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Abstract  

 

There is a rising concern involving the impact of modern fisheries on the dynamics and 

viability of the exploited fish populations. The increasing fishing pressure has been recorded to 

cause declines in age and size at maturation in variety of marine fish species. In this study I have 

aimed to detect heritable phenotypic changes of the European hake (Merluccius merluccius) 

under the currently prevailing fishing intensity. Using dataset of 64 individual-based growth 

parameters of the studied species and an individual-based simulation, which incorporates 

quantitative genetics, ecological processes and biological characteristics, I have simulated 

ecological and evolutionary dynamics of hake. Species` phenotypic traits were observed through 

three different scenarios which showed significant ecological consequences for hake population 

under the current fishing strategies but detected no evolutionary changes in life-history traits, 

e.g. growth and age and size at maturation. Even though, the current fishing intensity does not 

appear to select for a specific life-history type, the ecological impact observed under the current 

fishing practices can pose a severe risk through direct population declines.     

 

 

Introduction 

 

Various anthropogenic disturbances have been recognized as potential drivers 

for phenotypic trait evolution in different ecosystems and their representative species 

(Palkovacs et al. 2011). One of such is the fisheries-induced evolution (FIE) 

hypothesized in many fish species owing to observed changes in size and age at 

maturation in populations exposed to intensive fishing (Jørgensen et al. 2007, Kuparinen 

and Merilä, 2007). The theoretical background of FIE lies in the effect of fishing 

mortality, which operates as a strong selective force removing larger and older 

individuals from the population (Law, 2000). In addition to direct selective removal of 

such large-growing late-maturing life-history types, the remaining smaller and younger 

individuals can exhibit faster growth rate as a result of reduced competition for space 

and resources; consequently causing maturation at a smaller size and earlier age (Law, 

2000, Sharpe and Hendry, 2009, Kuparinen and Merilä, 2007).  

Since potential fecundity is positively correlated with the age and size of the 

individual, declines in average age and size are then reflected in the reduced potential 

fecundity and egg quality (Mehault et al. 2010). As an example, the meta-analysis by 

Venturelli et al. (2009) provided an overview of 25 species (or 35 marine populations) 

and showed an overall positive response of recruitment levels to the increasing 
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reproductive lifespan across both species and families. The study by Wright and Trippel 

(2009) provided further insight into the impact of fisheries on reproductive success in 

harvested stocks through investigating how the timing of spawning and changes in day 

of birth can have major consequences for the survival of the individual in later life-

stages. Individuals maturing at smaller size and younger age undeniably affect the 

demography and dynamics of the whole population causing, e.g. higher variations in fish 

abundance in comparison to non-fished populations (Hsieh et al. 2006, Anderson et al. 

2008). Moreover, as fish species often play an important trophic role in the ecosystem, 

such phenotypic changes could cause significant top-down and bottom-up shifts through 

the trophic web (Shackell et al. 2010, Audzijonyte et al. 2013, Palkovacs et al. 2011).  

Nevertheless, much is argued whether FIE is truly the cause underlying the 

observed phenotypic changes. In wild fish populations, the same trends in size and age 

at maturation can be seen, for example, under declining population density or increasing 

sea surface temperature, as a result of plastic phenotypic responses (Heino and 

Dieckmann, 2008, Sharpe and Hendry, 2009, Kuparinen et al. 2009b, Dominguez-Petit et 

al. 2007). Therefore, attempts have been made to address the challenges of detecting 

and quantifying genotypic changes and to provide arguments that support the theory 

behind FIE.  

One such particular study, conducted by Kendall et al. (2009), investigated 

selection differentials of gillnet commercial fishery of the sockeye salmon (Oncorhynchus 

nerka) using a long-term series of catch and escapement data collected between 1946 

and 2005. Their quantitative analysis of the magnitude and nature of the selective 

pressure revealed a dominant exploitation of larger and older individuals during the 

majority of the studied time period. The level of susceptibility to the fisheries was 

especially significant for female sockeye salmon which in 52 out of 57 years (or 91% of 

the studied time period), had a negative selection differential. This essentially showed 

that larger and older females were more vulnerable to fishing than other demographic 

groups, which had a significant negative effect on their abundance and length 

distribution. Furthermore, statistical analyses showed that the most important causes of 

the negative impact on sockeye salmon population was explained by a model including 

gillnet mesh size regulations, stock abundance and deviation of the body length from the 

long-term average value.    

Since the current methodology in FIE is limited by the lack of adequate 

knowledge in genes responsible for expressing evolutionary responses concerning, e.g. 

growth (Kuparinen and Merilä, 2007) methods used in these studies are traditionally 

based on the observations of phenotypic traits such as the size-age relationship 

(Kuparinen and Merilä, 2007, Enberg et al. 2009). However, despite the difficulties in 

disentangling the evolutionary effects of fishing pressure and phenotypic plasticity, 

current studies have shown that the fishing mortality increases with the age of fish, it 

“exceeds the natural mortality by several hundred percent” (Heino and Dieckmann, 

2008) and has the potency to remove up to 50% of the population at a time (Sharpe and 

Hendry, 2009).  In the study by Sharpe and Hendry (2009), the authors elaborate on the 

mechanisms behind FIE and its concomitant responses, providing pros and cons for the 
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FIE with the quantitative analysis on stock- and species-level. Their conclusions 

corroborate the notion of stock exploitation as a selective force capable of inducing 

evolutionary changes.   

 

 
            Figure 1. The distribution of the European hake (www.fishbase.se, www.ec.europa.eu). 

 

 

Following the increase in growth in interest of potential FIE in numerous highly 

exploited fish species, the aim of my Master thesis is to investigate the impact of 

currently prevailing fishing intensity on the stocks of the European hake (Merluccius 

merluccius L., 1758; Fig 1).  As a commercially highly exploited fish species, hake 

represents an important demersal stock for the countries of the northeast Atlantic shelf, 

the Mediterranean Sea and the Black Sea (ICES, 2012, Ragonese, 2009). Moreover, as a 

predatory species, the dynamics of hake can have a significant top-down effect for the 

species it preys upon which, depending on the availability, can be various clupeids, 

mackerel, horse mackerel, blue whiting, silver smelts and silvery pout (Casey and 

Pereiro, 1995). So far, there is a body of studies exploring the fishing impact on hake 

populations focussed on aspects such as the growth rates and different growth 

performance indexes (de Pontual et al. 2006, Ragonese, 2009, Ragonese et al. 2012), the 

retention of fish by fishing gear of different mesh sizes (Campos and Fonseca, 2003, 

Bianchini et al. 2003, Özbülgün et al. 2003, Lucchetti, 2008) and the link between high 

fishing intensity on juvenile hake and stable production of adult hake (Abella et al. 

1997). The only current study investigating the changes in size at sexual maturity is one 

by Dominguez-Petit et al. (2008) where, using a long-term data series between the 

1980`s and 2004, they found significant declines in fish size for the population of the Bay 

of Biscay decrease of 15cm and for the Galician coast population, an initial decrease in 

size by 16 cm followed by an increase in size to the level of the initial values. However, 

http://www.fishbase.se/
http://www.ec.europa.eu/
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the same authors were not able to explicitly confirm whether the changes were caused 

by fishing pressure and/or environmental factors.  Since little attention has been given 

to the impact of fishing practices, I have strived to investigate potential evolutionary 

changes in phenotypic traits of the European hake under currently prevailing fisheries 

intensity and selectivity.    

 

 

Materials and Methods 

 

To address the question of evolutionary changes in phenotypic traits of the hake I 

performed generic modelling of the studied species using an individual-based 

simulation model that integrated quantitative genetics and ecological processes. Using 

this model, I was able to simulate evolutionary effects of fishing with a small data-base 

utilized for model parameterization. The data was combined across different 

geographical locations to represent generic values and traits typical for the species, 

rather than those from one specific location. However, in practice most of the data used 

for model parameterization was acquired from studies of the Southern stock which 

includes the Atlantic coast of the Iberian Peninsula, the Mediterranean Sea and the Black 

Sea according to Annex G of the ICES (International Council for Exploration of Sea) 2012 

WGHMM Report for the Southern stock.  

Further details on the applied data, model approach and parameterization with 

simulation design are given below under their respective sections.   

 

Data collection  

The unsexed data on individual-based growth trajectories of hake were obtained 

from Dr Sergio Ragonese from The Institute for Coastal Marine Environment - National 

Research Council (IAMC-CNR), Italy. The data was collected from different studies on 

hake populations of various geographic locations and used in the study by Ragonese et 

al. (2012) to investigate the behaviour of different growth performance indexes. The 

dataset of recruitment, spawning stock biomass and parameters for the logistic 

selectivity curve of the fishing gear were acquired from Dr Santiago Cerviño of the 

Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Spain. The ICES 2012 

WGHMM Report provided data of natural mortality for 0 to 3 year old fish.  

 

Simulation approach 

An individual-based simulation model was used to investigate the implications of 

current fishing regime on the population dynamic, especially, the trends of size and age 

at maturation. The primary model, previously used and described in the studies of the 

Atlantic cod (Kuparinen et al. 2011, Kuparinen and Hutchings, 2012), was adjusted to 

represent the life history of the European hake. The model included principles of 

quantitative genetics, ecological processes, body size effect on fecundity and integrated 

empirical data compiled from different geographical areas. 
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The individual growth trajectories were described by the von Bertalanffy formula 

(1938) where L(t) is length at age t and is given by L∞ - (1 - e-K(t-t0)), where L∞ is the 

asymptotic length (in practice the maximum length) an individual can reach if the 

growth was indefinite, K is a species-specific intrinsic growth rate and t0 the age of fish at 

zero length (De Graaf and Prein, 2005). This model is based on two important life-

history invariants: (1) the negative correlation between K and L∞ and (2) ratio (RL) of 

Lmst, the length at full sexual maturity, and L∞. First interaction was used to obtain K, 

which we calculated through the previous formula using the collected data of L∞ (see 

Model parameterization for details). The second interaction, RL, was used to calibrate 

the fraction of the population at L(t), which was set to mature as it reached the threshold 

of 0.51 × L∞.  Using these interactions, the model is set to create an individual growth 

trajectory by incorporating empirical data collected for European hake and species-

specific biological characteristics. Furthermore, the model includes the genetic 

information used to express for the phenotypic variation. 

Life-histories of individuals ultimately defined by their von Bertalanffy growth 

trajectories were considered heritable. Under the assumption that a large number of loci 

has a small effect (Roff, 2002), the genotypes were described through 10 diploid loci 

what was considered to be a suitable number of genes to account for the genetic 

variation (Kuparinen et al, 2011).  The loci were coded with values of 0 or 1 and 

randomly assigned to the offspring based on the classical Mendelian heritance rules. The 

additive effect of the genetic trait was expressed through the sum of the loci (range 0 – 

20) and transferred in the phenotype by adding an appropriate amount of phenotypic 

variation, set as a standard deviation of 3.5. With the set phenotypic variation around a 

range of the genetic trait value, the heritability was calibrated within an expected range 

from 0.2 to 0.3 for the purpose of yielding realistic values (Mousseau and Roff, 1987). 

Finally, the genetic trait value was then translated into L∞, which gave the value of K 

based on the negative correlation of K and L∞.  

The instantaneous mortality rate consisted of natural mortality (M) and mortality 

caused by the survival cost of the reproduction (SC). M was equal for both sexes and 

applied only to individuals older than 3 years, while SC depended whether the individual 

was mature and was set to 0.1 for both sexes according to Kuparinen et al. (2011). A 

Bernoulli trial was then used to decide on the fate of the individual at every time step. 

An individual growth time was introduced to the model to account for the density of the 

population on growth. The growth time, or the time available for the individual to grow 

within 1 year, was described as a range between 0 and 1 so that a population at a high 

density, expressed as the ratio of population biomass and carrying capacity (c), would 

reduce the growth time following the logistic growth curve of the equation growth time= 

e15 – 17.6 × c (1+ e15 – 17.6 × c)-1.  

To every reproduction process, a mature male and a mature female were 

assigned randomly and the number of offspring depended on the egg production and 

egg survival. The egg production depended on the weight of the female which was 

described through the known parameters of the length-weight relationship (see Model 

parameterization below). The survival of juveniles depended on the juvenile mortality 
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and the density-dependant growth time of the individual where each parameter had an 

equal contribution (0.5) to the overall survival of the juveniles. The predicted number of 

juveniles was then rounded and a genetic trait of each individual was added as described 

before. A Bernoulli trial (with a probability of 0.5) was used to assign the sex.  

To address the question of currently prevailing fishing pressure, the fishing 

selectivity was introduced in the model through a selectivity curve (see Model 

parameterization for more details) that best described the asymptotic trend of removal 

of larger and older individuals by trawling, according to several empirical studies 

(Campos and Fonseca, 2003). Parameters used in the selectivity equation were 

recommended based on the current practices used for hake stock estimation (through 

personal correspondence with Dr Santiago Cerviño).  

 

Model parameterization   

The model was parameterized for a dataset, which consisted of 64 individual-

based growth trajectories of the European hake. To attain a normalized dataset, a log 

transformation of K was modelled through a linear regression to obtain the final model 

log(K) = -0.511 – 0.005 × L∞  with a residual standard deviation of 0.126. Consequently, 

the simulation linearly calculated the L∞ values from the phenotypic trait for the range 

from 70 to 120 cm and K was predicted through its negative correlation with L∞. 

Although it is not crucial for the model, L0 (length at birth) was calculated through von 

Bertalanffy equation and set for the value of 2.5 cm.  

The estimation of egg production was gained using the available data on 

recruitment, spawning stock biomass and preserving its dependency on the weight of 

the female producing the eggs. The amount of produced eggs was calculated by 

multiplying the weight of the female, described through the length-weight equation 

weight = 0.00000513 × length3.074 (ICES, 2012), and the mean value of the spawner-per-

recruit (SPR; in number per kg of recruit) derived from the collected dataset on 

recruitment and spawning stock biomass. The juvenile survival was predicted using the 

average value of data on natural mortality of 0-2 year old fish, obtained from the ICES 

(2012). In this model, the maximum lifespan of the individual was set to 20 years 

(www.fao.org, www.fishbase.org).   

During fishing periods, only individuals older than 3 years were fished, since they 

reach their minimum landing size by that age (www.fao.org) in order to restrict the 

fishing pressure on that demographic group of fish. To mimic the selective pressure by 

the trawl, a logistic curve was introduced through an equation for selectivity s = e a + b × L 

× (1 + e a + b × L)-1 where a and b parameters were -7.6 and 0.38, respectfully, with a 50% 

retention level at 20 cm of length (L50). The level of fishing mortality was set to 0.15 

which coincided with the current level of fishing pressure applied in modern fisheries 

(through personal correspondence with Dr Santiago Cerviño).   

 

 

 

 

http://www.fao.org/
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Simulation design 

In order to investigate the current fisheries impact on ecological and evolutionary 

dynamics of the European hake, the above-explained model was run in a full-factorial 

design with two scenarios of fishing (absent/present) and one scenario for evolutionary 

processes, each replicated 20 times (Table 1). The scenarios, set as such, will outline the 

impact of the fishing pressure and the presence/absence of FIE.  

 
Table 1. Table presenting set values of evolution, fishing and fishing mortality (F) for the three simulation 

scenarios.  

Scenarios Evolutionary processes Fishing Fishing mortality (F) 

Non-fishing scenario Present Absent - 
Non-evolutionary scenario Absent Present 0.15 
Evolutionary scenario Present Present 0.15 

 

The first scenario (Table 1.) was used as a control population with respect to the 

last two scenarios. In order to tease apart the differences between present and absent 

evolutionary processes, in the non-evolutionary scenario the genotypes for the next 

generation were drawn from the parental gene pool gathered through the records of a 

fully adapted, non-fished population during a 30 year period of time. As described in the 

Simulation approach above, in the evolutionary scenario, the transfer of genotypes to the 

juveniles is based on Mendelian heritance rules where the genotypes of the offspring 

depend on the genotypes of the randomly mated parents. Each simulation was 

initialized with a population of 2000 individuals, which corresponds to a maximum of 

1500 kg. Population carrying capacity was set to 5000 kg. During each simulation run, 

the population was given 2000 years` time to reach equilibrium and evolutionarily adapt 

after which the population would undergo a period of 100 years of fishing (non-

evolutionary and evolutionary scenario) followed by 400 years of recovery. In order to 

restrict simulation time (and facilitate adaptation within 2000 years), the initial L∞ 

values and corresponding allele values were drawn between 70 and 120 cm. The 

appropriateness of this range was changed through preliminary simulation runs. At 

every simulation time step, ecological parameters and life-history traits were monitored. 

The monitored traits included population biomass with respect to carrying capacity, 

recruitment, recruit-per-spawner ratio (RPS or a ratio of recruitment and spawning 

stock biomass (SSB)), asymptotic length, and the length and age at maturation. Selection 

differentials on the allele sum (see above) were estimated through the breeder`s 

equation, S=R/h2, where S is expressed as a ratio between genotypic change (change in 

the sum of allele values) from one generation to the next (R) and the heritability 

estimate (h) at the corresponding time step.         

All simulation runs and graphical analyses were performed in R 2.15.2 (R Core 

Team 2012).     
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Results 

 

The 20 replicated simulation runs of all scenarios are shown in Figure 2. Among 

the replicates of the non-evolutionary scenario, one replicate experienced a population 

collapse. Since this event is a product of natural stochasticity, I have taken it into 

consideration to account for possible outcomes of the scenario.  

 
Figure 2. The graphs show average length values in cm plotted against the total duration of the simulation 
with respect to three different scenarios: (a) evolutionary scenario, (b) non-evolutionary scenario and (c) 
non-fishing scenario. The lines are presented in different colours to denote the 20 replicates, run for each 
scenario. Vertical dashed lines in graphs (a) and (b) represent the fishing period between 2000 and 2100 
years of the simulation time, and are not present in graph (c) due to the lack of fishing. As expected, the 
evolutionary and non-evolutionary scenario exhibit changes in length with the introduction of fishing, but 
the magnitudes of the changes fluctuate depending on the scenario. Logically, the non-fishing scenario 
shows no change in length. All the scenarios still show a good amount of random fluctuation among the 
replicates.  

 

For the presentation and interpretation of population demography and the main 

life-history traits, the last 600 out of the total 2500 years were shown since the first 

1900 years represent the adaption period (Fig 3a-d and Fig 4a-d). Therefore, the first 

100 years in the results indicate the pre-fishing period in which the population became 

adapted to the conditions of the set scenario.  
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With the introduction of fishing at year 100 all presented ecological parameters 

exhibit immediate response to the fishing pressure. As expected, the population biomass 

(Fig 3a) decreases with the start of the fishing period exhibiting a drastic fall from 100% 

to approx. 4% of biomass with respect to the carrying capacity; indicating the ecological 

impact of fisheries at the given level of fishing intensity. The life-history changes 

concerning recruitment are shown as a number of recruited individuals, and also, as a 

number of recruits with respect to the biomass of spawners in Fig (3b) and Fig (3c), 

respectively. Although the recruitment significantly drops in numbers for both 

evolutionary and non-evolutionary scenario, the RPS ratio shows an increase of recruits 

in comparison to the mature biomass with both present and absent evolutionary 

processes as a result of decreased intraspecific competition.  

      

 
Figure 3. Ecological parameters graphically presented during simulation time. The population biomass 
with respect to carrying capacity ratio (BM to CC) (a), recruitment (b), recruitment-per-spawner ratio 
(RPS) (c) and selective differentials (S) are plotted against the last 600 years of simulation time. The 
simulation time is divided by vertical dashed lines into pre-fishing (first 100 years), fishing (from 100-200 
years) and post-fishing period (from 200-600 years). The three different scenarios are shown as averages 
of the 20 replicated simulation runs and noted as following: the evolutionary scenario (black line), non-
evolutionary scenario (dark grey line) and non-fishing scenario (dotted black line). The presented 
parameters exhibit various responses to the fishing pressure (after 100 years) and to the cessation of the 
fishing period (after 200 years) depending on the scenario.  
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As the fishing period ends, recruitment and population biomass reach the pre-

fishing level following the removal of the fishing pressure for both evolutionary and 

non-evolutionary scenario. The RPS ratio and the selective differentials gradually 

stabilize at the pre-fishing level without significant discrepancies between the 

evolutionary and non-evolutionary scenario. However in comparison to RPS, selective 

differentials (Fig 3d) do not clearly show a direction of the selection, nor do they show 

any significant differences between the evolutionary and non-evolutionary scenario.    

 

 
Figure 4. Main life history traits graphically presented for the last 600 years of the simulation. The life 
history traits including asymptotic length (a), length at maturation (b), age at maturation (c) and 
heritability (d), are plotted against the first 100 years of pre-fishing period followed by the introduction of 
fishing for the next 100 years (time period marked by vertical dashed lines) which ceases at 200 years and 
continues towards the recovery period until 600 years. Each graph contains the averages of the 20 
replicated simulation runs for the three scenarios: evolutionary scenario (black line), non-evolutionary 
scenario (grey line) and non-fishing scenario (dotted black line). There is a noted belated response to the 
fishing pressure present in most of the graphs of the mentioned traits except for the age at maturation. 
The three scenarios show different trends during the fishing period with increasing discrepancies 
between the evolutionary and non-evolutionary scenario in graphs (a), (b) and (d).   
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Asymptotic length (L∞), heritability and length at maturation (Fig 4a-c) show a 

clearly belated response to fishing. In Fig (4a), the response to fishing pressure becomes 

more obvious approaching the end of the fishing period (around 190 years) where the 

length is reduced by 1 cm in the evolutionary scenario while in the non-evolutionary 

scenario it exhibits only temporal variation due to demographic stochasticity. Length at 

maturation shows a high temporal variability in both fishing scenarios during the fishing 

period (Fig 4b). In comparison to length at maturation, age at maturation (Fig 4c) 

experiences a distinct decrease by 3 years under the fishing pressure and exhibits no 

differences between the evolutionary and non-evolutionary scenario. With the cessation 

of fishing (at 200 years) age at maturation gradually increases and completely recovers 

to the same level as the pre-fishing period for both fishing scenarios.   

It is, however, interesting to notice that in the evolutionary scenario both length 

and length at maturation do not fully reach the pre-fishing level during the recovery 

period. With evolutionary processes present, both phenotypic traits maintain the same 

level reached at the beginning of the recovery period, which gradually increases as the 

recovery period progresses. The scenario with no evolutionary processes, however, 

shows no significant difference in comparison to the non-fishing scenario; fluctuates 

around the level of the non-fishing scenario during the fishing period and then levels out 

with the cessation of fishing. Lastly, heritability of the observed phenotypic traits shows 

a rather expected decline under the fishing pressure for both evolutionary and non-

evolutionary scenario.     

Overall, there seems to be no obvious indications of differences between the 

fishing scenarios with respect to evolutionary processes. In Figure 5, the cumulative 

numbers of juveniles are presented with respect to the genotype (the sum of the allele 

values), simulation scenario and the type of morality to describe the overall fitness of 

different life-history types. These numbers are presented for the time periods (a) before 

fishing, (b) during fishing and, (c) after fishing, to compare how fishing and recovery 

affect the fitness. Although the total range of possible allele combinations (genotypes) 

range between 0 and 20, none of the tested scenarios exhibit genotypes across the total 

range. Even though, there is no apparent difference between the time periods with 

respect to the average number of juveniles per genotype, the results indicate a higher 

deviation in juvenile numbers during the fishing period, most likely as a result of relaxed 

competition. The graphs suggest that the fishing pressure does not select for a specific 

genotype, since the fitness functions are markedly flat across a wide range of possible 

genotypes and, thus, life-history types.  
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Figure 5. Average cumulative numbers of juveniles calculated from 13 replicates of all scenarios and 
plotted against the range of genotype with respect to simulation scenario and source of mortality. The 
graphs average across 50 year time spans for the periods: before (a), during (b) and after (c) fishing 
period. Data points differ depending on the scenario and source of mortality, connected by lines with a 
colour corresponding to the colour of the data points and denoted as following: black circular points – 
evolutionary scenario/died by fishing; dark grey circular points – non-evolutionary scenario/died by 
fishing; red circular points – evolutionary scenario/natural mortality; blue diamond symbols – non-
evolutionary scenario/natural mortality; quadratic green symbols – non-fishing scenario/natural 
mortality. The error bars of each data point represent their standard errors. According to the scenarios, 
the individuals who died by fishing appear only during the fishing period in combination with the 
individuals who died by natural mortality which are also present in panels (a) and (c). Throughout the 
time periods, all scenarios show a smaller number of genotypes present in comparison of the total range 
of genotypes (0-20). The fishing pressure does not appear to select for a specific genotype although there 
is more deviation in numbers of individuals during the fishing period.     
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Discussion 

 

Contrary to numerous studies dealing with FIE (Jørgensen et al. 2007, Dieckmann 

and Heino, 2007), in the present simulations, virtually no evolutionary changes were 

induced by fishing and the changes projected in phenotypic traits remain so minor that 

they are likely not biologically significant. Nonetheless, despite the fact that fishing does 

not appear to have implications at the level of individual fitness and, thus, no clear 

evolutionary shifts in life-histories, its impacts on the population biomass and 

recruitment are substantial: 100 years of fishing with 0.15 annual mortality leads to 

steep declines in population biomass and recruitment. The lack of evolutionary changes 

in hake phenotypes can be explained by the lack of phenotypic selectivity associated the 

simulated fishing strategy. As seen in Figure (3d), current fishing selectivity does not 

seem to favour individuals of specific phenotypic characteristics, such that selection 

differentials on life-history types scatter around zero. This is because the fishing 

selectivity with L50 of 20 cm selects fairly evenly over individuals of different body sizes. 

This poses a potential explanation to the lack of evolution since the change in the 

asymptotic length was only by 1 cm (Fig 4a), which is very minor from a biological 

perspective. It can be concluded that the prevailing fishing pressure on the European 

hake does not select for certain hake phenotypes (Fig 5a-c) and, therefore, does not 

drive fisheries-induced evolutionary changes in the observed phenotypic traits. 

Recent studies on FIE warn about the difficulties in obtaining a straight-forward 

answer when testing for evolutionary changes, especially in model-based approaches 

(Kuparinen and Hutchings, 2012). The usage of evolutionary models or models in 

general has proven useful since it allows us to observe an evolutionary change in a “fast-

forward” time (Heino and Dieckmann, 2008, Dunlop et al. 2009). However, it also 

constrains the interpretation of results through the set assumptions. For the purpose of 

this study, I have disregarded any environmental, seasonal or behavioural implications 

in the growth and fishing practices of hake. The assumptions set by the simulation 

approach in this project involved: (a) no difference in growth rate and retention by 

fishing gear between sexes, (b) the phenotypes among sexes were assumed equal for the 

sake of simplicity and to keep the focus of the genetic structure on a species level rather 

than sex, (c) reproductive success was based solely on the female`s size but not its 

previous spawning experience or age and (d) natural mortality of post-larval and adult 

individuals depended only on sexual maturity but not growth speed or body size. 

Despite the potential uncertainties introduced through these assumptions, they are set 

in order to simplify the simulations of individual growth trajectories and to address the 

aim of the project. Similar assumptions are also used in stock assessment models for 

fisheries management.  

With all the assumptions stated above, one crucial limitation of this model-based 

project should be addressed separately. The dataset used for the growth trajectory 

simulation did not only stem from different locations, but was also acquired from hake 

populations that have been exposed to different fishing intensities for a long period of 

time. The issue in using such a dataset is that it can mask the real values of the studied 
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phenotypic trait, meaning that it is hard to identify whether the current state of the 

population is a consequence of phenotypic plasticity, or that it has already reached a 

stable state after the long exposure to the fishing pressure.  

Other FIE studies using simulation models that integrate ecological and 

evolutionary processes (so called eco-gen models), have demonstrated significant 

negative effects of FIE on the population biomass and life-history traits, e.g. the Atlantic 

cod (Gadus morhua; Dunlop et al. 2009, Enberg et al. 2009). This gadoid species notably 

differs in biological characteristics in comparison to the European hake concerning their 

reproduction or, more precisely, the type of spawner and spawning frequency. 

Additionally, the fishing intensity applied in the studies on Atlantic cod ranged from 0.1 

up to 0.6, while the fishing intensity in this study was set to 0.15. Therefore, the 

discrepancies in life-history characteristics and fishing pressures between this project 

and the afore mentioned studies suggest a possible explanation to the lack of FIE in the 

current exploitation pattern of the European hake. It should also be noted that the 

present results agree closely to a few previous studies: in the study by Andersen and 

Brander (2009) and Hilborn and Minte-Vera (2008), an estimation of the expected rate 

of the evolutionary changes was calculated under current fishing practices (e.g., trawl 

fishing). The expected FIE rate was shown to be generally slower than previously 

expected, which corroborates the conclusions on the lack of FIE in hake fisheries in the 

present study. Nonetheless, a comparative study by Kuparinen et al. (2009a) 

investigated the changes caused by trawl and gillnet on the population of Baltic cod, 

which demonstrated how trawl and gillnet methods retain different ranges of body 

length. According to this study, fishing performed by gillnets shifted the size at 

maturation towards larger body lengths while the trawl fishing had the opposite effect. 

Coinciding with the results of the previous study, the trawl was less selective capturing a 

wider range of body length and therefore, had a lesser effect on the size at maturation 

than gillnet fishing. Apart from the trawling, hake is also targeted by gillnets as well as 

gillnets and longlines combined (ICES 2012 Report), which could separately have a 

stronger selective effect on the hake in comparison to the fishing parameters used in this 

study.          

Nevertheless, the presented results provide an important insight into the life-

history of European hake under the current fishing strategies. Even though fishing 

mortality and selectivity applied in this study did not cause evolutionary changes in 

phenotypic traits, the effect of fishing can have major ecological and conservational 

implications such as direct population declines and loss of local or behavioural 

adaptations. Comparative studies investigating geographical and seasonal variations of 

reproductive potential in hake (Mehault et al. 2010, Murua et al. 2006) have indicated 

that hake populations are subject to local adaptations which can cause discrepancies in 

phenotypic traits and pose a significant threat to the natural populations if these traits 

are lost through harvesting. Studies on fish behaviour indicate that adult individuals 

tend to evade the fishing gear better than juvenile fish (especially relevant when using 

passive fishing gear) or simply reside in the refugias such as spawning areas which are 

less targeted by the fisheries (Uusi-Heikkilä et al. 2008, Abella et al. 1997).  According to 
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Abella et al. (1997), such adaptations can explain, for example, the observed increase in 

recruitment, despite the high fishing mortality of adults. In the study by Anderson et al. 

(2008), the authors investigated why fished populations experience higher temporal 

variability in abundance than unexploited stocks. Furthermore, the same authors stress 

that the implications of such exploitation can increase the instability in the dynamics of 

the harvested population and, subsequently, lead to a local extinction. In comparison to 

this study, where the present results do not show obvious variability in abundance 

through time, fluctuations in population dynamics can still indicate the unsustainability 

of the current fisheries management despite the lack of FIE. For that reason, it might be 

prudent to conduct further investigations for the sake of precaution.    

In conclusion, significant population declines demonstrated in the present results 

show that the lack of FIE is not an indicator of sustainable fishing practices. In wild 

populations, there are factors other than just ecological and evolutionary effects of 

fishing pressure that can affect population viability such as: ecosystem changes, changes 

in predation and prey availability, population resilience against environmental changes 

and potential loss of local adaptations (Audzijonyte et al. 2013, Palkovacs et al. 2011, 

Naish and Hard 2008). These factors should be accounted for when assessing 

sustainability of fisheries management. However, due to the absence of knowledge in the 

processes underlying or interacting with these factors and their roles in population 

dynamics of the species, the simplest precautionary approach is to reduce the fishing 

mortality, leading to relaxation of both ecological and evolutionary pressures. This will, 

in return, most likely decrease ecosystem impacts as well as keep the population at a 

level where it is more tolerant to environmental variations.    

 

Conclusion 

Here, a model-based approach has been used to investigate the effect of the 

current fishing practices on the European hake and to detect potential evolutionary 

phenotypic changes. The results of the study show significant ecological impacts of the 

currently prevailing fishing pressure on the biomass and recruitment of the population. 

Such practices indicate unsustainable level of exploitation, results that can be 

strengthened by the continuously recorded decline of the hake stocks (especially the 

Southern stock) recognized both by ICES and European Commission. No evolutionary 

changes in observed phenotypic traits of age and size at maturation and asymptotic 

length were found in the present study. The current fishing pressure does not select for 

a specific life-history type and, therefore, does not appear to cause heritable changes in 

phenotypes. The lack of FIE can likely be explained through the prevailing fishing 

selectivity: fishing practices target across a wide range of body sizes such that the 

probability of being caught does not differ between small and large growing individuals.  
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