19 ⋅ 𝑥1 𝑘24 = 0.178 ⋅ 104

𝑟25 = 𝑘25 ⋅ 𝑥20 𝑘25 = 0.312 ⋅ 10

81



III.3. TEST LIBRARY

0 20 40 60
0

2

4

6
⋅10−2 𝑥1, [NO2] in mol

0 20 40 60

0.14

0.16

0.18

0.2

𝑥2, [NO] in mol

0 20 40 60
0

2

4
⋅10−9 𝑥3, [O3P] in mol

0 20 40 60
0

1

2

3

4
⋅10−2 𝑥4, [O3] in mol

0 0.2 0.4 0.6 0.8 1
0

2

4

⋅10−7 𝑥5, [HO2] in mol

0 0.2 0.4 0.6 0.8 1
0

2

4

6
⋅10−7 𝑥6, [OH] in mol

0 20 40 60

8 ⋅ 10−2

9 ⋅ 10−2

0.1

𝑡 [seconds]

𝑥7, [HCHO] in mol

0 20 40 60
0.3

0.31

0.32

𝑡 [seconds]

𝑥8, [CO] in mol

Figure III.15. The solution components 𝑥1 – 𝑥8 of the pollution problem as a function of
time. Notice the different 𝑦-scaling and that, in the case of some of the components, we
have zoomed in on the sub-interval [0, 1] since this is the part where these components
vary.
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Figure III.16. The solution components 𝑥9 – 𝑥16 of the pollution problem as a function of
time. Notice the different 𝑦-scaling and that, in the case of some of the components, we
have zoomed in on the sub-interval [0, 1] since this is the part where these components
vary.
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Figure III.17. The solution components 𝑥17 – 𝑥20 of the pollution problem as a function of
time. Notice the different 𝑦-scaling and that, in the case of 𝑥19, we have zoomed in on the
sub-interval [0, 1] since this is the part where the component is varying.
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III.3.3. Problem 3: The ring modulator problem

This IVP originates from electrical circuit theory. The system of equations consists of 15 differ-
ential equations and models the voltages and currents in a special kind of ring modulator.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝑡, 𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ15, 0 ≤ 𝑡 ≤ 10−3 s.

The 7 first components 𝑥𝑖, 𝑖 ∈ {1, … , 7}, correspond to the 7 voltages 𝑈𝑖, 𝑖 ∈ {1, … , 7} (unit:
volts) in the circuit, and other 8 components 𝑥𝑖, 𝑖 ∈ {8, … , 15} correspond to the 8 currents
𝐼𝑖, 𝑖 ∈ {1, … , 8} (unit: amperes) in the circuit. The RHS-function 𝒇 is defined as:

𝒇(𝑡, 𝒙) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝑥8 − 0.5𝑥10 + 0.5𝑥11 + 𝑥14 − 𝑥1/𝑅) /𝐶
(𝑥9 − 0.5𝑥12 + 0.5𝑥13 + 𝑥15 − 𝑥2/𝑅) /𝐶

(𝑥10 − 𝑞(𝑈D1) + 𝑞(𝑈D4)) /𝐶s
(−𝑥11 + 𝑞(𝑈D2) − 𝑞(𝑈D3)) /𝐶s
(𝑥12 + 𝑞(𝑈D1) − 𝑞(𝑈D3)) /𝐶s

(−𝑥13 − 𝑞(𝑈D2) + 𝑞(𝑈D4)) /𝐶s
(−𝑥7/𝑅p + 𝑞(𝑈D1 + 𝑞(𝑈D2 − 𝑞(𝑈D3 − 𝑞(𝑈D4)) /𝐶p

−𝑥1/𝐿h
−𝑥2/𝐿h

(0.5𝑥1 − 𝑥3 − 𝑅g2𝑥10) /𝐿s2
(−0.5𝑥1 + 𝑥4 − 𝑅g3𝑥11) /𝐿s3
(0.5𝑥2 − 𝑥5 − 𝑅g2𝑥12) /𝐿s2

(−0.5𝑥2 + 𝑥6 − 𝑅g3𝑥13) /𝐿s3
(−𝑥1 + 𝑈in1(𝑡) − (𝑅𝑖 + 𝑅g1)𝑥14) /𝐿s1

(−𝑥2 − (𝑅c + 𝑅g1)𝑥15) /𝐿s1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (III.107)

where

𝑈D1 = 𝑥3 − 𝑥5 − 𝑥7 − 𝑈in2(𝑡), (III.108)
𝑈D2 = −𝑥4 + 𝑥6 − 𝑥7 − 𝑈in2(𝑡), (III.109)
𝑈D3 = 𝑥4 + 𝑥5 + 𝑥7 + 𝑈in2(𝑡), (III.110)
𝑈D1 = −𝑥3 − 𝑥6 + 𝑥7 + 𝑈in2(𝑡), (III.111)

𝑞(𝑈) = 𝛾 (𝑒𝑈𝛿 − 1) , (III.112)
𝑈in1(𝑡) = 0.5 sin (2000𝜋𝑡), (III.113)
𝑈in2(𝑡) = 2 sin (20000𝜋𝑡), (III.114)

and the constants given in Table III.4. The corresponding initial condition is given by:

𝒙0 = (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0)T . (III.115)

The 15 solution components to this problem can be seen in Figure III.18—III.19. Notice the differ-
ent 𝑦-scaling in the sub-figures.
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Figure III.18. The solution components 𝑥1 – 𝑥8 of the ring modulator problem as a function
of time. Notice the different 𝑦-scaling.
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Figure III.19. The solution components 𝑥9 – 𝑥15 of the ring modulator problem as a function
of time. Notice the different 𝑦-scaling.

87



III.3. TEST LIBRARY

Table III.4. All constants belonging to the ring modulator problem.

Resistances [𝛺] Inductances [H] Capacitances [F] Unit-less constants

𝑅 = 25000 𝐿h = 4.45 𝐶 = 1.6 ⋅ 10−8 𝛾 = 111
𝑅p = 50 𝐿s1 = 0.002 𝐶s = 2 ⋅ 10−12 𝛿 = 111
𝑅g1 = 36.3 𝐿s2 = 5 ⋅ 10−4 𝐶p = 10−8

𝑅g2 = 17.3 𝐿s3 = 5 ⋅ 10−4

𝑅g3 = 17.3
𝑅i = 50
𝑅c = 600
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III.3.4. Problem 4: The Medical Akzo Nobel problem

The Medical Akzo Nobel problem has its origin in medicine. It was formulated during a study
about the penetrability of radio-labeled antibodies into a tumor-infected tissue. The study was
performed by the Akzo Nobel research laboratories, and the problem formulated by the same.

The system originates from the chemical reaction:

𝐴 + 𝐵 𝑘−→ 𝐶,

where 𝐴 is the radio-labeled anti-body, 𝐵 is tumor-infected tissue, 𝐶 is the chemical product and
𝑘 is the rate constant for the reaction. The concentration of 𝐴, 𝑢, and the concentration of 𝐵, 𝑣, are
functions of time 𝑡 and space 𝑥 (𝑥 ∈ ℝ). This problem assumes a semi-infinite, one-dimensional
slab:

𝑆𝑇 (𝑥, 𝑡) = {(𝑥, 𝑡) ∶ 0 < 𝑥 < ∞, 0 < 𝑡 < 𝑇 }, (III.116)

consisting of uniformly distributed tissue 𝐵. When the surface of the slab (𝑥 = 0) is exposed
to the chemical 𝐴, this chemical starts to penetrate into the slab (𝑥 > 0). To be able to solve
the problem numerically, the semi-infinite slab is transformed into a finite one according to the
following rule:

𝜁 = 𝑥
𝑥 + 𝑐 , 𝑐 > 0, (III.117)

resulting in

𝑆𝑇 (𝜁 , 𝑡) = {(𝜁, 𝑡) ∶ 0 < 𝜁 < 1, 0 < 𝑡 < 𝑇 }. (III.118)

By using the method of lines, 𝜁 is discretized into 𝑁 points:

𝜁𝑖 = 𝑖 ⋅ 𝛥𝜁, 𝑖 = 1, 2, … , 𝑁, 𝛥𝜁 = 1
𝑁 . (III.119)

At each of these points, the concentration of 𝐴 and 𝐵 are measured, creating an equation system
of size 2𝑁 .

The mathematical formulation is the following:

̇𝒚 = 𝒇(𝑡, 𝒚), 𝒚(0) = 𝒚0,

where

𝒚 ∈ ℝ2𝑁 , 0 ≤ 𝑡 ≤ 20 s.

The component 𝑦𝑖, 𝑖 ∈ {1, 3, … , 2𝑁 − 1} corresponds to the concentration (unit: mol) of 𝐴 at
the grid point 𝜁(𝑖+1)/2, and the component 𝑦𝑖, 𝑖 ∈ {2, 4, … , 2𝑁} corresponds to the concentration
(unit: mol) of 𝐵 at grid point 𝜁𝑖/2. The components of the RHS-function 𝒇 is given by

𝑓2𝑗−1 = 𝛼𝑗
𝑦2𝑗+1 − 𝑦2𝑗−3

2𝛥𝜁 + 𝛽𝑗
𝑦2𝑗−3 − 2𝑦2𝑗−1 + 𝑦2𝑗+1

(𝛥𝜁)2 − 𝑘𝑦2𝑗𝑦2𝑗−1, (III.120)

𝑓2𝑗 = −𝑘𝑦2𝑗𝑦2𝑗−1, (III.121)
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where 𝑗 = 1, … , 𝑁 and

𝑦−1(𝑡) = 𝜙(𝑡), 𝛼𝑗 = 2(𝑗𝛥𝜁 − 1)3

𝑐2 , 𝜙(𝑡) = (
2 for 𝑡 ∈ [0, 5]

0 for 𝑡 ∈ [5, 20]) , (III.122)

𝑦2𝑁+1 = 𝑦2𝑁−1, 𝛽𝑗 = (𝑗𝛥𝜁 − 1)4

𝑐2 , 𝛥𝜁 = 1
𝑁 . (III.123)

Values of the constants and initial condition of this problem are 𝑘 = 100, 𝑐 = 4 and

𝒚0 = (0, 1, 0, 1, … , 0, 1)T . (III.124)

The 12 solution components to this problem, using 𝑁 = 100, can be seen in Figure III.20—III.21.
Notice the different 𝑦-scaling.
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Figure III.20. Four of the solution components ofMedical Akzo Nobel as a function of time.
The sub-figures represent the concentration of 𝐴 and 𝐵 in the grid points 𝜁1 and 𝜁25 as a
function of time.
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Figure III.21. Eight of the solution components of Medical Akzo Nobel as a function of
time. The sub-figures represent the concentration of 𝐴 and 𝐵 in the grid points 𝜁40, 𝜁67, 𝜁86
and 𝜁100 as a function of time. Notice how the cancer concentration decreases, when the
grid point receives the anti-body.

91



III.3. TEST LIBRARY

III.3.5. Problem 5: The EMEP problem

This IVP is connected to the EMEP MSC-W ozone chemistry model developed at the Norwegian
Meteorological Institute in Oslo, Norway. More precisely it models the chemistry part of this
ozone model consisting of about 144 chemical reactions and 66 reacting compounds.

The mathematical formulation of the problem is the following:

𝒙̇ = 𝒇(𝑡, 𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ66, 14400 ≤ 𝑡 ≤ 417600 s.

Component 𝑥𝑖, 𝑖 ∈ {1, … , 66} models the concentration (unit: molecules per cm3) of substance
𝑖 (see Table III.5 for substance correspondence) as a function of time (unit: seconds). The RHS-
function 𝒇 of this problem can not be displayed here due to its size, though the implementation
of it can be found at [3].

The initial condition is given by:

𝒙0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0 ⋅ 109 for 𝑖 = 1
5.0 ⋅ 109 for 𝑖 ∈ {2, 3}

3.8 ⋅ 1012 for 𝑖 = 4
3.5 ⋅ 1013 for 𝑖 = 5

1.0 ⋅ 107 for 𝑖 ∈ {6, 7, … , 13}
5.0 ⋅ 1011 for 𝑖 = 14

1.0 ⋅ 102 for 𝑖 ∈ {15, 16, … , 37}
1.0 ⋅ 10−3 for 𝑖 = 38

1.0 ⋅ 102 for 𝑖 ∈ {39, 40, … , 66}

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(III.125)

The 10 first solution components of this problem, can be seen in Figure III.22–III.23. Notice the
different 𝑦-scaling.
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Figure III.22. The two first solution components of EMEP as a function of time. Notice the
different 𝑦-scaling.
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Figure III.23. Eight solution components of EMEP as a function of time. Notice the differ-
ent 𝑦-scaling.
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Table III.5. Compound-variable correspondence in the EMEP problem.

The compounds corresponding to the variables 𝑥𝑖

𝑥1 [NO] 𝑥23 [C2H5O2] 𝑥45 [MNKO2]
𝑥2 [NO2] 𝑥24 [CH3COO] 𝑥46 [CH3OH]
𝑥3 [SO2] 𝑥25 [PAN] 𝑥47 [RCO3H]
𝑥4 [CO] 𝑥26 [SECC4H] 𝑥48 [OXYO2H]
𝑥5 [CH4] 𝑥27 [MEKO2] 𝑥49 [BURO2H]
𝑥6 [C2H6] 𝑥28 [R2OOH] 𝑥50 [ETRO2H]
𝑥7 [NC4H10] 𝑥29 [ETRO2] 𝑥51 [PRRO2H]
𝑥8 [C2H4] 𝑥30 [MGLYOX] 𝑥52 [MEKO2H]
𝑥9 [C3H6] 𝑥31 [PRRO2] 𝑥53 [MALO2H]
𝑥10 [OXYL] 𝑥32 [GLYOX] 𝑥54 [MACR]
𝑥11 [HCHO] 𝑥33 [OXYO2] 𝑥55 [ISNI]
𝑥12 [CH3CHO] 𝑥34 [MAL] 𝑥56 [ISRO2H]
𝑥13 [MEK] 𝑥35 [MALO2] 𝑥57 [MARO2]
𝑥14 [O3] 𝑥36 [OP] 𝑥58 [MAPAN]
𝑥15 [HO2] 𝑥37 [OH] 𝑥59 [CH2CCH3]
𝑥16 [HNO3] 𝑥38 [OD] 𝑥60 [ISONO3]
𝑥17 [H2O2] 𝑥39 [NO3] 𝑥61 [ISNIR]
𝑥18 [H2] 𝑥40 [N2O5] 𝑥62 [MVKO2H]
𝑥19 [CH3O2] 𝑥41 [ISOPRE] 𝑥63 [CH2CHR]
𝑥20 [C2H5OH] 𝑥42 [NITRAT] 𝑥64 [ISNO3H]
𝑥21 [SA] 𝑥43 [ISRO2] 𝑥65 [ISNIRH]
𝑥22 [CH3O2H] 𝑥44 [MVK] 𝑥66 [MARO2H]
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III.3.6. Problem 6: The Pleiades problem

This IVP has its origin in celestial mechanics. It describes the planar movement of seven stars in
space, where star 𝑖 has coordinates (𝑥𝑖, 𝑦𝑖) and mass 𝑚𝑖.

The mathematical formulation of the problem is the following:

𝒛″ = 𝒇(𝒛), 𝒛(0) = 𝒛0, 𝒛′(0) = 𝒛′
0,

where

𝒛 ∈ ℝ14, 0 ≤ 𝑡 ≤ 3 s.

Let 𝑧 be given by:

𝒛 = (
𝒙
𝒚) , 𝒙, 𝒚 ∈ ℝ7.

The RHS-function 𝒇 is then given by

𝑓 (1)
𝑖 = ∑

𝑗≠𝑖
𝑚𝑗(𝑥𝑗 − 𝑥𝑖)/𝑟3/2

𝑖𝑗 , 𝑖 = 1, … , 7, (III.126)

𝑓 (2)
𝑖 = ∑

𝑗≠𝑖
𝑚𝑗(𝑦𝑗 − 𝑦𝑖)/𝑟3/2

𝑖𝑗 , 𝑖 = 1, … , 7, (III.127)

where 𝑚𝑖 = 𝑖 and

𝑟𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. (III.128)

We rewrite this problem as an order 1 IVP in the following way:

𝒘 = (
𝒛
𝒛′)

′
= (

𝒛′

𝒇(𝒛)) .

The initial condition is given by:

𝒘0 =
⎛
⎜
⎜
⎜
⎝

𝒙0
𝒚0
𝒙′

0
𝒚′

0

⎞
⎟
⎟
⎟
⎠

where

⎧⎪
⎪
⎨
⎪
⎪⎩

𝒙0 = (3, 3, −1, −3, 2, −2, 2)
𝒚0 = (3, −3, 2, 0, 0, −4, 4)
𝒙′

0 = (0, 0, 0, 0, 0, 1.75, −1.5)
𝒚′

0 = (0, 0, 0, −1.25, 1, 0, 0)

(III.129)

The 14 first solution components to this problem can be seen in Figure III.24 – III.25. Notice the
different 𝑦-scaling.
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Figure III.24. Eight solution components of Pleiades as a function of time. The lines repre-
sent the coordinates of star 1,2,3 and 4 as a function of time. Notice the different 𝑦-scaling.
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Figure III.25. Six solution components of Pleiades as a function of time. The lines represent
the coordinates of star 5,6 and 7 as a function of time. Notice the different 𝑦-scaling.
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III.3.7. Problem 7: The beam problem

This is a mechanical problem that models a thin beam of constant length 1, with one end clamped
at ground and the other end free. At the free end a force 𝑭 = (𝐹u, 𝐹v) is applied causing the beam
to oscillate around its equilibrium. Themodel uses the coordinate 𝒛(𝑡, 𝑠) defined as the angle (unit:
degrees) to the equilibrium at time 𝑡 and arc length 𝑠. The model is discretized in 𝑁 equidistant
points along the beam, creating the discretized variable

𝒛 (𝑡, 𝑘 − 0.5
𝑁 ) , 𝑘 = 1, … , 𝑁.

The mathematical formulation of the problem is the following:

𝒛″ = 𝒇(𝑡, 𝒛, 𝒛′), 𝒛(0) = 𝒛0, 𝒛′(0) = 𝒛′
0,

where

𝒛 ∈ ℝ𝑁 , 0 ≤ 𝑡 ≤ 5 s.

The function 𝒇 is given by:

𝒇(𝑡, 𝒛, 𝒛′) = 𝐶𝒗 + 𝐷𝒖, (III.130)

where 𝐶 is a tridiagonal matrix of size 𝑁 ×𝑁 with the following values of the non-zero elements
𝑐𝑖𝑗 (row 𝑖 and column 𝑗):

𝑐11 = 1, (III.131)
𝑐𝑁𝑁 = 3, (III.132)

𝑐𝑖𝑖 = 2, 𝑙 = 2, … , 𝑁 − 1, (III.133)
𝑐𝑖,𝑖+1 = − cos (𝑧𝑖 − 𝑧𝑖+1), 𝑙 = 1, … , 𝑁 − 1, (III.134)
𝑐𝑖,𝑖−1 = − cos (𝑧𝑖 − 𝑧𝑖−1), 𝑙 = 2, … , 𝑁, (III.135)

𝐷 is a bidiagonal matrix of size 𝑁 × 𝑁 with the following values of the non-zero elements 𝑑𝑖𝑗 :

𝑑𝑖,𝑖+1 = − sin (𝑧𝑖 − 𝑧𝑖+1), 𝑙 = 1, … , 𝑁 − 1, (III.136)
𝑑𝑖,𝑖−1 = − sin (𝑧𝑖 − 𝑧𝑖−1), 𝑙 = 2, … , 𝑁, (III.137)

𝒗 is a vector of size 𝑁 with the elements:

𝑣𝑖 = 𝑁4(𝑧𝑖−𝑙 − 2𝑧𝑖 + 𝑧𝑖+1) + 𝑁2(cos (𝑧𝑖)𝐹y − sin (𝑧𝑖)𝐹x), 𝑙 = 1, … , 𝑁, (III.138)

where

𝑧0 = −𝑧1, (III.139)
𝑧𝑁+1 = 𝑧𝑁 , (III.140)

and 𝒖 is a vector of size 𝑁 , and the solution to the system:

𝐶𝒖 = 𝒈, where 𝒈 = 𝐷𝒗 + (𝑧′2
1 , 𝑧′2

2 , … , 𝑧′2
𝑁 )𝑇 . (III.141)
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We reformulate the system such that we get an ODE on first order form in the following way:

𝒘 = (
𝒛
𝒛′)

′
= (

𝒛′

𝒇(𝑡, 𝒛, 𝒛′)) .

The initial condition is given by:

𝒘0 = (
𝒛0
𝒛′

0) , where
{

𝒛0 = (0, … , 0)
𝒛′

0 = (0, … , 0)
. (III.142)

The solution of Beam, 𝑁 = 10 can be seen in Figure III.26.
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Figure III.26. Solutions to Beam, 𝑁 = 10. (Top) solution of 𝑤10 = 𝑧10 and 𝑤20 = 𝑧′
10.

(Bottom) Solution of all 20 components.
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III.3.8. Problem 8: The Van der Pol problem

The Van der Pol problem originates from electronics and models the scaled current 𝑧(𝑡) = 𝑘𝐼(𝑡) in
vacuum tube circuits with non-linear damping. This is a periodic problem.

The mathematical formulation of the problem is the following:

𝑧″ = 𝑓(𝑧, 𝑧′), 𝑧(0) = 𝑧0, 𝑧′(0) = 𝑧′
0,

where

𝑧 ∈ ℝ, 0 ≤ 𝑡 ≤ 4𝜇 s.

The period time 𝑇 is approximately 2𝜇. The function 𝑓 is given by:

𝑓(𝑧, 𝑧′) = 𝜇(1 − 𝑧2)𝑧′ − 𝑧, 𝜇 > 0. (III.143)

The problem is transformed onto first order form, by rewriting it in the following way:

𝒘 = (
𝑧
𝑧′)

′
= (

𝑧′

𝑓(𝑧, 𝑧′)) .

The initial values are:

𝒘0 = (
𝑧0
𝑧′

0) where
{

𝑧0 = 2
𝑧′

0 = 0
. (III.144)

By varying 𝜇, we can vary the stiffness of the system (the greater the 𝜇, the stiffer the system).

The solution to Van der Pol with 𝜇 = 5, 10 and 100 can be seen in Figure III.28. In Figure III.27
we see the phase plot of Van der Pol with 𝜇 = 10, 20, … , 70.
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Phase plot of Van der Pol with 𝜇 = 10, 20, … , 70

Figure III.27. The phase plot of Van der Pol with 𝜇 = 10, 20, … , 70. The larger the 𝜇, the
bigger the lobes of the phase plot.
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Figure III.28. The solution to Van der Pol with 𝜇 = 5, 10 and 100 as a function of time. The
larger the 𝜇, the stiffer the equation and the longer the period 𝑇 .
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III.3.9. Problem 9: The Oregonator problem

This problem originates from chemistry. It models the famous oscillatory Belousov–Zhabotinskii
(BZ) reaction in the simplest way possible. The model consists of 6 different substances, where
the effective concentration of three of them is measured.

The mathematical formulation of the problem is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ3, 0 ≤ 𝑡 ≤ 360 s.

The three components 𝑥1, 𝑥2 and 𝑥3 model the effective concentrations (unit: mol) of hypobro-
mous acid, bromide and cerium-4 over time (unit: seconds). The RHS-function 𝒇 is given by:

𝒇(𝒙) =
⎛
⎜
⎜
⎝

𝑠 (𝑥2 − 𝑥1𝑥2 + 𝑥1 − 𝑞𝑥2
1)

(−𝑥2 − 𝑥1𝑥2 + 𝑥3) /𝑠
𝑤 (𝑥1 − 𝑥3)

⎞
⎟
⎟
⎠

, (III.145)

where the value of the constants are

𝑠 = 77.27, 𝑤 = 0.161, 𝑞 = 8.375 ⋅ 10−6. (III.146)

The initial values are given by:

𝒙0 = (1, 2, 3) . (III.147)

The solution to Oregonator can be seen in Figure III.29.
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Figure III.29. The solution to Oregonator as a function of time.
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III.3.10. Problem 10: The Robertson problem

Robertson is a chemical problem that models a special auto-catalytic reaction given by H.H.
Robertson. The reaction consists of three different chemical substances 𝐴, 𝐵, and 𝐶 .

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ3, 0 ≤ 𝑡 ≤ 1011 s.

The three components 𝑥1, 𝑥2 and 𝑥3 model the concentrations (unit: mol) of substance 𝐴, 𝐵 and
𝐶 over time (unit: seconds). The RHS-function 𝒇 is given by:

𝒇(𝒙) =
⎛
⎜
⎜
⎝

−0.04𝑥1 + 104𝑥2𝑥3
0.04𝑥1 − 104𝑥2𝑥3 − 3 ⋅ 107𝑥2

2
3 ⋅ 107𝑥2

2

⎞
⎟
⎟
⎠

. (III.148)

The initial condition is given by:

𝒙0 = (1, 0, 0) . (III.149)

The solution to Robertson can be seen in Figure III.30.
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Figure III.30. The 3 solution components of Robertson as a function of time.
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III.3.11. Problem 11: The E5 problem

E5 originates from chemistry. It models a chemical pyrolysis consisting of 6 reactants 𝑅1, … , 𝑅6
where the concentration of four of them 𝑅1, … , 𝑅4 is measured.

The mathematical formulation of the problem is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ4, 0 ≤ 𝑡 ≤ 1013 s.

The 4 components 𝑥1, 𝑥2, 𝑥3 and 𝑥4 model the concentration (unit: mol) of the compounds
𝑅1, 𝑅2, 𝑅3 and 𝑅4 over time (unit: seconds). The RHS-function 𝒇 is given by:

𝒇(𝒙) =
⎛
⎜
⎜
⎜
⎝

−𝐴𝑥1 − 𝐵𝑥1𝑥3
𝐴𝑥1 − 𝑀𝐶𝑥2𝑥3

𝐴𝑥1 − 𝐵𝑥1𝑥3 − 𝑀𝐶𝑥2𝑥3 + 𝐶𝑥4
𝐵𝑥1𝑥3 − 𝐶𝑥4

⎞
⎟
⎟
⎟
⎠

, (III.150)

with the constants:

𝐴 = 7.89 ⋅ 10−10, 𝐵 = 1.1 ⋅ 107, 𝐶 = 1.13 ⋅ 103, 𝑀 = 106. (III.151)

The initial condition is given by:

𝒙0 = (1.76 ⋅ 10−3, 0, 0, 0) . (III.152)

The solution to E5 can be seen in Figure III.31.
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Figure III.31. The solution to E5 as a function of time.
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III.3.12. Problem 12: The Lotka–Volterra problem

This problem originates from biology. Themodel describes the dynamic of the amount of a special
kind of predator (e.g., foxes) and a special kind of pray (e.g., rabbits) at a certain time 𝑡.
The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ2, 0 ≤ 𝑡 ≤ 𝑐 s.

Component 𝑥1 models the amount of prays and 𝑥2 models the amount of predators. The RHS-
function 𝒇 is given by:

𝒇(𝒙) = (
𝛼𝑥1 − 𝛽𝑥1𝑥2
𝛿𝑥1𝑥2 − 𝛾𝑥2) , (III.153)

with the constants:

𝛼 = 0.1, 𝛽 = 0.3, 𝛾 = 0.5, 𝛿 = 0.5. (III.154)

The initial condition is given by:

𝒙0 = (1, 1) . (III.155)

This problem contains one parameter 𝑐, which corresponds to the number of cycles to be inte-
grated. The solution to Lotka–Volterra, 𝑐 = 4 can be seen in Figure III.32.
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Figure III.32. The solution to Lotka–Volterra, 𝑐 = 4 as a function of time.
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III.3.13. Problem 13: The flame propagation problem

This problem is a simple model of how the radius of a flame changes when a match is lit. In
the beginning the radius grows rapidly until the flame reaches a steady state due to oxygen
consumption limitations.

The mathematical formulation is the following:

𝑥̇ = 𝑓(𝑥), 𝑥(0) = 𝑥0,

where

𝑥 ∈ ℝ, 0 ≤ 𝑡 ≤ 2
𝑥0

.

The RHS-function 𝑓 is given by:

𝑓(𝑥) = 𝑥2 − 𝑥3. (III.156)

The initial condition is given by:

𝑥0 = 10−𝛼 , 𝛼 > 0. (III.157)

By varying 𝛼, we can vary the stiffness of the equation (the greater the 𝛼, the stiffer the equation).
The solution to Flame propagation for four different 𝛼’s can be seen in Figure III.33.
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Figure III.33. The solution to Flame propagation with 𝛼 = 1, 2, 3 and 5 as a function of
time.
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III.3.14. Problem 14: The decaying exponential problem

Decaying exponential is commonly known as the test equation. It is an easy problem, used to
make basic tests. In physics it is used to describe radioactive decay.

The mathematical formulation is the following:

𝑥̇ = 𝑓(𝑥), 𝑥(0) = 𝑥0,

where

𝑥 ∈ ℝ, 0 ≤ 𝑡 ≤ 10.

The RHS-function 𝑓 is given by:

𝑓(𝑥) = −𝑑𝑥. (III.158)

By varying 𝑑, we can vary the stiffness of the equation (the greater the 𝑑, the stiffer the equation).
The initial condition is given by:

𝑥0 = 1. (III.159)

The solution to Decaying exponential for two different 𝑑’s can be seen in Figure III.34.
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Figure III.34. The solution to Decaying exponential for 𝑑 = 1 and 𝑑 = 10 as a function of
time.
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III.3.15. Problem 15: The two exponentials problem

Two exponentials (TE) is the two dimensional version of decaying exponential, which makes it a
little harder, though is still regarded as an easy problem to solve.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ2, 0 ≤ 𝑡 ≤ 10.

The RHS-function 𝒇 is given by:

𝒇(𝒙) =
⎛
⎜
⎜
⎝

𝜆1 + 𝜆2
2 𝑥1 + −𝜆1 + 𝜆2

2 𝑥2
−𝜆1 + 𝜆2

2 𝑥1 + 𝜆1 + 𝜆2
2 𝑥2

⎞
⎟
⎟
⎠

, (III.160)

where 𝜆1 and 𝜆2 are the two corresponding eigenvalues. Belonging to this problem is the initial
condition:

𝒙0 = (0, 2)𝑇 . (III.161)

The solution to TE for four different combinations of 𝜆1 and 𝜆2 can be seen in Figure III.35.
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Figure III.35. The solution to Two Exponentials for four different combinations of 𝜆1 and
𝜆2 as a function of time.
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III.3.16. Problem 16: The Lorenz problem

The Lorenz problem was developed in 1963 by Edward Lorenz, and is a simplified model of atmo-
spheric convection. The solution is known to be chaotic.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ3, 0 ≤ 𝑡 ≤ 7 s.

The RHS-function 𝒇 is given by:

𝒇(𝒙) =
⎛
⎜
⎜
⎝

−𝜎(𝑥1 − 𝑥2)
𝑥1(𝜆 − 𝑥3) − 𝑥2

𝑥1𝑥2 − 𝑏𝑥3

⎞
⎟
⎟
⎠

, (III.162)

where 𝑏 = 8/3, 𝜆 = 28 and 𝜎 = 10. The initial condition is:

𝒙0 = (−8, 8, 27)𝑇 . (III.163)

The solution to Lorenz can be seen in Figure III.36.
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Figure III.36. The solution to Lorenz as a function of time.
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III.3.17. Problem 17: The Brusselator problem

This problem originates from chemistry. More precisely, it models a type of autocatalytic reaction,
for example, the clock reaction. The system was developed by Ilya Prigogine and his team at the
Université Libre de Bruxelles.

The mathematical formulation is the following:

𝒙̇ = 𝒇(𝒙), 𝒙(0) = 𝒙0,

where

𝒙 ∈ ℝ2, 0 ≤ 𝑡 ≤ 20.

The RHS-function 𝒇 is given by:

𝒇(𝒙) = (
𝐴 + 𝑥2

1𝑥2 − (𝐵 + 1)𝑥1
𝐵𝑥1 − 𝑥2

1𝑥2 ) , (III.164)

where 𝐴 = 2 and 𝐵 = 8.533. The initial condition is given by:

𝒙0 = (1, 4.2665)𝑇 . (III.165)

The solution to Brusselator can be seen in Figure III.37.
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Figure III.37. The solution to Brusselator as a function of time.
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III.3.18. Overview of the test problems

The test problems are categorized into three categories:

Cat. 1: stiff – Test problems that are always stiff. We solve these with a stiff solver.

Cat. 2: both – These problems have one parameter. Depending on the value of the pa-
rameter, the problem can go from being stiff to being non-stiff.

Cat. 3: non-stiff – Test problems that are always non-stiff. We solve these with a non-stiff
solver.

To get an overview of all the test problems and their most important qualities see Table III.6,
Table III.7 and Table III.8. Listed in the tables are the following things:

Nbr – The number of the test problem corresponding to this article.

Name – The name of the test problem corresponding to this article.

𝑛 – The size of the equation system corresponding to the problem.

𝑠min – The minimum value of the stiffness indicator 𝑠(𝑡) in the interval [𝑡0, 𝑡f ].
̂𝑠min – The minimum value of the normalized stiffness indicator ̂𝑠(𝑡) in the interval [𝑡0, 𝑡f ].

𝛿𝑡 – The integration time.

Free par. – The free parameter belonging to the problem. This is only listed in Table III.7.

Table III.6. Summary of all test problems belonging to the category stiff. The following can
be found here: Problem number, problem name, system size, stiffness indicator, normalized
stiffness indicator and integration time.

Nbr Name Free par. 𝑛 𝑠min ̂𝑠min 𝛿𝑡
1 HIRES — 8 −1.1 ⋅ 102 −3.5 ⋅ 104 322
2 Pollution — 20 −2.2 ⋅ 1011 −1.32 ⋅ 1013 60
3 Ring modulator — 15 −5.4 ⋅ 1010 −5.4 ⋅ 107 10−3

4 Medical Akzo Nobel 𝑁 = 200 400 −4.5 ⋅ 103 −9.0 ⋅ 104 20
5 EMEP — 66 −4.3 ⋅ 108 −1.7 ⋅ 1014 403200
9 Oregonator — 3 −6.8 ⋅ 104 −2.4 ⋅ 107 360
10 Robertson — 3 −5.0 ⋅ 103 −5.0 ⋅ 1014 1011

11 E5 — 4 −1.0 ⋅ 104 −1.0 ⋅ 1017 1013
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Table III.7. Summary of all test problems belonging to the category both. The following can
be found here: Problem number, problem name, system size, stiffness indicator, normalized
stiffness indicator and integration time.

Nbr Name Free par. 𝑛 𝑠min ̂𝑠min 𝛿𝑡
8 Van der Pol 𝜇 = 1 2 −1.5 −6.0 4

𝜇 = 10 2 −1.5 ⋅ 101 −6.0 ⋅ 102 40
𝜇 = 100 2 −1.5 ⋅ 102 −6.0 ⋅ 104 400
𝜇 = 1000 2 −1.5 ⋅ 103 −6.0 ⋅ 106 4000

13 Flame propagation 𝛼 = 1 1 −1.0 −2.0 ⋅ 101 2 ⋅ 101

𝛼 = 2 1 −1.0 −2.0 ⋅ 102 2 ⋅ 102

𝛼 = 3 1 −1.0 −2.0 ⋅ 103 2 ⋅ 103

14 Decaying exponential 𝑝 = 1 1 −1.0 −1.0 ⋅ 101 10
𝑝 = 10 1 −10.0 −1.0 ⋅ 102 10
𝑝 = 100 1 −100.0 −1.0 ⋅ 103 10
𝑝 = 1000 1 −1000.0 −1.0 ⋅ 104 10

15 Two exponentials 𝜆 = −1 2 −1.0 −1.0 ⋅ 101 10
𝜆 = −10 2 −10.0 −1.0 ⋅ 102 10
𝜆 = −100 2 −100.0 −1.0 ⋅ 103 10
𝜆 = −1000 2 −1000.0 −1.0 ⋅ 104 10

Table III.8. Summary of all test problems belonging to the category non-stiff. The follow-
ing can be found here: Problem number, problem name, system size, stiffness indicator,
normalized stiffness indicator and integration time.

Nbr Name Free par. 𝑛 𝑠min ̂𝑠min 𝛿𝑡
6 Pleiades — 28 −7.3 ⋅ 10−11 −2.2 ⋅ 10−10 3
7 Beam 𝑁 = 40 80 −3.1 ⋅ 10−4 −1.5 ⋅ 10−3 5
12 Lotka–Volterra 𝑐 = 2 2 −4.7 −9.4 2
16 The Lorenz problem — 3 −6.3 −4.4 ⋅ 101 7
17 Brusselator — 2 −7.2 −1.4 ⋅ 102 20
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III.4. Benchmarking – Tests

This section consists of different kinds of tests created to analyze the solvers (those of fixed
order) in different ways. It can be used as a guide for how our software may by used to analyze
different aspects of the behavior of a method and a filter, and also the combination of them. The
first two tests will evaluate their overall functionality and answer questions about numerical
stability, accuracy, filter behavior, robustness, and tolerance and work proportionality. We will
use Section II.5 as a checklist.

The last test will show what happens in the explicit solver when a problem (decaying exponent)
is made stiffer. Interesting to see is how the filters behave when stability becomes an issue, and
find out if any of the filters behave better than others.

Table II.1 and Table II.2 show the collection of methods and filters that our libraries supply, and
Section III.3 contains all problems implemented in our problem library. Due to space limitation,
we only submit solutions of a few combinations.

III.4.1. Test 1: Stability and accuracy

For this test we need three periodic problems; one for each solver. We choose Lotka–Volterra,
Van der Pol, 𝜇 = 10 and Oregonator, mostly since the solutions of these problems are well-known.
In all three cases, we solve the problems for a few periods. The chosen settings are given in
Table III.9.

Table III.9. Settings for the solvers pmme, pmmip and pmmi in test 1. For plots of the results
see Figure III.38, III.39 and III.40.

pmme pmmip pmmi

problem Van der Pol, 𝜇 = 10 Lotka–Volterra Oregonator
filtername H211PI H211𝑏 H312𝑏
methodname AB5 IDC34 BDF5
tol 1e-6 1e-7 1e-7
perc [0.8, 1.2] [0.8, 1.2] [0.8, 1.2]
relerr false false false
unit false false false
usebypass true true true
norm ‖ ∙ ‖∞ ‖ ∙ ‖∞ ‖ ∙ ‖∞
reference ode113 ode113 ode15s

In this test we study the six following things (see Figure III.38, III.39 and III.40 for plots of the
results):

1. The solution over time, 𝒙(𝑡).
2. The stiffness over time, 𝑠(𝑡): Calculated as explained in Section III.2.

3. The step-size over time, ℎ(𝑡): Discretized version, ℎ𝑛, is calculated according to

ℎ𝑛 = 𝑡𝑛+1 − 𝑡𝑛. (III.166)
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4. The step-size ratio over time, 𝑟(𝑡): Discretized version, 𝑟𝑛, is calculated according to

𝑟𝑛 = ℎ𝑛+1/ℎ𝑛. (III.167)

5. The absolute error over time, 𝐸abs(𝑡): This is calculated post-integration and is given by

𝐸abs(𝑡) = ‖𝒙(𝑡) − 𝒙ref (𝑡)‖∞, (III.168)

where 𝑥 is the solution given by the solver and 𝒙ref is the reference solution, that is, the
analytical solution, if this exists, otherwise the solution of the reference solver used.

6. The control error over time, 𝐸cont(𝑡): This is calculated mid-integration, in every time step.
It is an estimation of the local error, and if the filter is working properly, this should be
kept at the supplied tolerance TOL. This quantity is calculated according to

𝐸cont(𝑡) = ‖𝒙(𝑡) − 𝒙pred(𝑡)‖∞, (III.169)

where 𝑥 is the solution given by the main method and 𝒙pred is the solution given by the
predictor. Note that this is only the case when the option relerr in the solver is set to
false. In the case of this being true, the control error is further devided by ‖𝒙(𝑡)‖∞. More
about this quantity can be found at Section II.6 where it is referred to as error estimate.

The first step is to check that the overall appearance of the solutions is correct. As can be seen,
this is the case, which can be verified by comparison with the figures in Subsection III.3.8, Sub-
section III.3.12 and Subsection III.3.9. The rest of the problems, given in Section III.3, have been
tested as well, but due to space limitations these results will be omitted.

Since the solutions of the given problems are periodic, we expect the corresponding step-size
curves, step-size ratio curves and control error curves to behave periodically ⁵ as well, with the
period

𝑇 = 𝑇sol
𝑘 , (III.170)

where 𝑇sol is the period of the solution and 𝑘 ∈ ℤ+. If this is not the case, the solver is not
working properly. By studying the graphs, we see that our results are satisfactory in this regard.

The task of the error controller is to keep the control error at the set-point 𝜖, in our case the
supplied tolerance TOL, at all times, which for the solution ideally means that the local error is
kept at the given tolerance. In the case of Van der Pol and Lotka–Volterra, the control error is kept
in the interval ∼ [TOL ⋅ 0.1, TOL ⋅ 10], which is a proper behavior. In the case of Oregonator, the
filter has a little bit of trouble at the stiffness peaks, however, it stabilizes around 𝐸cont = TOL
quickly afterwards, which is a good sign. The most problematic part for the filter is where the
stiffness changes rapidly as in Figure III.40. This due to the fact that the filter will try to stabilize
the step-size ℎ such that 𝜆𝑖ℎ for all 𝑖, where 𝜆𝑖 is the 𝑖th eigenvalue of the problem, is stable
in relation to the stability region and the error constant of the method. When the eigenvalues
of the problem then moves rapidly from this “stable spot” in the complex plane, the error will
also change rapidly creating those peaks. The faster this change happens, the harder it is for the
filter to counteract it. If the big error change is created in one time step, then the filter has no

⁵Since we deal with numerics, periodic in this sense means almost periodic, that is, a few bumps may exist.
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chance of adapting in the same step due to how we choose to reject. It can only prevent it from
being even worse in the next time step. Interesting to investigate further, is what happens when
different filters and methods are used on this problem to see if the peaks can be reduced.

By comparing the stiffness plots with the corresponding step-size plots, we see that they con-
form very well. When the problem gets stiffer, the step-size gets smaller, and the other way
around. This is what we expect will happen according to the “symptom” of stiffness mentioned
in Section III.2.

A control system is working at best when not tampered with. If limits are supplied, something
called windup can arise making the controller behave badly and even making the process un-
stable. To prevent this, one can apply some anti-windup scheme, and it is important to check
that this scheme will help the controller to reach a stable state again. In our control system we
have two in-signals, previous step-size ratios and previous control errors, and one out-signal, the
new step-size ratio. Two limits are applied to the out-signal, namely 𝑟min and 𝑟max. These two
values are denoted in the step-size ratio graphs as dashed horizontal lines. When the step-size
ratio hits one of the given limits, special parts of the code are entered. To avoid bad behavior
in the controller, our anti-windup scheme is activated (see Subsection II.8.7) ⁶. In Figure III.40
the step-size ratio hits the roof, 𝑟max, but as can be seen, the filter handles this adequately. An
interesting thing to further experiment with is the anti-windup scheme. We have only tried the
one we are using right now, but it might be interesting to compare this scheme to other schemes.

⁶note that the anti-windup scheme can be turned off by setting the solver option usebypass to false
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Figure III.38. Results for Problem 8 – Van der Pol, 𝜇 = 10 using pmme, AB5, H211PI and
TOL = 10−6. The rest of the solver settings can be found in Table III.9, Column 1. The
dashed lines in the sub-figure titled step-size ratio, 𝑟(𝑡) are the values of the limits 𝑟min
and 𝑟max (see Subsection II.8.3 for more information), and the dashed lines in the error
figures correspond to the supplied tolerance. The step-size, step-size ratio and control error
is behaving periodically with an appropriate period. When the problem gets stiffer, the
step-size becomes smaller and the other way around. The control error is kept around the
set-point 𝜖 = TOL. The global absolute error stays around the tolerance as well (except at
the stiffness peaks), however one can see a small drift-off.
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Figure III.39. Results for Problem 12 – Lotka–Volterra using pmmip, IDC34, H211𝑏 and
TOL = 10−7. The rest of the solver settings can be found in Table III.9, Column 2. The
dashed lines in the sub-figure titled step-size ratio, 𝑟(𝑡) are the values of the limits 𝑟min
and 𝑟max (see Subsection II.8.3 for more information), and the dashed lines in the error
figures correspond to the supplied tolerance. The step-size, step-size ratio and control error
is behaving periodically with an appropriate period. When the problem gets stiffer, the
step-size becomes smaller and the other way around. The control error is kept around the
set-point 𝜖 = TOL. The global absolute error one can see drift-off.
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Figure III.40. Results for Problem 9 – Oregonator using pmmi, BDF5, H312𝑏 and TOL =
10−7. The rest of the solver settings can be found in Table III.9, Column 3. The dashed lines
in the sub-figure titled step-size ratio, 𝑟(𝑡) are the values of the limits 𝑟min and 𝑟max (see Sub-
section II.8.3 for more information), and the dashed lines in the error figures correspond
to the supplied tolerance. The step-size, step-size ratio and control error is behaving peri-
odically with an appropriate period. When the problem gets stiffer, the step-size becomes
smaller and the other way around. The control error is kept around the set-point 𝜖 = TOL.
The global absolute error stays around the tolerance as well (except at the stiffness peaks),
however one can see a small drift-off.

118



III.4. BENCHMARKING – TESTS

III.4.2. Test 2: Tolerance and work proportionality

In this test we will examine how the accuracy of a solution and the work to create it, when
using different combinations of solvers, methods, filters and problems, behaves as a function of
the supplied tolerance. The accuracy will be measured by the absolute error 𝐸 (in the discrete
𝐿1-norm) and the work will be measured by the total number of steps 𝑛.
The error 𝐸 in this test is calculated using a reference solution, which is either the analytical
solution of the problem, or the solution created by a reference solver (Matlab’s ode113 in the
non-stiff case and Matlab’s ode15s in the stiff case). Let us call the solution from our solver at
time 𝑡𝑖, 𝒙𝑖, the reference solution at the same time point 𝒙ref

𝑖 , and the absolute error between
these two values measured in ‖ ∙ ‖∞, 𝑒𝑖. The accuracy of a solution at one specific tolerance is
then given by the middle Riemann sum of the values 𝑒𝑖, divided by the total time interval of the
problem, that is,

𝑒𝑖 = ‖𝒙ref
𝑖 − 𝒙𝑖‖∞, 𝑖 = 1, … , 𝑛, (III.171)

𝐸 = 1
𝑡𝑛 − 𝑡1

⋅
𝑛−1

∑
𝑖=1 (

𝑒𝑖 + 𝑒𝑖+1
2 ) ⋅ (𝑡𝑖+1 − 𝑡𝑖). (III.172)

The tolerances are chosen according to

TOL = 10−𝑦, 𝑦 ∈ ℝ+, (III.173)

where the values of 𝑦 are chosen equally spaced, starting at 𝑦min and ending at 𝑦max. The number
of tolerances is set to 100.
We choose a few of all combinations of solvers, methods, filters and problems to show here. The
chosen combinations and corresponding setting can be found in Table III.10, whereas plots of the
results are found in Figure III.41 – III.52. It is important to note that during this test, almost all
combinations of methods, filters and problems were tried. However, since this results in a very
large amount of combinations, all of them could not be displayed here.

As discussed in Section II.5, we know that the relation between the accuracy 𝐸 and the supplied
tolerance TOL of a well behaving solver should be approximately

log(𝐸) = 𝑘 log(TOL) + log(𝑚), (III.174)

where 𝑘 and 𝑚 ideally equals 1. Furthermore, the important part is that the relation between
log(𝐸) and log(TOL) is approximately linear, since the rest, i.e., 𝑘 and log(𝑚) can be adjusted
by tolerance scaling and tolerance calibration. As can be seen in the accuracy vs tolerance plots,
all curves are approximately linear. But, the slope of the curves are not exactly 1, neither are
the slopes the same for methods of different orders, or for different problems. The key to this is
that error per step is used and not error per unit step. First of all, what we supply is a tolerance
which we would like to be equal to the global error at every time step. But, we can not estimate
the global error mid-integration, so what we do is that we estimate the local error instead and
hope that this will be a good enough estimation of the global error. This local error estimation is
given to the controller with which it is trying to match the tolerance. Since the filter is actually
controlling the local error — and not the global error as we would like — these local errors will
accumulate for every step taken. This will lead to a drift-off from

log(𝐸) = log(TOL) (III.175)
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Table III.10. Solver settings for pmme, pmmip and pmmi during test 2. AS is short for Ana-
lytical Solution.

Settings pmme pmmip pmmi

filters H211PI, H211𝑏, H211PI, H211𝑏, H211PI, H211𝑏,
PI3333, PI3040, PI3333, PI3040, PI3333, PI3040,
PI4020, H312𝑏 PI4020, H312𝑏 PI4020, H312𝑏

methods AB2–AB5 AM2–AM5 BDF2–BDF5
EDF2–EDF5

nbroftols 100 100 100
𝑘min 4 4 4
𝑘max 10 10 10
perc [0.8, 1.2] [0.8, 1.2] [0.8, 1.2]
unit false false false
usebypass true true true
reference ode113 (or AS) ode113 (or AS) ode15s (or AS)

to

log(𝐸) = 𝑘 log(TOL) (III.176)

where the slope 𝑘 is roughly only depending on the number of steps taken. This would also
explain the trend that the higher the order of the method, the higher the slope of the curve. Of
course, this is only a simplified model of the whole process. The reality is a bit more complicated.

The hypothesis is that the term log(𝑚) mainly comes from the fact that we are not using the real
local error, but a rough estimation of it. As a local error estimate, we use (in our implementation)

‖𝒙𝑛 − 𝒙pred
𝑛 ‖∞, (III.177)

though, as can be read about in Subsection II.6.2, a better approximation of the local error in the
case of pmme, is in fact Equation II.46. By using this estimate instead, the term log(𝑚) would
probably be reduced.

As told before, 𝑘 and log(𝑚) can be adjusted for afterwards by tolerance scaling and tolerance
calibration. But, since the different problems and different methods will create different values of
𝑘 and log(𝑚), to make it perfect, this scaling and calibrationmust be applied to every combination
of method and problem.

The curves corresponding to one specific method in combination with different filters, should,
if working properly, look about the same. The number of steps should be approximately the
same, leading to the same relation between log(𝐸) and log(TOL). This behavior can be seen
in the figures. The more stringent the tolerance, the more alike the different filter curves are,
and in most figures they can not be separated at all. Of course, if the combination of solver,
method, filter and problem is bad, this would not be the case any more, however, so far no such
combination has been found. The only things found so far, that are not working properly, are
the methods AB𝑥 (𝑥 > 5), EDF𝑥 (𝑥 > 5) and BDF6. It is believed that the reason for the explicit
methods (AB and EDF) behaving badly, is that they have relatively small stability regions. In
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the case of BDF6, we know that this method is barely zero-stable, which might be the reason
for the improper behavior when used in combination with the solver. These methods have been
used in combination with different filters and problems, however no special connection between
which combinations work and which do not work has been found. They have also been used in
combination with a smaller step size ratio interval, however this did not seem to improve the
results. A further investigation using these methods needs to be done.

The corresponding work vs tolerance plots (see Figure III.41—III.52) are good. The lines are
straight with a negative slope. The lower the order of the method, the more steps are needed just
as expected. It can also be seen that the more stringent the tolerance is, the bigger the difference
between the work of the methods with different order is. For example, in the case of Figure III.41,
at TOL = 10−10 AB4 takes about 4, 5 times as many steps as AB5, and at TOL = 10−4 only about
2 times as many steps. Also, (in the case of pmme) a small difference when using two different
methods of the same order (AB𝑥 and EDF𝑥) can be seen, which can be explained by the fact that
the different methods have slightly different stability regions and error constants.
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Figure III.41. Accuracy vs tolerance and work vs tolerance of Brusselator with solver pmme.
The methods used are AB2–AB5 and EDF2–EDF5 and the filters used are H211PI, H211𝑏,
PI3333, PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10. The
different line shades, separate the different method orders, meaning that, for example, the
line shade corresponding to method order 2 displays the methods AB2 and EDF2 in com-
bination with the different filters stated above. This means that in every shade there are
12 lines, however in most cases only two can be seen: one for ABx and one for EDFx. The
reason for this is that the different filters in combination with a special method will behave
in about the same way in these regards and therefore no difference between the lines can
be seen. The lines in both plots are almost perfectly straight, which is a sign of robustness.
In the case of 𝑝 = 5 in the accuracy vs tolerance plot, one can see that the lines are starting
to wobble at looser tolerances in the accuracy vs tolerance plot.
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Figure III.42. Accuracy vs tolerance and work vs tolerance of Decaying exponent, 𝑑 = 1
with solver pmme. The methods used are AB2–AB5 and EDF2–EDF5 and the filters used are
H211PI, H211𝑏, PI3333, PI3040, PI4020 and H312𝑏. As a reference, the analytical solution is
used. More solver settings can be found in Table III.10. The different line shades, separate
the different method orders, meaning that, for example, the line shade corresponding to
method order 2 displays the methods AB2 and EDF2 in combination with the different
filters stated above. This means that in every shade there are 12 lines, however in most
cases only two can be seen: one for ABx and one for EDFx. The reason for this is that the
different filters in combination with a special method will behave in about the same way in
these regards and therefore no difference between the lines can be seen. The lines in both
plots are almost perfectly straight, which is a sign of robustness. In the case of 𝑝 = 5 in the
accuracy vs tolerance plot, one can see that the different filter lines are starting to separate
at looser tolerances.
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Figure III.43. Accuracy vs tolerance and work vs tolerance of Lotka–Volterra with solver
pmme. The methods used are AB2–AB5 and EDF2–EDF5 and the filters used are H211PI,
H211𝑏, PI3333, PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10.
The different line shades, separate the different method orders, meaning that, for example,
the line shade corresponding to method order 2 displays the methods AB2 and EDF2 in
combination with the different filters stated above. This means that in every shade there
are 12 lines, however in most cases only two can be seen: one for ABx and one for EDFx.
The reason for this is that the different filters in combination with a special method will
behave in about the same way in these regards and therefore no difference between the
lines can be seen. The lines in both plots are almost perfectly straight, which is a sign of
robustness. In the accuracy vs tolerance plot one can start to notice splitting of the filter
lines at looser tolerances.
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Figure III.44. Accuracy vs tolerance and work vs tolerance of Van der Pol, 𝜇 = 1 with solver
pmme. The methods used are AB2–AB5 and EDF2–EDF5 and the filters used are H211PI,
H211𝑏, PI3333, PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10.
The different line shades, separate the different method orders, meaning that, for example,
the line shade corresponding to method order 2 displays the methods AB2 and EDF2 in
combination with the different filters stated above. This means that in every shade there
are 12 lines, however in most cases only two can be seen: one for ABx and one for EDFx.
The reason for this is that the different filters in combination with a special method will
behave in about the same way in these regards and therefore no difference between the
lines can be seen. The lines in both plots are almost perfectly straight, which is a sign of
robustness.
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Figure III.45. Accuracy vs tolerance andwork vs tolerance ofBrusselator with solver pmmip.
The methods used are AM2–AM5 and the filters used are H211PI, H211𝑏, PI3333, PI3040,
PI4020 and H312𝑏. More solver settings can be found in Table III.10. The different line
shades, separate the different method orders, meaning that, for example, the line shade
corresponding to method order 3 displays the method AM2 in combination with the differ-
ent filters stated above. This means that in every shade there are 6 lines, however in most
cases only one can be seen: one for AMx. The reason for this is that the different filters in
combination with a special method will behave in about the same way in these regards and
therefore no difference between the lines can be seen. The lines in both plots are almost
perfectly straight, which is a sign of robustness. In the case of 𝑝 = 6 in the accuracy vs
tolerance plot, one can see the splitting of the different filter lines. The looser the tolerance,
the more the splitting and wobble of the lines.
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Figure III.46. Accuracy vs tolerance and work vs tolerance of Decaying exponent, 𝑑 = 1
with solver pmmip. Themethods used are AM2–AM5 and the filters used are H211PI, H211𝑏,
PI3333, PI3040, PI4020 and H312𝑏. As a reference, the analytical solution is used. More
solver settings can be found in Table III.10. The different line shades, separate the different
method orders, meaning that, for example, the line shade corresponding to method order
3 displays the method AM2 in combination with the different filters stated above. This
means that in every shade there are 6 lines, however in most cases only one can be seen:
one for AMx. The reason for this is that the different filters in combination with a special
method will behave in about the same way in these regards and therefore no difference
between the lines can be seen. The lines in both plots are almost perfectly straight, which
is a sign of robustness. At looser tolerances in the accuracy vs tolerance plot, one can start
to see splitting between the filter lines. In the work vs tolerance plot, one start to notice
that AM5 lines get flattened out at looser tolerances.
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Figure III.47. Accuracy vs tolerance and work vs tolerance of Lotka–Volterra with solver
pmmip. The methods used are AM2–AM5 and the filters used are H211PI, H211𝑏, PI3333,
PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10. The different
line shades, separate the different method orders, meaning that, for example, the line shade
corresponding to method order 3 displays the method AM2 in combination with the differ-
ent filters stated above. This means that in every shade there are 6 lines, however in most
cases only one can be seen: one for AMx. The reason for this is that the different filters in
combination with a special method will behave in about the same way in these regards and
therefore no difference between the lines can be seen. The lines in both plots are almost
perfectly straight, which is a sign of robustness. In the case of 𝑝 = 6 in the accuracy vs
tolerance plot, one can see that the filter lines are a little bend around TOL = 10−9. One
can also notice that the same lines are starting to wobble at looser tolerances.
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Figure III.48. Accuracy vs tolerance and work vs tolerance of Van der Pol, 𝜇 = 1 with
solver pmmip. The methods used are AM2–AM5 and the filters used are H211PI, H211𝑏,
PI3333, PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10. The
different line shades, separate the different method orders, meaning that, for example, the
line shade corresponding to method order 3 displays the method AM2 in combination with
the different filters stated above. This means that in every shade there are 6 lines, however
in most cases only one can be seen: one for AMx. The reason for this is that the different
filters in combination with a special method will behave in about the same way in these
regards and therefore no difference between the lines can be seen. The lines in both plots are
almost perfectly straight, which is a sign of robustness. In the case of 𝑝 = 6 in the accuracy
vs tolerance plot, one can see that the lines are starting to wobble at looser tolerances.
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Figure III.49. Accuracy vs tolerance and work vs tolerance of Decaying exponent, 𝑑 = 100
with solver pmmi. Themethods used are BDF2–BDF5 and the filters used areH211PI, H211𝑏,
PI3333, PI3040, PI4020 and H312𝑏. As a reference, the analytical solution is used. More
solver settings can be found in Table III.10. The different line shades, separate the different
method orders, meaning that, for example, the line shade corresponding to method order
2 displays the method BDF2 in combination with the different filters stated above. This
means that in every shade there are 6 lines, however in most cases only one can be seen:
one for BDFx. The reason for this is that the different filters in combination with a special
method will behave in about the same way in these regards and therefore no difference
between the lines can be seen. The lines in both plots are almost perfectly straight, which
is a sign of robustness. In the case of 𝑝 = 5 in the work vs tolerance plot, one can see that
the lines are getting flattened out at looser tolerances.

130



III.4. BENCHMARKING – TESTS

10−9

10−8

10−7

10−6

10−5

10−4

10−3

A
bs
ol
ut
e
Er
ro
r

Hires with pmmi

10−10 10−9 10−8 10−7 10−6 10−5 10−4

102

103

104

Tolerance

W
or
k

𝑝 = 2
𝑝 = 3
𝑝 = 4
𝑝 = 5

Figure III.50. Accuracy vs tolerance and work vs tolerance of Hires with solver pmmi.
The methods used are BDF2–BDF5 and the filters used are H211PI, H211𝑏, PI3333, PI3040,
PI4020 and H312𝑏. More solver settings can be found in Table III.10. The different line
shades, separate the different method orders, meaning that, for example, the line shade
corresponding to method order 2 displays the method BDF2 in combination with the dif-
ferent filters stated above. This means that in every shade there are 6 lines, however in most
cases only one can be seen: one for BDFx. The reason for this is that the different filters in
combination with a special method will behave in about the same way in these regards and
therefore no difference between the lines can be seen. The lines in both plots are almost
perfectly straight, which is a sign of robustness. In the case of 𝑝 = 5 in the accuracy vs
tolerance plot, one can see that the filter lines are splitting, and at looser tolerances they
even start to wobble a little. This phenomenon can also be seen in the case of 𝑝 = 4, but it
is not as clear.
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Figure III.51. Accuracy vs tolerance and work vs tolerance of Oregonator with solver pmmi.
The methods used are BDF3–BDF5 and the filters used are H211PI, H211𝑏, PI3333, PI3040,
PI4020 and H312𝑏. More solver settings can be found in Table III.10. The different line
shades, separate the different method orders, meaning that, for example, the line shade
corresponding to method order 3 displays the method BDF3 in combination with the dif-
ferent filters stated above. This means that in every shade there are 6 lines, however in
most cases only one can be seen: one for BDFx. The reason for this is that the different
filters in combination with a special method will behave in about the same way in these
regards and therefore no difference between the lines can be seen. The lines in both plots
are almost perfectly straight, which is a sign of robustness. In the case of 𝑝 = 5 one can see
that the lines are starting to wobble at looser tolerances in the accuracy vs tolerance plot.
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Figure III.52. Accuracy vs tolerance and work vs tolerance of Van der Pol, 𝜇 = 100 with
solver pmmi. The methods used are BDF3–BDF5 and the filters used are H211PI, H211𝑏,
PI3333, PI3040, PI4020 and H312𝑏. More solver settings can be found in Table III.10. The
different line shades, separate the different method orders, meaning that, for example, the
line shade corresponding to method order 3 displays the method BDF3 in combination with
the different filters stated above. This means that in every shade there are 6 lines, however
in most cases only one can be seen: one for BDFx. The reason for this is that the different
filters in combination with a special method will behave in about the same way in these
regards and therefore no difference between the lines can be seen. The lines in both plots
are almost perfectly straight, except in the accuracy vs tolerance plot at looser tolerances.
Here we see that we reach a plateau, however, notice that the corresponding accuracy at
these tolerances is really low (∼ 10−1).
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III.4.3. Test 3: Stiffness test on solver pmme

In this section we will analyze the solver pmme. We will only use the decaying exponent (see
problem in Subsection III.3.14), though we will vary the stiffness of it. The reason for using this
problem is that it has only one eigenvalue, 𝜆 = −𝑑, which is constant over time, and it has a
known analytical solution which makes it possible to calculate the actual global error created by
the solver. The methods used are AB2 – AB5, EDF2 – EDF5, and the corresponding (fixed step-
size) stability regions and (fixed step-size) error constants can be found in Figure II.4, II.5 and
II.6.

The questions we would like to answer in this section are “What happens with the accuracy vs
tolerance and work vs tolerance when we decrease the eigenvalue from 𝜆 = −1 to 𝜆 = −10?”,
“Are these changes the same for all methods and filters?” and “Can these changes be explained
by theory?”. The solver settings used during this test, can be found in Table III.11.

Table III.11. Solver settings in Test 3

Settings Values

solver pmme
methods AB2 - AB5, EDF2 - EDF5
filters H211PI, H211𝑏, PI3333, PI3040, PI4020 and H312𝑏
nbroftols 100
perc [0.8, 1.2]
unit false
usebypass false
reference analytical solution

The accuracy will be measured in absolute error 𝐸 and the work will be measured in total number
of steps 𝑛 just as in the previous test, and will be calculated accordingly as well.

According to Figure III.53 (Row 1), we obtain a nice result in the non-stiff case. However, when
the problem is made stiffer, we are starting to see some strange behavior. We start to analyze
the work vs tolerance plot (Figure III.53, Row 2, Column 2). For the methods of order 2 (AB2 and
EDF2), the result is still good. We are given a straight line with a constant slope just as in the
non-stiff case. For the higher order methods, we see that the slope of the lines are approaching
0 when the tolerance is made looser. The higher the order of the method, the sooner (at stricter
tolerance) this phenomenon occurs. This fact can be explained by the following: The looser the
tolerance, the longer the steps. For higher order methods the steps taken are generally longer
and the stability region smaller, which means that the stability region border will be reached
“earlier” when the tolerance is increased. When this border is hit, the steps can not be made any
longer, which creates the flattening of the curves. Already at TOL = 10−10, EDF5 and AB5 take
as long steps as possible (the stability boarder is hit). By using the stiff solver instead, this effect
should disappear. Further, in the case of 𝑝 = 5, the method curves — all curves corresponding to
AB5 and all curves corresponding to EDF5 — are not at all the same unlike the non-stiff case. The
lines corresponding to EDF5 (the lines going through the point (1 ⋅ 10−10, 3 ⋅ 102)) reach a lower
number of steps when the tolerance is increased, than the lines corresponding to AB5 (the lines
going through the point (1 ⋅ 10−10, 8 ⋅ 102)). This can be explained by the fact that the stability
region border for EDF5 is about 0.6, while the corresponding value in the case of AB5 is about
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0.2. This method splitting phenomenon can also be seen in the case of 𝑝 = 4, however it is not
as clear.

In the case of the accuracy vs tolerance plot (Figure III.53, Row 2, Column 1) we see straight
lines with small wiggles. In the case of 𝑝 = 2, we do not see much wiggling, however, for the
higher order methods we start to see a lot of wiggles. A hypothesis is that the wiggles can
be explained by the fact that we reach the step-size ratio limits during the integration leading to
rejections. At different tolerances these rejections will be reached at different time points, leading
to both a different number of rejections and a variation in the behavior after the rejections. In
Figure III.54 and Figure III.55, one can see a comparison of all filters used and the methods AB3
and AB4. According to these results, PI3333, PI3040 and PI4020, seem to be better at stabilizing
the error in this case. My hypothesis is that this can be explained by the negative 𝛽2 parameter
(see Table II.2), the same parameter is positive in the other filters. This parameter will act as a
damper when the stability region is hit. The other filters will react too fast, and get an overshoot
creating an oscillation with high amplitude and high frequency. It would be interesting to see
if PI3333, PI3040 and PI4020 would give better results also in the combination of other explicit
methods and moderately stiff problems.
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Figure III.53. Decaying exponent with 𝑑 = 1 vs 𝑑 = 10. Solved with solver pmme. For a
list of all settings used see Table III.11. In the upper subfigures (Row 1), 𝑑 = 1 is used. In
the lower subfigures (Row 2), 𝑑 = 10 is used.
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Figure III.54. Problem: The test equation with 𝑑 = 10. Filters: H211PI, H211𝑏, PI3333,
PI3040, PI4020 and H312𝑏. Method: AB3. Stability region limit for AB3 is −0.5455. The
first figure shows the accuracy vs tolerance, the second one shows the control error as a
function of time at TOL = 10−7 and the third one shows the step-size ratio as a function
of time at TOL = 10−7. The filters PI3333, PI3040 and PI4020 behaves better than the rest.
The same shade is used for these well behaving filters.
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Figure III.55. Problem: The test equation with 𝑑 = 10. Filters: H211PI, H211𝑏, PI3333,
PI3040, PI4020 and H312𝑏. Methods: AB4. Stability region limit for AB4 is −0.3. The first
figure shows the accuracy vs tolerance, the second one shows the control error as a function
of time at TOL = 10−7 and the third one shows the step-size ratio as a function of time at
TOL = 10−7. The filters PI3333, PI3040 and PI4020 behaves better than the rest. The same
shade is used for these well behaving filters.
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IV.1. Theory

The reason behind changing the order in a multistep solver is to decrease the amount of work
needed to be done, and still be able to calculate a solution within a given precision. Below is
a description of an algorithm used to change order, proposed by Söderlind [24], to which some
modifications have been made.

IV.1.1. Order change for multistep methods

The main idea behind the algorithm for changing the order is to calculate how large a step can
be taken if the order is increased or decreased, and then compare this to the step-size which can
be used with the current order. If this comparison indicates a favorable outcome of changing the
order, this is done. If no performance gain is predicted, the integration continues using the same
order. In addition to the fact that a larger step-size decreases the work load, one has to factor in
that a change in order also means a change in the number of calculations needed to advance the
integrator one step, which is reflected in the algorithm by the inclusion of a work factor 𝑤𝑝.

When discussing the variable order solvers there will be multiple methods involved in each inte-
gration step: one which is used to perform the actual integration, fromwhich we get the solution
point that is output to the user, and two others which produce results only used to calculate the
possible step-sizes which could have been used, if those were the methods performing the actual
integration. To distinguish between these, the method which performs the actual integration
will be called the current order method, and the other two will be called the lower order method
and the higher order method.

The error produced by a method of order 𝑝 is given by the error model

𝑒𝑝 = 𝜑𝑝ℎ𝜅
𝑝 (IV.1)

where ℎ𝑝 is the step-size used to compute the last step, and 𝜑𝑝 is a scalar dependent on the
problem and the method used. 𝜅 will take different values, depending on how the local error is
estimated. If error per unit step is used it will be 𝜅 = 𝑝, and if error per step is used 𝜅 = 𝑝 + 1.
During the calculations, the step-size filter will produce step-size sequences for the threemethods
mentioned above, and the index 𝑝 in ℎ𝑝 denotes the order of the current order method.

Since only one step-size can be used to calculate the step, the error estimation for orders 𝑝 ± 1
will be given by

𝑒𝑝±1 = 𝜑𝑝±1ℎ𝜅±1
𝑝 (IV.2)

instead of

𝑒𝑝±1 = 𝜑𝑝±1ℎ𝜅±1
𝑝±1 . (IV.3)

This can be compensated for by multiplying with a factor

̄𝑒𝑝±1 ≡ 𝑒𝑝±1 (
ℎ𝑝±1
ℎ𝑝 )

𝜅±1
= 𝜑𝑝±1ℎ𝜅±1

𝑝 (
ℎ𝑝±1
ℎ𝑝 )

𝜅±1
. (IV.4)
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This measure prohibits a wind-up of ℎ𝑝±1 to an erroneous magnitude by making it appear as if a
step-size ℎ𝑝±1 has been used. By saving these results, it can also be used in the filter recursion
if a change of order is made, which means that no restart of the control process is needed. With
these error estimations, the error filter can calculate step-size suggestions for the orders 𝑝 and
𝑝 ± 1.

The next step is to maximize the quantity ℎ𝑝/𝑤𝑝. This is normalized by the value obtained for
the current order in use, and the relative advantage of changing order is then

𝜎𝑝±1 =
ℎ𝑝±1/𝑤𝑝±1

ℎ𝑝/𝑤𝑝
. (IV.5)

Changing the order directly based on this measurement though would lead to problems, like
chatter (the repeated changing of order up and down), and therefore further processing of this
quantity is done.

First, to measure the relative efficiency the weighted average order is defined (note that 𝜎𝑝 = 1
by definition) as

𝑠𝑝±1 ≡
(𝑝 ± 1)𝜎𝑝±1 + 𝑝𝜎𝑝

𝜎𝑝±1 + 𝜎𝑝
=

(𝑝 ± 1)𝜎𝑝±1 + 𝑝
𝜎𝑝±1 + 1 . (IV.6)

This is a weighted mean, using the relative advantages as weights. This gives a natural way to
express whether or not an order change is advantageous, by a quantity using order as the unit.
If, for example, a change to the order 𝑝 + 1 is advantageous (i.e. 𝜎𝑝+1 > 1), then 𝑠𝑝+1 > 𝑝 + 1/2.
A complete summary of what 𝑠𝑝±1 indicates can be seen in Table IV.1.

Table IV.1. This table shows how the values of 𝑠𝑝+1 and 𝑠𝑝−1 indicate whether or not an
increase or decrease in order is advantageous.

order change if advantageous if equally effective if disadvantageous
𝑝 + 1 𝑠𝑝+1 > 𝑝 + 1/2 𝑠𝑝+1 = 𝑝 + 1/2 𝑠𝑝+1 < 𝑝 + 1/2
𝑝 − 1 𝑠𝑝−1 < 𝑝 − 1/2 𝑠𝑝−1 = 𝑝 − 1/2 𝑠𝑝−1 > 𝑝 − 1/2

It is desirable, though, to have a quantity which can easily be used as part of an integrator, which
then makes the decision to change the order when its value reaches a certain threshold (this it to
make the order changing algorithm robust and to avoid chatter). Therefore the fractional order
increment is defined as

𝑑𝑝±1 ≡ 𝑠𝑝±1 − 𝑝 ∓ 1
2. (IV.7)

From Table IV.1 we see that if 𝑑𝑝+1 > 0, then an order increase is advantageous, and if 𝑑𝑝−1 < 0
then an order decrease is advantageous. If one of these inequalities is reversed, this indicates
that the current order is more advantageous than the one it is compared to. For example, if 𝑑𝑝+1
is negative, the method order 𝑝 is more advantageous than the one of order 𝑝 + 1; it does not
indicate anything about the advantage of changing to order 𝑝−1. Because of this, these quantities
should only have an influence on the integrator if they belong to the intervals indicated by the
inequalities above.
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Therefore, the order increments due to a possible advantage of changing to a lower or higher
order are calculated as

𝛿𝑝+ ≡ max(0, 4𝑑𝑝+1), 𝛿𝑝− ≡ min(0, 4𝑑𝑝−1). (IV.8)

By using the scaling factor 4, we have that for a small 𝜀,

𝜎𝑝±1 = 1 + 𝜀 ⟹ 𝛿𝑝± ≈ ±𝜀. (IV.9)

This construction also ensures that 𝛿𝑝± have upper bounds.

These measurements only compare the advantage of increasing or decreasing the order, over
maintaining the current order in use. To compare if a change to order 𝑝−1 is more advantageous
than a change to order 𝑝 + 1, the weighted average between the two is defined as

𝑠± ≡
(𝑝 + 1)𝜎𝑝+1 + (𝑝 − 1)𝜎𝑝−1

𝜎𝑝+1 + 𝜎𝑝−1
, (IV.10)

the fractional order change is defined as

𝑑± = 𝑠± − 𝑝, (IV.11)

and the incremental order change is defined as

𝛿𝑝± ≡ (
𝑑±, if (𝜎𝑝−1 − 1)(𝜎𝑝+1 − 1) < 0
0, if (𝜎𝑝−1 − 1)(𝜎𝑝+1 − 1) ≥ 0) . (IV.12)

The last definition ensures that if it is advantageous to change to one order, but not the other, then
𝛿𝑝± gets a value with the correct sign. If there is an advantage in both increasing and decreasing
the order at the same time, then no clear decision can be made, and the incremental change is set
to zero. This makes 𝛿𝑝± act as a reinforcement when there is a clear advantage in choosing one
order change over the other. No scaling factor is included in this case because if, for example,
𝜎𝑝+1 = 1 + 𝜀 and 𝜎𝑝−1 ∈ [1 − 𝜀, 1], then the lower bound of 𝛿𝑝± is approximately 𝜀/2 and the
upper bound is 𝜀. A scaling factor would then, for some values of 𝜀, give this comparison more
influence than the main one, which is not desirable.

To avoid chatter the decision to change order is delayed, and multiple steps are needed to rein-
force the decision to change order. To do this, the following integrator is used

𝛿𝑝𝑛 = 𝛿𝑝𝑛−1 + (𝛿𝑝+ + 𝛿𝑝− + 𝛿𝑝±). (IV.13)

When 𝑝 + 𝛿𝑝𝑛 rounds to a different value than 𝑝 (when |𝛿𝑝𝑛| > 1/2), the order is changed to
𝑝 + sign(𝛿𝑝𝑛). However, this integrating process may in some cases indicate an order change,
even if the advantage measurements are inconclusive. To avoid this difficulty, an extra check is
added, which is that the order is only changed to 𝑝 ± 1 if 𝜎𝑝±1 > 1.1. This heuristic value of 10
% is based on experiments [24].

The above way to calculate order increments assumes that a lower and higher order method exist
all the time. There is an obvious limitation to the lower order, which is 𝑝 = 1, and in practice
one usually wants to set a higher limit as well (even if a convergent method exists). Therefore,
special considerations must be made to deal with the cases when an increase or decrease of order
is impossible.
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In the case that an increase is impossible, the following variables are overridden and set to

𝛿𝑝+ = 0, (IV.14)
𝛿𝑝± = 0. (IV.15)

In the case that a decrease is impossible, the following variables are overridden and set to

𝛿𝑝− = 0, (IV.16)
𝛿𝑝± = 0. (IV.17)

IV.1.2. Different step-size sequences

It should be noted that the step-size sequences discussed in this section are used to control the
step-size and are fed into the step-size controller, but are not used to perform any actual calcu-
lations. There is a need for a fourth step-size sequence which corresponds to the steps between
the time points of the calculated solution. To distinguish between these, the one used for calcu-
lations is called the definitive step-size sequence, and the other three used for step-size control are
called the referential step-size sequences.

In the beginning, the definitive step-size sequence will correspond to the referential step-size
sequence belonging to the current order, until an order change is made. When this happens, the
previous part of the definitive step-size sequence remains the same, and the next step-size in this
sequence will be the one previously proposed to the new order. If no additional order change is
made after this, the part of the referential step-size sequence which is fed to the controller will
eventually be equal to the corresponding elements in the definitive sequence. An example of this
process can be viewed in Figure IV.1.

IV.2. Implementation

Thebasics of the implementation are the same as for the solver with a fixed order (see Section II.8),
but some special considerations must be made which will be described in this section.

IV.2.1. The work factor

It has beenmentioned that a work factor, 𝑤𝑝, is includedwhen the relative efficiency is calculated.
Because this thesis focuses on step-size regulation, and uses the amount of steps as a measure of
work performed by the solver, this work factor has been set to 1 for all cases. Other work factors
could be used, and one example could be to base the work factor on the amount of time it takes
to solve the different systems of equations which are constructed when a step is integrated.

IV.2.2. Step-size rejection and large step-size ratios

When the step-size ratio proposed by the filter for any of the lower, current or higher methods
is larger than the acceptable upper limit (set by the user), the ratio is replaced by this upper limit
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Figure IV.1. This figure shows an example of the relations between the different step-size
sequences. All methods start with the same step-size sequence (this is a simplified example,
and in practice the process will not be exactly the same, see Subsection IV.2.3) with all step-
sizes set to 1, after which the solver integrates with the differentmethods, and the controller
suggests new step-sizes for all three methods. Each time an integration is performed, the
definitive step-size sequence is used (for all methods), and then the referential step-size
sequences are used for each method to determine the new step-size. After 2 steps the order
control system initiates an order change, and then the integration continues. In the end
the definitive sequence is made up by different parts corresponding to different referential
sequences. Note that if the same order is used long enough, then the part of the definitive
sequence that is used to integrate the next step (the length of this part of the sequence
depends on the order of the method) will be the same as the corresponding part of the
referential sequence belonging to the current order method.
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instead. In the case of the current order this is done so as to not introduce instabilities, and for
the other two orders it is because otherwise there is a risk of overestimating the benefits of an
order change. If, for example, the current and the higher order methods both originally had a
step-size ratio of 3, and only the current order was capped to 1.2, it is clear that there is a great
risk for the algorithm initiating an unwanted increase of the order.

When it comes to the step-size rejection, the current order method will be treated a bit differently
compared to the lower and higher order methods, and this is because the current order method
is the one performing the actual calculations.

A step is only rejected when the proposed step-size ratio for the current order method is lower
than the acceptable limit (set by the user). When this happens, the control sequence is regarded
as void, so the old error estimates are discarded for all three methods, and the main filter is
bypassed in all three cases until sufficient new error data have been gathered. This is the same
procedure as used in the fixed order solvers. Also, the order control mechanism is temporarily
disabled until the step is accepted, after which it is resumed as normal.

If the lower or higher order method produces step-size ratios below the limit, nothing is done.
There are no reasons to stop the integration and recalculate a step for these methods, because
the results from them are not used in the next step. Also, keeping the small step-size ratio (and
the large error which produced it) reinforces the message to the order change algorithm that
it should not make a change to this method, which is desirable when it has shown to produce
results with an unacceptable error.

IV.2.3. Startup phase

Just as in the case of the solvers using fixed order, the variable order solvers also suffer from the
problem where the standard way of using the previously calculated polynomial to predict the
next step is unavailable in the beginning of the integration. This problem is further increased by
the fact that the higher order method is also affected by this (for the lower order method, though,
there are enough points to construct a prediction polynomial).

Also, for the variable order case, the solver for which this problem is easiest to solve, is the
solver using methods belonging to the class 𝐼𝑘. Just as in the case with the fixed order solver
of this class, the corresponding explicit methods for the lower and current order are used to
create prediction polynomials. After this, the order control system is disabled when solution
point number 𝑘 + 1 is calculated (the previous solution points were calculated using the startup
routine, see Subsection II.8.4), at which point the higher order method is started in the same
way as the other two methods. Note that by doing this, the bypass counter for the higher order
method is one less than the other two bypass counters. This will have the effect that the higher
ordermethodwill start to use the correct filter one step after the lower and current ordermethods,
but because the order control system is designed to not change order too rapidly, a difference of
one step should not have a detrimental effect. The referential step-size sequence for the higher
order method is also set to be the same as the definitive step-size sequence. Now all methods
are enabled and solution point 𝑘 + 2 is calculated, after which the order control is started (see
Figure II.8).

Solvers of class 𝐸𝑘 or 𝐼+
𝑘 lack, as we have seen in Subsection II.8.4, the same natural way of

starting the error estimation directly as solvers of class 𝐼𝑘, and therefore no step-size control
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is enabled directly after the startup routine has calculated the initial points for the current and
higher order methods. The difference though, compared to the fixed order case, is that there is
also the lower order method which only needs 𝑘−1 steps to perform a calculation, and therefore
a polynomial is constructed using the first 𝑘 − 1 points, which is then used in the usual fashion
to predict the next step for this method. Because of this, step-size control is enabled directly for
the lower order method. This will also enable the main filter for the lower order method one step
before the main filter is activated for the current order method. Compare this to solvers of class
𝐼𝑘, where the main filter for the current order method was activated one step before the higher
order method; the motivations behind why this is acceptable are also the same in this case. Also
in this case will the main filter for the higher order method be activated after it has been activated
for the current order method. Table IV.2 contains a summary of when the main filter is activated
for different methods. The reason for the delay of the higher order method is also the same as
in the case of solvers of class 𝐼𝑘: There is no method available at all after 𝑘 solution points have
been calculated. Just as in the case of 𝐼𝑘-solvers, the order control mechanism is disabled until
the error control has been enabled for the higher order method (a summary of this is found in
Table IV.3).

Table IV.2. This table shows after how many calculated solution points the main filter is
enabled, where 𝑝𝐷 is the closed dynamic order (see Subsection III.1.1).

Solver class lower order current order higher order
𝐸𝑘 𝑘 + 𝑝𝐷 𝑘 + 𝑝𝐷 + 1 𝑘 + 𝑝𝐷 + 2
𝐼𝑘 𝑘 + 𝑝𝐷 𝑘 + 𝑝𝐷 𝑘 + 𝑝𝐷 + 1
𝐼+

𝑘 𝑘 + 𝑝𝐷 𝑘 + 𝑝𝐷 + 1 𝑘 + 𝑝𝐷 + 2

Table IV.3. This table shows after how many calculated solution points the order control
is enabled.

Solver class Calculated solution points
𝐸𝑘 𝑘 + 3
𝐼𝑘 𝑘 + 2
𝐼+

𝑘 𝑘 + 3

The next question is how the first Newton iterations are started. Solvers of class 𝐼𝑘 just use the
polynomials created by the corresponding explicit methods as initial guesses for all three orders.
Solvers of class 𝐼+

𝑘 though, use another scheme similar to the one described in Subsection II.8.4.
This scheme consists of 5 steps:

1. A method of type 𝐸𝑘 (in this case using the Adams–Bashforth method) is used to construct
a polynomial of degree 𝑘 − 1. Let the coefficients be denoted { ̂𝒄𝑖}𝑘−1

𝑖=0 , where ̂𝒄0 is the
coefficient of the 0-degree term. This polynomial is then extended to a polynomial of
degree 𝑘, by adding another term 𝒄𝑘 which is initially set to 𝟎.

2. The extended polynomial is then fed as an initial guess to Newton’s method, when con-
structing the prediction polynomial to the lower order method. Let the resulting coeffi-
cients of the prediction polynomial be denoted { ̃𝒄𝑖}𝑘−1

𝑖=0 .

3. The coefficients { ̃𝒄𝑖}𝑘−1
𝑖=0 are now used as an initial guess for the lower order method.
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4. To get an initial guess for the current order method, the prediction polynomial is then
extended to a polynomial of degree 𝑘, by adding another term ̃𝒄𝑘, which initially is set to
𝟎. Let the resulting coefficients of the current order polynomial be denoted {𝒄𝑖}𝑘

𝑖=0.

5. Lastly, an initial guess for the higher order method is gotten by extending the coefficients
from the previous step by adding a term, 𝒄𝑘+1, and initially setting this to 𝟎.

A flow chart depicting this process can be found in Figure IV.2.

In the special case where the initial order is the lowest order (as is the case when starting with a
one stepmethod), instead of using the coefficients of the prediction polynomial of the lower order
method and extending them, Adams–Bashforth of order 𝑘 is used to produce a polynomial which
is extended in the same fashion and fed to the Newton iteration of the current order method.

Some final details should bementioned in regards to the startup phase. Firstly, in Subsection II.8.4
it was mentioned that one way of starting a multistep method is to start with a one step method,
and then increase the order. A version of this can be had with this implementation by starting
with an initial order corresponding to a one step method. Secondly, if the initial order is the
highest possible order, then one could enable the order control one step earlier. The choice to not
implement this is a choice of convenience and to have one less special case to deal with when
programming the solver.

IV.2.4. Handling order change

When an order change is initiated, one of the previously used methods will disappear and a
new method will be introduced. If the order is increased, then the previously used lower order
method will no longer be used and the previous current order method will take its place. The
place of the previous current order method is taken by the previous higher order method and
a new higher order method is introduced. The opposite is then done if the order is decreased
instead. This means that a newmethod, without error estimations, referential step-size sequence
and a predicting polynomial must be handled.

To deal with the lack of error estimations the main filter is just bypassed until the appropriate
number of error estimates has been gathered (compare this with the startup phase).

When it comes to the missing previous referential step-size sequence, what is done is that the
old referential step-size sequence, belonging to the method which is replaced, is kept. So, for
example, directly after an order increase, the referential step-size sequences of the current and
higher order methods will be the same.

Lastly, a predicting polynomialmust to be procured, so that a new error estimate can be calculated
for the first step after the order change. The solution to this is to use the solution points previous
to the one most recently calculated, and to construct a polynomial using the new method as if it
had actually been used to calculate the most recent solution point. This polynomial can then be
used to predict the next step, and this is implemented for solvers of class 𝐸𝑘. The fact that the
order control is delayed, guarantees that there will always be enough solution points to do this.

Solvers belonging to one of the implicit classes have an even easier solution to the missing predic-
tion polynomial. Here there are corresponding explicit methods which can be used to construct
a polynomial, and this is also how it is done for the implicit solvers. This makes for both an
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Polynomial from Adams–
Bashforth of degree 𝑘 − 1

Newton
iteration

+𝟎 ⋅ 𝑡𝑘

Polynomial of degree 𝑘, used
as an initial guess for the lower
order method

Newton
iteration

Polynomial of degree 𝑘, used to
calculate the solution at 𝑡𝑘+1 for
the lower order method

Newton
iteration

Polynomial of degree 𝑘, used to
calculate the solution at 𝑡𝑘+2 for
the lower order method

Newton
iteration

+𝟎 ⋅ 𝑡𝑘+1

Polynomial of degree 𝑘 + 1, used
to calculate the solution at 𝑡𝑘+1
for the current order method

Newton
iteration

Polynomial of degree 𝑘 + 1, used
to calculate the solution at 𝑡𝑘+2
for the current order method

Newton
iteration

+𝟎 ⋅ 𝑡𝑘+2

Polynomial of degree 𝑘 + 2, used
to calculate the solution at 𝑡𝑘+2
for the higher order method

Figure IV.2. This flow chart illustrates how pmmipVarOrd initiates the Newton iteration
processes for themethods of different order. The basic principle is, that when no polynomial
of high enough degree is available, a polynomial of a lower degree is used by adding a higher
order term for which the coefficients are set to 𝟎. This is indicated by the small boxes and
arrows in the chart. Each large box represents a polynomial, and its purpose is described
by the text in the box.
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easier implementation, and a very small performance gain, because there is no need to solve a
non-linear system of equations.

IV.2.5. A note on the explicit methods corresponding to the prediction
polynomials of the implicit methods

Throughout this thesis, the use of an explicit method in accordance withTheorem II.6.1 and II.6.2
have been treated as equivalent with using the previously calculated polynomial of the implicit
method in use. This treatment is correct, but only under the assumption that the method used is
also the method which calculated the previous solution points.

The problem can be seen if one studies the proofs of the theorems. If another method is used to
calculate the most recent solution point, then the slack condition of the explicit method is not
fulfilled for the previous polynomial constructed with an implicit method. This is not an issue
when only one order is used, but in the variable order case, only the current order is also the
one which produces the solution points which are saved. To make this clear, let 𝑷𝑚(𝑡) be the
polynomial constructed by the current order method, and ̂𝑷𝑚(𝑡) be the polynomial constructed
by the lower or higher order method, at step number 𝑚. The solution points produced by these
methods are then

𝒙𝑚 = 𝑷𝑚(𝑡𝑚), (IV.18)
𝒙̂𝑚 = ̂𝑷𝑚(𝑡𝑚), (IV.19)

where only 𝒙𝑚 is saved. Now, if one wants to predict the next step, 𝑛 = 𝑚 + 1, then 𝑷𝑚(𝑡) would
also be the polynomial produced by the corresponding explicit method, and we can specifically
see that the slack condition is fulfilled (as can also be seen in the proofs of Theorem II.6.1 and
II.6.2) by 𝑷𝑚(𝑡)

𝒔𝑛−1 = 𝒙𝑛−1 − 𝑷𝑚(𝑡𝑚) = 𝒙𝑛−1 − 𝒙𝑚 = 𝒙𝑛−1 − 𝒙𝑛−1 = 𝟎. (IV.20)

If one then tries to see if the same is true for the other polynomial (constructed by a method of
different order), one gets

̂𝒔𝑛−1 = 𝒙𝑛−1 − ̂𝑷𝑚(𝑡𝑚) = 𝒙𝑛−1 − 𝒙̂𝑚 = 𝒙𝑛−1 − 𝒙̂𝑛−1, (IV.21)

which is not necessarily equal to 𝟎 (remember that only 𝒙𝑛−1 is saved, so an explicit method
would use this value for calculations in both cases).

When this case appears in the implementation no corrections are made, and this is because the
assumption that

𝒙𝑛−1 ≈ 𝒙̂𝑛−1 ⟹ ̂𝒔𝑛−1 ≈ 𝟎 (IV.22)

is made.

IV.3. Results and discussion

Different types of benchmarks have been used to evaluate how the order changing algorithm
performs. To minimize the risk of the method itself performing poorly, and thereby obscuring
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the performance of the order change algorithm, one family of methods which has already been
well studied in the literature was chosen for each type of solver. The families in question are
Adams–Bashforth, Adams–Moulton, and BDF. Only one filter, PI3333, which was deemed to
be generally well behaved was chosen, as the evaluation of filters has been done in Part III. The
other settings used (when applicable) are chosen to be the same as in Part III to make comparison
between fixed and variable order solvers easier. All settings used can be seen in Table IV.4.

An upper order limit of 5 was chosen for pmmiVarOrd, which uses the BDF-family of meth-
ods. There are no BDF-methods which are zero stable with an order above 6, and order 6 has a
very small stability region. In the cases of the other two solvers, both families of methods used
(Adams–Bashforth and Adams–Moulton) have no upper limits for which the methods stop being
zero stable. The upper limits here are chosen to be 8, and this is because of performance issues,
which will be discussed in detail in Subsection IV.3.5. The lower limit is chosen to be the low-
est possible for all three solvers, and except for pmmipVarOrd this is also the initial order used.
This removes the need of using another method to generate steps in the beginning (as the lowest
order methods are all 1-step methods, and the initial condition is then enough). There are some
problems, discussed below in Subsection IV.3.1, unrelated to the order changing algorithm when
starting pmmipVarOrd with order 2, and as this is primarily an evaluation of the algorithm for
changing order, the choice was made to bypass this problem by using order 3 instead.

Table IV.4. Settings used for benchmarking with the variable order solvers

Setting pmmeVarOrd pmmipVarOrd pmmiVarOrd

Error per unit step false false false
Relative error false false false
Filter PI3333 PI3333 PI3333
𝑟min 0.8 0.8 0.8
𝑟max 1.2 1.2 1.2
Family of methods used Adams–Bashforth Adams–Moulton BDF
Minimal order 1 2 1
Maximal order 8 8 5
Initial order 1 3 1

The set of problems used is almost the same as the one used when evaluating the filters, also for
the reason of making comparisons easier. The differences are that a moderately stiff problem,
the flame propagation problem with the parameter 𝛼 = 2 (see Subsection III.3.13), was added
because it showed some especially interesting behavior when the order was varied. Also, the
Van der Pol problem was used with the parameter 𝜇 = 10 (see Subsection III.3.8), which makes
it a bit stiffer and also increases the integration time, making the solution contain more periods.
This change was introduced to be better able to study the periodic behavior of the solvers in this
case.

In all cases, except for the decaying exponent and flame propagation problems, there are no
analytical solutions and therefore the reference solution, 𝒙ref , had to be calculated, and to do this
the solvers ode113 and ode15s were used with very strict tolerance settings (see Table IV.5).
All settings except the tolerances were used with their default values. What solver was used for
each problem can be seen in Table IV.6.

The first set of benchmarks consists of solutions to the problems calculated with 3 different tol-
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Table IV.5. Settings used for ode15s and ode113 when calculating a reference solution

Setting Value for ode15s/ode113

absTol 10−16

relTol 10−13

Table IV.6. The method used to calculate the reference solutions for different problems.
Settings for ode15s and ode113 can be found in Table IV.5

Problem Reference solution
Decaying exponent (𝑑 = 1) Analytical solution
Van der Pol (𝜇 = 10) ode113
Lotka–Volterra (𝑐 = 2) ode113
Brusselator ode113
Flame propagation (𝛼 = 2) Analytical solution
Decaying exponent (𝑑 = 100) Analytical solution
Van der Pol (𝜇 = 100) ode15s
Robertson ode15s
Oregonator ode15s
HIRES ode15s

erances. Here the actual solution is shown (sometimes only one tolerance though, because the
difference between the results of the various tolerance settings are very small) in order to make
sure that the solvers produce reasonable solutions, and so that the reader may see how the ac-
tual solution looks like. In addition to this the error, step-sizes and orders used throughout the
integration processes are shown. This gives a detailed view of how the solver behaves during
calculations.

The next set of benchmarks consists of 100 test runs (for each problem) with tolerances spaced
equidistantly when plotted using a logarithmic scale. The achieved accuracy is then measured by
taking the discrete 𝐿1-norm of the error throughout the solution (for details on how this is done
see Equation III.171 and III.172). The amount of work is then measured by counting the number
of successful steps used to produce the solution. Lastly, the mean order used is measured by
integrating the order used throughout the solution according to the following formula

̄𝑜 =
𝑛

∑
𝑖=𝑘0

𝑜𝑖 ⋅ ℎ𝑖−1
𝑡𝑓 − 𝑡0

(IV.23)

where 𝑜𝑖 is the order used to calculate 𝒙𝑖, 𝑘0 is the amount of steps needed for the starting order,
and 𝑛 is the total number of steps. This gives a high level view of the order preferences of the
solvers when using different tolerances.

The last set of benchmarks are comparisons between our solvers and two established solvers.
pmmipVarOrd is compared to ode113 and pmmiVarOrd is compared to ode15s. The choice of
these methods are based upon the fact that they use (or can be set to use ) the same underlying
families of methods as the ones used to benchmark our solvers. ode113 uses Adams–Moulton
methods [16] and ode15s uses BDF [17]. It is important to note here that when speaking about
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the underlying families of methods being the same, this means that when using a fixed step-size
they will produce the same 𝛼- and 𝛽-coefficients used to define the methods in Equation II.2.
When these methods are extended to use a variable step-size they are no longer necessarily the
same.

By setting the absolute tolerance of ode113 and ode15s to the one as used by our solvers, and
the relative tolerance to 10−30, ode113 and ode15s in practice use absolute error to control
the step-size. This is equivalent to measure the absolute error in the ‖ ∙ ‖∞-norm and using
this to control the step-size (which is done in our solvers, but the step-size control and rejection
mechanismworks differently than inMatlab) [19]. The purpose of this set of benchmarks is to see
whether or not our solvers seem to have the potential to be competitive against solvers widely
used in practice.

IV.3.1. The choice of initial order for pmmipVarOrd

As has been previouslymentioned there are some performance issueswhen starting pmmipVarOrd
with the lowest possible order. The problem is mainly that the achieved accuracy is poor, and
that there are a lot of rejected steps. This is only a problem though if the solver chooses the initial
step-size, by using its step-size estimation algorithm. If the user chooses an appropriate step-size
both of the problems mentioned disappears. If one would look at where these step-size rejections
take place, one sees that they are at the beginning of the integration process. An example, using
Lotka–Volterra as a test problem, showing how the accuracy and number of rejected steps are
affected by these settings when solving with different tolerances can be seen in Figure IV.3. This
figure also shows that when using an initial order of 3 these problems do not appear.

The fact that the majority of the rejected steps are in the beginning of the integration process,
and that setting a new appropriate initial step-size manually solves this issue, makes for the con-
clusion that there is a problem in the startup process of the solver. One probable explanation for
this is that the step-size estimation algorithm is unable to propose a good initial step-size for the
trapezoidal rule (Adams–Moulton of order 2), and then because the initial step is never rejected
(due to the fact that the step-size regulation has not yet been enabled, see Subsection II.8.4 and
IV.2.3) an unacceptably large local error is introduced, which then affects the accuracy for the
rest of the solution. Note that this is not a problem in all cases, but enough test cases exhibit this
behavior so that it should be dealt with.

For testing purposes, finding appropriate initial step-sizes for all different cases is not practical,
but as can be seen in Figure IV.3, starting with an initial order of 3 is a simple solution to this
problem and therefore this is done. Another effect this has is that the amount of steps taken
decreases somewhat, which is not at all a strange behavior, because when starting at a higher
order, the initial step-size in most cases can be allowed to be larger.

IV.3.2. Single runs

If we look at the results from pmmeVarOrd, which can be seen in Figures IV.4-IV.8, we see that the
solver produces good solutions, and that it actively changes order. The error curves for a problem
are similar to each other with the main difference being that they are shifted vertically, with the
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Performance differences for pmmipVarOrd, when different startup settings are used
for solving the Lotka–Volterra problem

Figure IV.3. This shows the differences in performance when using different startup set-
tings for pmmipVarOrd, and solving the Lotka–Volterra problem (with 𝑐 = 2). In all cases
are Adams–Moulton methods of order 2–8 used, but the initial order, 𝑝0, is different. There
is also a difference in how the initial step-size, ℎ0, is chosen. In two of the cases the solver
uses its step-size estimation algorithm, but in the other case the step-size is preset to an ap-
propriate value. Except for these changes, the settings are the same as shown in Table IV.4.
Note how the accuracy is almost the same for the curve generated by using 𝑝0 = 3 and the
one where ℎ0 is preset. Compare this to the curve generated by the method with 𝑝0 = 2
and where the solver chooses ℎ0. The accuracy when using these settings is much worse,
and there are many more failed steps.
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most noteworthy examples being Figure IV.5, IV.6 and IV.7. This is very desirable, because it will
increase the possibilities of the solver being tolerance proportional and computationally stable.

In the two periodic problems, Lotka–Volterra and Van der Pol (Figure IV.6 and IV.7), we can see
that both the error and the orders used have very periodic behaviors; this is expected as there is
no reason for the solver to start behaving differently from period to period as it is essentially the
same problem solved over and over again. Each period should also bemore similar to the previous
one in the later parts of the solution, and this is mainly because the solver has no influence over
the order for the initial step, as this is set by the user who will probably not choose the same
order as the solver uses after it has gained control. Also, the way the initial step-size is chosen,
will contribute to the effect of the first periods being less similar to each other. Nevertheless, in
our case, the behavior is very similar even from the beginning, and therefore this effect is not
very noticeable. The step-size sequences also exhibit periodic behaviors, although this is much
less prevalent than in the case of the behaviors of the order changes and the errors.

When comparing the variable order solver to the fixed order equivalent, one very noticeable
difference is that the step-size sequences for the variable order solver are much less smooth than
the oneswhich are produced by fixed ordermethods. This is especially apparent when comparing
the sequences for Van der Pol in Figure IV.7 and Figure IV.9. Not only is there a difference in
smoothness, but the curves have almost no similarities. The main similarity is that the step-size
decreases rapidly before 𝑡 = 10, 20, 30, 40.

That the variable order solver produces less smooth step-size sequences is expected, as the main
point of the algorithm is to change to another order when there is a significant decrease of the
work needed to compute a step, which in our case is measured by the length of the step, and
therefore it promotes sudden and rapid increases in the step-size. In the case of fixed order
solvers this would be a very undesirable behavior, as it increases the risk of the solver becoming
unstable and also the risk of the error to deviate violently from the desired value. In this case,
though, it should not pose a serious problem, because one of the main features of the algorithm
employed for changing the order is that it should predict the behavior of the orders not currently
in use, and regulate them so that they are stable and produce solution points with the correct
accuracy. A good indication showing that this is working can be seen in Figure IV.7. Directly
after 𝑡 = 10, the solver using TOL = 10−10 changes order multiple times in short order, but still
the error curve at this interval is extremely smooth. Another indication, which can be seen in
the same figure (and other figures as well), is the fact that even though the order change is not
initiated at the same time when using different tolerances, the shapes of the error curves are still
very similar to each other.

When looking at the results from pmmipVarOrd (Figure IV.10-IV.14) one of the main differences
from the results produced by pmmeVarOrd is that, except for the cases of the Van der Pol and
flame propagation problem (Figure IV.13 and IV.14), is that the order mainly increases throughout
the problem. This is an indication that in these cases a higher order is performing better through-
out the whole problem. The fact that the two problems which are moderately stiff, and for which
the stiffness has large changes throughout the problem, are showing changes up and down in
order supports the conclusion that the algorithm is working as intended. How the stiffness varies
in these problems can be seen in Figure III.38 and IV.15. Note that the stiffness values in these
figures are not normalized, and that the peak magnitude of the normalized stiffness values can
be seen in Table III.7. A largely varying stiffness should have an influence on which method is
to be preferred, as it greatly changes the stability properties of the integration process (and in
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The decaying exponent problem (𝑑 = 1) solved using pmmeVarOrd (AB)

Figure IV.4. The decaying exponent problem solved by using pmmeVarOrdwith 3 different
tolerance settings. Note how the order increases more rapidly for stricter tolerances.
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Figure IV.5. The Brusselator problem solved by using pmmeVarOrd with 3 different tol-
erance settings. Note the similarities of the shapes of the error curves, and that they are
shifted vertically.
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Figure IV.6. Lotka–Volterra problem solved by using pmmeVarOrd with 3 different toler-
ance settings. Both the order changes and the errors exhibits periodic behaviors. In the
error we can see a small drift-off effect.
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The Van der Pol problem (𝜇 = 10) solved using pmmeVarOrd (AB)

Figure IV.7. The Van der Pol problem solved by using pmmeVarOrd with 3 different tol-
erance settings. Both the order changes and the errors exhibits periodic behaviors. In the
error we can see a small drift-off effect, although this is not visible in the phase plot. Note
that even though the step-size sequence is not smooth, the shapes of the error curves are
very smooth and similar to each other.

159



IV.3. RESULTS AND DISCUSSION

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

𝑥(
𝑡)

Solution (calculated using TOL = 10−10)

10−2

10−1

100

101

ℎ

Performance data for different tolerances

TOL = 10−4

TOL = 10−7

TOL = 10−10

10−17

10−11

10−5

101

‖𝒙
re

f
−

𝒙‖
∞

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

𝑡

or
de
r

The flame propagation problem (𝛼 = 2) solved using pmmeVarOrd (AB)

Figure IV.8. The flame propagation problem solved by using pmmeVarOrd with 3 different
tolerance settings. When the problem becomes stiff (for a detailed view of the stiffness
behavior of this problem see Figure IV.15) the order decreases down to the lowest possible
order. Here the regulation of the error also becomes more difficult, and we can see that the
shape of the error curves are starting to become dissimilar.
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Figure IV.9. This plot shows the step-size sequences produced by the fixed order solver
pmme, when solving the Van der Pol problem with 𝜇 = 10. pmme uses Adams–Bashforth
of order 5, and the same settings (except for the ones regarding order) as shown in Ta-
ble IV.4. Note how the step-size sequences are smoother for the fixed order solver than the
ones produced by the variable order solver in Figure IV.7, and that the sequences have few
similarities to each other.

their fixed order versions, they have greatly varying stability region, which is something that
can be expected to influence the stability even in the variable order case), and in these cases we
see that at least the order is changing actively. The exception to this is in the flame propagation
problem, where the order curve for TOL = 10−7, shows that the order does not change. This
is an unwanted behavior, and a problem which is discussed in Subsection IV.3.5. The periodic
behavior of the order changes in the Van der Pol problem is also a good indication that the al-
gorithm is working as expected (in the case of the other periodic problem, Lotka–Volterra, the
behavior when using the two stricter tolerances is of course also periodic but constant, which
unfortunately does not give as much information about the performance of the algorithm).

The last set of results in this section are from the tests using pmmiVarOrd to solve stiff problems
(Figure IV.16-IV.20). Here the results are also very good. The error curves show the same behavior
as previously mentioned: they have the same shape but are shifted. Two noticeable exceptions
to this are the decaying exponent and Robertson problems (Figure IV.16 and IV.19). In the case
of the decaying exponent the explanation is that the error becomes very small quickly, and is
essentially 0 throughout most of the solution, and the regulator will have problem regulating
at such small errors. In the majority of the solution the error is also so small, that we expect
the limitations of floating point numbers to have an influence over the process. These are not
problems with the algorithm, and we can see that in the beginning where the error is larger it
performs as expected. In the case of the Robertson problem, the accuracy is not proportional to
the tolerance, which can be seen by two the error curves crossing each other, and this is due to
the performance of the solver. This is a particularly hard problem, and comparisons to another
well established solver will be made later, that will give some context to these results.

Lastly, note that in the two periodic problems, the Oregonator and Van der Pol problems (Fig-
ures IV.18 and IV.20), the behavior of the order changes are periodic. This may not be obvious in
the case of the Oregonator problem, as the periods are far apart and the solver uses the highest
order for the most part, but if one looks in the vicinity of 𝑡 = 25 and 𝑡 = 325, the order decreases
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The decaying exponent problem solved using pmmipVarOrd (AM)

Figure IV.10. The decaying exponent problem (𝑑 = 1) solved by using pmmipVarOrd with
3 different tolerance settings. Here the behavior with regards to order changes is the same
as for pmmeVarOrd (Figure IV.4), but the increase is slower.
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The Brusselator problem solved using pmmipVarOrd (AM)

Figure IV.11. The Brusselator problem solved by using pmmipVarOrd with 3 different
tolerance settings. Here the order is increasing almost throughout the whole integration
process.
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The Lotka–Volterra problem (𝑐 = 2) solved using pmmipVarOrd (AM)

Figure IV.12. The Lotka–Volterra problem solved by using pmmipVarOrd with 3 different
tolerance settings. The order increases throughout the problem (except for a little bump
for TOL = 10−4, at 𝑡 = 2), even though the problem is periodic. This gives less infor-
mation about the order changing algorithm’s performance than if it had both increased
and decreased the order, but does not necessarily mean that it is bad. It still (except for
TOL = 10−4) behaves periodically, as a constant behavior is periodic, and the higher order
methods are probably the most effective which results in the order increase shown. A small
drift-off effect can be noticed both in the error and phase plots.
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The Van der Pol problem (𝜇 = 10) solved using pmmipVarOrd (AM)

Figure IV.13. The Van der Pol problem solved by using pmmipVarOrd with 3 different
tolerance settings. The behavior of the step-size sequences, the errors and the orders used
all have good periodic behaviors. Note how the error curves show only a small discernible
drift-off.
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The flame propagation problem (𝛼 = 2) solved using pmmipVarOrd (AM)

Figure IV.14. The flame propagation problem solved by using pmmipVarOrd with 3 dif-
ferent tolerance settings. For TOL = 10−4 and TOL = 10−10, the order increases before
the problem becomes stiff (for a detailed view of the stiffness behavior of this problem see
Figure IV.15), and then decreases again. Compared to the explicit method (Figure IV.8) both
the increase and decrease takes place over a longer time. For TOL = 10−7, the order sticks
at 𝑝 = 8, a phenomena which is discussed in Subsection IV.3.5.
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Figure IV.15. The solution and stiffness value of the flame propagation. Note that the
stiffness value is not normalized. The monotonically increasing curve is the solution, and
its value is shown by the right axis. The other curve is the stiffness, and its value is shown
by the left axis.

rapidly and then increases rapidly, and this behavior is almost identical at both places. In the
case of the Van der Pol problem, the solver shows excellent results.

There is another interesting thing to note, which touches upon the error curves when the order
is changed. Both in the explicit and implicit case the analysis of the error estimate shows that
the local error is scaled by a factor when directly using the difference of the predictor and the
calculated solution to estimate the local error. In the case of the explicit methods, this can be
seen in Equation II.46, and for the implicit methods, analysis shows that there would be a similar
factor:

‖𝒙(𝑡𝑛) − 𝒙𝑛‖ =
|

̃𝐶𝑝+1
̃𝐶𝑝+1 − ̂𝐶𝑝+1 |

‖𝒙𝑛 − 𝒙pred
𝑛 ‖. (IV.24)

We see that the error estimate used is scaled, and is dependent among other things on the error
constants. In practice this could potentially lead to the step-size controller trying to regulate for
different set-points for different orders, as the error estimates are scaled differently. But when
looking at the error curves this is not an effect which is noticed. Indications that this could be a
problem should show up as bumps on the error curves when the order is changed.
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The decaying exponent problem (𝑑 = 100) solved using pmmiVarOrd (BDF)

Figure IV.16. The decaying exponent problem solved by using pmmiVarOrd with 4 dif-
ferent tolerance settings. The error quickly becomes very small, because the solution goes
very rapidly to 0. Here no real benefits are gained by changing order, which is reflected
by the step-size curves going to the same value, and sometimes this leads to the order not
going down to the lowest level, as is the case with TOL = 2 ⋅ 10−9. In the beginning when
the error is larger, all three curves exhibit an expected behavior.
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The HIRES problem solved using pmmiVarOrd (BDF)

Figure IV.17. The HIRES problem solved by using pmmiVarOrd with 3 different tolerance
settings. The error curves have similar shape and are evently spaced, which indicates com-
putational stability.
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The Oregonator problem solved using pmmiVarOrd (BDF)

Figure IV.18. The Oregonator problem solved by using pmmiVarOrd with 3 different tol-
erance settings. This problem is periodic, and the solver exhibits periodic behavior at the
beginning of each cycle (the problem does not go through two full cycles). Notice especially
how the order changes at 𝑡 = 25 and 𝑡 = 325 are very similar, except that there is an extra
dip for TOL = 10−10 at 𝑡 = 325.
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The Robertson problem solved using pmmiVarOrd (BDF)

Figure IV.19. The Robertson problem solved by using pmmiVarOrd with 3 different toler-
ance settings. Here the error curves exhibit a bad behavior, as they cross each other and the
stricter tolerance setting performs worse than the less strict one. Note that this is a very
hard problem, and a comparison with another well established solver (see Figure IV.38)
reveals that the result here may not necessarily be regarded as bad.
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The Van der Pol problem (𝜇 = 100) solved using pmmiVarOrd (BDF)

Figure IV.20. The Van der Pol problem solved by using pmmiVarOrd with 3 different tol-
erance settings. The solver exhibits a very periodic behavior in all plots. There is a small
drift-off which can be seen in the error plot.
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IV.3.3. Accuracy, work and order over multiple tolerances

For the non-stiff solvers the same set of test problems were used, and therefore they are shown in
the same plots (Figure IV.21-IV.25). No calibration to achieve the same accuracy when a certain
tolerance is demanded has been done. This means that even though a solver may have achieved
a greater accuracy for a certain tolerance, the work done (measured by the number of steps in
this case) must be taken into account as well.

The way the achieved accuracy responds to changes of the demanded tolerance is good for both
pmmeVarOrd and pmmipVarOrd. The curves for pmmeVarOrd are less straight, especially when
solving the Van der Pol problem (Figure IV.24), and they are generally less smooth and here there
is room for improvement; the results for pmmipVarOrd are much better in this regard.

All tests also show that pmmipVarOrd achieves a greater accuracy for a less amount of work.
This is not unexpected as the Adams–Moultonmethods should outperform the Adams–Bashforth
methods in most cases. The fact that pmmipVarOrd does not start at the lowest order also con-
tributes to the lower amount of work done (as discussed in Subsection IV.3.1), but even if this
were not the case, the amount of work done to achieve a certain accuracy is expected to be less
for the Adams–Moulton methods; if the method, using a starting order of 2 and a preset initial
step-size, in Figure IV.3 is compared to the explicit method in Figure IV.23, one can see that this
is the case for the Lotka–Volterra problem.

In all cases there is also a trend, when looking at the mean order, which indicates that at stricter
tolerances, higher order methods are preferred. In the case of pmmipVarOrd and the Brusselator
problem (Figure IV.22) the difference is very small though, and the curve indicates that order 8
is used almost throughout the problem, something which can also be seen in Figure IV.11. That
the solvers start favoring higher order methods at stricter tolerances is in agreement with the
results in Figure III.41–III.47, which shows that when using more strict tolerances the difference
in the amount of work a higher and lower order method uses increases.

We saw in the previous section, in Figure IV.14, that the order sometimes does not change as
expected, but stays high even though it is beneficial to change to a lower order. This also shows
up in these tests, both in Figure IV.25 (flame propagation) and IV.24 (Van der Pol), where we can
see peaks in the mean order, and corresponding peaks in the amount of work performed. In the
Van der Pol problem, there is also an indication that this phenomena has a small effect on the
accuracy response, when changing the tolerance. There are small dips in the accuracy curves at
places corresponding to the peaks of the mean order curve.

When comparing these results to the fixed order cases (Figure III.41–III.43 and Figure III.45–III.47),
one can see that for the explicit solvers the accuracy curves are generally less smooth when using
variable order. When comparing pmmip and pmmipVarOrd, the curves are generally of the same
quality (they are straight and smooth). The achieved accuracy and the amount of work can in
these cases not be compared fairly, as the variable order solvers allow for higher order methods
than are shown in the fixed order cases, and when looking at the results from the fixed order
solvers one clearly sees that there is a trend which indicates that higher order methods achieve
a better accuracy with a less amount of work done.

When looking at the results from the stiff problems (Figure IV.27–Figure IV.30), one can see
that the accuracy curves are very smooth and straight, except for the Robertson problem (see
Figure IV.29). The accuracy curve for this problem is worse than any other, but this is also a very
hard problem and some context for this will be given in Subsection IV.3.4.
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Accuracy, work and order for the decaying exponent problem
(𝑑 = 1), solved using pmmeVarOrd/pmmipVarOrd (AB/AM)

Figure IV.21. Performance data for pmmeVarOrd and pmmipVarOrd when solving with
100 different tolerance settings for the decaying exponent problem. The performance of
pmmipVarOrd is better than the performance of pmmeVarOrd, both in regards to achieved
accuracy for a certain amount of work and the smoothness of the accuracy curves. Both
solvers favors higher order methods for stricter tolerances, compared to less strict toler-
ances.
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Figure IV.22. Performance data for pmmeVarOrd and pmmipVarOrd when solving with
100 different tolerance settings for the Brusselator problem. The achieved accuracies are
comparable, but pmmipVarOrd produces a much smoother curve which is preferable and
uses less work. Note that the difference in mean order for pmmipVarOrd varies less as the
tolerance varies, then when using pmmeVarOrd, indicating that the implicit solver probably
uses mostly higher order methods throughout the whole integration process.
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Figure IV.23. Performance data for pmmeVarOrd and pmmipVarOrd when solving with
100 different tolerance settings for the Lotka–Volterra problem. The performance of
pmmipVarOrd is better than the performance of pmmeVarOrd, both in regards to achieved
accuracy for a certain amount of work and the smoothness of the accuracy curves. Note
that the difference in mean order for pmmipVarOrd varies less as the tolerance varies, then
when using pmmeVarOrd, indicating that the implicit solver probably uses mostly higher
order methods throughout the whole integration process.

176



IV.3. RESULTS AND DISCUSSION

10−8

10−6

10−4

10−2

ac
cu
ra
cy

pmmeVarOrd
pmmipVarOrd

103

103.2

103.4

103.6

nu
m
be
ro

fs
te
ps

10−10 10−9 10−8 10−7 10−6 10−5

4

6

8

TOL

or
de
r

Accuracy, work and order for the Van der Pol problem (𝜇 = 10),
solved using pmmeVarOrd/pmmipVarOrd (AB/AM)

Figure IV.24. Performance data for pmmeVarOrd and pmmipVarOrd when solving with
100 different tolerance settings for the Van der Pol problem. Both solvers produces accu-
racy curves with an acceptable smoothness, although the one produced by pmmipVarOrd
is somewhat straighter, which is preferable. The implicit solver also achieves a greater ac-
curacy and uses less work. Both solvers favors higher order methods for stricter tolerances,
compared to less strict tolerances. The peaks in work and order for the implicit solver, indi-
cates that the order gets stuck sometimes. These peaks also corresponds to the small dips
in the accuracy curve.
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Figure IV.25. Performance data for pmmeVarOrd and pmmipVarOrd when solving with
100 different tolerance settings for the flame propagation problem. Both solvers shows
very good accuracy curves, which are both straight and smooth. We can see that, for
pmmipVarOrd, the order often gets stuck, which is indicated by the peaks in the work and
order curves. This could also be seen in the more detailed view in Figure IV.14. Both solvers
favor higher order methods for stricter tolerances, compared to less strict tolerances.
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The trend which indicates that higher orders are preferred at stricter tolerance settings is present
for the stiff problems as well (which once again agrees with the results shown for fixed order
solvers in Figure III.49–III.52). In the case of theOregonator problem (Figure IV.28), this difference
is very small, and the mean order is almost 5 for all tolerances. This indicates that the order 5
is used mostly throghout the whole integration process, for all tolerance settings. This behavior
can be observed when looking at the orders used in Figure IV.18. The exception to the trend
is the decaying exponent problem (Figure IV.26), where the mean order changes up and down
between approximately 2, 3, and 4. When looking at the detailed behavior of the order algorithm
in Figure IV.16, one sees that the order stays the same in the later parts of the integration process,
and that the error is very small here. This indicates that because the error is so small, there are
no real benefits to changing order, but the greatest addition to the mean order comes from this
later part of the integration process. If one looks at the detailed behavior of the order used in
Figure IV.16, it indicates that in the beginning of the integration process, where almost all error
is accumulated, the solver uses higher order methods for a longer period when using stricter
tolerances, which is in agreement with the results shown in Figure III.49. Note also that even
though the error curves in Figure IV.16 cross each other and do not exhibit a good behavior, this
is not noticed in the plot showing the achieved accuracy in Figure IV.26, and this is, as previously
stated, because the great majority of the integrated error is accumulated in the beginning of the
integration, where the curves exhibit a good behavior.
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(𝑑 = 100), solved using pmmiVarOrd (BDF)

Figure IV.26. Performance data for pmmiVarOrdwhen solving with 100 different tolerance
settings for the decaying exponent problem. The accuracy curve is very straight and smooth,
indicating good computational stability. The jumps in the mean order can be explained
when looking at the detailed view of the orders used in Figure IV.16, which shows that
either order 2, 3, or 4, is used in the part of the solution where the error becomes very
small. There is probably no benefit in changing order due to the small error, and because
this constitutes the majority of the solution the mean order will be either approximately 2,
3, or 4.
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Figure IV.27. Performance data for pmmiVarOrdwhen solving with 100 different tolerance
settings for the HIRES problem. The accuracy curve is very straight and smooth, indicating
good computational stability. The mean order shows that the solver favors an increasing
use of higher order methods when the tolerance becomes more strict.
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Figure IV.28. Performance data for pmmiVarOrd when solving with 100 different toler-
ance settings for the Oregonator problem. The accuracy curve is very straight and smooth,
indicating good computational stability. The difference in mean order is extremely small,
indicating that only one order is primarily used throughout the integration process (making
the solver behave as a fixed order solver).
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Figure IV.29. Performance data for pmmiVarOrdwhen solving with 100 different tolerance
settings for the Robertson problem. The accuracy curve is much less smooth and straight
than for the other test problems. This considerable difference is due to the Robertson prob-
lem being very difficult to solve. The results in Figure IV.38 gives some context to this by
showing the performance of a well established solver.
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Figure IV.30. Performance data for pmmiVarOrd when solving with 100 different toler-
ance settings for the Van der Pol problem. The accuracy curve is very straight and smooth,
indicating good computational stability. The mean order shows that the solver favors an
increasing use of higher order methods when the tolerance becomes more strict.
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IV.3.4. Comparison with other solvers

Our solvers were compared to Matlab’s ode113 (non-stiff) and ode15s (stiff). The latter was
called with the ‘BDF’ option. When comparing the non-stiff solvers (Figure IV.31–IV.35), with
the exception of the results for the Van der Pol problem (Figure IV.34), one sees that the accuracy
achieved and the amount of work done by the solvers are comparable at less strict tolerances,
and the amount of work done by ode113 is less at stricter tolerances. The results show that in
all cases the slope of the work curve for pmmipVarOrd has a larger negative value. One possible
reason for this is that ode113 utilizes methods with an order up to and including 12 [16]. As has
been previously shown, at stricter tolerances higher order methods are preferred by our solvers,
and because the allowed maximum order is 8 this may influence the slope of the work curve.

One can see that ode113 generally has a larger amount of failed steps (especially at stricter tol-
erances). This is probably due to fundamental differences in the step-size regulation algorithms.

A significant difference in the results is how smooth the accuracy curves are. The curves for
pmmipVarOrd are smoother than those for ode113 every single time.

As we saw in the last section, pmmipVarOrd sometimes stays at a higher order, even though it
would be beneficial to go down to a lower order. This greatly affects the amount of work needed
compared to ode113. In the case of the Van der Pol problem, where we have already seen that
the accuracy curve seems to be somewhat affected by this phenomena (Figure IV.13), we see that
the accuracy curve is smoother for pmmipVarOrd than for ode113 (Figure IV.34).

The results for the stiff solvers (Figure IV.36–IV.41) show that the accuracy achieved and the
amount of work done by the solvers are comparable in all cases. The main difference can be
found when looking at the amount of failed steps and how smooth the accuracy curves are.

In all cases, except for the decaying exponent problem (Figure IV.36), ode15s has many more
failed steps, and for example in the case of the Van der Pol problem Figure IV.37 the difference is
very large.

When looking at the smoothness of the accuracy curves, one can see that in the case of the
decaying exponent problem the two solvers produces curves with comparable smoothness. In all
other cases the curves produced by pmmiVarOrd are smoother than those produced by ode15s.

The Robertson problem stands out, because for the less strict tolerances the error curve produced
by ode15s has very large jumps. This is also accompanied by a large amount of steps taken and
a large amount of failed steps. The error is on such a scale that the solver, at least partly, has
failed to compute a solution. To get a better view of how ode15s performs for stricter tolerances
the results are also shown in Figure IV.39, but here the least strict tolerances have been excluded.
Here it can be seen that the accuracy curve produced by pmmiVarOrd is much better than the
one produced by ode15s, with regards to smoothness.
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Figure IV.31. Performance data comparing pmmipVarOrd and ode113, when solving the
decaying exponent problem with 100 different tolerance settings. The accuracy achieved
by pmmipVarOrd is somewhat better, but ode113 uses less amount of work. Note the
different slopes of the work curves. The accuracy curve produced by pmmipVarOrd is much
smoother than the one produced by ode113, indicating a better computational stability.
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Figure IV.32. Performance data comparing pmmipVarOrd and ode113, when solving the
Brusselator problem with 100 different tolerance settings. The accuracy achieved by both
solvers is the same, but ode113 uses less amount of work for stricter tolerances. The accu-
racy curve produced by pmmipVarOrd is much smoother than the one produced by ode113,
indicating a better computational stability.
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Figure IV.33. Performance data comparing pmmipVarOrd and ode113, when solving the
Lotka–Volterra problem with 100 different tolerance settings. The accuracy achieved by
both solvers is the same, but ode113 uses less amount of work for stricter tolerances. The
accuracy curve produced by pmmipVarOrd is much smoother than the one produced by
ode113, indicating a better computational stability.

188



IV.3. RESULTS AND DISCUSSION

10−10

10−8

10−6

10−4

ac
cu
ra
cy

pmmipVarOrd
ode113

103

103.2

nu
m
be
ro

fs
te
ps

10−10 10−9 10−8 10−7 10−6 10−5

0

20

40

60

TOL

fa
ile
d
st
ep
s

Accuracy, work and order for the Van der Pol problem (𝜇 = 10),
comparison between pmmipVarOrd (AM) and ode113 (AM)

Figure IV.34. Performance data comparing pmmipVarOrd and ode113, when solving the
Van der Pol problemwith 100 different tolerance settings. The accuracy achieved by ode113
is better and ode113 uses less amount of work for stricter tolerances. The accuracy curve
produced by pmmipVarOrd is much smoother than the one produced by ode113, indicating
a better computational stability.

189



IV.3. RESULTS AND DISCUSSION

10−8

10−7

10−6

10−5

10−4

ac
cu
ra
cy

pmmipVarOrd
ode113

102

102.2

102.4

102.6

nu
m
be
ro

fs
te
ps

10−10 10−9 10−8 10−7 10−6 10−5

0

10

20

TOL

fa
ile
d
st
ep
s

Accuracy, work and order for the flame propagation problem (𝛼 = 2),
comparison between pmmipVarOrd (AM) and ode113 (AM)

Figure IV.35. Performance data comparing pmmipVarOrd and ode113, when solving the
flame propagation problem with 100 different tolerance settings. The accuracy achieved
by both solvers is the same, but ode113 uses less amount of work for all but the looser
tolerances. The accuracy curve produced by pmmipVarOrd is much smoother than the one
produced by ode113, indicating a better computational stability.
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Figure IV.36. Performance data comparing pmmiVarOrd and ode15s, when solving the
decaying exponent problem with 100 different tolerance settings. pmmiVarOrd achieves a
slightly better accuracy, but also uses slightly less work. When taking this into account
the performance is about the same for both solvers. Both accuracy curves are straight and
smooth, indicating computational stability.
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Figure IV.37. Performance data comparing pmmiVarOrd and ode15s, when solving the
Van der Pol problem with 100 different tolerance settings. The achieved accuracy and
amount of work is almost the same for both solvers. pmmiVarOrd produces a much
smoother accuracy curve, indicating a better computational stability. ode15s has a much
larger amount of failed steps compared to pmmiVarOrd.

192



IV.3. RESULTS AND DISCUSSION

10−12

10−5

102

109

ac
cu
ra
cy

pmmiVarOrd
ode15s

102.5

103

103.5

nu
m
be
ro

fs
te
ps

10−10 10−9 10−8 10−7 10−6 10−5

0

500

1,000

TOL

fa
ile
d
st
ep
s

Accuracy, work and order for the Robertson problem, comparison
between pmmiVarOrd (BDF) and ode15s (BDF)

Figure IV.38. Performance data comparing pmmiVarOrd and ode15s, when solving the
Robertson problemwith 100 different tolerance settings. ode15s produces very large jumps
in the error curve for the less strict tolerances, indicating that the solver is not able to
produce a solution. This is accompanied by a large amount of work and failed steps. Due
to the scaling the quality of the curves for the stricter tolerances can not be evaluated, and
therefore these parts are shown in Figure IV.39.
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(excluding the least strict tolerances)

Figure IV.39. Performance data comparing pmmiVarOrd and ode15s, when solving the
Robertson problem and excluding the least strict tolerance settings. The amount of work is
comparable and pmmiVarOrd achieves a greater accuracy. None of the curves are smooth,
although the quality of the curve produced by pmmiVarOrd is somewhat better. The Robert-
son problem is, as can be seen here, a hard problem to solve.
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Figure IV.40. Performance data comparing pmmiVarOrd and ode15s, when solving the
Oregonator problem. The achieved accuracy and amount of work done is the same for
both solvers. pmmiVarOrd produces a much smoother accuracy curve, indicating a better
computational stability. ode15s has a much larger amount of failed steps compared to
pmmiVarOrd.
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Figure IV.41. Performance data comparing pmmiVarOrd and ode15s, when solving the
HIRES problem. The achieved accuracy and amount of work done is the same for both
solvers. pmmiVarOrd produces a much smoother accuracy curve, indicating a better com-
putational stability.
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IV.3.5. Performance when allowing higher order methods

It was previously mentioned that due to performance reasons the maximum order was limited
to 8 for the non-stiff solvers. It sometimes happens that when higher orders are allowed the
solver increases the order, and then stays at this order even though it would be beneficial to
use lower order methods. Such a behavior can be seen in Figure IV.42 (this example is only
for pmmipVarOrd, but pmmeVarOrd exhibits similar behavior when using higher orders), where
data is shown from two tests: one where the maximum order is limited to 8 and one where the
maximum order is limited to 10. As can be seen in this figure the test run where the higher limit
was allowed gets stuck on order 9 and 10. The accuracy for this test is somewhat better, but at
the cost of a large increase in the amount of work (which can be seen by looking at the step-size
sequence).

Themost probable explanation is that at the higher orders the difference in step-size, between the
order currently used and its neighboring orders, is so small that the algorithm does not change
the order. The algorithm is designed to avoid chatter and therefore it does not change order
when the benefits are too small. Also, the algorithm does not compare any other orders than
those adjacent to the one currently in use, so even if there would be a great advantage to go
down to a very low order it would lack information about this.

Some possible solutions to this could be to allow comparisons with more than 2 other orders, or
adding some compensating factor which makes the algorithm change orders faster when a high
order is in use. The first approach though will demand more computational power. The second
approach is better in this regard, but it is not certain that it is possible to design one algorithm
which fits all types of methods. Different methods have different characteristics which affect the
error, e.g., their different error constants. It is not even the case that the error constant always
decreases with an increase in order, as can be seen in Figure II.6, where it is shown that the error
constants of EDF-methods actually increase.

There is not enough data to draw firm conclusions about the following, but from the data we have
there are two interesting observations that can be made. The first is that the difficulties with the
order changes, seem to be more prevalent in the case of pmmipVarOrd, than with pmmeVarOrd.
This may indicate that the method used is relevant, which was discussed in the previous para-
graph. The other observation is that both of the problems where we see this issue are moderately
stiff problems.

The limit chosen for the maximum allowed order in the tests is not a hard limit, it depends on the
problem and the settings of the solver. For these tests, the limit of 8 seems to be working well for
pmmeVarOrd. For pmmipVarOrd it still poses problems in two cases, see Figure IV.24 and IV.25.
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Figure IV.42. The difference when solving the Van der Pol problem using different maxi-
mum order limits, 𝑝max, with pmmiVarOrd. Except for the change in maximum order, the
tests where done using the settings shown in Table IV.4, and using the tolerance 10−7. Note
how when 𝑝max = 10 the order gets stuck at 9 and 10. This is accompanied by a rapid de-
crease in step-size which leads to a large increase in the amount of work done.
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V.1. Conclusions

The first question stated in the introduction — Does the concept of using digital filters to control
the step-size, give good results when implemented in conjunction with linear multistep methods? —
can be answered (in the case of the fixed order solvers) by the results in Subsection III.4.1 and
Subsection III.4.2. When the solvers are given a periodic problem, they produce both periodic
step-size sequences and periodic control error sequences which is a good sign. The controller
keeps the control error at appropriate values around the specified tolerance and the step-size
ratio sequence inside the allowed interval resulting in only a few (if any) rejections, which is a
really good result since a rejection means a restart of the controller.

The fixed order solvers are very robust upon tolerance changes, at least in the case of work and
accuracy according to what is seen in Subsection III.4.2, which is an important quality. Higher
order methods need less work for the same accuracy, and the same is true when comparing the
non-stiff implicit solver to the non-stiff explicit solver, which is what we expect as long as the
problems are non-stiff.

The answer to question two in the introduction — Do different combinations of solvers, methods,
filters and problems behave equally well, or are some combinations preferred? — is: Generally,
no significant difference is found. According to what we have seen in the fixed-order tests, the
different solver-method-filter-problem-combinations seem to behave about equally well in most
cases. The only time we have gotten really bad results is when we have tried to use the methods
AB𝑥 (𝑥 > 5), EDF𝑥 (𝑥 > 5) and BDF6. However, using these methods we have not found any
special combinations that seem to be worse than others, instead they seem to behave pooly in
general. In addition to running them in combination with most of the different filters, we have
tried to run them using a stricter step-size ratio interval, however, this did not seem to improve
the results at all. A further investigation using these methods is needed.

As said above, in general most SMFP-combinations seem to work well. However, in Subsec-
tion III.4.3, we see that an increase in stiffness (𝑑 goes from 1 to 10, making the problem moder-
ately stiff) seem to give indications that the filters PI3040, PI3333, and PI4020 are better suited for
moderately stiff problems. These results are not conclusive, as more tests on other moderately
stiff equations have to be performed, but it shows that this may be an interesting avenue for
further research.

There were two questions stated in the introduction regarding the order regulation, and the
first of these questions dealt specifically with whether or not the proposed algorithm worked as
intended. The first tests, in Subsection IV.3.2, shows that the variable order solver manages to
produce accurate solutions, while actively regulating both the step-size and order. When used to
integrate periodic problems the solver shows a good periodic behavior in regards to which orders
are used, and this indicates that the algorithm is stable and manages to regulate in the same way,
even though there are small differences as is the case when comparing different cycles in the
same problem.

When looking at the flame propagation problem, which is a moderately stiff problemwhere there
is a clear point at which the problem goes from being non-stiff to being stiff, the explicit solver
decreases its order in the stiff region, which is something which can be expected from what we
know about fixed step-size stability analysis. The same thing happens for the implicit solver,
with the exception that it gets stuck at a higher order, for some tolerances.
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The second set of tests, in Subsection IV.3.3, shows a good accuracy response when changing the
tolerance, especially for the two implicit solvers for which the results are good (and in the case
of pmmiVarOrd, excellent). Even though the results for the explicit solver are good, they need
to be improved a bit to reach the same quality as the results produced by the implicit solvers. Up
until now, the work curves have only been discussed when looking at the amount of work, but it
is also worth mentioning that it is desirable that they also are smooth and straight, as this gives a
more predictable efficiency behavior and also indicates computational stability. As discussed in
Section II.5 this should not be prioritized above the accuracy behavior, but as can be seen from the
results the curves are smooth and straight, with the exception of Figure IV.25 and Figure IV.24.

When comparing the performance of the two non-stiff solvers it is also shown that the implicit
solver outperforms the explicit one in regards to the accuracy achieved for a certain amount of
work done. This is an expected outcome, as the implicit methods do the same in the fixed order
case.

The mean order also shows the trend that it increases when the tolerance becomes more strict
(with the exception of Figure IV.36 for which this behavior has already been explained). As shown
by the results from the fixed order solvers, the difference in the amount of work needed to reach
a certain accuracy increases when the tolerance becomes stricter, and therefore a preference for
higher order methods at these tolerances are expected even in the variable order case.

During the tests, two problems were discovered: One regarding how the methods are started,
which a further test indicates is not due to problems with the order regulation and this will
discussed in Section V.2, and the other regarding the behavior when allowing high order methods
for solving problems. Tests showed that for certain problems the non-stiff solvers increased
the order, but did not decrease it even though it would be beneficial. This indicates that the
algorithm needs to modified in some way, as to also allow the use of higher order methods
without exhibiting this behavior. Almost all the problems noted in the discussion about the
results in Section IV.3, can be traced to this.

All the things mentioned above are on their own not enough to draw a conclusion, but together
they paint a picture which shows that the main idea behind the algorithm is sound. If there is
a solution to the problem with the order getting stuck, the algorithm should work as intended.
Most importantly, even when the order gets stuck, this has a very small effect on the accuracy,
which is a very good property and shows some of the benifits to using control theory when
regulating the step-size.

The last question in the introduction, about whether or not the solvers constructed have the po-
tential to compete will already established solvers, was investigated by comparing our variable
order solvers with two of the solvers implemented in Matlab. When looking at the curves show-
ing the accuracy, the curves produced by pmmipVarOrd and pmmiVarOrd are in all cases, except
one, smoother than those produced by ode113 and ode15s. As has been discussed in Section II.5
this is an important feature as this indicates robustness.

When comparing howmuchwork is done for an achieved level of accuracy, ode15s and pmmiVarOrd
performs equally well, whereas ode113 outperforms pmmipVarOrd, especially at stricter toler-
ances. It has already been noted that the difference in slope here may be explained by the differ-
ence in the maximum order limit. Still, as long as the underlying problem for limiting the order
at 8 for pmmipVarOrd the conclusion must be that this solver is less efficient. In the stiff case
though, where the methods have a lower natural limit, the solvers are equally efficient.
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We conclude, based on the reasons stated above, that the principles upon which the solvers tested
in this thesis have been built are sound and have the potential to competewith already established
solvers. This is not to say that they are production ready today, which is a conclusion that can
not be made. These are early tests, this version of the software package is meant for scientific
purposes, and there are as noted some outstanding problems.

V.2. Future work

It has previously been shown that the project of implementing a numerical solver involves a lot
of different parts. However, the focus of this thesis has been to investigate the regulation of step-
size and order, which means that the other parts have been subjected to less examination. In
this section we will outline some of these subjects, and give ideas to interesting areas for future
work.

As already mentioned, we have found a problem in the variable order solvers regarding the
solvers getting stuck at higher order methods. We feel confident that this problem is solvable,
but further work is required. A couple of solution proposals have already been discussed, the use
of a compensation factor at higher orders, or to calculate the step-size sequence for more than
3 orders at a time, but these are not necessarily the only, or the best, solutions. Changes could,
for example, also be made to the integrator (Equation IV.13). The introduction of a forgetting
mechanism, could make the algorithm place greater weight on more recently calculated values.

Another issue already mentioned, touches upon the start-up phase in the non-stiff solvers. At
the moment, we always accept solution point 𝑘 + 1, i.e., the first solution point created by the
𝑘-step LMM. The reason for this is that we need to calculate 𝑘 + 1 solution points before we can
use the main predictor, and we do not have any good initial predictor to use instead. An example
of a case when this has caused problem, can be seen in Figure IV.3. Here the proposed initial
step-size is too large, however, since the first step taken by the LMM is always accepted, this
leads to a severely diminished accuracy. In the stiff solvers, this is not a problem, since the main
predictor is available already at step 𝑘 (during which solution point 𝑘 + 1 is calculated). A couple
of possible solutions worth trying out are the following:

1. The starter, i.e., the solver/method that generates 𝑘 − 1 solution points in the beginning
enabling the main method (𝑘-step method) to start, could generate one additional solution
point. This would make it possible to start the LMM and the main predictor at the same
time (at step 𝑘 + 1).

2. The use of an initial predictor, that is, a special predictor used exclusively at the first step
of the LMM. This would enable an error estimate to be calculated at step 𝑘.

3. The error controller is still turned off at step 𝑘, but if step 𝑘 + 1 is rejected, both step 𝑘 and
step 𝑘 + 1 are rejected and recalculated using a shorter step-size.

The first proposal has the merit of being very easy to implement, however it is desirable to start
the main method as soon as possible. This solution would also prohibit the variable order non-
stiff solvers to be self-starting since no error prediction can be made at the first step by the 1-
step method. The third proposal is harder to implement than the first, and it might not solve
everything. What if the local error in step 𝑘 is large (and therefore should be rejected), but the
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local error in step 𝑘 + 1 is small? This would lead to no rejection being made, and accuracy
problems will still be introduced. Alternative 2 seems to be the best solution. It is both easy to
implement, and would make it possible to use the main method already at step 𝑘. However, it is
important that a good initial predictor is chosen, otherwise it might result in an under-estimated
error, which could lead to an even worse accuracy.

An interesting area to investigate is the area of making the implementations more efficient. For
example, one could try to parallelize the order regulation, which would be possible since the
integration process of one step using different methods are independent of each other. This
could especially be interesting if only one ODE is to be solved. If the solver is part of a larger
problem that involves solving multiple ODEs, all available calculation resources might already
be in use. Though, in the case of only one ODE, this parallelization could enable the use of more
simultaneous order comparisons. For example, when using the BDF-family in the stiff variable
order solver, one could integrate and do comparisons between all stable BDF-methods at the same
time, enabling the solver to directly change from the highest to the lowest order. This would, of
course, require modifications to the order regulation algorithm.

Another interesting idea, would be to create a solver that is stiffness-adaptive, meaning that the
solver mid-integration can change method from one being stiff to one being non-stiff depending
on the stiffness of the problem at that particular time. This would especially be beneficial when
solving a problem containing both non-stiff parts and very stiff parts. Such an implementation
could be based on the order regulation algorithm, which already compares different methods
(although with the focus on the methods being of different orders) and decides which is most ef-
fective. Another approach could be to monitor the stiffness throughout the problem, and change
method when the character of the problem changes. Calculating the stiffness involves finding
the extreme eigenvalues of a symmetric matrix (the symmetrized Jacobian), and as the linear
system of equations, which is to be solved in the Newton iterations, in most cases has a larger
dimension than the Jacobian, this would lead to less calculations, because both the solving of a
linear system of equations (by LU-factorization ) and the calculation of the extreme eigenvalues
(by transforming the matrix to Hessenberg form using Householder reflectors, and then using
the bisectional algorithm and Sturm sequence to find the two eigenvalues of interest) can be done
in cubic time [28]. An easy way to try the latter method is to explicitly calculate the stiffness
function for a specific problem and during the integration of this problem evaluate this function.
Start the integration using the non-stiff solver, and evaluate the stiffness at every time step. If
the stiffness is less than a value 𝑥, then change to the stiff solver, and change back if the stiffness
gets greater than 𝑥 again. However, one problem with the approach to calculate the stiffness at
every time step, is that the step-size regulation process when changing method has to be reset
somehow, since no parallel step-size regulation process has been run.

When the step-size is regulated, it is sometimes necessary to override the controller, for example,
upon rejections, or when the controller suggests a step-size increase that is too large. In these
situations an anti-windup scheme may be employed to improve the results. In the current imple-
mentation the bypass functionality, which is employed upon rejections, works as an anti-windup,
but besides this there are no other schemes applied. The results shown in this thesis are good,
but a more sophisticated anti-windup scheme may have the benefit of improving on these even
more. Further work can be done here by developing and testing such a scheme.

The way the implicit solvers solve the non-linear systems of equations that arise, are currently
only done by Newton’s method. Here other schemes may be tried, for example, fixed point itera-
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tion. The implementation and evaluation of predictor-iteration schemeswould also be interesting
to experiment with, especially since the fact that reusing old polynomials are equivalent to using
explicit methods as predictors in the implicit solvers. The use of Adams–Moulton methods, for
example, automatically give Adams–Bashforth methods as predictors.

Further, the current software package implements the different solvers as 6 separate functions (3
of fixed order and 3 of variable order), all using slightly different interfaces. It might be beneficial
to the user, if the solvers were unified to one solver, or at least if the variable order and fixed
order solvers were unified to 3 solvers. Another improvement beneficial to the user, would be
to make the solvers faster. This could be done by implementing the most time-consuming parts
in a compiled language (as is possible with Matlab). Especially the functions constructing the
polynomials for the implicit solvers are slow in the current implementation. By rewriting these
parts in for example C, we could probably make the solvers faster. This is something which could
be done in Matlab by constructing so called MEX-files [13].

Apart from the work ideas focused on implementation given above, we have other suggestions
on areas to investigate. In this thesis the fixed order solvers were tested with many of the meth-
ods and filters implemented in the libraries. In these tests no significant difference in how the
combinations of solvers, methods and filters performed could be found. All combinations seemed
to work very well together, except in the case of the methods BDF6, AB6 and EDF6. All of these
have been problematic to use, and there do not seem to be any link between what filter is used in
conjunction with the methods, and their behavior. Neither did a tighter step-size ratio interval
seem to make any difference. However, the subject is not thoroughly investigated. It needs to
be further analyzed.

The allowed step-size ratio interval is another area we think should be further investigated. As
for now, the default interval is set to [0.8, 1.2], regardless of method, filter and other settings
used. We believe that it might be beneficial to choose different default intervals depending on
settings. For example, the order of the method, or the tolerance, could have an influence on what
interval to choose. Different methods are also subject to becoming unstable at different changes
of step-size, which motivates the limits of the interval to be method-dependent as well.
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A.1. FILE STRUCTURE AND ORGANIZATION

A.1. File structure and organization

All the code generated during the scope of this thesis project is contained in a Matlab soft-
ware package called VOSS. Further, this is organized into multiple sub-packages, where each
sub-package contains functions controlling the same aspects of the solver. The reason for the
code structure division, is that we want to make the solvers modular such that the user is able to
change some part of it, for example the system controlling the variable step-size, without altering
anything else in the solver. The whole package is available for download on the web [3]. The file
structure of the package is as follows:

VOSS
+solvers

pmme.m
pmmeVarOrd.m
pmmi.m
pmmiVarOrd.m
pmmip.m
pmmipVarOrd.m

+init
start.m
autostart.m

+control
getWorkFactors.m
errorController.m
getFilterVec.m

+solverFunctions
polE.m
polI.m
polIp.m
getMethodThetaFunc.m
getJac.m
getMethodVec.m
+thetas

AB.m
BDF.m
EDF.m
AM.m
dcBDF.m
Nyström.m

+ode
+both

…
+nonStiff

…
+stiff

…
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A.1.1. Package: solvers

This package consists of the actual solvers, i.e., the main functions. All together there are 6
solvers. The three numerical method types, 𝐸𝑘, 𝐼𝑘 and 𝐼+

𝑘 (see Section II.2), have to be handled
in slightly different ways, and are therefore implemented in separate solvers. Each type is also
implemented in two different versions, one that uses fixed order, and one that uses variable order
(indicated by the VarOrd extension in the function name):

• pmme.m – Solver using a type 𝐸𝑘 method (e.g. Adams–Bashforth)

• pmmeVarOrd.m – Variable order version of the previous solver

• pmmi.m – Solver using a type 𝐼𝑘 method (e.g. BDF methods)

• pmmiVarOrd.m – Variable order version of the previous solver

• pmmip.m – Solver using a type 𝐼+
𝑘 method (e.g. Adams–Moulton)

• pmmipVarOrd.m – Variable order version of the previous solver

All the above solvers have the following signature

function [t,x,statistics] = pmm*(f,tSpan,x0,varargin)

where t and x are the calculated time points and corresponding solution points, and statistics
is aMatlab-struct containing information about the calculation, e.g., whatmethodwas used, what
filter was used and CPU-time. The 6 different solvers have a few different optional in-parameters
as well.

A.1.2. Package: solverFunctions

For the solvers to work, we have implemented a few help functions, all contained in this sub-
package. One notable thing is that the actual functions calculating the polynomial coefficients,
are implemented here as separate functions, instead of being implemented directly in the solvers.
This gives a wider flexibility both in this project, and future ones based on solvers using this mul-
tistep method parameterization. The functions contained in this sub-package are the following:

function [jac] = getJac(f,t,x)

This function calculates the Jacobian jac of a function f(t,x) using central finite differ-
ences. This method is used in the implicit solvers when no analytical Jacobian is supplied.

function [theta] = getMethodVec(method)

This function returns the parameter vector, the 𝜃-vector, for a given method. It is used by
all fixed order solvers, which enables the user to request a method by name, instead of by
parameter vector. The library consists of the following multistep methods:

• Explicit methods of order 𝑘 (method class 𝐸𝑘):

– AB1, AB2, AB3, AB4,…

– EDF1, EDF2, EDF3, EDF4,…

– Nystrom3, Nystrom4, Nystrom5
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– EDC22, EDC23, EDC33, EDC24, EDC34, EDC45

• Implicit methods of order 𝑘 (method class 𝐼𝑘):

– Kregel

– BDF1, BDF2, BDF3, BDF4, BDF5, BDF6

– Rockswold

• Implicit methods of order 𝑘 + 1 (method class 𝐼+
𝑘 ):

– Milne2, Milne4

– IDC23, IDC24, IDC34, IDC45, IDC56

– AM2, AM3, AM4,…

– dcBDF2, dcBDF3, dcBDF4,…

function [thetaFunction] = getMethodThetaFunc(method)

This is a wrapper function that returns a function handle thetaFunction taking the order
𝑝 as an argument. Given 𝑝, the handle returns the parameter vector for a method of this
order. It plays the same role as getMethodVec above, but for variable order solvers.

In contrast to the fixed order solvers, the variable order solvers need to be able to accom-
modate many different methods, and not necessarily from the same traditional family (the
parameterized formulation of multistep methods makes it less meaningful to talk about
families). Therefore, instead of using a fixed parameter vector, the variable order solvers
use a function which returns the parameter vector for a given order. These functions also
indicate — by throwing an exception, which can be caught — when a method is not avail-
able. For example if one uses a variable order scheme based upon BDF-methods, then there
are no zero-stable methods above order 6, and the function therefore throws an exception.

This implementation makes it easy to add other variable order schemes, either in the form
of traditional families or as a mix of methods between different families. One just has to
write a function returning the parameter vectors for a given order (and which throws the
correct exception when an order is unavailable), and then add it to the wrapper function.

Already implemented in the software package are:

• Explicit methods of order 𝑘 (method class 𝐸𝑘):

– Adams–Bashforth

– EDF

– Nyström

• Implicit methods of order 𝑘 (method class 𝐼𝑘):

– BDF

• Implicit methods of order 𝑘 + 1 (method class 𝐼+
𝑘 ):

– Adams–Moulton

– dcBDF
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function [p] = polE(theta,h,x,xDot)

This function calculates the coefficients for the polynomial in a specific point x and a spe-
cific explicit method (defined by the parameter vector theta). This function was written
by C. Arévalo and G. Söderlind [1].

function [p] = polI(f,jac,theta,h,x,xDot,t,coeffs,TOL)

This function calculates the coefficients for the polynomial in a specific point x and a spe-
cific implicit method (defined by the parameter vector theta) of order 𝑘. It uses Newton
iteration to solve the system of equations which the implicit method gives rise to. This
function was written by C. Arévalo and G. Söderlind [1].

function [p] = polIp(f,jac,theta,h,x,xDot,t,coeffs,TOL)

This function calculates the coefficients for the polynomial in a specific point x and a spe-
cific implicit method (defined by a parameter vector theta) of order 𝑘 + 1. It uses Newton
iteration to solve the system of equations which the implicit method gives rise to. This
function was written by C. Arévalo and G. Söderlind [1].

Package: thetas This package contains the actual functions returned by the wrapper function
getMethodThetaFunc.

A.1.3. Package: control

This package contains functions related to the step-size and order control of the solver. The
sub-package contains:

function [r] = errorController(controllerVec, order, errorVec, hVec,
unit)

This is the error controller used to produce smooth step-size sequences in the solver. It can
use arbitrary filters defined by a filter vector controllerVec.

function [parvec] = getFilterVec(filter)

This function gives you the filter vector of a specific filter, and is used by all solvers. It acts
as a small library of filters consisting of the following:

• Second order filters:

– H211D, H211𝑏, H211PI

– PI3333

– PI3040

– PI4020

• Third order filters:

– H312D, H312𝑏, H312PID

– H321D, H321

function [workFactors] = getWorkFactors(orders)
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This function returns thework factors used to determine the efficiency of different orders in
the variable order solvers. By rewriting this function one may experiment with different
models for determining how efficient a method of a certain order is. For example, just
returning the vector (1, 1, 1) makes the solver only factor in the step-size, and not how
much computing power is necessary to take a step.

A.1.4. Package: init

function [h] = autostart(f, tspan, u0, tol, p)

This function calculates an appropriate initial step-size. This step-size is used by both
start and the solver itself in the calculation of the first step after the steps created by
start. The algorithm is written by C. Arévalo and G. Söderlind [1].

function [h,t,x,xDot] = start(f,h0,t0,x0,xDot0,TOL,k)

This function initializes the multistep method by calculating the first 𝑘 steps usingMatlab’s
solver ode15s. This function is used in all solvers and is written by C. Arévalo and G.
Söderlind [1].

A.1.5. Package: ode

This package contains a library of test problems that can be used to evaluate the performance of
these and other solvers. The problems are organized into three different categories, namely:

nonStiff Contains non-stiff test problems (see Table III.8).

stiff Contains stiff test problems (see Table III.6).

both Contains problems which can be made both stiff and non-stiff, by either adjusting a pa-
rameter or the initial condition of the problem (see Table III.7).

Every problem consists of one RHS-fucntion called problemname_rhs.m. Most of them also
has an accompanying analytical Jacobian called problemname_jac.m. Further, a few of them
also have an analytical solution called problemname_sol.m.
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