LUNDS
UNIVERSITET

Lunds Tekniska Hogskola

Department of Industrial Management and Logistics
Faculty of Engineering, LTH
Lund University

Developing a Decision Support Tool
for Increased Warehouse Picking Efficiency

Authors: Elina Gildebrand, Kristina Josefsson
Supervisor: Joakim Kembro, Division of Engineering Logistics
Examiner: Prof. Jan Olhager, Division of Engineering Logistics






Abstract
Title: Developing a Decision Support Tool for Increased Warehouse Picking Efficiency

Authors: Elina Gildebrand, Kristina Josefsson

Supervisor: Joakim Kembro, Department of Industrial Management and Logistics, Lund
University.

Problem description: Warehousing is central in order to achieve a competitive supply chain,
and considered essential for the success, or failure, of businesses today. In general,
warehouses account for a large share of the company logistics costs. Consequently, there is a
need for warehouses to operate smoother, faster and more accurate. Within warehousing, the
most labor-intensive and costly warehouse operation is order picking, this is mainly due to the
large amount of travelling involved. All articles included in this study agree that order picking
account for at least 50 percent of warehouses' total operating costs. Warehouses thus carry
great potential to justify the expenses they bring through reducing the time spent on activities
that are not value adding.

Purpose: The overall goal in this thesis is to provide guidance for how a warehouse can
operate more efficient by improving its picking performance, which also includes reviewing
the closely interlinked warehouse operations storage allocation and routing.

Research questions: How can a decision support tool for reviewing the choices of storage
allocation, order picking, and routing methods in manual warehouse operations be put
together in a structured way? Which features should be considered in the decision support tool
for choosing methods for improving warehouse operations?

Methodology: The guidance for improved picking performance was framed into a decision
support tool building on a thorough review and analysis of the research available in the area.
A case study on picking efficiency was conducted in order to create a deep understanding for
the issues and challenges that prevail in warehousing, and also to ensure that the final
recommendations and the answers to the research questions have good support in academia.
Once the tool was created, an illustrative example was used to demonstrate the use of the tool
on a more detailed level and to test its comprehensibility and usability.

Conclusions: In many areas, the resulting tool manages to provide unequivocal guidance for
how to improve a warehouse’ picking operations. Multiple features are identified as important
for the decision process; among those are demand skewness, seasonality among different
SKUs, total demand variation and pick list size. Company objectives and priorities were also
identified as a central feature due to the interrelatedness of the decisions connected to picking
and their well-known tradeoffs. The research is however sometimes scarce, and further
studies need to be carried-out in order to complement and level the strength of the tool.

Keywords: Order picking, picking efficiency, routing, storage allocation, warehouse
operations, warehousing



Sammanfattning
Titel: Utveckling av beslutsverktyg for effektivare plockhantering i lager

Forfattare: Elina Gildebrand, Kristina Josefsson

Handledare: Joakim Kembro, Institutionen for teknisk ekonomi och logistik, Lunds
universitet.

Problembeskrivning: Lagerverksamhet utgor en central del i att uppna en konkurrenskraftig
forsorjningskedja och betraktas som direkt avgorande for ett foretags framgang, eller
utebliven sadan. Det ar en dyr verksamhet, och en stor del av ett foretags totala
logistikkostnader kan hédnvisas direkt till lagret. Foljaktligen finns det ett behov for lager att
prestera jamnare, snabbare och mer precist. Orderplockning ar den tvekldst kostsammaste och
mest resurskravande lageraktiviteten. Den huvudsakliga anledningen ar att orderplockning till
stor del bestar av transporter mellan platser, vilket inte i sig tillfor nagot varde och darmed
enbart &r resurskravande. Alla vetenskapliga artiklar som ar inkluderade i studien &r eniga om
att minst 50 procent av ett typiskt lagers driftkostnader kan harledas till orderplock. Lagret har
darmed stor potential att rattfardiga sina kostnader, genom att reducera den andel tid och
resurser som laggs pa icke vardeskapande aktiviteter.

Syfte: Det dvergripande malet med uppsatsen ar att skapa vagledning for hur lager kan 6ka
sin effektivitet genom att forbattra sina plockprocesser. Detta inkluderar &ven de nérliggande
beslutsomradena lagerplatsallokering och ruttplanering.

Forskningsfragor: Hur kan ett beslutsverktyg for att granska metodval for
lagerplatsallokering, orderplockning och ruttplanering vid manuell lagerverksamhet sattas
ihop pa ett strukturerat sétt? Vilka egenskaper bor beaktas i ett beslutsverktyg for att vélja
metoder som forbéttrar lagerverksamheten?

Metod: Beslutsverktyget skapades utifran en grundlig genomgang samt analys av den
forskning som finns inom omradet. En fallstudie om effektivisering av plockhantering
genomfordes med syftet att skapa en djupgdende forstaelse for de problem och utmaningar
som forekommer i en lagerverksamhet, liksom att sdkerstdlla att de slutgiltiga
rekommendationerna och svaren pa forskningsfragorna var val forankrade i akademin. Nar
verktyget var skapat anvandes ett illustrativt exempel for att demonstrera dess anvandning pa
en detaljerad niva, samt for att testa hur latt det ar att férsta och anvénda.

Slutsats: Beslutsverktyget som skapats lyckas ge tydliga rekommendationer och vagledning
inom manga omraden for hur ett lagers plockprocesser kan forbattras. Flera egenskaper
identifieras som sarskilt viktiga att beakta i beslutsprocessen; bland annat skevhet i
efterfragan, sasongsforknippad efterfrigan mellan olika lagerplatsenhet, total variation i
efterfragan samt langden pa plocklistorna. Foretags egna mal och prioriteringar identifieras
ocksa som centrala i beslutsverktyget eftersom alla beslut ar tatt sammanvavda och generellt
innebar standiga kompromisser. Inom flera omraden relaterade till plockhantering visade sig
forskningen emellertid vara otillracklig, och vytterligare studier kréavs for att starka
beslutsverktyget.



Nyckelord: Effektiv plockhantering, lagerhantering, lagerplatsallokering, lagerverksamhet,
orderplockning, ruttplanering
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Glossary of Terms and Abbreviations

Abbreviations

3PL
AS/RS
CBS
COl
DC
ERP
I/0
KPI
LTH
SCM
SKU
TSP
VBS
VLM
WMS

Third-Party Logistics provider
Automated Storage and Retrieval Systems
Class-Based Storage

Cube-Per-Order Index

Distribution Center

Enterprise Resource Planning
Input/Output

Key Performance Indicator

Lunds Tekniska Hogskola — Faculty of Engineering at Lund University
Supply Chain Management

Stock Keeping Unit

Travelling Salesman Problem
Volume-Based Storage

Vertical Lift Module

Warehouse Management System

Explanation of Terms

3PL

ABC-
classification
Batching

Case picking

COl

DC

ERP

A firm that provides multiple logistics services for use by customers.

Term used to categorize SKUs within warehousing. It suggests that
SKUs are not of equal value/importance, and should be managed
accordingly.

Refer to the picking of multiple SKUs from separate orders in one route,
as opposed to single picking.

Order picking of cases or cartons containing a specific number of
individual items from a pick location.

Ratio of the maximum allocated storage space to the number of
storage/retrieval operations per unit time. The SKUs with the lowest COI
are stored in the most desirable locations. Using COIl, both popularity
and space requirements are taken into account.

A type of warehouse or storage location where the main functions are
buffering and storage, as well as additionally distribution of the goods.

Business management software used to store and manage data from
every part of a business. A system for managing and coordinating all the
resources, information, and functions of a business.



Flow rack

Forward area

Item
Lean

Order

Order line

Order picking

Order picking
method

Order size
Order volume

Pareto principle

Partial pallet
picking

Pick density
Pick location

Piece picking

Product
Reserve area

Routing

SCM

Storage rack with shelves equipped with rollers or wheels that allow
products to “flow" from the back of the rack to the front. Suitable for
small-quantity order-picking.

Limited area located close to the 1/0O points where SKUs are stored for
easy retrieval by an order picker; it usually contains smaller amounts of
fast-moving SKUs and is replenished from the reserve.

The individual article of a certain product or SKU.

Philosophy in production and SCM that all expenditure of resources
should create value for the end customer, i.e. add something to the
product or service that the customer is willing to pay for. All non-value
adding actions are considered waste and should be eliminated.

A type of request for goods or services, e.g. customer order, purchase
order, sales order, work order.

Each entry in an order. Usually contains the item and quantity requested.
In this study each order line is considered an individual pick. At Thule
several identical order lines can exist since each represent unique picks.

The process of retrieving a number of items from their storage locations
to fill a number of independent customer orders.

The way the picking of SKUs in an order should be organized. Might
also be referred to as order picking process, policy, and strategy,
although not in this thesis.

Number of SKUs per order.
Number of pallets per order.

A concept that states that for many events, roughly 80 percent of the
effects come from 20 percent of the causes, also known as the Pareto law
or 80/20 rule. Often used for sorting data.

Order picking of less than a full pallet, see also Case picking and Piece
picking.

This term has several different definitions, this thesis uses the following:
Ratio of number of SKUs in an order out of all SKUs in the warehouse.

Location where a SKU is picked directly to meet an order. In the
illustrative example in the thesis, all pick locations are on the floor level.

Order picking of individual items from a pick location, also known as
broken case picking.

Type of good, e.g. bike carrier.

Area where SKUs are stored in the most economical way i.e. in bulk or
full pallets.

The process of selecting paths to specific destinations, e.g. determining
how to move in a warehouse to retrieve all SKUs on a pick list.

“The integration of key business processes from end-user through
original suppliers that provides products, services, and information that
add value for customers and other stakeholders” (The Global Supply
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Seasonality

SKU

Slotting
Slotting measures

Storage
allocation

Storage
allocation method

TSP

Unique pick line

VLM

Warehouse
WMS

Chain Forum, 1994-2014).

Regular or semi-regular fluctuations in demand that result in overall
cyclic variations, e.g. periodic demand variations that create a high
season with high demand some part of the year and a low season with
low demand another part of the year. Seasonality can also refer to the
individual variations in popularity for season related SKUs.

A product kept in stock, its individual articles or items share the same
product/item/article number.

See Storage allocation.

Criteria used to determine the order or ranking of the SKUs about to be
slotted/allocated.

The process of assigning a certain SKU to a certain storage location.

The strategy of where to place and store different SKUs in a warehouse,
according to which pre-requisites, in order to facilitate the order picking.

Combinatorial optimization problem the determines the shortest possible
route, i.e. given a set of nodes to visit in a network and their distances it
determines the shortest patch that visit each node exactly once, and then
returns to the point of origin, often used in planning and logistics.
Computationally difficult, so the TSP is often used as a benchmark for
the large number of optimization heuristics that also exist.

Unique number given to each row in the order data, it should correspond
to each individual picks made in the warehouse, although it sometimes
contains multiple pallets which obviously is more than one pick.

High density storage system for small parts, where they are stored
vertically in AS/RS carousels.

Storage location where the main function is buffering and storage.

Computer system used to control the movement and storage of materials
within a warehouse and process the associated operations.
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1 Introduction

This initial chapter will describe the background to the research area addressed in this
master thesis. The problem at hand, as well as the purpose and research questions will be
discussed. An introduction to the company serving as illustrative example will be presented,
and the target group of the report described. Finally the structure of the report will be
provided.

1.1 Background: The Increasing Focus on Warehouse Operations

Supply Chain Management (SCM) is a concept that has gained more and more attention
during the last thirty years, as business leaders have started to understand the competitive
advantage of a well-performing supply chain. A competitive supply chain is achieved through
the integration of both internal and external business functions such as purchasing,
production, sales and distribution (Christopher, 2011). One of the aims of the integration is to
minimize the inventory throughout the supply chain, which usually is achieved through
smoother, faster and more accurate distribution (Frazelle, 2002). A large part of the
distribution is warehousing, especially in terms of costs. Several studies have found that
warehousing typically account for between 20 and 25 percent of companies’ logistics costs
(De Koster, et al., 2007; Establish Davis Logistics Costs and Service, 2013), or between 2 and
5 percent of total cost of sales, depending on company size and type of industry (Frazelle,
2002; Establish Davis Logistics Costs and Service, 2013). Consequently, there is a need for
the warehouses to operate smoother, faster and more accurate just like the whole distribution
chain. They are even considered essential for the success, or failure, of businesses today
(Baker & Canessa, 2009).

Many companies have therefore increased their focus on improving their warehouse
operations, often with the aim of reducing inventory and increasing turnover of stock, and
thereby freeing capital, but also to increase customer satisfaction. This is achieved both by
avoiding and resolving issues related to warehousing that might cause late or inaccurate
deliveries, which have a direct, negative impact on customer service (Huertas, et al., 2007),
and by offering value-adding services. As a result, the role of warehouses has changed: From
having the single purpose of storing or buffering products between points of origin and points
of consumption, they now also provide activities such as consolidation of goods from
different manufacturing facilities, returns processing, and spare part services (Frazelle, 2002;
De Koster, et al., 2007). Another focus area is the warehouse operations connected to manual
handling. Receiving store keeping units (SKUs) from production or suppliers, put-away of
SKUs, storage, order picking (retrieving the SKUs according to customer orders) while
following a certain picking route, and finally shipping of goods to customers, are all
performed by human labor in most warehouses, and labor means wages and high costs
(Frazelle, 2002; Gu, et al., 2007). The most labor-intensive and costly warehouse operation is
order picking, mainly due to the large amount of travelling involved. All articles included in
this study agree that order picking account for at least 50 percent of warehouses' total
operating costs, the most cited figure concluded by Tompkins et al. (1996) is 55 percent.



However, warehouses also carry great potential to justify the expenses they bring, for example
through reducing the time spent on activities that are not value-adding (Theys, et al., 2010).
This is a challenge for most companies due to the complexity of the area of warehousing. All
warehouse operations are interconnected, and will be affected by previous steps and
decisions. Moreover, the links between the different warehouse operations mean that
resources such as space, labor, and equipment need to be allocated to each function in a
coordinated way to avoid sub-optimization. Hence, decisions regarding improvement of the
warehouse efficiency and the establishment of warehouse methods need to consider both the
insertion (store) and extraction (order picking) methods (Le-Duc & De Koster, 2005; Gu, et
al., 2007).

1.2 Problem Discussion

Current SCM trends that demand higher customer service at reduced costs (Frazelle, 2002),
together with increased demand volatility, makes it necessary for the warehouse to stay
flexible and adaptable. The high requirements on warehouse operations leave almost no room
for errors; smaller orders are to be delivered rapidly within tight time windows while larger
warehouses should keep more make-to-stock items but smaller buffers (Le-Duc & De Koster,
2005; De Kaoster, et al., 2007; Chackelson, et al., 2011). Altogether this makes it extremely
complex to improve the overall performance of a warehouse. At the same time, it increases
the need of ensuring that the most suitable method always is used i.e. updating the operation
procedures as the external factors change. Order picking will be the main focus of this thesis,
since it is the undisputedly most labor-intensive and costly warehouse operation.

Most of the current research in order picking is centered on a specific situation or decision
problem, but a solution to one situation is seldom applicable to another. De Koster et al.
(2007) argue that there is a lack of general design procedures for order picking. They also
claim that the design of real order picking systems often is complicated due to a wide
spectrum of factors such as demand patterns, mechanization level, information availability,
which impact design choices (De Koster, et al., 2007). The complexity might, according to Gu
et al. (2010), be the reason why research on the actual selection process is so scarce. There is
no doubt that additional research within the area of warehouse performance would be
valuable. However, by reviewing the research that does exist, Gu et al. (2010) conclude that
prevailing decision support tools mainly compare picking methods by considering the order
structure. Other important factors such as storage allocation and detailed implementation of
the order picking methods are assumed fixed. Warehouse operations and systems are however
highly interdependent, so in order to improve the order picking one must also consider other
aspects. Especially important are the design of the storage allocation, and the choice of
routing method; which determines order picking sequence and path. This is in line with Gu et
al.’s statement that there is “a need for research focusing on the operational management of
warehousing systems, where the different processes in the warehouse are considered jointly,
the problems are placed in their dynamic nature, and multiple objectives are considered
simultaneously” (Gu, et al., 2007, p. 17). Similarly, Chan and Chan (2011) recognize that
more combinations of factors should be included in the study of improving the performance



of order picking. This master thesis will adhere these recommendations through expanding the
area of picking to include also the closely interlinked areas of storage allocation and routing.

In many warehouses the current operations can be improved by e.g. adapting to changed
circumstances through redesigning and updating its methods. This update of processes is not
only important when successive change take place or due to new logistics trends, but should
also be contemplated when a company experience cycling changes such as seasonality.
Consequently, a review of warehouse methods should be conducted on a regular basis.

The starting point in this thesis is an existing warehouse with given premises and limitations
such as warehouse dimensions, racks, warehouse management system (WMS), and product
characteristics, and stretches from the storage operations to the activity of sorting. Decisions
to make in an updating process will be summarized along with related possibilities. Further, it
will provide theoretically anchored decision support for which choices to consider in a given
situation as well as which parameters to base them on. Beyond generating guidelines, the aim
is also to encourage a holistic and unified view of the warehouse processes. It is especially
important to emphasize the features connected to warehouse operations that have the greatest
effect on performance. Identifying these features is central in order to avoid unnecessary,
time-wasting data collection and analysis that are likely to occur when a problem is not
sufficiently framed.

1.3 Purpose

The overall goal in this thesis is to provide guidance for how to operate more efficient by
reviewing the warehouse picking performance. Due to its resource demanding nature, large
gains can be expected from improving the picking methods and the closely interlinked
decision areas of storage allocation and routing. The guidance will be structured into a
decision support tool with hands-on recommendations, created from the most recent and
relevant research within the field. The tool will be designed in a simple and structured way to
encourage a continuous review of the current processes. The scope of the thesis is presented
in Figure 1.

Warehouse Operations Methods

Operations

1
1
Receiving —_— > Shipping
1
1

1
1
Order picking :
Storage

allocation

Internal and
external features
to consider in

method decisions

1
1
Routing 1
1
1
1

Research scope

Figure 1 Focus areas for improving warehouse picking operations by creating a decision support tool (Gildebrand &
Josefsson, 2014).
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1.4 Research Questions
The following research questions are created to capture the purpose:

1. How can a decision support tool for reviewing the choices of storage allocation, order
picking, and routing methods in manual warehouse operations be put together in a
structured way?

2. Which features should be considered in the decision support tool for choosing methods for
improving warehouse operations?

1.5 lllustrative Example: The Thule Group

The Swedish company Thule Group initialized this research on warehouse operations. It
wanted advice on which order picking methods to use in its planned distribution center (DC)
in Huta, Poland, a decision that also affects the choice of storage allocation and routing
methods. The methods should consider physical constraints and multiple order characteristics,
especially the strong seasonality of the products. In order to provide advice that could be
applicable for other companies as well, the problem and research questions described in the
previous chapters were identified along with a need for a research based decision support tool.
In the process of developing the tool, data from a real company was needed for some basic
testing of its usability and to see what the outcome might be. It was also vital in order to get
realistic input from practitioners regarding company objectives, constraints and requirements
etc. The Thule Group's Huta DC was therefore used as an illustrative example to show how to
use the tool and what to consider when updating or designing the methods to use in storage
allocation, order picking and routing. The warehouse in question is estimated to open for
business in December 2014. It is thereby not yet possible to measure its performance,.
Instead, recommendations are designed from what is known to date. Starting from scratch is
usually not an option in warehouse operations design, which is why the tool created in this
thesis primarily aims to be applicable in already existing warehouses and why some factors
will be considered fixed also in the illustrative example. The Huta DC is more thoroughly
described in chapter 5. lllustrative Example; Empirical Data.

1.6 Delimitations

The study has not considered research on automatic warehouses, since it is the human labor
intense operations that are the focus in this thesis. The decision support tool is designed on a
general level, to be applicable on any manually operated warehouse, and therefore does not
use calculations and simulations of different scenarios. Consequently it is up to each company
using the method to do the succeeding steps of actually determining which SKUs to put
where, how to form zones or batches, the actual picking route etc.

Further, differences among warehouses are not put as constraints. Most of the research articles
simplify the circumstances and make generalizations about travel time, warehouse layout etc.
Hence, the facts used and compared are not performed in identical settings. The authors
believe the results to be valid as long as they are not contradictive. This is strengthened by the
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fact that the researcher themselves do not seem to stress the discrepancies among different
settings studied. Many areas are interlinked to those of order picking and storage allocation.
Three that are excluded from the scope of this study are replenishment, inventory levels and
safety stock. This was both because of time limitations; to be able to make a more
comprehensive study of a narrower field, and most of the previous research did not seem to
look at such a wide area.

The data used when creating the illustrative example in this study was limited to one year of
Thule’s order history. It was still considered representative due to the large amount of
information, small but probable changes such as added products or some extra orders would
not impact the general picture it provides. The same reasoning lies behind the delimitation of
data input also conducted on the illustrative example: spare parts and SKUs to be stored in a
vertical lift module (VLM) were not included. The spare part storage was to be managed
separately by Thule, and do not stand for an extensive part of the orders. Thule considers the
VLM storage to be optimal for small and infrequently ordered SKUs, and want to store as
many SKUs as possible there. The company performed the selection of these SKUs
themselves so storage decisions regarding the VLM were thereby not included in the study.
Consequently related picks were not included in the analyzed order data either, but it was
assumed that travel connected to these items would not affect the overall performance of the
picking since the VLM is positioned close to the input/ output (1/0) points, and thereby not
cause any detours. However, to get a complete picture of the situation all SKUs and storage
areas should be included when using the decision support tool. Moreover, suspicions that
method choices are based on non-representative order data increase the motives for doing an
update i.e. using the decision support tool.

1.7 Target Group

Research on isolated or narrow aspects within warehouse operations are easy to find. If
however interested in recommendations covering combinations of decision problems, the
sources are scarce. The purpose with this thesis was, as mentioned in 1.3 Purpose, to collect
excising research to build a decision support tool for improving warehouse order picking. The
findings thus primarily aims to be of relevance for warehouse managers with an interest in
how picking performance can be improved and guidelines for how to update current
procedures when external factors, like order characteristics, change. The outcome should be
of particular interest to the Thule Group since the research focus derived from them, and the
result was developed through their specific case. For academia, the main contribution was a
review of the literature and research available in the field. It established a ground and a
starting point for further research, both through identified gaps in the research within picking
optimization and through emphasizing the complexity of the problem and the need for a
broader scope in research to develop hands-on applicable methods.



1.8 Structure of the Thesis
This master thesis has the following outline:

Chapter 1 Introduction includes a background to the research area, a problem discussion as
well as the purpose of the study summarized in the two research questions. An introduction to
the company serving as illustrative example will be given, and the target group of the report
described. Finally the structure of the report will be provided.

Chapter 2 Methodology describes and motivates the methodological choices made regarding
research philosophy, approach, strategy and methods in this study, before describing the
research procedures performed in seven steps. Lastly, the trustworthiness of the research is
discussed.

Chapter 3 Frame of Reference provides the theoretical framework connected to choosing
warehouse operations methods. The physical design of a warehouse, and storage allocation,
order picking, and routing methods are described in detail and evaluated based on different
criteria, connected to company’s priorities in warehousing.

Chapter 4 Developing the Decision Support Tool takes its starting point in two existing
decision support models for redesigning warehouses, before combining them and the aspects
identified in the evaluations in chapter 3 in to a basis for developing the decision support tool.
It continues with presenting the created conceptual model for how to make the right choices
when updating and improving the storage allocation, picking and routing methods in a
warehouse, which is then explained in the succeeding sections step by step.

Chapter 5 Illustrative Example; Empirical Data presents the information about the Thule
Group needed in order to provide an illustrative example of how to use the decision support
tool presented in chapter 4.2. The empirical data includes all information needed to update the
warehouse operations for the Huta DC: the physical warehouse constraints, product
characteristics, and order characteristics.

Chapter 6 Applying the Decision Support Tool provides an illustrative example of how the
decision support tool can be used in practice by applying it on the Thule Group. The
indications of each step are analyzed and concluded, before the final recommendations for the
Huta DC are summarized.

Chapter 7 Analysis of Decision Support Tool analyses the theory that compose the tool, as
well as the tool itself; structure, strengths and weaknesses.

Chapter 8 Conclusions summarizes the outcome of the master thesis and answers the research
questions. Finally suggestions for further studies are presented with aspects of interest for
both researchers and practitioners.

The very last part of the thesis consists of References and Appendix A-F.



2 Methodology

This chapter will describe the methodological choices to make regarding research
philosophy, approach, strategy and methods. It will discuss and motivate the choices made for
this study, before describing the research procedures performed in seven steps. Lastly, the
trustworthiness of the research will be discussed.

Making a well-informed choice regarding research strategy and design is essential for the
process of answering the research questions. This is central for the continued work, hence
need to be accompanied with a plan, containing clearly defined objectives and constraints for
how to the answers will be reached (Saunders, et al., 2009). There are several important
choices to be made when deciding on a suitable and logically designed research methodology.
In order to structure the decision-making, the ‘research onion’ by Saunders et al. (2009) was
used as a framework. Figure 2 illustrates an expanded version that includes the final
alternative adopted in each layer for the Thule study. The choices were made step by step,
starting on the outside and gradually, layer by layer, getting closer to the core —the actual data
collection and analysis. This chapter is structured in the same way by stepwise describing the
different layers, including motivation of each choice for the procedure used in the thesis.

Philosophy

Approach

Strategy

Choice

Time horizon

Data
collection
and
analysis

Techniques and procedures

Figure 2 Methodological research choices presented in an adapted version of Saunders et al.’s research ‘onion’ (2009).

2.1 Research Philosophy

The first step according to Saunders et al. (2009) is to determine which philosophy to adopt
throughout the research, which is what is considered knowledge and how new knowledge is
developed. The research questions in this thesis are about finding improvement methods and
making decisions mainly based on hard, observable facts. The aim is that the resulting
decision support tool should be applicable for many types of companies, although alterations
might be needed depending on the circumstances. Hence, a positivistic research philosophy is
suitable. Positivism is the typical view within natural sciences and it is based on observability
and objectivity, meaning that the input should be observable facts rather than impressions, and
the result should be the same even if the researcher is replaced (Saunders, et al., 2009; Patel &
Davidsson, 1994). The goal is to be able to generalize the outcome by empirically proving
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different hypothesis, and ultimately create universal laws and mathematical formulas that can
describe cause and effect (Patel & Davidsson, 1994). This choice is in line with many other
logistical researches since positivism is the most common philosophical stance in logistics
research (Gammelgaard, 2004).

2.2 Research Approach

The next layer in the research ‘onion’ (Saunders, et al., 2009) depicts which research
approach to use. There are several suitable methodological approaches to scientific research,
depending on the field of studies, the context and the personal opinions of the researchers. For
this study, the phrasing of purpose and research questions together with the use of an
illustrative example indicated that the base of the study would be already established theories
regarding storage allocation, order picking and routing, although adapted to a new setting.
This approach corresponds to Kovacs and Spens (2005) description of the deductive research;
it takes its starting point in existing theories, moving from a general law to a specific case.
The deductive research process aims to identify and explain causal relationships between
specific variables (Saunders et al., 2009). Hence, it is more suitable for testing already
existing theories than for creating new science, and for this reason the deductive approach
dominates the relatively young field of logistics (Kovacs & Spens, 2005). Deductive research
requires that it is possible to control variables and that the methodology used is structured and
replicable to get a reliable result. In order to be able to generalize the outcome it is important
to ensure that the size of the sample studied is sufficient (Saunders, et al., 2009). The aim of
this master thesis was to identify the relationships between different order characteristics and
warehouse operation methods. The starting point was an extensive literature review, which is
used to decide the method that is the most suitable in each specific situation. In order to be
able to follow the deductive research requirements, the methodology used is thoroughly
described in this chapter. The included articles are thought to strengthen the research
foundation by using both simulations and case studies to demonstrate and prove their main
ideas. The outcome should therefore be applicable to specific situations.

Arbnor and Bjerke (2009) also describe two other major research approaches: the inductive
and the abductive. The inductive approach was not an option since no new theory was to be
developed through the empirical case data (Kovacs & Spens, 2005). The abductive research
approach has a more cyclic nature (Fischer, 2001) and can be viewed as a combination of the
other two approaches: The first part of an abductive study is inductive and develops new
theories. The theories are then tested in the second part by using them in deductive research to
forecast and conclude different observations (Arbnor & Bjerke, 2009). The time constraints of
this study prohibit such an extensive study. The abductive process also requires that the
researchers are very experienced in the relevant field to succeed, and this was not thought to
be the case. Figure 3 shows the deductive approach in comparison with these two other
research approaches. In the context of this study, theories refers to the frame of reference,
while forecasts can be compared to the decision support i.e. the answer to the research
questions. Facts/observations is the evaluated outcome of using the decision support which is
a state the illustrative example do not reach, i.e. the deductive half-circle is not fully
completed.
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Figure 3 Comparison of different research approaches (inspired by Arbnor & Bjerke (2009), and Fischer (2001))

2.3 Research Strategy

The next methodology decision to make, the third layer of the research onion, concerns the
research strategies. There are many strategies when it comes to doing research; common
examples are experiments, surveys, archival analyses, histories and case studies. When
deciding what method to use, there are several factors to take into account according to Yin
(2009). Initially, the form of the research questions should be analyzed. One way to categorize
them are depending on the purpose of the research and which of the questions who, what,
where, how and why, they answer. For example, if a research question answers how or why, it
is usually explanatory and will likely result in the use of case studies, histories and
experiments. With this background, it is obvious that the defining of the research questions is
a crucial step in the early research process (Yin, 2009). An overview over when to use
different research and in connection to what research question depending on the goal or
purpose of the study can be found in Table 1.

Table 1 Relevant research strategies for different situations (Yin, 2009).

Research purpose Question type Suitable research strategies

Exploratory
- develop pertinent hypotheses and what
propositions for further inquiry

survey, archival analysis,
case studies, histories, experiments

Predictive
- describe the incidence or prevalence of
a phenomenon or predict outcomes

who, where, how

rv rchival analysi
many, how much SUrvey, archivat analysts

Explanatory

_ establish cause-effect relationships how, why case studies, histories, experiments

The aim of this master thesis was primarily to create a decision support tool that highlights the
methods for storage allocation, order picking and routing, which have the strongest support in
research for bringing improvements regarding picking efficiency within a specific warehouse.
This includes identifying and using cause-effect relationships so the research is explanatory to
its nature, which is further strengthened by the first research question, which asks how.
Explanatory researches often use case studies, histories or experiments depending on the
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degree of control of events. This study uses all three alternatives to some extent, although
partly from a secondary source. The literature review in chapter 3 Frame of Reference is
based on previous research conducted by using both actual companies and simulation models
i.e. histories, case studies and experiments. The literature study ends with two examples of
existing decision support models for redesigning warehouses. These parts of the literature
review were then both used to create the resulting theoretical decision support tool, which was
then illustrated by following the procedures in a real life company setting. The process
described is a case study of the subject methods for increasing picking efficiency, from which
a conceptual model evolved. Typically, a case study combines several data collection methods
such as archives, interviews, questionnaires and observations (Eisenhardt, 1989). The purpose
when choosing a case study is to gain a thorough understanding within a specific area. In this
thesis, it is also about mapping the existing research within the targeted area in order to create
value for warehouses that wish to improve their operations in the future. The main criticism
regarding case studies is that it provides a weak basis for generalization due to its narrow
focus. Over time the value of learning from specific cases has been better recognized and its
prevalence is successively increasing in many scientific disciplines (Dubois & Gadde, 2002).
This is not considered an issue in this master thesis, since the method provides a strong
theoretical tool that intends only to provide a starting-point for future research and
adjustments, which eventually could serve as subject for generalization. For further
discussions in this matter, see chapter 2.7 Trustworthiness of the Research.

An experimental outcome or an evaluating test of the performance of the decision support tool
tested on the Thule case was unfortunately not possible due to the limited scope of the project.
Further, the warehouse settings in which the operations eventually will take place are not
expected to run until December 2014, when this research already will be finished. Hence, it
was not possible to test, isolate and measure in that environment, which would be required if
doing an experiment.

2.4 Research Choices

The fourth layer for decision-making regarded the area of research choices (Saunders, et al.,
2009), choosing the method to use for answering the research questions. This can be referred
to as choosing mono method or multiple methods, i.e. using either a single data collection
technique with corresponding analysis procedure, or using more than one data collection
technique and analysis procedure. This research study uses a case study of the subject
methods for increasing picking efficiency including a wide scope of research articles, order
data analyses and interviews; hence the research choice was a multiple methods. The reason
for this choice was to get a broader perspective on the studied problem, and to increase the
trustworthiness of the research. For further elaborations on this matter, see chapter 2.7.
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2.5 Time Horizons

Another important decision, according to Saunders et al. (2009), to make prior to the research
start regards the time horizon of the study. Should it capture a snapshot of the situation, from
now on referred to as cross-sectional studies, or a longer period of time, so called longitudinal
studies? The choice between these are highly related to the kind of research one are to
perform, and does not relate to the research strategy. The longitudinal studies have a great
strength in the possibility to study the development over time, but also research with time
constraints can contribute with change analyses if utilizing already performed studies as a
foundation for the further research (Saunders, et al., 2009).

Due to the limited time frame and scope of this master thesis, longitudinal studies were not
possible to conduct; hence cross-sectional is the best description. The collected historical data
used in the illustrative example cover one year of Thule’s order history, which can be
considered a short period of time in a fast growing company with significant seasonality.
Further, the interviews only represent a snapshot of the situation. The literature used in
chapter 3 Frame of Reference is from different years, stretching over longer periods of time
but most of them are also to be considered as separate cross-sectional studies and do not
provide a longitudinal study if considered together.

2.6 Research Techniques and Procedures

The core of the research ‘onion’ concerns research procedures and techniques, or rather how
the data should be collected and analyzed (Saunders, et al., 2009). This master thesis studies
methods for increasing picking efficiency by doing an extensive literature review and
combining the different recommendations in to a decision support tool in the shape of a
conceptual model. The theoretical framework is analyzed by comparing the different
recommendations and their implications for companies in terms of when each method is
suitable. The tool is tested on a real life setting through an illustrative example by doing a trial
run with data from the Thule Group. The actual application is then analyzed based on
performance and usability; implementing and analyzing performance of the decision
recommendations is left for further studies.

More detailed descriptions of the data collection and research analysis, is provided in the
following sections through a seven-step multi-stage rocket, illustrated in Figure 4.

Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7:

Illustrative ™\ Analyzing
example: decision Conclusion
applying tool support tool

Figure 4 Research process in seven steps (Gildebrand & Josefsson, 2014).

2.6.1 Step 1: Determining Project Scope

The initial step in this study was to determine the scope and establish a project plan, which
was done together with the supervisors at LTH and the Thule Group iteratively. By doing a
broad literature search with key words like “warehousing” and “order picking” the
researchers’ basic knowledge of the research area was enhanced. Some gaps in current
research could be identified, leading to the problem discussion, purpose and research
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questions presented in chapter 1 Introduction. The execution of the project was planned in
order to meet the limited time frame of the master thesis of totally 20 weeks.

2.6.2 Step 2: Determining Research Methodology
The next step was to decide on research methodology using Saunders et al.’s research ‘onion’
as a framework (2009), according to previous chapters 2.1 to 2.5.

2.6.3 Step 3: Literature Review and Creating a Frame of Reference

Once the research structure and methodology was determined, the next step was to conduct an
extensive literature review in order to address the purpose and research questions. By finding,
reading and summarizing relevant research articles a frame of reference was constructed. The
actual search process was performed by using different databases: EBSCOHost, Elsevier,
JSTOR, Scopus, and Web of Science. The main key words used were warehouse,
warehousing, picking, order picking, storage allocation, storage assignment, classification,
and seasonality in different combinations. When needed the search result was further
narrowed down by putting constraints on times cited and/or publication date. The aim was to
find the most recent research in order to conclude the state of the art within the topic of order
picking, which meant focusing on recently published articles. However, the selection of
suitable articles was not that extensive. For this reason, un-cited scientific articles, as well as
frequently cited articles from as long back as 1989, also were included in the study.

When promising articles were found, a brief browsing and reading of the abstract was done in
order to determine their relevance to the project at hand. If they were judged as relevant and
to be from a reliable source they were put in the internal project library, otherwise they were
discarded (for more information about the source evaluation see chapter 2.7 Trustworthiness
of Research). The references in the relevant articles were examined in order to find additional
relevant articles. This was mainly done based on author name, article title or the piece of
information referred to. In fact, the main part of the literature included in the frame of
reference was not found directly through the databases, but rather through backtracking the
reference lists in relevant articles. The retrieval of these articles was often done with the
assistance of the search engine Google Scholar.

The next part of the literature review was to read through the articles i.e. the content of the
project library and categorize them based on main topic. The categorization was done
according to what the browsing indicated would be the structure of the frame of reference:
literature review and frameworks, general about warehouse operations, order picking and
storage allocation. The final structure of the literature review was however achieved
iteratively by writing and getting supervisor feedback.

2.6.4 Step 4: Determining a Decision Support Tool

The fourth step was to evaluate the key factors found in theory for determining order picking
methods. As the last part of the literature review, it meant summarizing different research
result and comparing their statements on how certain characteristics influence the storage,
order picking, and routing decisions. The idea was to identify important relations that
determine how decisions should be conducted, and compile them into a decision support tool:
A stepwise instruction of which warehouse, product, and order characteristics to consider and
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how to consider them when deciding on methods to use in ones warehouse operations. It
should provide guidance for updating these procedures, while taking different pros, cons, and
tradeoffs connected to company objectives in to account. Some factors were not satisfyingly
examined in current research, why the tool is not comprehensive but can be further developed
and expanded.

2.6.5 Step 5: lllustrative Example; Empirical Data and Applying Decision
Support Tool

When the decision support tool was finalized from a theoretical point of view, next step was
to apply it on a real case, provided by the Thule Group. The purpose was to get practical input
to the theory-based tool by using information about the Thule Group and its Huta DC as an
illustrative example. In this step, the data collection and analysis sometimes overlapped which
gave the researchers a head start in the analysis and also allowed them to take advantage of
flexible data collection (Eisenhardt, 1989).

The basic company and warehouse information was received through the company website as
well as through unstructured interviews with the company representative Carl Risholm
(Project Manager Supply Chain) during company visits. Short semi-structured qualitative
research interviews were also carried out with three of Thule’s managers involved in
warehousing and the new DC: Rickard Andersson (Vice President Supply Chain, Sweden),
Marcus Hunt (Supply Chain Manager, UK), and Monika Janas-Kaszuba (Project Manager,
Poland). The purpose was to collect support for how Thule wished to prioritize its warehouse
objectives and thereby should act in the tradeoff situations. The semi- or unstructured
interview approach means that the interviews were non-standardized and used an explanatory
approach were the interviewee and its answers affect the questions asked. The difference
between the two is that the semi-structured interviews use a predetermined list of questions to
cover, but some may be omitted and others added depending on the nature of the interview.
Unstructured interviews on the other hand are completely informal; the goal is to explore a
research area in depth by letting the interviewee talk freely. No predetermined questions are
set, but it is important for the interviewer to have a clear idea of what to achieve through the
interview (Saunders, et al., 2009). Here, the interviewees were e-mailed the interview guide,
found in Appendix A, and initially also answered in writing. Then follow up interviews were
held to clarify some points with Janas-Kaszuba on Skype on 2014-03-20, and with Andersson
in Malmo on 2014-03-28. The quantitative order and product data to use in the different
decision steps was collected through the company’s ERP system and compiled in Excel-files
provided by Risholm (2014). It contained all orders from July 2012 to June 2013 of SKUs to
be stored in the Huta DC. To conclude, the empirical data collected from the Thule Group
was both primary and qualitative (interviews), and secondary and quantitative (order history).

Next, the decision support tool was gone through step by step to determine the suitable
warehouse operation methods regarding storage allocation, order picking and routing to apply
to Thule’s Huta DC. In the initial phase Yin (2009)’s recommendation to start the analysis
process with playing with the collected data to find appropriate strategies to proceed with was
used. This process included filtering and sorting the information as well as analyzing the
outcome, all based on the parameters the tool suggests to be able to follow its
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recommendations. Sometimes lack of or inadequate theory called for assumptions, e.g.
regarding where exactly to draw the line between A, B and C SKUs, as well as how to
determine the size of the corresponding zone. Similarly, assumptions were made when the
data provided from Thule were ambiguous, e.g. regarding number of unique picks. This step
was conducted both to test the theoretical tool and show how it should be used, and to identify
problems and discrepancies between theory and practice.

2.6.6 Step 6: Analyzing the Decision Support Tool

The next step was to analyze the decision support tool itself, its theoretical foundation,
guidance and ease of use. The main idea was to compare different research results, their
common opinions and their extensiveness before moving on to evaluating the applicability of
the tool. How cohesive, clear and comprehensible was the implications from research? Was
the advice understandable and did the outcome seem reasonable? What about gaps or
indecisiveness? And how did the tool perform in reality in terms of usability? Which reasons
determined the structure of the tool? Any alternatives? Did the tool recommend different
methods for different time periods and storage areas? Which features settled the decisions?
Did this outcome seem reasonable?

2.6.7 Step 7: Conclusions and Further Studies

The last step in this master thesis project was to conclude the outcome in terms of the final
decision support tool and answering the research questions. The process of doing this also
involved a final review, and an opportunity for the authors to summarize their own reflections
and ideas regarding the study. This process involved identifying and expressing improvement
areas and suggestions for further studies related to the topics of warehouse operations and
picking efficiency.

2.7 Trustworthiness of the Research

There are several criteria for judging the quality of research designs. Yin (2009) presents four
widely used tests to ensure that research is trustworthy:

e Construct validity identifies correct operational measures for the concepts being studied.

e Internal validity seeks to establish a causal relationship (for explanatory or causal
studies).

o External validity defines an area to which a study’s findings can be generalized (not
always the purpose).

¢ Reliability ensures that the operations of a study can be repeated, with consistent results.

2.7.1 Validity

The first three bullet points regarding validity are concerned with whether the findings really
are about what they appear to be about or not. Is it really the intended variable that is
measured? Is it the identified relationship between two variables casual? And can the findings
be applied outside the area in which the study was performed? Raising these questions is an
important step in ensuring validity, but it is also important to be aware of possible threats. It
can be participants dropping out of studies, participants changing behavior due to them being
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measured or that conditions change during the study that affect the outcome. The external
validity is of particular concern if developing theories aiming to be generalizable i.e. possible
to use for other organizations or in other situations. This type of research calls for further,
larger studies, and it is of importance that the objects studied are representative —either by
being a larger sample or by not being markedly different. Research performed in a small
setting or one company only is usually not enough to make generalizing conclusions, and as
long as there is no claim that the result is applicable in other settings than the one studied
there is no reason to evaluate the external validity (Saunders, et al., 2009).

The validity of this master thesis is closely connected to the trustworthiness of the information
collected in the literature review. The search process used well-known databases
recommended by academia and the articles found were published in international journals
used by both researchers and practitioners. The frame of reference is therefore considered
valid. The relations between order characteristics and storage and picking strategies found in
them are based on both simulations and case studies, thereby enhancing the research
foundation of the project. The casual relations were thoroughly examined and it was made
evident that most researchers had found the same indications. Consulting different sources
and comparing their views is sometimes referred to as data triangulation, which also helps
validate the findings (Denscombe, 2010). However, analyzing the prerequisites and compiling
different research results in the decision support tool was performed by the researchers, which
leave room for misinterpretation. The risk of such faults was decreased by the test of the tool,
together with the iterative feedback sessions with the LTH supervisor. Moreover, the iterative
process of collecting the research result used in the decision tool made sure the statements
was examined multiple times in order to categorize them correctly. Consequently, less room
should be left for errors.

The aim of the resulting decision support tool is to be applicable to many types of settings i.e.
generalizable to some extent. This external validity of the project might be questionable due
to the somewhat limited literature supply on the subject. The outcome is based on several
research projects and consequently more extensive than if the authors of this report only had
based the outcome on self-manufactured primary data. However, many of the cited
researchers work together on different research papers and frequently use and cite each
other’s result. Hence, there is a risk that many of the different research articles that point in
the same direction, actually base their statement on the same original research. There is also a
risk that the individual researchers choose not to question the prevailing theories, due to the
small size of this research community. For further discussions of this issue see chapter 2.7.3
Criticism of Sources. Two other limitations to fully generalizing the research result are that
this study only concerns certain types of warehouses (manual with fixed layout) and that more
adjustments based on industry practice and case studies are needed to anticipate more real life
warehouse and demand situations.

Another issue that affects the validity of the result is connected to the extensiveness of the
research within this area. Many aspects of how order characteristics affect the storage and
picking methods have not been examined in the research, which is why the summary used
when constructing the decision support tool in this master thesis contains some gaps. This
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cannot be resolved within the scope of the project, but is something in need of more research,
see discussion in chapter 8.3 Suggestions for Further Studies.

Lastly, when studying the empirical data from Thule in term of the quantitative order data and
qualitative interview answers it is important to remember that this data only was used for
testing the theoretical result, i.e. the decision support tool. Hence, it was a complement to the
theoretical research and its validity is therefore not as fundamental when observing the
validity of the entire master thesis. Nevertheless, it is important to make sure that the facts
from the illustrative example used in the analysis chapter are valid and that no
misinterpretation of the order data or interview answers were done. To avoid this, the initial
semi-structured interviews were conducted via e-mail, which meant the interviewees were
able to read the questions themselves, think them through, and answer in their own words.
Both the outcome of the interview answers, and of the order data analysis in terms of different
order characteristics were verified by follow-up questions and feeding the answers back to the
concerned Thule personnel.

2.7.2 Reliability

One way of assessing the reliability can be to raise three questions. Will the measures yield
the same results on other occasions? Will other observers reach similar observations? And is
there transparency in how interpretations were made from the data? These questions are also
in line with the overall positivistic research philosophy of the study. Another way to assess
the reliability is to raise awareness of its four common threats:

e Subject or participant error can occur when handing out questionnaires without
realizing that the time of the day, day of the week etcetera will influence the result.

e Subject or participant bias is a risk, for example if interviewees provide answers they
feel that they are expected to give. This is more likely to occur in organizations
characterized by an authoritarian management style or when employment insecurity is
high.

e Observer error is always a risk when the researcher has to interact in a situation. In
interview situations, it may be that different persons or ways of asking questions bring
out completely different answers.

e Finally, observer bias is a threat when data or information needs to be interpreted, since
this highly depends on the person conducting the analysis (Saunders, et al., 2009).

A similar concept used to ensure trustworthiness is the combined qualities of credibility,
transferability, dependability and confirmability. Credibility has the same meaning as internal
validity. In the same way, transferability should be interpreted the same way as external
validity, and dependability can also be described as reliability. Confirmability can be
described as objectivity, meaning that the findings should represent the results of the study
rather than the researchers bias (Halldorsson & Aastrup, 2003).

The reliability of this study can be considered high. The resulting decision support tool is
based on scientific articles and research already published and accessible in the same way for
any researcher. Hence, the theoretical outcome should be more or less identical if repeated no
matter by whom. However, the parts that require interpretations and adjustments due to
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tradeoffs input from practitioners and judgment of what different order characteristics imply
might come out differently. The human factor is present, although tried to keep at a minimum,
why an exact research replica is impossible.

The order characteristics yielded from processing the order data received through the
illustrative example are judged as very reliable since the order figures are hard facts; static
figures only processed with mathematical tools in Excel to provide averages rather than about
200 000 individual orders distributed over one year. Consequently the data itself was not
altered and another observer would thereby get the same results as the authors of this master
thesis. Interviews, however, are always unique events and cannot be repeated exactly in the
same way. Still, the main questions the Thule Group warehouse managers were asked can be
found in Appendix A, hence the interview itself can be repeated and should yield similar
answers. Interviews were conducted by two persons to avoid subjectivity, and verified by
collecting each answer both verbally and in text.

2.7.3 Criticism of Sources

A huge part of determining the trustworthiness of this report and its result depends on the
reliability of the sources used. The main source for chapter 3 Frame of Reference was
research articles, but some books were also included. The research articles were primarily or
secondarily found through scientific databases accessed through Lund University Libraries
and recommended by the LTH supervisor as well as other LTH professors. Moreover, they
were published in reliable, well-known international research journals evaluated and used by
both academia and practitioners, such as the European Journal of Operational Research, the
International Journal of Production Economics, the International Journal of Physical
Distribution & Logistics Management, and the International Journal of Production Research.
Some of the articles are fairly old and others are published in smaller journals, they are
however still considered reliable. The content of the first kind still seem valid though they are
referred to in new articles, and the references used in the latter are the same as in articles
published in more prestigious journals. This is also true for the books cited; they were both
validated by LTH supervisor and cited in articles from reliable journals. Hence, the cited
works and their content are considered trustworthy, especially since many of the authors are
reoccurring, both as authors and in the reference list.

This proof of trustworthiness has, however, also a negative aspect. Multiple sources indicate
the same result, but as mentioned above, the total number of researchers is fairly small, which
mean more influence on each other. This is evident when reading through the reference lists;
the same authors appear over and over again and in different constellations. Many of them
know each other and work together, which mean there is less chance of them questioning
previous results. Moreover, they all refer to each other, which means that something that seem
like a well-proven fact due to appearing in paper after paper, might turn out to refer back to
one single study.
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3 Frame of Reference

This chapter will provide the theoretical framework connected to choosing warehouse
operations methods that support the overall goal of improving the picking process. The
physical design of a warehouse, and the storage allocation, order picking, and routing
methods will be described in detail and evaluated based on different criteria connected to
company’s priorities in warehousing.

There are many aspects to consider when making warehousing decisions in order to increase
picking efficiency. Le-Duc and De Koster (2005) have established five main factors that
affect the performance and efficiency of the order picking in a warehouse:

Warehouse layout and physical design
Storage allocation method

Batching or order picking method
Routing and sorting method

Demand pattern

In accordance, Bottani et al. (2012) identified warehouse layout, storage allocation and order
picking methods as particularly relevant for this purpose. These three common elements have
been used to set the structure of this frame of reference and form the base illustrated in Figure
5. Le-Duc and De Koster’s two remaining factors are also included in the figure and form two
chapters, although the amount of available research within these areas generally is
considerably smaller than within the other three. Further, Figure 5 depicts the interconnection
between the factors by having the four triangular shapes of the warehouse factors form a
larger triangle together if considered jointly. The omnipresent demand pattern is illustrated as
a cloud in the background, to illustrate its influence on all the other decision areas. The
outcome in terms of effect on picking operations, if treating the factors correctly, is depicted
as an arrow pointing forward to symbolize an increased picking efficiency.

~

—
4

/Demand patterﬁ

Physical
warehouse
design

Figure 5 Overview of factors affecting picking efficiency covered in frame of reference (Gildebrand & Josefsson,
2014).
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Since warehouse layout is considered a given factor, chapter 3.1 only aims to introduce the
complexity of the area, and its impact on performance. The following three chapters continue
by in detail describe the different methods for storage allocation, order picking and routing
and they will end in comparisons of when to use different methods. Lastly, chapter 3.4 will
give some input to research’s view on how to deal with changing demand patterns and
seasonality.

The authors use the term storage allocation method to refer to the strategy of where to place
and store different SKUs in the warehouse in order to facilitate the order picking, i.e.
according to which pre-requisites. Order picking method refers to the way the picking of the
SKUs in an order should be organized. Other terms used in research, but not adopted in this
thesis, instead of method are process, policy, and strategy.

3.1 Physical Design of the Warehouse

Research within warehousing usually aims at improving different parts of the operations and
providing decision support for warehouse managers. According to Baker and Canessa (2009)
there are many articles that analyze isolated aspects of warehouse design. First and foremost
order picking method, but also layout, choice of equipment etc. However, focusing on
separate parts easily leads to sub-optimization since all areas of the warehouse are interrelated
(Rouwenhorst, et al., 2000). The physical layout as well as the warehouse operations are
interdependent and interact, see Figure 6. This means design decisions such as the overall
structure, sizing and dimensioning of a warehouse, the department layout, operation strategies
and choice of material handling equipment, racks and shelves, affect each other as well as the
choice of warehouse operations methods. Consequently the decision-making in warehousing
consists of a large number of decisions whereof many constitutes of combinatorial problems
that are very difficult to optimize. The problem gets even more complex when considering all
other factors that affect travel time, throughput and costs in a warehouse: demand, order and
product characteristics etc. Every decision puts constraints or requirements on subsequent
levels. This makes it important to simultaneously consider related issues in order to balance
the tradeoffs.
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Figure 6 Framework for warehouse design and operation problems derived from Gu et al. (2007).

One strategy when clustering design problems for optimization is to base the partition on the
time horizon of the outcome i.e. long, medium or short term. Many of the long-term decisions
are connected to the physical design of a warehouse. That includes decisions connected to the
overall structure, size, layout, and equipment, and they often also bring on high investments
(Rouwenhorst, et al., 2000). The goal is to increase the utilization of the physical space and
decrease the travelling distance and time, as well as material handling and associated costs. It
is important to emphasize such operational measures in the design phase, since operational
efficiency is strongly affected by the design (Huertas, et al.,, 2007). The layout of the
warehouse facility thus plays a crucial role in the business success of the company. It
stipulates and put the boundaries to many of the other design-choices. For example, the size
will limit the volume of goods that can be stored in the warehouse while its dimensions, door
locations and design of aisles will limit what flows of material that are possible, and it can be
very costly or impossible to change the layout once the warehouse is built (Huertas, et al.,
2007). This means that analyzing expected demand and establishing operating methods
preferably should be done before determining the physical layout (Hassan, 2002). This view is
also supported by Oxley (1994) who highlight that the warehouse design should be centered
on the storage and handling requirements and that the building should then be designed
around these (Baker & Canessa, 2009).

Regardless of which factors to include in the decision process, designing a warehouse from
scratch is a huge undertaking only performed on rare occasions. It would always be ideal to
start from a clean slate, but large improvements can be gained only reviewing current
processes and the methods used. This might hold potential due to changed external conditions
such as demand variations, and can be done through focusing on redesigning the most costly
operations. In warehousing these are, as mentioned, related to the manual order picking, a
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widely recognized fact among researchers. Improved order picking is closely interrelated to
storage allocation methods, and decisions on storage will have a major influence on the
performance of the order picking. The decisions regarding where to locate the SKUs,
assignment of items to pickers and routing combined hold a large potential for cost savings
(Theys, et al., 2010). These areas and how they are related will be examined further in the
following two chapters.

3.2 Storage Allocation Methods

Storage refers to the physical preserving of products while awaiting a demand (Frazelle,
2002). It is a major warehouse function that primarily deals with decisions regarding the
amount of inventory to keep of each SKU, the replenishment pattern and where the SKUs
should be stored in the warehouse. Inventory levels and replenishment relates to the areas of
lot sizing and staggering problems and are not to be further examined in this report. The
storage allocation of SKUs however is closely related to the order picking routes, and will
have a great influence on the warehouse efficiency (Gu, et al., 2007). It has been showed that
choosing the right product allocation method allows the current picking distance to be reduced
by more than 10 percent. And post-optimization procedures can further reduce picking
distances with up to 20 percent of the current distances. While order picking has received
much attention in the research over the years due to its high costs, product location strategies
have received considerably less, although the main objective when locating products is to
facilitate the order picking (Renaud & Ruiz, 2008).

Much of the research results that do exist are in line with industry practice, where there is a
unanimous agreement that the fastest moving SKUs should be put in the most convenient
locations, according to Bartholdi and Hackman (2010). In this context, the term convenient
refers to a location that will result in short total travel distance, from a product’s point of entry
in receiving, to final exit in shipping. In bin-shelving storage the convenient locations can be
further narrowed down by utilizing the concept of the “golden zone” i.e. that highly slotted
SKUs should be stored between a picker’s waist and shoulders to reduce total fulfillment
time, although the travel distance might increase (Petersen, et al., 2005). By storing the SKUs
carefully, the most frequently visited locations are those of greatest convenience thereby
minimizing the annual labor cost connected to put-away and picking. Consequently, the
layout of the warehouse determines the cost associated with each storage location (Bartholdi
Il & Hackman, 2010).

Furthermore, the layout in terms of docks locations, aisle orientation, length, width and
number of aisles is determined by the material flow pattern. There are several different
product flow configurations to choose from when designing the warehouse layout. Each type
is characterized by the placement of the dock locations for reception and shipment, the 1/0
points, and the convenience of the storage locations. Two common SKU layouts are U-shaped
(cross-docking) and flow-through. Characteristic for the U-shaped layout is that the docks are
located on the same side of the warehouse, see Figure 7. This way the more convenient
positions get even better, at the expense of the less convenient locations getting worse. With
this in mind, the U-shaped layout is most appropriate for warehouses where a small share of
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the SKUs account for the largest activity within the warehouse (Huertas, et al., 2007). This
layout however requires that the docks are flexible and when needed can be used both for
receiving and shipping (Bartholdi 111 & Hackman, 2010).

The flow-through layout refers to when the docks for reception and shipping are located on
opposite sides of the warehouse, see Figure 8. This way, only a few locations can be
considered very convenient. Instead, a larger share of the locations is fairly good and equally
convenient. The flow-through layout is appropriate when handling very large volumes, or
when the warehouse dimension is long and narrow. Another feature is that this layout reduces
congestion and risk of errors in picking. In general, it is an advantage to orient the aisles so
that they run parallel with the material flow. However, this is not always the case. In
situations when movements between storage locations are necessary, cross aisles can be
implemented to increase the efficiency, see Figure 9 (Bartholdi 11l & Hackman, 2010). Other
aisle configurations to consider when improving the warehouse operations are for example
that narrow aisles allow picking from both sides of an aisle at each stop in a picking tour,
whereas wide aisles allow pickers to meet or overpass each other. Further, long aisles might
increase space utilization while shorter aisles might reduce the risk of congestion (Hassan,

2002).

Figure 7 U-shaped layout Figure 8 Flow-through layout Figure 9 Usage of cross aisle
(Bartholdi 11l & Hackman, 2010). (Bartholdi Il & Hackman, 2010). (Bartholdi 111 & Hackman, 2010).

Storage is also often sectionalized in order to facilitate operations and reduce movement and
congestion. This can be done based on the overall material flow, demand, pick frequency, or
type of unit loads. The most common partition, which can be further divided into different
sub-areas, is in reserve and forward areas (Hassan, 2002). The reserve area, also called bulk
area, is where SKUs are stored in the most economical way i.e. in bulk or full pallets, while
the forward or picking area is where SKUs are stored for easy retrieval by an order picker
(Rouwenhorst, et al., 2000). The forward area can be described as a “warchouse within a
warehouse” and is commonly used in high-volume distribution in order to minimize
unproductive travel between far-distant locations (Walter, et al., 2013). The area usually
refers to a limited area for fast-moving SKUs, located close to the 1/0 points. It contains
smaller amounts of SKUs that stay there for a shorter period of time, and is replenished from
the reserve. This way, the order picking cost is reduced, at the expense of additional material
handling and increased travelling due to the replenishment (Gu, et al., 2007).

The approach raises the question of which SKUs it should store, how much space should be
allocated to each SKU and its overall size. Methods proposed try to optimize the good of the
area through balancing the expected labor-time related to order picking and replenishing
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during busy days (Gu, et al., 2007). The main tradeoff is thus reduced picking effort versus
resources spent on replenishment. That is, a compact forward area increase picking efficiency
through shorter direct distance travelled related to the SKUs it holds. On the other hand, it
requires additional effort in terms of double handling and additional travelling related to the
on replenishment. The two aspects must be well balanced in order to result in overall
improvements. Walter et al. (2013) present three formulas for calculating the optimal choice,
one for each main problem. The first allocate storage space among a given set of SKUs, the
second select the products to be stored in the area, and the last addresses the storage allocation
problem for the overall size of the area. One drawback is the complexity of the real problem
and thus also the formulas that aim to solve it. For example, it is difficult to include
limitations such as odd shapes of certain SKUs and thereby requirements on the shelving.

The placement of products within the storage area, whether in forward or reserve, can be
determined in numerous ways. Three common storage allocation methods are random,
dedicated and class-based storage (CBS), see evaluation in Table 2 at the end of this chapter.
Random storage is when SKUs are randomly assigned to each location which mean their
placement constantly change and that a SKU might have several storage locations spread out
in the warehouse, as opposed to dedicated storage where each SKU belongs to one location
only (Le-Duc & De Koster, 2005). Dedicated storage has the advantage over random storage
that fast-moving SKUs can be located close to the I/O points and therefore get a more
efficient material handling. On the other hand, this requires more storage space, since storage
area must be reserved for the maximum inventory of each product. The random storage is
suitable when the pick density is high. Pick density is calculated as:

Number of SKUs in an order

Pick density (Chan & Chan, 2011) =

Total number of SKUs in a warehouse

In words, the concept is defined as the variety of items in a customer order that affects the
performance of picking (Chan & Chan, 2011).

The third policy, CBS, has the benefits of both dedicated and random storage (Gu, et al.,
2007). Here, the warehouse is divided into a number of zones and the SKUs are divided into
the same number of classes, usually based on pick frequency. Then each class is assigned to
one of the identified zones in the warehouse, so that each class of SKUs is dedicated to a
zone. This way the total distance from picking the most frequent SKUs results in short travel,
while keeping down the required storage space. Expressed in terms of CBS, the random
storage would have one class only while the dedicated would have a number of classes equal
to the total number of SKUs in the warehouse. Both random and dedicated storage can be
applied within each zone in CBS (Gu, et al., 2007).

The three most frequently used criteria used when ranking SKUs or classes and linking them
to storage locations are, according to Gu et al. (2007):

e Popularity, defined as the number of storage/retrieval operations per unit of time and
puts the most popular SKUs in the most desired locations.

e Maximum inventory, which ranks products according to their maximum inventory.
The classes with the lowest maximum inventory are assigned the most desirable
locations.
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e Cube-Per-Order Index (COIl), defined as the ratio of the maximum allocated storage
space to the number of storage/retrieval operations per unit time. The SKUs with the
lowest COI are stored in the most desirable locations. Using COI, both popularity
and space requirements are taken into account.

COI has gained the most attention among researchers, and has been proved to optimally
minimize the material handling costs in dedicated storage, given certain premises. For
example, the objective must be to minimize the long-term average order picking cost. Another
premise is that the travel cost depends only on locations and therefore exclude e.g. cases when
travel cost is item dependent (Gu, et al., 2007). According to Le-Duc and De Koster (2005)
COl is suitable when there are very stable assortments with limited changes in order
frequency and limited changes in the stored volume, which is rather uncommon in reality.
Similarly, Ang et al. (2012) conclude that a large number of papers on the issue of storage
allocation assume that the demand for each product is stationary over the planning horizon,
and that this is rarely representative due to seasonality or the life cycle of products.

Petersen et al. (2005) state that the three best performing criteria, or slotting measures as they
call it, in regards to reducing travelling are: popularity, COI and turnover, defined as the total
quantity of SKU shipped during a given time period. All of the mentioned criteria are fairly
easy to use and flexible enough to be practiced in many different types of warehouses.
However, popularity is the most widely used since it is both performing well in terms of
travelling and fulfillment time, as well as being easier to understand and implement than COI
(Petersen, et al., 2005). Popularity is also the base of the classification made in rest of the
research about CBS presented in this chapter.

In CBS the SKU ranking is followed by dividing the list in to classes from a chosen criterion.
The procedure often uses the classic ABC analysis (Petersen, et al., 2004). The ABC analysis
is a tool based on the Pareto principle or 80/20 rule, a concept stating that a small number of
objects account for a large share of the total effect, which means a company might profit from
differentiating its treatment of the objects according to their share. In this case it means a
ranking the SKUs according to a specific criterion. It is very common to use the product of
popularity and value or popularity in relation to total demand as criteria, but other factors can
also be used. Next step is analyzing the list and its distribution of SKUs before specifying a
suitable number of intervals, each representing a class: A, B, C etc. Each SKU is then
classified according to the interval it belongs to. A common outcome is that about 20 percent
of the SKUs turn out to represent 80 percent of the total demand (Jonsson & Mattsson, 2005).

CBS is stated to be the most popular storage method since it generally outperforms complete
random storage in terms of picking distance (Le-Duc & De Koster, 2005), a view that is
supported by Petersen et al. (2004). They show that CBS perform far better than random
storage in a number of situations, see Figure 10, and Appendix B for similar comparison with
regard to different routing methods. Their conclusion, which clearly shows in the figure, is
that the savings increase along with the number of classes used, while savings decreases as
the number of SKUs on the pick list increase. This is a rather intuitive as many SKUs on a
pick list means increased likelihood of including also less popular SKUs, which in turn results
in more travel to storage locations farther from the 1/0. If however the pick list consists of one
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item only, the choices of zone configurations and storage policies are statistically insignificant
(Petersen, 2002).
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Figure 10 Comparison of CBS and random storage (Petersen, et al., 2004).

The likelihood of picking unpopular SKUs is closely related to the overall demand pattern.
The demand pattern has a strong impact on the location of the SKUs in the warehouse and a
reasonable assumption in most cases is that this is not the same for all SKUs. In Petersen’s
study from 2000 he uses the Pareto principle to investigate how the demand pattern affects the
performance of different storage allocation methods. The study differs between three levels of
skewness: high, medium and low, see Figure 11. High skewness means that the top 20 percent
of the SKUs by demand account for 80 percent of the total demand, while medium and low
account for 60 percent and 40 percent respectively (Petersen |1, 2000).
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Figure 11 Demand skewness patterns (Petersen 11, 2000).
In opposite to general belief, the long-term skewness is usually less than a theoretical 80/20
pattern. This is of great relevance since the performance of CBS over random storage has
been shown to increase along with skewness, see Figure 12 (Petersen, et al., 2004). Once
again, it can be observed that the savings decrease as size of pick list increase.
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Figure 12 Savings of CBS over random storage, depending on SKU demand distribution and size of pick list
(Petersen, et al., 2004).

The observed pattern of increased savings along with increased number of classes, calls for
the introduction of a version of the dedicated method, volume-based storage (VBS). Just like
when using CBS, the SKUs are here assigned to storage locations based on their expected
demand. The SKUs with the highest expected demand are assigned locations near the 1/0O
point. The main difference is that the SKUs are not separated or categorized into classes; each
SKU has its specific storage location (Petersen, et al., 2004).

With previous sections in mind, it might be easy to believe that using VBS should always be
preferred over CBS. However, this is not the case. One major drawback with using VBS is
that it requires a complete list of SKUs ranked by volume, and thus is more difficult to
administer and require more information than when implementing CBS. In warehouses where
seasonality of SKUs is distinct, usage of VBS may require periodic and costly reassignment
of the SKU storage locations. Further, it has been shown that a large share of the potential
benefits from using VBS can be achieved by introducing only two classes, and that additional
classes bring successively decreasing marginal improvements, see Figure 13 (Petersen, et al.,
2004).

100%

80%

60%

90% 94%

40% 78%

% Relative Improvement

20%

0% T T
2 3 4
Number of Storage Classes

Note: Percentage relative improvement is ratio of the savings of CBS over random
storage to the savings of VBS over random storage

Figure 13 Performance of CBS compared to VBS when the number of storage classes is varied (Petersen, et al., 2004).
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Despite CBS being the most popular storage method, there are few articles on storage
planning for this purpose. Gray et al. (1992) presented a framework for designing warehouses
with zone picking to determine number of zones, pickers, zone size, storage within as well as
between zones and order batch size. Their main basis for determining the storage space
required for each SKU was the replenishment quantity and cost, together with demand and
SKU size. Similarly, Sarker et al. (1994) recommend that the area assigned to an entire
class/zone should be proportional to its demand and percentage of inventory i.e. the Pareto
principle might proof useful also in this matter. Petersen (2002) investigated the effects of
zone shape on operational cost with simulation. The conclusion was that the shape of the zone
has a great impact on the operational cost. Other researches propose further approaches to
assigning SKUs to zones and to balance the workloads of the pickers between zones (Gu, et
al., 2007). The zone formation is also connected to what is considered convenient locations
and how the workers will move within the warehouse to avoid congestion and waiting time.
Two common configurations when using CBS or fully dedicated storage (e.g. VBS) are
within-aisle and across-aisle. The concepts refer to if the SKUs with the same ranking should
be stored across several aisles with the same distance from depot/I/O, or within/along the
aisles, see Figure 14 (Petersen, 2002).

Across-aisle Within-aisle
Low
3 3
5} 5]
—d -
Depot Depot

Figure 14 Two common storage configurations. High, medium and low refer to the ranking in of the SKUs stored in
each area (Petersen, 2002).

In a subsequent article, Petersen et al. (2004) describe that the within-aisle storage usually
performs best when using VBS. However, they also present three other storage allocation
strategies, visualized in Figure 15. Rectangular storage is shown to perform almost as well as
within-aisle when using two, three or four storage classes, while diagonal storage is
outperformed by its alternatives. The performance of diagonal and rectangular storage relative
within-aisle is presented in Appendix B.

Within-aisle Diagonal
3
3 4
1 1
PO
Three-Class Rectangular Four-Class Rectangular

Figure 15 Variants of allocation of storage classes where the darkest shade represents the most popular SKUs, and
P/D the 1/O (Petersen, et al., 2004).
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A summary of the qualities, advantages and disadvantages for all the storage allocation
methods reviewed in this chapter is provided in Table 2.

Table 2 Evaluation of storage allocation methods. The sources to each statement are as follows: [1] Petersen (2002);
[2] Chan & Chan (2010); [3] Bartoholdi 111 & Hackman (2010); [4] Petersen & Aase (2004); [5] Petersen, et al. (2004);
[6] Petersen et al. (2005); [7] Hassan (2002); [8] Le-Duc & De Koster (2005).

Storage type

When

Pros

Cons

Random

e High number of items on
pick list (gap to VBS
policies decreases) [1].

¢ High pick density [2]

e In reserve storage areas
with a computerized
inventory system [2].

e In reserve storage areas,
where SKUS are held on
pallets [3].

¢ High storage space
utilization [2], [3].

e Easy to use [2], [4].

o Flexible [2].

e Requires less space [4].

o Leveled utilization of
aisles [4].

¢ Reduces risk for
congestion [4].

o Easy to administer [5].

e Increased travel distance
[2], [3], [4].

e Requires use of WMS,
workers cannot learn
locations [3].

¢ Put-away might be more
time-consuming if same
SKU is stored in several
places [3].

e Pickers might be tempted
to pick the SKU from a
more convenient location
if stored in several places,
thus creating discrepancies
between records and
physical inventory [3].

e Complicated to manage
because it introduces many
possible tradeoffs,
especially between space
and time (labor) [3].

Class-based
storage, CBS

o A distinction between
products can be made [2].

e Vertical CBS in multi-
level rack warehouse to
reduce order retrieval time
[2].

e Horizontal CBS in single-
level rack warehouse and
to reduce total travel
distance [2].

¢ Within-aisle together with
turnover based classing
[6].

e Across aisle with COI and
popularity [6].

e Combines advantages of
random and dedicated
storage (reduced travel
while staying flexible and
with high storage space
utilization) [2].

¢ Reduce travel [2], [7].

e Shorter travel than random
[4], [5], [8].

e Easier to use than VBS [4].

e Easier to implement than
VBS [5].

o Less administrative
overhead than VBS [5].

e 2-class system attained
nearly 80% of benefits of
VBS [5].

¢ Widely used in practice
[8].

¢ Convenient to implement
and maintain [8].

e Easily handle assortment
changes [8].

e Easily handle changes in
pick frequency [8].

¢ Might increase congestion
within aisles containing
popular SKUs, thus
limiting productivity [4],
[5].

o Might require periodic
movement of SKUs to
reflect seasonality in
demand [4], [5].

o Benefits might disappear if
additional sorting is
required [4].

e Can reduce congestion,
particularly if popular
SKUs not are allocated to
one class [7].
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Volume-based e In the most active picking | e Helps to maximize ¢ Does not utilize space

storage, VBS areas [3]. throughput [2]. efficiently [3].
(dedicated) e Shorter travel than random | e Requires more time and
[3]. effort to administer - more
¢ Popular SKUs in difficult [4].
convenient locations [3]. ¢ Might require periodic and
o Workers can learn the costly movement of SKUs
layout [3]. to reflect seasonality in
« Generally most effective at | demand [4].
improving performance e Information intense,
[5]. requires more

administration [4].

e Might increase congestion
within aisles containing
popular SKUs [4].

¢ Additional saving only 1%
compared to CBS with 4
classes [4].

Within-aisle, VBS | e Smaller zones [1]. e Shorter travel than random | e Increases congestion [4].

(dedicated) o Wider zone than depth [1]. [1], [4].

o Pick lists >1 item:
significantly less picker
travel than alternatives [1].

o Reduces travel time [4]

Across-aisle, VBS | e Within a picking zone (not | e Shorter travel than random |  Not as effective as other

(dedicated) entire warehouse) [1]. [1]. VBS policies [1].

o Deeper zone than width
[1].

o Pick lists =1 item, about as
good as within-aisle [1].

3.3 Order Picking Methods

One purpose with determining the best storage locations for different SKUs is to increase the
utilization the warehouse, another to be able to perform the order picking in the most efficient
way. These resource intensive processes where SKUs are manually retrieved from their
locations to fulfill customer orders can be further broken into sub-activities. Exactly how to
divide the sub-activities, as well as the specific time distribution differ between researchers,
one example is shown in Table 3. Travelling is however, the activity that generally requires
the most time in order picking. Therefore, much of the picking design should focus on
reducing this unproductive time. In the words of Bartholdi and Hackman (2010, p. 143):
“travel time is waste. It costs labor hours but does not add value”.

Table 3 Average distribution of order picker time (Bartholdi 111 & Hackman, 2010).

Activity % of order picking time
Travelling 55%
Paperwork and other activities 20%
Searching 15%
Extracting 10%
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The procedure of deciding on efficient order picking methods needs to balance several
aspects: time, resources available, picking accuracy and damages. Balance is the keyword. A
too high focus on time reduction, might postpone associated costs through e.g. a negative
impact on accuracy or damages.

There are many order-picking methods, all consisting of some or all of the following
fundamental steps: batching, routing and sequencing, and sorting (Gu, et al., 2007). Four basic
procedures for picking orders are single, batch, zone, and wave. Single picking means that
one person picks one order, one line at the time; this can also be referred to as strict or
discrete order picking. The opposite is batch picking, where one person picks multiple orders
at the time. In zone picking the warehouse is divided into zones, as described in 3.2 Storage
Allocation Methods.

Each zone has a limited subset of SKUs, and the pickers are assigned to a certain zone where
they perform the required picking. Zone picking can be further divided into sub-categories:
Sequential zone picking is when an order is assembled progressively from zone to zone, while
batch zoning is a combination of batching and zoning; orders are batched, but pickers have
their own picking zones, and all items in a batch must be picked before the next batch is
begun (Petersen 11, 2000). And finally in wave picking, orders are picked to meet the required
shipping schedule (Renaud & Ruiz , 2008). That means batch zoning with very large batches
that are picked based on a certain time frame, usually between 0.5 and 2 hours, rather than
based on volume or order (Petersen 11, 2000). These procedures can be combined depending
on e.g. if they are performed in a zoned warehouse or not, or at what point in the picking
process the batched articles will be sorted (Gu, et al., 2007).

Batching is a suitable option if the number of orders is large but the order size is small
(Hassan, 2002). More thoroughly, the batching problem reads as follows: Given a set of
orders, the problem is to partition this set into batches. Each batch will then be picked and
accumulated for packing and shipping during a limited time frame, a pick wave. If this is
employed in a warehouse with zones, it is necessary to balance the picking efforts between
the zones to get high picker utilization, while minimizing pick time so that the total number of
pickers can be minimized (Gu, et al., 2007). The disadvantage with this method is that it
requires the items to be sorted at some point downstream, which require additional time and is
a labor consuming process. Also, it is likely to increase the number of errors. It is generally
economically beneficial to batch single-line orders since they require no additional sorting.
The same is usually true for very large orders containing SKUs small enough to be picked in
one trip. Following this reasoning, the medium sized orders provide the greatest challenge
(Bartholdi 11l & Hackman, 2010). A comparison of the different order picking methods and
when they are suitable can be viewed in Table 4.
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Table 4 Evaluation of order picking methods. The sources to each statement are as follows: [1] Chan & Chan (2011);
[2] Petersen 11 (2000); [3] Bartholdi 111 & Hackman (2010); [4] Hassan (2002); [5] Petersen & Aase (2004); [6]
Cormier & Gunn (1992); [7] Petersen 11 (1997); [8] Gu et al. (2007).

Order picking
type

When

Pros

Cons

Single picking o Fairly large orders e Easy to implement [2]. ¢ Require much travelling [1],
(1 order/picking [1]. « Maintains order integrity [2], | [2], [3].
tour) [3]. e Does not allow for speed
¢ Avoids double handling [2]. picking of large quantities
« Direct error checking [2]. of a single item [2].
o Direct responsibility to
single worker [2].
o Fast service [2].
o No consolidation needed [3].
o No coordination of pickers
needed [3].
Batching e Small orders [1]. o Less travel time per item [2]. | o Order integrity is lost if not
(>1 order/picking | e For most operating o Fairly easy to implement [2]. | using special cart with
tour, 1 conditions [2]. « No adverse effects of compartments for each

picker/order)

¢ Requires a balance of
travel savings and the
cost of sorting and
errors [2].

o If large number of
orders but small order
sizes [4].

o Not suitable if
average order size
approaches the
maximum batch size

[5].

demand skewness and order
volume [2].
o Reduce travel [5].

order and doing sort-by-
picking, else increased risk
of errors, additional
consolidation space might
be required for sorting [1],
[2].

e Congestion can affect
performance [2].

e Order assigned to the same
batch must be picked within
the same time window [6].

Zone picking
(storage area is
divided into zones,
pickers are
assigned to each
Zone)

o If workload must be
shared due to large
orders, orders that
span over distant
regions of the
warehouse, or time
constraints (parallel
picking) [3].

e In large warehouses
(benefits increase
with size) [5].

e In wider warehouses
with more aisles, so
that each picking
zone contains only
one aisle [7].

¢ Limits congestion [2].

e Pickers can take advantage
of the learning curve [3].

e Travel savings [8].

o Increases picker’s item
familiarity [8].

¢ Reduces congestion [8].

o Reduced order picking time
span (parallel picking) [3],
[8].

¢ Requires secondary
consolidation operations [5].

o Additional costs due to
sorting operations (parallel
picking) or queuing
(sequential picking) [8].

e Planning of storage
assignment and zone shape
required in order to
minimize cost and balance
workloads [8].
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Sequential zone
(an order is
assembled
progressively from
zone to zone)

e Not if order volume
increase [2].

e For warehouses that
move a lot of small
SKUs for each of

many customers [3].

e Maintains order integrity (no
sorting required) [2], [3].

o Travel savings [2].

e Increases picker’s item
familiarity [2].

¢ Reduces congestion [2].

e Increases accountability for
productivity and
housekeeping within a zone
[2].

o Pickers can take advantage
of the learning curve [3].

o Orders can emerge in the
same order as they are
released: ease truck-loading

Bl

¢ Requires a conveyer to
move an order from zone to
zone [2].

o Delays due to workload
imbalances can cause
blocking and starving in
previous and succeeding
zones [2].

¢ Requires work balancing
similarly to in an assembly
line conducted by e.g. an
industrial engineer [3].

Batch zone
(orders are
batched, but
pickers have their
own picking zones)

e Not if order volume
increase [8]

¢ VVolume picking of items is
possible [2].

o Travel savings [2].

e Increases picker’s item
familiarity [2].

¢ Reduces congestion [2].

e Increases accountability for
productivity and
housekeeping within a zone
[2].

o Pickers can take advantage
of the learning curve [3].

No order integrity requires
sorting and consolidation
after picking, including
space and equipment for
this. This also causes double
handling and increased risk
of errors [2].

Workloads might vary
between zones, causing idle
time [2].

Wave

(batch zone with
very large batches
based on time, 0.5-
2h)

¢ For most operating
conditions [2].

o If workload must be
shared due to large
orders, orders that
span over distant
regions of the
warehouse, or time
constraints [3].

e In large warehouses
(benefits increase
with size) [5].

e Even greater volume picking
than in batch zone (any item
is only picked once per
wave) [2].

o Very efficient in pick, travel
and unloading [2].

o Travel savings [2].

e Increases picker’s item
familiarity [2].

¢ Reduces congestion [2].

e Increases accountability for
productivity and
housekeeping within a zone
[2].

e Pickers can take advantage
of the learning curve [3].

o Reduce total picking time

[5].

No order integrity requires
sorting and consolidation
after picking, including
space and equipment for
this. This also causes double
handling and increased risk
of errors [2].
Require more time and
space for order
consolidation than batch
zone, since waves contain
more orders than batches
[2].
¢ Require more coordination
and planning [2].
¢ Workloads might vary
between zones, causing idle
time [2].
¢ No order integrity, requires
sorting and consolidation of
order after picking [5].
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3.4 Routing Methods

The routing method is a concept specifying the sequence in which SKUs are to be picked by
the picker. It results in routes appropriate for the given order pattern (Petersen, 2002). The
main objective is to minimize the distance travelled by the picker. The routing method
describes how to travel each aisle during the picking. Six different routing methods that
determine this where described and evaluated by Petersen Il in 1997, herein referred to as
transversal, return, composite, midpoint, and largest gap heuristics, and optimal procedures.
The transversal method, also known as traversal, serpentine or S-shape heuristic, state that a
picker must travel the entire aisle once entered, while the picker enters and leaves the aisle
from the same side when using the return method. The composite heuristic is a combination
of the transversal and return methods, meaning that an aisle is either entirely traversed or
entered and left on same side, sometimes it is also referred to as the combined heuristic. In the
midpoint method, the warehouse is divided in two sections across the aisles and pickers can
only access an aisle as far as this midpoint. That means return routes are constantly used,
sometimes both from front and back aisle. The largest gap method has a similar procedure,
but an aisle is only entered as far as the largest gap: between two adjacent picks, first pick and
front aisle, or last pick and back aisle. Return routes from one or both sides are used; hence
the largest gap is the portion of the aisle the picker does not traverse. All these heuristics state
that an aisle without pick is not entered, and examples of these strategies can be viewed in
Figure 16 (Petersen 11, 1997).

The optimal procedures are routes determined by using an optimization algorithm in a
computer model, calculating the “best” pick paths. The result might appear counterintuitive
and illogical, which is why the procedure is not visualized in Figure 16. A well-known
solution to determine the minimum distance picker route is the Travelling Salesman Problem
(TSP). In short, the TSP determines a minimum distance cycle that passes through each vertex
(here referring to each product to be picked) only once. The general TSP problem connected
to warehouse routing is NP-hard, there are nevertheless several efficient TSP algorithms for
optimizing picker routes that works in certain warehouse configurations. However, since
many warehouses do not fit these preconditions and it rarely is an option to constantly update
the routes, most warehouses use predetermined routes in order to simplify for the pickers
(Renaud & Ruiz , 2008). Such general but efficient routes where the sequence of visiting the
storage locations is respected by all travel is sometimes referred to as global paths. The goal is
to create a path outline that will induce a short pick path for most orders and still be so simple
in structure so that order-pickers can understand it, which means it is usually based on one or
several of the heuristics mentioned above. An effective path outline will account for the
physical layout of rack, where the most popular items are stored, and what a typical order
looks like, while helping the picker visualize the next location and how to travel there most
directly. In addition, management may devise simple rules by which the path outline can be
adapted for the particular customer orders. By providing the order-pickers with a set of rules
to adapt the path, they leverage the intelligence of the work force, rather than embedding the
decision-making in the WMS software (Bartholdi 111 & Hackman, 2010).
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Figure 16 Examples of routing methods where P symbolizes storage positions of the SKUs to pick in this route

(Petersen 11, 1997).

Petersen (1997) conducted an extensive experimental study and evaluation of different order
picking routings mentioned above. He compared their mean route length when picking the
same randomly generated pick lists as other constraints changed. The graphs of how the
methods perform as number of aisles, and pick list size change can be viewed in Figure 17

and 18.
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Figure 17 Impact of number of aisles in a warehouse on the performance of routing methods (Petersen 11, 1997).

35



Mean route (ft)

00 Key
ey sC 21lG oM cR al o0
8()‘) = o
700- 2> C Composite
e d

600 — b—4 LG l.argest. gap
2o T "‘ 3 & M Midpoint
2 . //’/ S R  Return
@0 % gy T  Transversal
3004~ O  Optimal
200} - . '

5 15 25 35 a5

Pick list size

Figure 18 Interaction of routing methods by pick list size (Petersen 11, 1997).

These graphs show that the return method usually has the poorest performance, while the
optimal procedure performs best. The difference in mean route length between the different
routing methods are however sometimes not so significant with heuristics performing near-
optimal. An evaluation of the different routing methods that also consider other researchers’
results can be viewed in Table 5. Some table cells are left blank since the information and

research regarding some heuristics was incomplete.

Table 5 Evaluation of routing methods. The sources to each statement are as follows: [1] Chan & Chan (2011); [2]
Petersen 11 (1997); [3] Petersen & Aase (2004); [4] Petersen et al. (2004); [5] Bartholdi 111 & Hackman (2010); [6] Le-

Duc & De Koster (2005).

Routing type

When

Pros

Cons

Transversal heuristic
(pickers must travel
entire aisle once
entered)

e Pick density is high
[1].

o Large pick lists [2].

¢ High pick density per
picking aisle [3].

e Large order sizes
(result in high pick
density i.e. optimal
and combined routes
tend to become
traversal) [3].

e In combination with
CBS [4].

o Simple [2].

o Easy to use [3].

o Considered more
acceptable because it
usually form more
consistent routes compared
to routes generated by
optimal procedures,
complex routes might
cause confusion,
increasing picker time and
errors [3].

e Can result in wasted travel

[5].

Return heuristic
(pickers enter and
leave aisle from the
same side)

¢ In CBS with low pick
density [1].

¢ Not in random
storage [1].

Simple [2].

Easy to use [3].
Considered more
acceptable because it
usually form more
consistent routes compared
to routes generated by
optimal procedures,
complex routes might
cause confusion,
increasing picker time and
errors [3].

o Duplicate travels of aisles
with picks [1].

o Worse than combined and
transversal [1].

o Most inefficient routing
method [2].

Composite heuristic
(aisle is either entirely
traversed or entered
and left on the same
side)

e In vertical CBS
storage [1].
e Large pick lists [2].

Shortest travel and order
retrieval time due to
flexibility. Minimizes the
travel distance between the
farthest picks in two
adjacent aisles [1].
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o Better than transversal and
return [1].

o Near-optimal solution [2],
[3].

e Top 2 heuristic [2].
Most efficient routing
heuristic [6].

Midpoint heuristic
(pickers can only
access an aisle as far as
the midpoint)

e Small pick lists [2].

Largest gap heuristic
(pickers enter an aisle
only as far as the
largest gap between
two adjacent picks)

e Small pick lists [2].

o Near-optimal solution [2].
e Top 2 heuristic [2].

Optimal procedures
(computer solution
with optimal
algorithm, e.g. TSP)

e Distance savings are
more important than
ease of use [2].

e Best routing method [2].
o Fast [2].
e Can be conducted on PC

[2].

e Requires use of
optimization model (rather
than heuristic) [2].

o Can give confusing routes;

follow no discernible
pattern and often
backtrack [2].

o Complex routes can cause
confusion, which will
increase picker time and
errors [3].

o Requires detailed
information about layout
and distances. Most WMS
do not maintain this level
of information; hence they
do not support more
complicated pick-path
optimization [5].

o Provides best solution [3].

3.5 Demand Pattern; Seasonality

One concept that influences both the design of the physical warehouse and its operations is
seasonality. Seasonality can refer to the total overall variations in demand, or the shift in
variation among different SKUs. Both implications need to be considered since fluctuation in
order volume is common in real order pick systems. It has been shown that workload
equalization between peak and slack periods is crucial to the system efficiency (Jane, 2000).
Despite this, many research articles assume stability in demand over a specific time period
(Ang, et al., 2012). Seasonality affect the storage requirements of the warehouse, hence both
the outer dimensions and the sizing of different storage areas inside. One of the most difficult
decisions to make when dimensioning a warehouse is how large share of the demand peak to
accommodate in storage capacity. Figure 19 illustrates the deviation from average in storage
requirement during a peak period. Frazelle (2002) suggests that a temporary space, e.g. trailer
storage or an area outside the warehouse should be considered if a peak is short lived and the
ratio of peak to average is high. At what point the ratio is considered high is not defined.
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with High Peak to Average Ratio
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Figure 19 Storage capacity requirements over time with high peak to average ratio, inspired by Frazelle (2002).
Another way to handle this issue on a more operational level is to relocate some pallets closer
to the 1/O point for the heaviest workload period. In short, this means expanding the number

or picking zones when demand is high, and reducing the number of picking zones when
demand is low (Jane, 2000).
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4 Developing the Decision Support Tool

This chapter will start with presenting two existing decision support models for redesigning
warehouses in order to create a basis for developing the decision support tool. It continues by
combining them and the aspects identified in the evaluations in chapter 3 in to a conceptual
model for how to make the right choices when updating and improving the storage allocation,
picking and routing methods in a warehouse, which is then explained in the succeeding
chapters step by step.

In order to create a decision support tool for managers that want to update their existing
warehouse operations procedures, the research presented in the previous chapter is used as a
theoretical foundation. Warehouse design frameworks by Rouwenhorst et al. (2000) and
Hassan (2002) and similar attempts are reviewed and used for structural inspiration. That way,
two levels of research are combined: specific and general. The actual tool should thereby
represent and reflect all reviewed research combined. The result is first visualized in a
conceptual model, followed by a stepwise description of input data, procedure and output.
The goal is to provide decision support for the choices to make when changing the methods
used in a warehouse’ picking operations where many of the physical parameters can be
considered fixed.

4.1 Existing Decision Support Models for Redesigning Warehouses

Attempts to fill the lack of methods for redesigning warehouse operations have been made,
although the focus has been on the overall design rather than merely performing continuous
updates. Most researchers emphasize decisions excluded from this study or factors assumed
fixed and are therefore not applicable. Two fairly comprehensive approaches to solving the
warehouse design problems that partly fit the situation at hand have been concluded by
Rouwenhorst et al. (2000), and Hassan (2002). Both aim to get an overview of all steps to
include in a design process, as well as consider the interrelation between the decisions. They
also bring up that some design decisions probably will have to be reviewed or updated in
subsequent steps or in the future. The consideration of both interrelated decisions and the need
for updates made them suitable inspiration when creating a decision support tool for
reviewing the choices of storage allocation, order picking, and routing methods.

Rouwenhorst et al. (2000) try to structure all the interrelated decisions in a hierarchical
framework. They look at warehouses’ processes, resources and organization and try to
determine what design issues to consider and how to solve them under different time
horizons. This means that decisions made at a higher level will have a long-term impact and
involve higher investments than decisions made at lower levels. These choices will also
provide the constraints for lower level design problems. By using a top-down approach, a
rough first design get more and more refined at the subsequent stages. The idea is to cluster
related problems at the same design level and simultaneously optimize the various sub
problems in order to reach a global optimum. On the strategic level decisions often concern
system type selection based on technical feasibility and design objectives, while the tactical
level decisions deal with dimensioning the different warehouse areas and the equipment.
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Decisions made on an operational level are e.g. task assignment to personnel, batch formation,
and routing. Rouwenhorst et al. (2000) also discuss different performance criteria for
evaluating a particular warehouse design such as: investment and operational costs, volume
and mix flexibility, throughput, storage capacity, response time, and order fulfillment quality
(accuracy).

Hassan (2002) on the other hand created a framework for major design requirements needed
in order for a warehouse layout to support its operations. Just as Rouwenhorst et al., he
stresses the complexity of the interrelated decisions but instead of basing the framework on
the time horizons of the decisions, he focuses on the physical layout. The goal is to give it
characteristics such as modularity, adaptability, flexibility, compactness, and accessibility by
making design decisions according to certain consecutive steps, see Table 6 (Hassan, 2002):

Table 6 Framework for the design of warehouse layout (Hassan, 2002).
Step 1:  Specifying the type and purpose of the warehouse

Step 2: Forecasting and analysis of expected demand

Step 3:  Establishing operating policies

Step 4: Determining inventory levels

Step 5: Class formation

Step 6: Departmentalization and the general layout

Step 7:  Storage partition

Step 8:  Design of material handling, storage, and sortation systems
Step 9:  Design of aisles

Step 10: Determining space requirements

Step 11: Determining the number and location of 1/0 points

Step 12: Determining the number and location of docks

Step 13: Arrangement of storage

Step 14: Zone formation

The possibilities for the decisions to make in each step rely on the previous steps. However,
some of them might not be possible to finalize until subsequent decisions are made. Hassan
also state that many of the steps can be performed more frequently i.e. revisited during the
operations of a warehouse, or during a design update, which is in line with what this study
tries to accomplish. The bold steps are of particular interest in such updates due to varying
conditions such as the “dynamic nature of the demand” (Hassan, 2002, p. 438). Furthermore,
Hassan points out that step 13 Arrangement of storage might require physical modifications
of the warehouse, and in such cases the simplicity of the flow pattern should be kept intact in
order to maintain streamlined warehouse operations.
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4.2 Theoretical Result; Decision Support Tool

By using the decision frameworks by Rouwenhorst et al. (2000) and Hassan (2002) for
structure and inspiration, a tool for decision support when updating the storage and picking
operations of a warehouse was created, see illustrative overview in Figure 20. The first three
steps determine the company specific situation. They create the framework that limits the
possibilities of the following three steps; the preconditions when deciding on warehouse
operation methods. The different steps and each linked decision indications were concluded
by consulting the theory from chapters 3.1 to 3.5, and the evaluations of the different methods
presented in Tables 2, 4, and 5. The steps are to be followed in sequential order to ease the
updating process, where the knowledge attained in the previous step is used or at least
considered. Divisions of data might lead to that steps 4, 5, and 6 must be repeated separately
for each data portion. A more thorough description of each step is presented in the following
chapters.
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Figure 20 Overview of the created decision support tool (Gildebrand & Josefsson, 2014).
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4.2.1 Step 1 Physical Warehouse and Product Characteristics and Constraints
Input: Information about the warehouse and product data.

Conclude the physical constraints of the warehouse, such as layout and equipment: material
flow, pick locations, 1/0 docks, aisle configuration, storage systems, material handling
equipment etc. Also identify product characteristics that put constraints on storage and
picking options: shape, volume, weight, heterogeneity (Frazelle, 2002), and storage
requirements (Hassan, 2002). Conclude which of these characteristics that should be
considered fixed and which that are flexible and can be altered. Then convert this in to a
rough storage area layout where certain SKUs need to be placed in certain areas, e.g. heavy
items on stronger racks, or perishable items in refrigerated rooms.

Output: Identification of constraints related to storage areas and a rough division of SKUs
accordingly.

4.2.2 Step 2 Analyzing the Order Characteristics
Input: Order data.

Determine order characteristics by examining order data for the period to be updated, either
by actual orders or by using forecasts. Conclude the following features (Hassan, 2002):

1) Demand pattern and mix. Identify seasonality if any.

2) Percentage of items to be ordered and picked in full vs. partial loads/pallets.

3) Order volume and order size; average number of pallets and SKUs per order,
respectively, and corresponding pick density.

4) High and low demand SKUs and level of demand skewness; order frequency in average
number of picks per time period.

5) Order composition; identify products frequently ordered together.

Each of these order characteristics might divide the order data and its included SKUs in to
smaller portions such as different time periods, or full or partial pallet picks. Previously lifted
theory point out that one way of determining the time periods are to split the order data when
the ratio of peak demand to average is high. The interpretation of this statement is rather
arbitrary, and where the exact breaking point should be is left to the user to identify. If
seasons are difficult to detect, this might not be a relevant step to perform.

There is no set hierarchical order to the characteristics above; the main idea is that each
division made should be kept in the sequential partition. Hence, this step might lead to order
data divided in to several time periods, and within these periods further be divided in to full
pallets picks and partial pallet picks. Each part would then get its own order data analyzed and
the SKUs ranked and grouped based on order frequency and composition.

Output: Demand mapping, successive division of order data and SKUs in to time periods and
storage groups based on demand pattern, pick size, and order volume, size, frequency, and
composition. A list of all the SKUs in each part, ranked and grouped based on the main
criterion for its partition.
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4.2.3 Step 3 Objectives; Priorities and Tradeoffs
Input: Internal company goals and competitive strategy.

Determine how company goals and competitive strategy should manifest in terms of its
warehouse operations. Main objectives according to research concern minimizing travel,
congestion, errors and administrative work, as well as maximizing throughput, utilization and
ease of use. Conclude the objectives’ importance and the company preferences and priorities,
as well as which tradeoffs to find acceptable when deciding on priorities. When for example
adopting VBS in order to minimize the travelled distance, the tradeoffs of increased risk for
congestion and a more complex system to implement and uphold must be acknowledged and
accepted. Or if implementing random storage in order to maximize the warehouse utilization,
the main tradeoff of significantly longer travel distances has to be recognized, see Tables 2, 4,
5 in chapter 3.

Output: Main objectives for warehouse operations and their priority.

4.2.4 Step 4 Storage Allocation Method

Input: Rough storage area division from step 1. Order data divided into suitable portions and
listed and ranked SKUs for each portion from step 2. Company priorities in warehouse
operations from step 3.

Examine each storage area and each order data portion separately. Based on order, SKU and
warehouse information together with the main objectives and acceptable tradeoffs, determine
the suitable storage allocation method:

e Random storage
e CBS
e VBS

The radar chart in Figure 21 is one aid in making the decision. It illustrates the different pros
and cons of the storage alternatives in correlation with company priorities, where a high score
indicates a strong correspondence between the method and the statement or variable at the end
of the spoke, a low score indicates the opposite. No score at all means that no research has
been found connecting this particular method with that variable. Note that the relative position
of the axis is uninformative as well as the relative magnitude of the indicators, their
importance depends on the company’s objectives. The scores connected to a certain variable
are arbitrary but related in size, e.g.: Random storage is stated to give a very high warehouse
utilization so its score is significantly higher than CBS’, although the exact difference is not
graded due to the context specificity of their performance.
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Figure 21 Radar chart comparing the different storage allocation methods’ performance, based on the research
presented in Table 2 (Gildebrand & Josefsson, 2014).

If using CBS or VBS, then refine the storage area division by determining storage
configuration and conclude the most convenient locations in each storage area. If using CBS,
then also determine suitable classes; number, size, and separating characteristic for the
products stored in each e.g. popularity or COI. Then conduct the storage area formation for
each class. Perhaps this process includes testing several options and adding different
modification in order to make a final decision. Finally allocate the SKUs.

Output: Storage allocation methods for all parts of the warehouse under the studied time
period as well as a complete map with the resulting storage locations.

4.2.5 Step 5: Order Picking Method
Input: Demand pattern as mapped in step 2, company priorities in warehouse operations from
step 3 and storage allocation method from step 4.

Examine each storage area and each order data portion separately. Look at each SKU and its
pick location in correlation with the demand pattern, especially order size and composition.
Based on this, together with the main objectives and acceptable tradeoffs, determine the
suitable order picking method:

e Single picking

e Batching

e Zone picking

e Sequential zone picking
e Batch zone picking

e Wave picking

The radar chart in Figure 22 is one aid in these decisions. It illustrates the different strengths
and weaknesses of the order picking alternatives in correlation with company priorities. A
high score on the axis indicates a strong correspondence between the method and the
statement or variable at the end of the spoke, a low score indicates the opposite. No score at
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all means that no research has been found connecting this particular method with that
variable. Note that the relative position of the axis is uninformative as well as the relative
magnitude of the indicators, their importance depends on the company’s objectives. The
scores connected to a certain variable are arbitrary but related in size. If choosing a batch or
zone based method, also conclude how to batch, suitable zone formations, time frames etc.

Comparison of Order Picking Methods

Easy to use
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| x B Batching
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g ' Zone picking
- Sl Limi
Smell orders® - [} ¢ \mlts: Sequential zone picking
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Picker'sitemy: 3 Maintained
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Figure 22 Radar chart comparing the different order picking methods’ performance, based on the research presented
in Table 4.

Output: Order picking methods for all parts of the warehouse under the studied time period.

4.2.6 Step 6: Routing Method
Input: Company priorities in warehouse operations from step 3 along with storage allocation
and order picking methods from step 4 and 5.

Examine each storage area and each order data portion separately, but also consider the
overall picking in each time period. Based on order information together with the main
objectives and acceptable tradeoffs, determine the suitable routing method:

e Transversal heuristic
e Return heuristic

e Composite heuristic
e Midpoint heuristic
e Largest gap heuristic
e Optimal procedure

The radar chart in Figure 23 is one aid in these decisions. It illustrates the different strengths
and weaknesses of the routing alternatives in correlation with company priorities. A high
score on the axis indicates a strong correspondence between the method and the statement or
variable at the end of the spoke, a low score indicates the opposite. No score at all means that
no research has been found connecting this particular method with that variable. Note that the
relative position of the axis is uninformative as well as the relative magnitude of the
indicators, their importance depends on the company’s objectives. The scores connected to a
certain variable are arbitrary but related in size.
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Figure 23 Radar chart comparing the different routing methods’ performance, based on the research presented in

Table 5 (Gildebrand & Josefsson, 2014).

Output: Routing methods for all parts of the warehouse during the studied time period.

The six steps presented above should now have provided enough support to finalize the
decisions regarding which methods to use in storage allocation, order picking and routing for
the studied time period. Hence, the final output should be guidance for what to apply in the
warehouse operations, e.g. in the WMS settings. However, before implementing the update,
make sure to check that the combined outcome really is in line with the internal company
objectives concluded in step 3 so that no contradicting choices have been made.
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5 llustrative Example; Empirical Data

This chapter will present the information about the Thule Group needed in order to provide
an illustrative example of how to use the decision support tool presented in chapter 4.2. The
empirical data includes all information needed to update the warehouse operations for the
Huta DC: physical warehouse constraints, product characteristics, and order characteristics.

An illustrative example was used in this master thesis in order to show and test the usability of
the decision support tool presented in chapter 4.2. This part of the study was performed
together with the company Thule Group. The purpose was to get the empirical data required
as input to the tool by using historical demand from the company along with the planned
dimensions and conditions in one of its warehouses as an example. Information concerning
warehouse layout and warehouse operations issues, product range, and order history was
collected to get a deeper understanding of the setting, and to be able to use the tool. The
chapter is structured according to the first three steps in the tool, but starts with some general
information about the Thule Group and its new DC.

5.1 The Thule Group and Its New DC

The Thule Group was founded in Sweden in 1942 and has its headquarters in Malmg. The
company has over 3 400 employees at more than 50 production and sales locations all over
the world. The business idea is to help “transport anything you care for safely, easily, and in
style so you are free to live your active life” (The Thule Group, 2013). Hence, the product
portfolio consists of all from roof racks, bike carriers and winter sport carriers, to daypacks,
camera cases and multifunctional child carriers (The Thule Group, 2013). Thule has a number
of buffer storages in connection to its production sites. Even though the storages were only
supposed to fill the purpose of buffering, they have to an increasing extent been used for tasks
that usually are assigned to, and better performed by a DC (Janas-Kaszuba, 2014). A DC is a
type of warehouse used for accumulating and consolidating products from various points of
manufacture for combined shipment to common customers (Frazelle, 2002). In Thule’s case
this means combining items both from the production on site and from its other plants.
Unintentionally operating multiple smaller buffering storages as DC’s was not optimal, and
raised the need for a larger consolidating European DC that could unite production flows and
distribution channels. As a result Thule decided to build a DC in connection to its largest
production site, which makes bike carriers, in Huta, Poland. It will start to operate in
December 2014 (Risholm, 2013).

Beside the buffer storages, Thule has a 3PL carrier in Duisburg, Germany, managing parts of
its product flow. The new DC will mainly support the larger customers in Europe, and thereby
both unburden and complement the current 3PL carrier with regard to geographical markets
served and customer size (Andersson, 2014b). The arrangement follows the common setup in
logistics of having a small number of large DCs with an extensive distribution network, often
serving an entire continent (van den Berg & Zijm, 1999). Similarly, De Koster et al. (2007)
recognize a current trend within warehousing to replace many smaller warehouses with few
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larger ones in order to benefit from economies of scale. For the typical warehouse this means
that larger volumes are to be handled in a given time frame (De Koster, et al., 2007).

The Huta DC will be built to handle the expected demand in 2017-2018, including about 4
500 SKUs. Performing this type of warehouse operations in-house is a new experience for
Thule, at least for the staff in Poland. Still, knowledge and expertise can be gained both from
the more advanced operations in Thule’s warchouse in Haverhill, England, and from the set
up in the current 3PL DC. In line with most warehouses, the order picking is presumed to be
the most resource intensive part of the warehouse operations, and needs to be designed
carefully (Janas-Kaszuba, 2014). Consequently, the decision support tool described in chapter
4.2 will be a useful tool in this process. The tool mainly regards situations with known order
and product characteristics, as well as preset conditions regarding physical layout etc. This
case concerns a new, non-operating DC so some facts or constraints might be unknown.
However, data about the SKUs to be handled at the DC and about previous order history is
available through the company’s ERP system, and the general physical layout is already
determined. The company’s main internal wishes and priorities are also already established.
That means there is enough information to be able to apply the tool. The key aspects will be
further described in chapters 5.2 to 5.5.

5.2 Physical Warehouse Constraints at the Huta DC

Warehouse layout is an essential part when designing new warehouse processes, as discussed
in chapter 3.1 Physical Design of the Warehouse. However, the decision support tool
established in chapter 4.2 regards the layout and available equipment as relatively fixed, e.g. it
might be possible to alter some rack dimensions and thus the storage locations, but the general
design and flow are already determined. These features set the physical constraints for the
update of storage and picking operations. The overall layout of Thule’s new DC in Huta,
along with available resources, was thus considered given factors in this case, although the
construction of the building and its interior are not finalized before the end of this project.
There was also a more detailed layout suggestion with exact dimensions of the pallet racks,
and number of pallet positions. This suggestion was, however, not considered fixed apart
from the existence and size of the VLM and flow racks. The planned layout design and
equipment for the Huta DC can be viewed in Table 7 and Figure 24.

Table 7 Planned physical constraints to Thule's Huta DC (Andersson, 2014b).

Physical parameter Constraint

Building dimensions
Length x width x height (meter) 112 x85x 12
Row length (meter) 60

Number of trucks

Pick truck g
Reach forkliftStand on stacker 5
Number of 1/0O docks 10
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Figure 24 Detailed layout suggestion for the Huta DC provided by the Thule Group in January 2014. The two vertical
arrows indicate pathways (Andersson, 2014b).

5.3 Product Characteristics

Information about the SKUs to be stored in the Huta DC was compiled in an Excel file
provided by Risholm (2014). It contained necessary information about the characteristics of
the SKUs. Item number and name, production site/manufacturer, package and pallet sizes and
weight, items per package, and per pallet as well as pallet type and volume. A sample of the
product information can be found in Table 8.
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Table 8 Sample of the product information provided by Thule in the Excel sheet SKU dimensions (Risholm, 2014).

Produced Pallet Pallet Pallet Pallet Pallet Items

in Huta length width height weight type pallet
561000 Bike carrier 561 Out Ride Yes 1.20 0.80 1.15 73 C1 27
562000  Ski carrier 562 No 1.00 080 1.15 93 B1 300

Product characteristics that typically constrain the storage possibilities are connected the SKU
and pallet dimensions, especially length and height, and how they fit the storage equipment.
The SKUs to be stored in the Huta DC vary greatly in size, and thus has to be located
accordingly. Table 9 presents the suggested categorization of the SKUs by size, i.e. each
height or length restricted category corresponds to a suggested rack size in Figure 24. Other
product characteristics that could have a high impact on warehouse operations methods not
considered in this study are weight; disregarded due to lack of information about rack
constraints, and production site; the inflow and put-away operations were excluded from the
project scope.

Table 9 Product characteristics of the SKUs to be stored in Thule’s Huta DC (Risholm, 2014).

Product characteristics Number of SKUs
Number of SKUs
Total 4 500
Included in study 2 306
Pallet height restrictions
SKUs > 1.6 meter 60
SKUs < 1.6 meter 2151
Pallet length restrictions
SKUs < 1.3 meter 1972
1.2 < SKUs < 1.8 meter 195
SKUs > 1.8 meter 44

Flow rack restrictions
All SKU dimensions < 0.4 meter 395

VLM restrictions
One SKU dimension < 0.4 meter 1193
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5.4 Order Characteristics in the Huta DC

The customer order data for the Huta DC was compiled in the same Excel file provided by
Risholm (2014) but in another sheet: Order data 12-13. It contained one year of historical
order data, from July 2012 to June 2013 and concerned orders of the SKUs the new DC will
contain. Which SKUs that was delivered to which customer and in which shipment on which
date, as well as number of items and corresponding number of pallets. Of special interest was
the information concerning delivery number and order line, but since none of them was
unique for a certain SKU and pick, an additional column was added named Unique pick line
which gave each row in the order data a unique number. It should correspond to each
individual pick made in the warehouse, but it was found that these unique pick lines might
contain several full pallets, which obviously represent more than one pick.

Another adjustment was adding an extra column extracting year and date from the delivery
date in order to simplify the visualization of the demand per month. A sample of the
information the file contained is presented in Table 10, and an extended version can be found
in Appendix C.

Table 10 Sample of the order information provided by Thule in the Excel sheet Order data 12-13 (Risholm, 2014).

Delivery Unique Order number-

. . Itemno Item name Quantity| #Pallets
no pick line line Q Y

2493856 | 2493856-1 | 3100096705-300 | 2012-07 | 970003 | Xpress 970 48 0.75

2493856 | 2493856-2 | 3100096705-300 | 2012-07 | 970003 | Xpress 970 64 1

2942265 | 2942265-1 | 3500216324-1200 | 2013-05 | 100001 | Tote- Black 15 0.31

The SKUs already allocated to the VLM, as well as the spare parts, were excluded prior to the
sorting and filtering the order data according to parameters in Table 11 and Figure 25.

Table 11 Summary of order characteristics representative for the Huta DC in yearly averages (Risholm, 2014).

Order characteristics, yearly averages

Number of orders per day 61
Number of picks per day, in unique pick lines 641
Order volume, number of pallets per order 2.95
Order size, number of SKUs per order 11

The demand pattern for the SKUs in the Huta DC in terms of number of unique pick lines per
month can be seen in Figure 26. The graphs in Figure 27 compare this pattern with the
quantity of ordered items per month for the same time period. Figure 28 illustrates the
demand skewness for all SKUs to be stored in the Huta DC; an area chart of the SKUSs’,
sorted after popularity, accumulated share of all unique picks. The SKUs popularity skewness
is then further examined in Figure 28 where the average number of unique picks per day for
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all SKUs picked at least every other week is shown (about 38 percent of all SKUs,
representing about 94 percent of all unique picks).
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Figure 25 Demand distribution in number of unique pick lines per month of SKUs to be stored in the Huta DC, data
from July 2012 to June 2013 (Risholm, 2014).
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Figure 26 Comparison of the demand patterns of number of unique pick lines and order quantity per month of SKUs
to be stored in the Huta DC, data from July 2012 to June 2013 (Risholm, 2014).
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Figure 27 The cumulative percentage of the SKUs to be stored in the Huta DC picked from July 2012 to June 2013
and the accumulated share of all unique pick lines they represent (Risholm, 2014). The red line indicate that the level
of demand skewness is high; 20 percent of the SKUs represent 82 percent of all unique pick lines.
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Figure 28 The average number of picks per day for the most popular SKUs to be stored at the Huta DC, calculations
based on data from July 2012 to June 2013 (Risholm, 2014).

5.5 The Thule Group’s Warehousing Objectives; Priorities and Tradeoffs

Situations where tradeoff decisions must be made are inescapable. When faced, it is central to
know which state to target, and to make sure that the whole business is heading in the same
direction. The objectives and goals of Thule’s warehouse operations were identified by
interviewing three of its warehouse managers, the complete interview guide can be found in
Appendix A. The purpose was to determine what the company considered to be the prioritized
issues in its warehouses and to map previous and expected challenges. Critical tradeoffs in the
warehouse operations are likely to affect which method choices to make. Based on the
possible goals of warehouse operations described in chapter 3 Frame of Reference the
managers were asked to conclude and rank their five main priorities. The prioritized
objectives turned out to concern service level, minimized travel, and ensuring high warehouse
utilization, the exact result can be found in Table 12. These factors are also in line with the
company’s overall goals of delivering on time in full to end customers, being cost efficient,
and having lean solutions in administration (Janas-Kaszuba, 2014).

Table 12 Thule’s main objectives regarding its warehouse operations, ranked according to priority (Janas-Kaszuba,
2014; Hunt, 2014).

olsizr::lt(i\(/):s Huta DC (Janas-Kaszuba) UK warehouse (Hunt)
1 Guarantee a certain service level Guarantee a certain service level
2 Decrease travel in picking Health and safety
3 High warehouse utilization Decrease the overall labor
4 Lower the risk of congestion Reduce picking errors
5 Build up competence System simplicity, ease of use

The Thule Group was also asked about the greatest challenges connected to its warehouse
operations. Historically the largest challenges have concerned guaranteeing a high service
level, picking accuracy, securing the availability of products and handle seasonality. The same
areas are considered to be the main challenges for the new DC, along with building up
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competence through training and implementing the new processes in their new ERP and
WMS systems. The main solution to these issues is to try to make warehouse activities and
processes as standardized and simple as possible (Persson, 1995). This will simplify the daily
work and hopefully impact the performance positively through improved learning and thereby
less mix-ups, damages and picking errors. It will also make the training of new personnel
easier, which is an important and reoccurring event in the warehouse.

The usage of temporary contracts is one of Thule’s main strategies when dealing with demand
seasonality; together with modulating the number of shifts, and using banked work hours of
the ordinary staff i.e. full time employees work extra hours in peak periods, and in return get
days off in the low season. The temporary employees need to be trained in advance of the
peak periods, which mean a successive ramping up the work force. However, simplified
working procedures facilitate the training and steepen the learning curve. Ultimately the work
force would deliver a higher quality, work more efficient and be sourced within shorter lead-
times as a result of standardized and simplified warehouse operations (Janas-Kaszuba, 2014).
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6 Applying Decision Support Tool on the Huta DC

This chapter will start with providing an illustrative example of how the decision support tool
can be used in practice by applying it on the Thule Group. The indications of each step will be
analyzed and concluded before summarizing the recommendations for the Huta DC in the
final section.

In order to provide an illustrative example of how the created decision support tool should be
used, the empirical data achieved through the study of the Thule Group and its Huta DC will
in this chapter be used to test the tool and generate recommendations regarding what
processes to adopt in order to increase the efficiency in its picking processes. Each step in the
tool will be performed based on the situation in Huta. The output is recommendations
regarding the warehouse operations methods to use at the DC. Since the tool successively
divides the studied data into several storage areas, SKU groups and time periods, some of the
steps will be conducted multiple times and the results will be presented according to these
divisions. Each group will follow the same logic, why step 1 to 3 only will be thoroughly
described once. Finally, the output from the steps will be concluded in a chapter presenting
final recommendations regarding storage allocation method, order picking method and routing
method for the Huta DC.

6.1 Step 1. Warehouse and Product Characteristics and Constraints

The first step in the decision support tool is to examine the

warehouse and product characteristics and determine which

factors that should be considered fixed and constraining, and

which that are flexible enough not to limit the solution. In this

case the warehouse outer dimensions, the I/O points and [l

corresponding U-shaped material flow, cross-aisle configuration, | ekt amibibm s
. characteristicsand

the presence of reserve and picking areas, and total number of PN—

pallet and picking locations where considered fixed. This also

meant that each pick location’s level of convenience was fixed | *Mapping of warehouse and

with the best pick locations close to the I/O points. However, the | Product fimitations

exact size of each location i.e. the height and length of the racks 5;{',*‘;“,’;31.“:532‘:’;;“\,1:;’and

was thought to be changeable. This was because the warehouse is general picking area

under construction and do not have any racks at all yet; hence f’g'(nilf constraints mainly

their size should be flexible. It was also decided in order to create

a more general recommendation, and a complement and possible \/

antipole to Thule’s internal solution. Product characteristics such Figure 29 Input and output in

as size and weight were therefore ignored for the most part, i.e. (Gii::jlftf;gg;egf)ﬁgglzbﬁegoi N

not considered constraining even if they are not flexible per se.

*Warehouse info
*Product data

A rough division of SKUs in to some storage areas was conducted. The warehouse
characteristics that were considered constraining was the use of VLM and flow rack storage,
along with the products to be stored there. This was predetermined by Thule based on the
criteria of small product size, low yearly demand and low average stock April to June. The
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output of this step was therefore three storage areas and corresponding groups of SKUs: flow
racks, VLM and the general pallet area i.e. the combined reserve and partial picking areas
with pallet storage, both on floor and upper levels. An overview of the input and output in this
step is provided in Figure 29, and a schematic illustration and the exact division in number of
SKUs and pick locations in each storage area can be found in Figure 30 and Table 13. Note
that the SKUs stored in the VLM are hereafter completely disregarded since they are not
included in the project scope, see chapter 1.6 Delimitations.

Table 13 Storage division and number of SKUs and pick locations in each

Storage Division After Step 1
area after step 1 (Andersson, 2014a).

. Number of Number of

From

. Number pick storage
LEEUCUl Storage area . .
General g of SKUs | locations, | locations,
pallet area floor level |upper levels

General pallet area
VLM
_ I: (reserve + partial picking) 1953 1527 10 168
Flow racks 353 469 -
Partial picking?
o g e VLM 1193 1900 -
Reserve?

1/0 points

Figure 30 Schematic layout of storage areas on floor level
after step 1, the exact division can be found in Table 13.

6.2 Step 2: Order Characteristics

By stepwise examining the order data according to the five
order characteristics presented in the tool’s step 2, the orders
and the SKUs where successively further divided into smaller
portions. See input and output to the step in Figure 31.

¢ Order data

Step 2:
6.2.1 Demand Pattern Order characteristics
First, the general demand pattern was determined. Figure 32
shows the trends identified by looking at the fluctuating
demand size per month in terms of unique pick lines for the
two different groups of SKUs, those to put in flow racks and
those stored in the general pallet area. It was evident that there
was a strong increase in sales during the spring-summer

months for both groups. Moreover, according to the company’s

to consider

« Division into high and low
season

* Division of general area into
full and partial picking areas

*High demand skewness

= Suggested ABCD partition

warehouse managers this pattern is repeated every year and is
thereby cyclic (Janas-Kaszuba, 2014; Risholm, 2014). Hence,
these fluctuations appeared to be a significant characteristic
that justifies dividing the order data further in to two time
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* Order composition neglected

Figure 31 Input and output in
illustrative example, step 2.
(Gildebrand & Josefsson, 2014).



periods based on the seasonality of demand.

Theory states that the division should be done when the ratio of peak to average is high. In
Thule’s case the high season with peaking demand was identified to last four months ranging
from April to July, and the low season with significantly less orders the eight months
stretching from August to March. The average number of orders per day during these time
periods is 83 in high season and 53 in low season. These seasons will henceforth be described
and analyzed separately where their result differs.

The division is further supported by the fact that several of Thule’s products are season
specific. The most frequent SKUs have their peak in the summer, e.g. kayak and canoe
carriers, and the products for winter activities have a peak in corresponding period, although
their demand is not of comparable size. This is one of the reasons why the peak in January
was ignored. A further reason is that customers to Thule might be lowering its inventory prior
to stocktaking before entering a new year in order to keep the costs down for this resource
demanding process. Consequently, they then have to increase levels of stock in order to meet
the peak in winter demand (Andersson, 2014a). It might thus be an idea to treat the month of
January or at least its high runners separately, e.g. by including a third season; this is however
not performed in this study.

Monthly Demand in
Number of Unique Pick Lines

20000

Low season

High season

17 500

15000

12 500

10000

Number of unique pick lines

|
1
|
I
|
7500 H
M HEREER

2500

B Flowrack  ® General pallet area B Division in high-low season

Figure 32 Distribution of the demand in number of pick lines per month from July 2012 to June 2013 (Risholm, 2014).

6.2.2 Full and Partial Pallet Picks

Next, the percentage of SKUs to be ordered and picked in full respectively partial pallets, as
well as the individual partition of each SKU were determined by looking at demand and order
volume in number of pallets for each time period. It was assumed that all orders of one or
more pallets are to be picked in as many full pallets as possible, consequently a unique pick
line of 7.44 pallets are considered to consist of 7 full pallet picks and one partial pick of 0.44
pallets. This specific situation of unique pick lines with multiple pallets ordered in an uneven
number however turned out to be very rare, representing only about 1 percent of all unique
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pick lines. It is therefore mostly ignored in the following sections. Due to the structure of the
order information available it was also assumed that a unique pick line including more than
one pallet still can be considered as one unique pick in terms of demand and popularity.

Since a clear distinction could be made, a further division of the orders concerning full pallet
picks, and the orders of partial pallets was performed. Hence, when applicable the order data
examined in the following division steps distinguish between order lines containing full
pallets which can be picked directly from the reserve area, and partial pallet picks to be
conducted in the picking area with case or piece picking. The size of these two areas was
determined based on demand in terms of picks and volume. Researchers such as Walter et al.
(2013) suggest more exact methods for forward and reserve area sizing that involve
replenishment costs and quantities, but since they were excluded from the scope of the study
that was not possible. Instead the general pallet area was divided by constructing a combined
weight of both outbound volume and number of unique pick lines. The percentage of
outbound volume multiplied by the percentage of unique pick lines for full and partial pallets,
respectively, was concluded and then the ratio between these figures determined the ratio
between the two storage areas. Although a very rough instrument, it follows Sarker et al.
(1994)’s recommendation of creating storage areas proportional to the demand to some extent
by taking both number of pallets and number of picks for each SKU into account. The result
was that 71 percent of the pick locations on floor level should be for partial picks in high
season, while the corresponding number in low season increases to 80 percent. Using this
difference to adjust the sizes of the reserve and picking areas accordingly for the two time
periods is in line with Jane (2000)’s suggestions of how to handle seasonality. The SKUs
stored in the flow racks were not included in this division since they are partial pallet picks by
definition.

The result in terms of percentage of SKUs only ordered and picked in full versus partial
pallets, or in both can be found in Table 14. It also contains statistics of the percentage of the
outbound volume to be ordered in full or partial pallets, as well as the percentage of all unique
pick lines per time period that contains even full pallets, only a partial pallet i.e. less than a
full, or an uneven number of more than one pallet. It is worth noting that most of the SKUs
picked in each of the two time periods are only picked in partial loads, 77 versus 79 percent
respectively, excluding the SKUs stored in flow racks. At the same time, 17 to 18 percent of
the SKUs are always picked in full pallets. This means that they can be treated differently in
terms of storage areas; the first group only uses the reserve area for replenishment, which
means they do not need very convenient storage locations there. The other group however can
be completely excluded from the case/piece picking area, and thus claim the convenient
locations in the reserve area. The number of SKUs to be picked both in full and partial pallets
is very small, only 4 to 5 percent, and are the only to be picked from both areas and
consequently will be included in both order data portions. It should be noticed that a large
share of the SKUs, about 10 percent of all SKUs ordered during a year, are not included in the
high season data at all since they are not ordered during this time period.

Another interesting fact is that the outbound flow of full pallet orders is substantial. About 75
percent of the total order volume per year can be picked directly from the reserve area, or 62
and 64 percent respectively when looking at even full pallet orders for high and low season.
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This is in line with the numbers provided by Janas-Kaszuba (2014), stating that about 140 out
of 240 pallets a day go out full which is more than 58 percent. At the same time these picks
only correspond to 10 and 7 percent respectively of all unique pick lines per year. Hence,
most of the unique pick lines are for a relatively small item volume in terms of pallets, which
also is confirmed by a Thule manager who claims that “a large proportion (around 45 to 50
percent) of their order lines are for single items” (Janas-Kaszuba, 2014).

It is evident that the demand peak in high season consists of a larger share of full pallet orders
than during low season, although the number of unique SKUs to be ordered in each category
stays more or less the same. This means the peak does not result in partial pallet orders
changing to full pallet orders for SKUs that usually are ordered in partial loads. For more
statistics regarding full and partial pallets, see Appendix D.

Table 14 Number of SKUs, number of unique pick lines, and order volume in number of pallets when dividing the
order data based on SKUs being picked in full or partial pallets, or in both, excluding all flow rack SKUs and their
orders.

_ Ratio of Unique pick Outbound Weighted
Pick category, : lines volume share of
items piCked as... SKUS_In . areaon
) each pick Pick li Pallets floor
(excluding flow racks) category  Ratio 'C<'INES  patio per level
per day d eve
ay
Full pallets 18% 10% 77 62% 164 29%
S [ Partial pallet 77% 89% 686 22% 58 71%
I
Both partial and full pallets 5% 1% 10 16% 43 -
Full pallets 17% 7% 37 64% 85 20%
2 | Partial pallet 79% 92% 485 24% 32 80%
-
Both partial and full pallets 4% 1% 3 12% 15 -

6.2.3 Order Volume and Order Size

The next order characteristics to be examined were the average order volume and order size.
They were determined for the two mutually exclusive groups of full pallet orders and partial
pallet orders, as well as their combined data; all orders. Order volume was measured in
number of pallets per order, while order size was calculated as average number of different
SKUs per order. The pick density is the average number of SKUs per order out of all the
SKUs ever included in that pick category i.e. SKUs only picked in full pallets are not included
when calculating the pick density for the partial pallet picks etc. The result for the different
divisions can be found in Table 15 and 16. Overall it can be concluded that the standard
deviations for all parameters are large; bigger than its corresponding mean and some are even
two or three times that size. Such strong variances indicate that there are orders with values
very far from the mean, in this case with much larger order volume or size. A full pallet is
however always considered a single pick no matter how many that makes up an order, why
the partial pallet picks are more interesting to investigate further when improving storage and
picking methods. Hence, their median values were calculated as well. The result shows that
the order volume in pallets per order for partial pallet picks usually is less than a full pallet
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and with a relatively large standard deviation. The median is less than a tenth of a full pallet
both in high and low season. This indicates batching opportunities i.e. more than one order
can be picked and fit on a forklift’s pallet. The average order size is about 10 SKUs per order
for all orders as well as partial pallet orders both during high and low season, which results in
a very low pick density of less than 1 percent for all types of picks, although the partial pallet
picks are the most extreme since that group of SKUs is so much larger. The median order size
for all types of orders is 2 SKUs per order, which means that the majority of all orders have
an even lower pick density of barely 0.1 percent.

Table 15 Compilation of the calculated means and standard deviations of order volume as pallet per order, and order
quantity in items per order during high and low season (Risholm, 2014).

< Order volume Orders per day
@ Median,

§ All orders Full pallets Partial pallets partial pallets

<

-‘IE’ 3.19+8.94 2.44 +8.39 0.75+1.86 0.09 124 + 370

§ 2.52 £6.70 1.89 £ 6.36 0.63+1.48 0.08 115+ 331

Table 16 Compilation of the calculated means and standard deviations of order size and pick quantity for high and
low season (Risholm, 2014). The pick density is the average number of SKUs per order out of all the SKUs ever
included in that pick category.

Order size Pick density

Full Partial
SEULS] SEULIE]

Full pallet  Partial
picks  pallet picks

All picks

All orders

9.70+22.37|3.48+4.24 |10.13+22.61 0.42% 0.99% 0.60%

Low | High EREER

10.48 +£22.38| 2.87 +3.54 [11.36 +23.20 0.45% 0.78% 0.58%

6.2.4 Order Frequency per SKU and Order Composition

The result of examining the two last order characteristics in the tool is from now on not
storage area and order data divisions, but rather grouping and ranking the SKUs within each
division and to map statistics useful in steps 4, 5 and 6. The order data for the three storage
areas: reserve, picking, and flow rack, for each of the two time periods were examined in
order to identify high and low demand items. The sorting was done based on popularity since
it is one of the best performing criteria for reducing travel which is the ultimate goal of the
research, as well as fulfillment time according to Petersen et al. (2005). Popularity is easy to
use and suitable for Thule’s warehouse type. Popularity is also the criteria used in most of the
research the decision support tool is built upon, which means such SKU ranking should fit
better with its recommendations. For the Huta DC, the term popularity was translated into
how often each SKU appeared in an order line per day, which roughly corresponds to the
number of individual picks of a SKU per day.
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Once the ranking and the accumulated share of total order lines were concluded, the skewness
of demand could be determined; a key feature when deciding on storage allocation method.
The cumulative percentage of SKUs picked in each storage area responsible for the
accumulated number of unique picks of full pallet, partial pallet and flow rack picks during
high season can be viewed in Figure 33 to 35. It is evident that the level of demand skewness
for the SKUs in the Huta DC is overall high according to Petersen II (2000)’s classification,
averaging around the classic Pareto distribution where 20 percent of all SKUs represent 80
percent of all unique picks. The full pallet picks to be stored in the reserve area however have
an even more extreme distribution: Figure 33 clearly shows that the graph is even steeper for
the most popular SKUs; the top 10 percent alone actually stands for about 65 percent of all
unique picks. Figure 34 displays a more evenly distributed but still high skewness also for the
partial pallet pick area, where 20 percent of the SKUs represent 76 percent of the picks. The
SKUs stored in flow racks on the other hand has a more leveled demand pattern where the top
20 percent of the SKUs only represent about 60 percent of all unique picks, which would
classify it as a medium skewness level, see Figure 35. The corresponding statistics for low
season are similar, although a bit less skewed in full pallet and flow rack picks (20 percent of
the SKUs represent 75 and 57 percent of picks, respectively), and can be found in Appendix
E.

Full Pallet Picks High Season
SKUs Accumulated Share of Picks

100%

80%

60%

40%

20%

0%
0% 17% 33% 50% 67% 83% 100%
Percentage of SKUs

Cumulative percentage of unique picks

W SKUsaccumulated share of unique picks m10% of SKUS = 67% of picks M 20% of SKUs = 80 % of picks

Figure 33 The cumulative percentage of SKUs picked in full pallets during high season that represent a certain
accumulated share of all unique pick lines. The red and green lines indicate the level of skewness: very high.

Partial Pallet Picks High Season
SKUs Accumulated Share of Picks

._.
]
=

g

g

g

3

0%
0% 17% 33% 50% 67% 83% 100%

Percentage of SKUs
B SKUs accumulated share of unique picks W 20% of SKUs = 76 % of picks

Cumulative percentage of unique picks

Figure 34 The cumulative percentage of SKUs picked in partial loads during high season that represent a certain
accumulated share of all unique pick lines. The red line indicates the level of skewness: high.
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Flow Rack Picks High Season
SKUs Accumulated Share of Picks

100%

80%

60%

40%

20%

0%
0% 13% 25% 38% 50% 63% 75% 88% 100%
Percentage of SKUs

W SKUs accumulated share of unique picks W 20% of SKUs = 60 % of picks

Cumulative percentage of unique picks

Figure 35 The cumulative percentage of SKUs picked from flow racks during high season that represent a certain
accumulated share of all unique pick lines. The red line indicates the level of skewness: medium.

In connection to this ranking, a classification of the SKUs was conducted accordingly. Such
classes are not always used in the final outcome of the decision support tool, but initially
making a division can be helpful when analyzing the order data further so see order relations
and patterns. How many classes to use and the exact partition are different in each unique
situation. Petersen et al. (2004)’s recommendation is to create four classes when using CBS,
which was done in this step. The general rule of thumb when dividing the SKUs is to make
suitable choices, and commonly the Pareto principle is used. In Thule’s case the Pareto
distribution turned out to be rather distinct and it was used as a baseline, although the exact
classification was conducted based on the number of picks per day to have a more precise and
accessible measurement. The classification suggestion turned out as follows: A-class SKUs
were those picked at least twice a day, B-classed SKUs every other day up to two times a day,
C-classed SKUs between twice a month and every other day, while all SKUs picked less often
than that received the classification D. This division might not be suitable to all conditions in
Huta, especially number of pick locations and replenishment patterns, and using the same
criteria and intervals for all pick categories might not turn out to be the best solution. This
means that there is a possibility that the outcome is modified in subsequent steps.
Nevertheless, the result of the previously mentioned classification is summarized in Table 17
and an area chart of the classification for the SKUs picked in partial loads during high season
is provided as an illustrative example in Figure 36. It is worth noting that no flow rack SKUs
got an A-classification.

Table 17 Suggested ABCD classifications of the SKUs picked in full pallets, partial loads or from flow racks during
high and low season, respectively.

Full pallet picks Partial pallet picks Flow rack picks
Class Ratioof = Shareof  Ratioof  Shareof  Ratioof  Share of
(x picks/day) SKUsin  unique  SKUsin  unique  SKUsin  unique
each class picks each class picks each class picks
A(X=>2) 1.1% 22.6% 5.8% 41.6% - -
= |B(05<x<2) 10.6% 48.0% 21.6% 43.0% 5% 26.0%
(@]
T | C(0.08<x<0.5)] 29.4% 21.5% 26.9% 12.9% 42% 59.0%
D (x<0.08) 58.9% 7.9% 45.7% 2.4% 53% 14.8%
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A(x>2) 0.3% 6.5% 1.9% 22.3% - -
. B(0.5<x<2) 6.8% 43.5% 16.9% 51.0% 0.9% 6.3%
3 C(0.09<x<0.5)] 19.3% 31.5% 27.7% 22.9% 29.8% 64.4%
D (x < 0.09) 73.6% 18.5% 53.6% 3.8% 69.3% 29.3%
ABCD Classification

Partial Pallet Picks High Season

100%

80%

60%

40%

20%

0%

0% 17% 33% 50% 67% 83% 100%
Percentage of SKUs

Cumulative percentage of unique picks

HClass A mClass B Class C Class D
Figure 36 Suggested ABCD classification of the SKUs picked in partial loads during high season.

An important finding when conducting the rankings that the classification helped identify was
that different SKUs are among the most popular in the two time periods. 54 percent of all
SKUs ever picked in partial pallets have different classes in high and low season or are only
picked in one of them. Sometimes the difference is as vast as being classified an A-SKU in
high season, and not being picked at all in low season. A sample of SKUs picked in partial
pallets, their average number of picks per day and corresponding classification for high and
low season can be found in Appendix F. The outcome with different popularity rankings are
consistent with the motivations presented when initially introducing the high and low season
division of data i.e. that some of Thule’s products are for winter or summer use only. It also
strengthens the reasons for continuously updating the storage allocation in a warehouse since
the SKU ranking and possibly also the ABC classification can be input in step 4 by helping
deciding where each SKU should be placed.

The last order characteristic presented in the tool, order composition, will not be investigated
in this study. It was considered too complex and time-consuming to be a relevant part of this
illustrative example. In addition, there is not sufficient research to support a solution where
order composition is included. The purpose of such an investigation would be to add an extra
dimension to a possible classification and zone division by identifying SKUs frequently
ordered together, and other patterns that would provide greater detail to the input for steps 4 to
6.
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6.3 Step 3: Objectives; Priorities and Tradeoffs

The Thule Group’s main company objectives connected to its
warehousing operations are presented in chapter 5.5. An
overview of the input and output in this step is provided in
Figure 37. The rankings received from Janas-Kaszuba (2014)
along with input from Andersson (2014a) are the most
relevant for the method decisions for the Huta DC, since they priorities and tradeoffs
are the ones with the most knowledge about that warehouse.
Rankings received from Hunt (2014) were mainly used for
comparison. Hunt manages a smaller Thule warehouse in
another country with other customers, and the response he
gave corresponds to those characteristics rather than those for
the new Huta DC. It would be desired to include additional

* Company goals

Step 3:
Objectives;

1.Guarantee a certain service
level

2.Decrease travel in picking

3.High warehouse utilization

respondents in the study, and to make sure that they reach an Figure 37 Input and output in
aligned answer. In an already operating warehouse this (G::L‘éﬁ:g;‘;’egfﬁigﬂiofegoi »
should be fairly easy to do, but the limitations to the DC

studied in this illustrative example, connected to it being under construction, prevent such
possibilities. Instead, this is left as a suggestion for future usage of the tool, when there are
additional people with knowledge about the Huta DC to include.

Both interviewees share the primary priority, guaranteeing a high service level. It displays a
unified view of the purpose with why they operate and what they want to achieve. The
objective is closely related to decreasing picking time, since fast deliveries is a common
requirement in order to meet the service level. It is however also related to the number of
deliveries damaged, mixed up, or returned for any reason that could have been avoided by
operating the warehouse in a different way. These objectives are not indicated to be a priority,
and therefore the interpretation of guaranteeing a certain service level will focus on the aspect
of time.

The priority ranked as second most important, decrease travel in picking, share objective with
most research on order picking. The travelling in itself does not add any value; on the contrary
it is resource draining and is therefore desired to be as low as possible in most warehouses. In
connection to time, this is the step with the most potential for reduction. Since decrease travel
time when picking is the most targeted objective, there are also a lot of suggested solutions for
the purpose. If considering travel only, this priority would bring us straight to VBS. This is
however not the case, and future steps where choices is made will have to weigh the benefits
and downsides in order to reach the globally best solution. For example, the thirdly ranked
objective to increase warehouse utilization would suggest a random storage method
everything else ignored. From this perspective, VBS is the worst choice, while random
storage methods perform the worst with regard to travel distance. This is a good example
implying that all priorities have to be put in a context and then be evaluated together.
Tradeoffs are inevitable, which is the reason the interviewed warehouse managers were asked
to rank a limited number of chosen objectives, rather than get the chance to indicate an
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unlimited number of equally important objectives. This way, when a decision is to be made,
the main priorities are weighted and easier to use.

Step 3 is finalized by connecting the objectives with suitable choices from theory, see Table
18. One feature, repeatedly brought up in theory that affects all three method-decisions is size
of pick list. It is mainly related to order composition, order picking, and routing. Research
gives different advice on suitable methods depending on if the pick lists are large or small.
However, assuming that Thule does not have to accommodate a certain pick list size but
rather choose it, the suggestion is to use fairly small pick lists. The reason is that overall,
larger pick lists decrease the amount of potential savings when applying most of the studied
methods. It is thus recommended in this step to review the size of the pick lists, and if
possible, lower it.

Table 18 Objectives ranked by Janas-Kaszuba (2014) paired with suitable choices of storage allocation, order picking
method and routing methods (Gildebrand & Josefsson, 2014).

Rank | Obijective Related suggested choices from literature

1 Guarantee a certain service | VBS, CBS; batching, zone picking; transversal
level heuristic

2 Decrease travel in picking VBS, CBS with 4 classes, within-aisle; batching, zone
picking; composite heuristic, largest gap heuristic,
optimal procedures

3 High warehouse utilization Random storage or CBS with few classes

4 Lower the risk of congestion Random storage, across aisle; zone picking;
transversal heuristic, composite heuristic

5 Build up competence VBS or CBS; zone picking; transversal heuristic,
return heuristic

6.4 Step 4. Storage Allocation Method

This is the most extensive step in the

decisi t tool It includ Step 4: *Full pallet/Reserve area:
eC!SI_On support - tool. Inc U- €s Storage allocation 3 class CBS; across-aisle

deciding on storage allocation method -Partial pick area:

methods for the different storage areas

4 class CBS; within-aisle

and time periods that suits the  Figure 38 Output in illustrative example, step 4 (Gildebrand &
priorities as well as characteristics Josefsson, 2014).

concluded in the previous steps. An overview of the output is shown in Figure 38. The
reviewed theory shows that VBS outperform CBS in terms of picking distance travelled. On
the other hand, it also shows that CBS almost reaches the performance of VBS when
implementing four classes. Keeping in mind that VBS is more complicated to implement than
CBS, and that it also lower the warehouse utilization and increases the risk for congestion,
this alternative is not considered suitable for the Huta DC.

If instead reviewing the method of random storage, it has the primary benefit of delivering the
highest warehouse utilization out of all the methods presented. This corresponds to the
priority ranked three by Janas-Kaszuba, but does not fulfill either the first or second priority.
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In fact it even thwarts the premier two choices. Further, the Huta DC is built to hold the
forecasted demand for 2017-2018, and will thereby not reach its targeted level of utilization
until then. The point when the warehouse reaches a critical level of utilization can thereby be
estimated to occur first several years after opening. This period is likely to include a lot of
changes, internal as well as external. Thule is recommended to review its processes during
this period and consider random storage only if the warehouse utilization develops into a
critical factor to the extent that time for travel in picking can be disregarded.

Having deselected VBS and random storage, the adequateness of CBS remains to be
investigated. Knowing that VBS performs the best with regard to travel time, but that
implementing three or four classes in CBS performs almost as good, the latter is a choice
close at hand. This would also decrease the risk of congestion, depending on the design of the
storage configurations. Out of the options presented on this matter, the within-aisle storage
configuration is claimed to reduce travel time significantly more than its alternatives when
using VBS. It is also the best configuration when using CBS, although the three- and four
class rectangular configurations perform almost as well with only slightly increased
fulfillment times. Having a small pick list also minimizes the performance difference between
the within- and across-aisle configurations. Since travel time is the most critical aspect for the
Huta DC, CBS with four classes stored in a within-aisle configuration is considered the most
suitable choice. The main downside with this storage allocation method would be an
increased risk of congestion, so if this turns out to cause problems the rectangular
configuration would be the next option. Another limitation to this general recommendation is
that each of the storage areas within the warehouse has different preconditions that influence
the choice of storage allocation method for its particular SKUs. Hence, each area will be
receive individual guidelines and all of the reasoning behind the decisions for each of them
will be thoroughly discussed below, before summarizing the outcome in Table 19 and
illustrating the high season version in Figure 39 and Table 20 at the end of chapter 6.4. Note
that the same assumptions about unique picks etc. presented in chapter 5.4 are used here, and
that the storage recommendations aim to fill all pick locations in the warehouse with SKUs
only picked in the observed time period; an simplified scenario still believed to be close
enough to reality for it to reasonable.

6.4.1 Full Pallet Storage Allocation

The storage area for all full pallets is both a certain part of the floor level, and all upper level
storage locations. Most of these upper levels should however be consider a reserve area only
for replenishment storage. Hence, it is the floor level area, sized according to the weighted
share of picks and order volume that the full pallet picks represent (see step 2), that should be
the main focus when choosing storage allocation method for full pallet picks. When
examining the order characteristics of the full pallet picks concluded in step 2 the main
conclusion is that there is a very high skewness of demand, both in terms of unique pick lines
and order volume. A small number of SKUs stand for a large share of the outbound flow,
especially since many orders are for more than one full pallet of a certain SKU. Each SKU
also corresponds to a unique pick since one full pallet is the max capacity of the forklifts. This
state indicates a high traffic flow of pickers moving in the full pallet area and to/from the
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loading area for further transportation. Thule is therefore recommended, in line with its own
layout suggestion, to place the full pallet pick area close to the 1/O points.

This demand pattern is a strong indication that CBS would be the best option for the full pallet
floor area, rather than random storage. However, the number of SKUs picked in full pallets
during low season is greater than the total number of pick locations for full pallet picks on
floor level, in addition the high level of skewness mean that many of the SKUs very rarely are
picked. In order to resolve this matter, it was decided that the D-class SKUs concluded in step
2 only should be stored in the upper levels; or rather the D-classed full pallet picked SKUs
should form a new class together with all replenishment pallets. This would also help
increasing the pick density on floor level and make the pick movements there more
economical. The SKUs in the very large upper level class would of course be stored randomly
within it, since that is the design of CBS, which is in line with both Chan and Chan (2011)
and Bartholdi and Hackman (2010)’s recommendations that random storage is suitable for
reserve areas. This alternative could be slightly adjusted by dividing the upper levels in to two
zones, one of them only consisting of purely partial pallet picked SKUs to store on the levels
above the picking area, and the other of D-classed SKUs as well as the extra stock for all
other SKUs ever picked in full pallets. Such a solution would help reduce congestion since
most picks from the upper levels are directly above the picking area, i.e. replenishment
actions, could be scheduled to less busy time periods.

Using CBS in the full pallet pick area on floor level will, as mentioned above, help meeting
several of Thule’s warehousing objectives. Theory recommends three or four classes, but each
added class adds administration and since each pick location is emptied after every pick in the
full pallet storage, it is better to ease the overall material flow by not limiting the storage
possibilities too much. Hence, three classes are recommended for the full pallet area since
each pick consists of one SKU only. Further, the across-aisle storage configuration is chosen
since it performs just as well as within-aisle under given conditions. The across-aisle
configuration fits in picking zones that are more deep than wide, and has the advantage of
limiting congestion by spreading out popular SKUs over several aisles; which is especially
important since full pallet picks means single picking and that no special routing method is of
use.

The sizing of the storage zones on floor level was done according to demand. Initially each A-
, B-, and C-SKU was entitled one pick location; the additional spots in the full pallet floor
area were then allocated based on order volume. The SKUs were already ranked and
classified according to number of unique pick lines, by adding share of total volume of all
orders picked in full pallets as a second sorting dimension it was possible to distribute the
extra slots. The volume share admitted all SKUs to the equivalent share of the extra slots,
rounded to full pallets. By successively moving down the popularity ranking and giving the
top SKUs their additional pick locations all slots were filled. The total number of pick
locations allocated to each class then determined the overall size of each class zone.

6.4.2 Partial Pallet Storage Allocation
When examining the SKU and order characteristics connected to the area for partial pallet
picks, it was evident that this group also showed a high level of demand skewness. It was also
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clear that it is a very large group in terms of number of SKUs that represent the vast majority
of all picks in the warehouse, often in small volumes. Hence, it was believed that great
savings could be made in travel and fulfillment time by choosing the most fitting storage
allocation method described above: CBS with four classes stored in a within-aisle
configuration. Under these circumstances the lower prioritized and somewhat conflicting
objective of limiting congestions was disregarded. The overall size of the picking area was
determined according to the weighted share of picks and order volume that the partial pallet
picks represent concluded in step 2. The exact sizing of the class-zones in this picking area
was done in a similar way as described for full pallet picks: Initially each A-, B-, C-, and D-
SKU was entitled one pick location, but since there was not enough slots all SKUs picked less
than every second month was excluded i.e. they should only be stored in the upper level
reserve area. Next the additional spots that now existed were allocated among the most
popular SKUs based on share of order volume, rounded to full pallets. By successively
moving down the ABC-ranking and giving the top SKUs their additional pick locations all
extra slots were filled. The total number of pick locations allocated to each class then
determined the overall size of each class zone.

6.4.3 Flow Rack Storage Allocation

Three aspects are central when determining the most suitable storage allocation method for
the flow rack area. First of all, the medium skewed demand means that the savings of CBS
compared to random storage are not as great as for the full and partial picks. Secondly, the
comparatively low demand means none of the SKUs qualified to class A of more than 2
unique picks per day in the classification made in step 2. Thirdly, each rack consists of three
levels of which the upper one is considered to offer the most convenient pick locations in the
so-called golden zone. Together these factors indicate that a SKU division into two classes
allocated to two zones would be both suitable and sufficient, especially since a two-class
system attains nearly 80 percent of all the benefits of VBS, but without as much
administration.

The first class consists of the most popular SKUs, roughly corresponding to class B and parts
of class C from step 2, and be allocated to the golden zone. The rest of the SKUs would be
randomly allocated within the other zone i.e. the two lower levels of the flow racks. Using the
golden zone does however create a tradeoff situation. It helps meeting the company objectives
of reducing picking time and limiting congestion, but at the same time it will increase travel
distance. Since Thule reported guaranteeing a high service level i.e. reducing fulfillment time
the highest priority, it will rule the decision. The first two aspects also indicate that the flow
racks should be positioned among SKUs with similar level of demand i.e. the C- and D-zones
of the picking area. The exact partition of the SKUs was done by first giving one pick location
to each SKU picked that time period. Then the additional pick locations were divided among
the most popular SKUs by successively filling the extra slots according to their relative share
of demand volume, rounded up to full pick locations. For SKUs with the same popularity,
priority was given to those with higher volume. Finally the golden zone class was created by
successively filling up the golden zone slots (GZ in Figure 39) with as many of the top SKUs
as possible, each allocated its total number of pick locations. However, the overall low
popularity level of the flow rack SKUs also indicate that the central placement of the flow
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racks in Thule’s layout suggestion in Figure 24 would occupy convenient pick locations better
utilized by more popular SKUs. Hence, the recommendation to Thule is to place the flow
racks further away from the 1/O points.

Table 19 Recommended storage allocation methods during high and low season.

Storage allocation methods

c
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@ Full pallet picking i -
3 (reserve) Partial pallet picking Flow rack
f,, CBS with 3 classes based on | CBS with 4 classes based on | CBS with 2 classes based on
I popularity; across-aisle popularity; within-aisle popularity; golden zone
g CBS with 3 classes based on | CBS with 4 classes based on | CBS with 2 classes based on
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shelves in flow racks are not shown. More information about %
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2014).
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6.4.4 Seasonal Storage Allocation Changes

The choice of storage allocation method is also affected by the seasonality in the Huta DC. As
Table 19 shows, the chosen methods are identical for the two periods. However, identical
methods do not necessarily mean identical layouts. Although the use of CBS and its number
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of classes should be kept constant, the SKUs included in each class and their individual
number of pick locations should not. If for example the A and B ranked SKUs during low
season are related to winter activities, they are unlikely to be part of these top classes during
summer. Hence, the SKUs will get different classifications in the two time periods and should
thereby be allocated accordingly in order to maintain a low travel distance. Failing to perform
this update might result in unnecessary travels to remote locations storing the popular SKUs.
Further, the size of the partial pallet picking and full pallet/reserve areas should be revised.
Since its size is decided from the share of full versus partial pallet picks, changed proportions
would call for adjustments in storage allocation and number of pick locations in each class
zone.

Apart from changing the sizes of the two storage areas, another promising storage strategy to
implement especially during high season with its fast material flow is to set up a smaller
forward area within the main picking area to accommodate the orders concerning the top most
popular SKUs. The research regarding this option is scarce. No clear recommendations
regarding what SKUs to include, in what volumes or how the area should be dimensioned are
encountered in the literature study. Neither are the benefits of implementing a forward area
weighted against its main tradeoff double handling. Despite this, it is considered an interesting
solution with potential for large improvements. While waiting for further research, this
alternative either could be set up, performed and measured in an experimental fashion, or
ignored.

6.5 Step 5: Order Picking Method

There are no clear recommendations
for when to use what order picking
method. Some guidelines in the
decision making can be found by
first  determining  whether the Figure 40 Output in illustrative example, step 5 (Gildebrand &
warehouse in question is large, small Josefsson, 2014).

or wide, whether number of orders is large or small, and whether order size if to be classified
as large or small. Hence, tradeoff priorities have to be very distinct in order to choose picking
method. An overview of the output is shown in Figure 40.

Step 5: 'F.ull pall.et/.Reserve area:
Single picking

Order picking method

*Partial pick area:
Batching

For Thule, single picking is the obvious choice for the reserve area since it concerns full
pallet picks, while the partial picking area including the flow racks is tougher to decide on.
The Huta DC will, according to previous order data, have a large number of orders but a small
median order size in both high and low season. Despite vague recommendations, it is safe to
say that based on these characteristics batching is a better-qualified method than single line
picking for the partial pick area. The volume of most unique pick lines for partial pallet is also
small which indicate that several orders would fit on one truck during picking operations. The
disadvantages of batching such as an increased risk for errors in picking and the need for
additional sorting are not identified as prioritized issues by the Thule managers. On the other
hand, the benefits of the method are. Reduced travel distance is pointed out as the second
most important objective by Janas-Kaszuba (2014).
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The use of batch zoning answers to several desired objectives for Thule, as well as the already
chosen method regarding storage allocation. Batch zoning is stated to result in increased
benefits as warehouse size increases. Huta DC is large, and is thus likely to benefit from
applying batch zoning. Further benefits are increased picker familiarity, reduced congestion
and that it results in savings in travel distance; factors that are all pointed out as priorities for
Thule. The main tradeoff to be aware of for this choice is that it might lead to poorly utilized
workforce due to uneven workload and this aspect should therefore be continuously
monitored by Thule in order to maintain balance. To conclude, the order picking choice for
the reserve area is single picking while batch zoning is opted for the partial pick area (see
Table 21).

The remaining methods are not chosen due to several reasons. Sequential zoning requires a
link between the zones, which usually means additional investments, and a redesign of the
warehouse layout to make room for a conveyor belt. Further it requires large pick lists, which
is also true for wave picking. Although the methods benefit from economies of scale and are
claimed to result in savings in travel distance, they counteract the benefits that can be
achieved from the CBS chosen in the previous step. CBS builds on the fact that it will
generate large savings when used in combination with small pick lists. Applying wave zoning
where one wave can last for up to two hours would entirely eliminate the benefits from a
carefully designed CBS.

The choice of order picking method also concerns the logistics of picking in terms of where
and how the pickers and orders should move. Should zones be created for pickers and if so,
how should the partition be made and allocated to pickers? Should the batches travel between
zones or is it better for them to be entirely independent? These are subsequent decisions not
explicitly brought up in the tool, but left for Thule to decide once the methods are fully set.

Table 21 Recommended order picking methods during high and low season.

Order picking methods

c

(@}

@ Full pallet picking , -

3 (reserve) Partial pallet picking Flow rack
e

-%” Single picking Batching; batch zoning Batching
§ Single picking Batching; batch zoning Batching

6.6 Step 6: Routing Method

The pick routes in the Huta DC can be
divided in two parts; the full pallet and
the partial pallet picks, and the
recommendation for each of them can
be viewed in Figure 41.

*Full pallet/Reserve:
No specific method

Step 6:

Routing method

*Partial pick area:
Largest gap heuristic

Figure 41 Output in illustrative example, step 6 (Gildebrand &
Josefsson. 2014).
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For the full pallet picks in the reserve area using a particular routing method is believed to be
unnecessary since all picks will be for one SKU only —the only reason to adapt a specific
heuristic would be if congestion prohibits the obvious route to and from the I/O depot. On the
other hand the partial pick area, which also includes the flow rack picks, has a lot to gain from
using a suitable routing method. The key features when determining suitable routing methods
for a warehouse are pick list size and pick density which both are closely linked to order size.
The order size derived from the historical order data is relatively low and the pick density is
very low due to the vast range of SKUs to be stored in the Huta DC. In the previous steps it
was decided to use small pick lists to accommodate for CBS and batch zoning. The
implementation of CBS would however increase the pick density within each class zone,
especially the A-class zone. This means that Thule has the possibility to examine the order
characteristics for each class zone in the next method update to get a second dimension when
reevaluating its method choices.

As for the current situation, transversal routing often fit CBS storage but preferably with large
order sizes and high pick density. It is thus not a good option. The return heuristic can seem
suitable for the priorities and conditions at the Huta DC. The method is easy to use and suits
warehouses with CBS and low pick density. However, it is stated to be the most inefficient
routing method, which is strongly supported by the graphs presented in theory. Thereby it
contradicts the two top priorities of high service level and decreased travel and is not a
suitable option for the Huta DC. According to research presented in the literature review, the
optimal procedure is the method outperforming all the other options regardless of number of
aisles and pick list size. This is however not the method chosen for the Huta DC either, due to
its heavy reliance on computer software and the confusing routes it often results in, which
lower the buy in and acceptance among the pickers. Instead the largest gap method is selected,
which is the procedure performing second best under the named conditions. The reason is that
this method is especially pointed out as suitable for small pick lists, which is an overall
priority in step 4-6. Further, it responds to priorities set by Thule, and also ensures that the
already chosen methods remain aligned. The largest gap heuristic would also suit the Huta DC
layout since it has been showed to perform well in warehouses with many aisles.

Similar to most other routing methods, the largest gap method has to be managed by a system.
It is difficult or even impossible for the picker to figure out the route without directions from a
system generating the sequence and route. It is assumed that the systems to be used in the
Huta DC can be programmed according to the chosen method. Finally, the choice in this step
is not at all related to seasonality, why the choices in Table 22 are identical for the two
periods.

74



Table 22 Recommended routing methods during high and low season.

Routing methods

c

o

@ Full pallet picking , -

3 (reserve) Partial pallet picking Flow rack
s - - -

-%” Not applicable Largest gap heuristic

2 . .

3 Not applicable Largest gap heuristic

6.7 Final Recommendations to the Huta DC

To begin with it should be emphasized that the high skewness identified for the demand data
from Thule is a strong indicator that putting effort into making suitable decisions in the
finalizing steps will pay off. Combined with a short pick list, this is strengthened even further.
The output from the steps generating the final recommendations is presented in Figure 42
below, and summarized in subsequent sections.

Step 4 *Full pallet/Reserve area:
Storage allocation 3 class CBS; across-aisle

method *Partial pick area:
4 class CBS; within-aisle

The high level of Alignment check; do all
demand skewness Step 5: *Full pallet/Reserve area: methods perform well Updated
and the decision 1 . . Single picking L

Py - Order picking method b | regarding: warehouse
O.f sme.lll pick list *Partial pick area: 1. High service level? operations
size will affect all Batching 2. Low picking travel? methods

final steps.

3. High utilization?

*Full pallet/Reserve:
No specific method

Step 6:
Routing method

*Partial pick area:
Largest gap heuristic

Figure 42 Final recommendations to the Huta DC visualized in the decision support tool (Gildebrand & Josefsson,
2014).

The most profound recommendation for the Huta DC is that the strong variations in demand
throughout the year indicate that the warehouse operations should be revised and altered for
the high and low season to accommodate the different order conditions. One central part of
this is the division of the pick locations on floor level. It is recommended to split the area into
one full pallet pick area and one partial pick area; also including the flow racks. The
dimensions of these two areas should be based on the demand in number of picks, which
means it would change for the two seasons. The upper level storage locations are to be used
for replenishment and storage of the least frequently picked products i.e. some of the D-
classed SKUs.
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CBS based on popularity ranking is the recommended storage allocation method for both the
full and the partial pallet pick areas, and both in high and low season. The difference is the
number of classes and configuration: the SKUs in the full pallet area should be divided into
three classes, while the SKUs picked in partial pallets should have four classes. The SKUs
stored in flow racks should be split in two groups, where the most frequently picked group is
allocated in the pick location in the so called golden zone, described in the literature review.
The emphasis is the partition into classes and design of picking zones. The division into A-,
B-, C-, and D-classified SKUs was based on popularity; the number of times a certain SKU
was picked in each season. For example, all SKUs picked on average more than twice a day
was categorized A. The zone dimensioning was roughly performed by giving each SKU the
share of pick locations equivalent to its share of demand in number of picks, some
adjustments was made to ensure all SKUs at least one pallet position and to accommodate
large order volumes. The storage configurations of across-aisle in the full pallet area and
within-aisle in the partial pallet picking area were chosen due to their characteristics. Their
respective advantages made the best fit for the conditions at the Huta DC especially
concerning material flow, pick density and pick list size. A review of the current location of
the flow racks resulted in the suggestion of moving them to a less convenient location that
better suits the frequency of the SKUs it holds. The result for the two seasons is visualized in
Figure 43.

The figure illustrate that the output from step 4 differ between high and low season. The main
difference is the size of the full and partial picking areas, but also the change in size for each
class is noticeable. Does this mean that Thule should change the zone size twice a year?
Unfortunately, there is no good answer or support for doing this. The advice is to evaluate the
differences in size between the class zones. Unless differences are very high, it might not pay
off to relocate the SKUs. The heat maps should therefore merely be considered to visualize
the changes in demand that do happen over time. It is thus left to the warehouse managers to
interpret the implication for the warehouse in question, and if aligning zones according to
demand would bring any improvements.

One aspect of seasonality where the recommendation is more straightforward regards changes
in relative demand among SKUs. The demand at the Huta DC displays great varieties among
the different SKUs depending on season. The implication is that some of the SKUs located in
an A zone during high season, might be better located in a C or D zone during low season. If
no storage allocation change takes place, the benefits that can be expected from using class-
based storage will be diminished. In worst case, benefits may even be counteracted. To
conclude, it is highly recommended to make seasonal updates of the SKUs stored in the most
popular classes, but optional to review the zone dimensions.

76



Storage Division After Step 4 — High Season
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Figure 43 Recommended SKU allocation in high versus low season (Gildebrand & Josefsson, 2014).

The order picking method to use in the full pallet picking area is per definition single picking,
while the partial pallet picking area including the flow racks will be best utilized by using
batching and batch zoning. Routing methods are of interest when multiple SKUs are to be
picked at the same time. For those areas in the Huta DC, the largest gap method was chosen.
The performance of the methods chosen in these two final steps is not affected by seasonality,
which thereby can be disregarded in this respect.
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7 Analysis of Decision Support Tool

This section will provide a thorough analysis of the created decision support tool from
multiple perspectives. First, the existing theory will be analyzed, followed by the tools’
performance and usability and finally, gaps between the theoretical decision support and
what reality requires, along with weaknesses with the decision support tool will be examined.

The appliance of the decision support tool in the previous chapter lead to several realizations
regarding its performance and also the complexity of the decisions to make. It also revealed
some of the limitations and ambiguousness of the theoretical framework, especially regarding
which features to consider when choosing warehouse operations methods. Thus, this chapter
will first analyze the existing theory in terms of interpretation possibilities and consensus
before moving on to analyzing the structure of the decision support tool. Its performance and
usability will be evaluated, in order to finally identify its gaps and weaknesses.

7.1 Analysis of Existing Theory

The decision support tool strives to provide a framework based on existing research in order
to increase the understanding of available options when improving warehouse-picking
operations. The summarized theory provides valuable results for many central decision
parameters, although some are hardly covered at all (see chapter 8.3 Suggestions for Further
Studies). Several authors point out that the area is very complex and contextualized, which
might be a reason for the absence of clear recommendations. When analyzing the research in
order picking, it appears to be a common view that picking cannot be improved without also
reviewing connected warehousing areas, e.g. storage allocation and layout. That was therefore
the approach in this master thesis, although the physical design of the warehouse was seen as
pre-determined.

7.1.1 Analyzing Storage Allocation Theory

The existing research regarding storage allocation is partially detailed and relatively easy to
interpret. Large focus lies on the choices between random storage, CBS or VBS based on
performance. The main features that influence which method that is considered most suitable
i.e. perform best in a given situation are level of demand pattern skewness and pick density.
The higher level of skewness of demand distribution, the larger the possible gains from
reviewing the SKU allocation method and implementing one of the more advanced
alternatives of CBS or VBS, rather than random. The opposite goes for pick density; the
higher percentage of all SKUs represented in an order, the more advantageous is random
storage. The meaning of high, low or medium is somewhat arbitrary which can cause
interpretation issues. Petersen Il (2000) classifies according to the Pareto principle: high
skewness is when 20 percent of all SKUs represent 80 percent of demand. This 80/20
distribution phenomenon is commonly found in SCM, which strengthen the reasonableness of
using it as a baseline when categorizing skewness of demand.

Further, research suggests how to create classes when using CBS and alternative partition
factors for the use of VBS. Usually the partition is made based on SKU popularity, which is
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interlinked with demand skewness, since many researchers consider it the criteria that bring
the best results. It is also a very intuitive and accessible measurement, which can increase the
acceptance among the pickers. Other criteria for classification are also suggested, but there is
a lack of ranking methods proposed by researchers that includes both popularity and value of
the product. Such a combined criteria can be very useful in a warehouse where the differences
in value are large and the benefit from prioritizing these products exceed the loss due to
potentially not meeting the service level for the products of less value. The exact grouping of
the ranked SKUs in to classes is however not very clear in research, neither is the allocation
of pick locations to each group and each individual SKU. The partitions should be made
where suitable and sometimes the Pareto principle is used in this context as well, but overall
the hands-on decision support for creating the ABC-classes is insufficient.

Research is more thorough when describing the advantages and disadvantages with each
storage allocation method regarding e.g. warehouse utilization level, travel time and ease of
use, and the researchers generally agree on these matters. However, the intended
interpretation is sometimes ambiguous also in this area. For example when the random
storage allocation method is described as easy to use it presumably refers solely to the
undirected insertion of the SKUs anywhere available in the warehouse. The step when the
SKU is picked from its location will instead be more difficult if taking the view of the picker,
who never gets the chance to learn where to find the SKUSs, but instead must rely on the
location advised on the pick list. When, on the other hand, a fully dedicated method is
described as easy to use, it most likely refers to the retrieval of the SKUs. While the insertion
is governed by the allocation system, the retrieval will be simpler for the picker, who
gradually will learn where to find certain SKUs, which might increase the picker’s efficiency
and reduce picking errors. The relative importance of each strength identified for all the
recommended methods is rarely quantified in the reviewed research, and thereby not possible
to weight against its weaknesses. For example, using a complete random storage allocation
method brings the highest utilization level but at the same time the longest picking distances;
in what situations does the benefit of a high utilization outperform the downside of a longer
total picking distance? Or in the case of using VBS, with the benefit of short picking distances
but the downside of an increased risk for congestion; at what point will the congestion
neutralize the benefits of short picking distances through an increase in picking time?

The same reasoning is highly relevant in the theory about the storage layout or configurations
for both VBS and CBS. Within-aisle storage is unanimously seen as the most efficient storage
configuration that minimizes travel, but its superiority diminishes as the pick list size is
reduced or number of classes increase. This means that the increased risk for congestion it
brings can be a crucial characteristic in a tradeoff situation. Consequently, the
recommendations are rather fuzzy when concerning warehouses with varying pick list sizes or
many storage classes. Moreover, most of the case studies in research have been conducted in
specific settings with a certain number of aisles or a specific position of the 1/O points. Hence
results treated as general in this study might actually be situation specific.

Overall the link between the material flow and the warehouse layout i.e. the position of the
most convenient locations, and the optimal storage configuration could be more evident.
However, the difference in performance of many configurations is insignificant when the pick
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list size approaches one which means that other objectives and priorities will rule the storage
configuration decisions; something not as well-covered in research as the distance aspect.
Luckily, pick list size is a feature possible to design in order to fit the circumstances. In short,
a long pick list is only preferable if a complete random allocation method is adopted along
with a simple routing method that passes through most aisles in the warehouse anyway. Once
again the meaning of long and short is up to the user to define. The main take away is to
understand that as the number of SKUs on a pick list increases, it simultaneously blunt
possible savings.

One possible storage variant that can be thought of as an extreme A-class zone within-aisle
configuration is the forward area. It is acknowledged as a suitable solution for very frequently
picked SKUs, since the total picking distance will be significantly reduced. At the same time,
the solution requires replenishment and thus double handling. The existing research is not
sufficient to provide support for decisions on this matter. For example, what factors determine
when the benefits of a forward area outweigh the resource-demanding disadvantage of double
handling? How should a suitable size of the forward area be determined? And how much
more frequent should the selected SKUs be in relation to the remaining SKUs in order to
lower the total pickings distances and time? Thus, setting up a forward area at periods when
demand is especially skewed might be a solution holding great potential for savings, but in
order to provide decision support the method needs to be studied further.

To summarize: many research articles highlight certain storage allocation methods and the
effect of using them, but without weighing the advantages against the disadvantages.
Naturally, this is due to the complexity of the area and differences in conditions among
warehouses. Evaluating the alternative storage allocation methods beyond picking distance,
including also costs and time, would make them more comparable and strengthen the
recommendations of the tool. This would however require very detailed knowledge and be
rather complicated to perform. At the current stage of the research, the recommendations
should therefore be considered to alert and raise an awareness regarding tradeoffs rather than
deliver solid answers.

7.1.2 Analyzing Order Picking Theory

The research area of order picking methods is less extensive but more straightforward than
storage allocation’s counterpart. Emphasis lies on travel time and distance, as opposed to the
other order picking activities: searching, extracting and paperwork. Commonly, the latter
three represent smaller parts of the order picking process and thereby hold less potential for
improvement. The recommendations for when a method is suitable are fairly easy to interpret;
order size, order volume and warehouse size seem to be the most crucial features to consider.
However, the recommendations would be more applicable if they were more extensive and
used less vague phrasing. The following wordings are common; use in large warehouses, use
for fairly large orders, use in wide warehouses, suitable for small orders, and so on, which
means there is a shortfall of directions for warehouses and companies finding themselves in
the middle. It is up to each warehouse manager to conclude the meaning of these
recommendations and compare them with their own conditions.
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There is an abundance of stated pros and cons with all the different order picking methods, as
the evaluation in Table 4 clearly shows, which means the tradeoff decisions when choosing
will be crucial. Hence, the company priorities have to be very distinct and preferably include
opinions about the most frequently mentioned terms when reviewing the methods such as ease
of use, travel savings, administrative requirements, congestion, order integrity, double
handling, picker’s familiarity with SKUs and storage locations, and work balance. Once
again, the lack of weighted comparisons between the advantages and disadvantages of all the
order picking variants prevents unequivocal decision support in this method choice. In
addition, the reviewed research does not provide clear, detailed guidance regarding how to
apply the methods i.e. how to set up the batching or wave picking. Consequently, this is also
left to each warehouse manager to figure out.

7.1.3 Analyzing Routing Theory

The choice of routing methods is the decision area with the most direct linkage to the actual
distance travelled, and for which the outcome of the previous steps aims to facilitate. The
theory on routing derives only from a handful of researchers, but it is comprehensible and
provides clear guidelines. Routing methods are easier to measure and compare than the
storage allocation and order picking methods, since it is fairly simple to construct computer
simulations based on known distances and travel time where the same orders are picked but
with different routing. There are fewer parameters involved than in the other method choices,
and the outcome is therefore more straightforward and general. First of all, choice of suitable
routing method highly depends on which storage allocation method is used, since some match
up better than others. Secondly, pick list size and pick density are important features, just as
when deciding on storage allocation method. Research comes to an intuitive but nevertheless
important conclusion; the longer the pick list for an average route, the fewer benefits can be
obtained from improving classification, allocation and routing. The reason is that longer pick
lists are more likely to include SKUs of a lower frequency, and will therefore be more likely
to result in a long route through the warehouse. Shorter pick lists however are more likely to
only include the most popular SKUs, and therefore have the potential to lower the average
picking length when these SKUs are conveniently located in the warehouse. For warehouses
in general, this means that the value of improving storage allocation and routing decreases as
the size of the pick list increases. This does not mean that routing should be neglected when
pick lists are long, but that a too vast work with decreasing the picking distances is unlikely to
pay off the way it would if the average size of a pick list was short.

One researcher studied how six different routing methods performed as number of aisles and
pick list size varied. The result clearly showed that the optimal routing procedure performs
outstandingly well, while the return heuristic results in the longest mean pick routes. The
other heuristics gave more mixed indications as the variables changed, why their adequacy
more depends on how well their properties fits with the company conditions and objectives;
especially regarding pick efficiency and ease of use.
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7.1.4 Analyzing the View on Demand Pattern Effects on Picking Efficiency

The chapter reviewing demand patterns and seasonality connected to warehouse operations is
short, reflecting the amount of research available in the area. The authors found this
surprising, since some degree of seasonality is an influential reality in many operating
warehouses today, both in total volume and among the products. The price of neglecting these
variations can be high. For example, responding to change with a firefighting approach
instead of anticipating it probably will result in a lowered service level through mixed up
orders, temporary storage solutions not designed for the products in question, increased risk
for damages due to increased double handling, and so on. One of the few solutions discussed
in research is increasing the number of picking zones during high season and similarly
decreasing the number of picking zones during low season. This recommendation is adopted
and reviewed in the decision support tool with the ambition to result in a solution that can
increase performance in the picking and travelled distances in high as well as low season. A
warehouse operating only daytime, five days a week, can make many adjustments beyond
storage allocation in order to increase productivity. Expanding the work time, to include
weekends and adding operating shifts is likely to achieve this without making any other
adjustments, but comes with the drawback of being costly due to overtime and or weekend

pay.

7.2 Analysis of Tool Structure

The main structure of the decision support tool is similar to the frameworks presented by
Rouwenhorst et al. (2000) and Hassan (2002). By focusing on the same areas, or at least the
ones they claim should be reviewed after the initial warehouse design phase, the content of
the tool’s steps was thought to be valid. The order of the steps was inspired by the
frameworks. The overall idea was to start with steps that process internal and external
company specific input, and continue with the decision areas that use the processed
information to make well-considered choices. The exact order, especially on a more detailed
level is however not that explicitly described in research. Hence, one problem with the
recommendations provided for storage allocation methods, order picking methods and routing
methods, is that performance only is evaluated within each area. In this thesis, storage
allocation method is the area with most available research and where the largest emphasize
lies. It is therefore put first in the decision support tool, and although the process should be
iterative to ensure aligned decisions, the chosen storage allocation method is meant to rule the
choice of order picking to a greater extent than the other way around. If the choice of order
picking method had positioned prior to storage allocation method in the tool,
recommendations would have guided the choice for the Huta DC towards wave picking
instead of batching and zone batching. The reason is that wave picking is stated to provide the
largest benefits if only considering Huta’s situation in regard to the particular decision area of
order picking. However, wave picking is a poor match to the choice of CBS in the previous
step due to the large size of pick list it requires to be beneficial. This is also the reason why it
is not compatible with recommendations provided for routing methods, which strongly
suggest that a pick list size of five will result in the shortest average route length regardless of
method chosen. The described problem illustrates the difficulty of interpreting
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recommendations that build on research from isolated areas only, since reality seldom is that
simple.

Two central parts when creating the decision support tool was to ensure its ease of use and
repeatability. The stepwise procedure in the tool aims to respond to the easiness, despite the
fact that the actual process is likely to turn out more complex than simply linear step-by-step.
It is important to emphasize the iterative nature of the process, and also encourage a holistic
view. The repeatability is ensured by the detailed guidance of what data to include and how to
use it. There is however still a risk of interpretation errors connected to the collection of the
soft data (e.g. interviews regarding priorities) and the analysis of the hard order data due to
the vague wording in the supporting recommendations that nothing but thoroughness and
more explicit new research can aid. The resulting tool therefore shed light on suitable options,
rather than provide conclusive recommendations.

The horizontal steps of the tool visualized in Figure 20 illustrate the input elements that are
necessary in order to perform the succeeding steps. It contains both hard and soft information
entirely derived from the company in question. The hard historical data is most likely easier to
collect than the soft data regarding company objectives and opinions, since it is usually
registered automatically in companies’ ERP systems and ready to retrieve as opposed to being
concluded from more time consuming interviews with the selected company representatives.
The quantitative nature of the former also means it is relatively undistorted and that its
outcome can be calculated and easily formed into statistics etc., while the latter consists of the
collected opinions of multiple individuals that might not perceive or know the actual state.
The qualitative aspects of step 3; opinions, views and priorities are likely to differ somewhat
between the participants in the study. This means that the process of aligning views and
priorities can be extensive. Nevertheless it is an essential step where an insufficient focus will
sway the result towards a solution that might not bring the benefits that are actually needed.
The features of focus in the three primary steps in the tool were identified as central to review
when updating the warehouse picking process since they are all prone to change. Demand
pattern and size change over time, as well as product range, customer requirements and
company priorities.

The vertical steps of the tool in Figure 20, illustrates the iterative steps that combined use the
output from the horizontal steps in order to conclude suitable operating choices for the
warehouse in question. Although presented in a specific order, it is beneficial to think ahead
and try to foresee the effect a decision in a former step will have on a latter. It should be
pointed out that there might be multiple solutions that would improve the picking processes.
The performance of the chosen methods should be evaluated once implemented by using
appropriate Key Performance Indicators (KPIs).

7.3 Analysis of Tool Performance and Usability

The ultimate performance of the tool cannot be analyzed without implementing the result
fully, and then evaluating the performance of the warehouse compared to the original
situation in terms of picking efficiency etc. Its performance and usability throughout the step-
by-step procedure can however be analyzed based on the theoretical framework and the Huta
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DC trial-run. The first two steps concern hard company data, easily accessed and understood
if dealing with one’s own company and ERP system. The key is to know what, in terms of
product and warehouse characteristics and requirements, to consider fixed and what to alter or
ignore. It is also crucial to know what part of the order data that represent unique picks i.e.
travel and time that can be reduced through increased picking efficiency. The better these
figures are understood, the better the base for the decision making. The order data features
highly impact the choices in step 4 to 6, especially the conclusions drawn from the demand
pattern concerning skewness of demand for the different SKUs and the overall fluctuations
and possible seasonality.

Step 3 demands more effort in order to get a thorough and valid output, although these types
of objectives should be relatively static i.e. once concluded they should be rather simple to
update the next time the tool is used. However, to be able to get the right priorities initially, it
IS important to interview people with the right positions and insight in the company goals and
warehouse operations to be able to translate the competitive strategy in to warehouse
objectives. The participants in the Thule case interviews all had key positions with regard to
warehousing, although in different countries. An undisputed agreement among them
regarding priorities was considered to strengthen the usefulness of the continued steps in the
tool. In this case, there were not enough significant persons related to the not yet existing
warehouse to ask. The employees interviewed now instead provided their views to the extent
of their knowledge, in one case in relation to another warehouse. Since this warehouse is
much smaller and operates during different conditions than the planned Huta DC, the views of
this interviewee were used for comparison rather than as determining factors.

The format of questions regarding the input to step 3 turned out to be essential in getting
answers that fit with research’s recommendations. A multiple-choice questionnaire was used
were the managers should rank their prioritized warehouse objectives. Such layout gave clear
answers but it also can lead to interpretation issues. Hence, oral interviews would be better. It
is also believed the questions could be sharpened in order to narrow down the company’s
opinions to the objectives that proved crucial for which methods to choose in step 4 to 6.
Hence, the formulations and the exact questions are something that should be revised every
time the tool is used in order to update to current conditions and profit from previous
learning’s. For example, one option in the questionnaire when ranking prioritized objectives
was “Other”, and Hunt (2014) used it to indicate a priority not included in the provided list;
health and safety. It is a central aspect of any operating business, but without clear connection
to which storage allocation, order picking or routing methods to choose. In other words, there
are no decision areas that would be affected by this priority and thus no reason to include it as
an objective in the questionnaire. This lead to the insight that the open choice “Other” in the
tradeoff questionnaire should be excluded. All priorities on the list should have a linkage to
research that support, or actively does not support, a certain choice. Disregarding “Other” as a
choice, this is true for the remaining options in the ranking list.

During the usage of the tool, it became apparent that step 4 was the one where most decisions
were left for the user to figure out without suggestions. How to distinguish A from B SKUs is
one example, how to dimension the storage areas and which storage configuration to opt for
other. Further issues left to the user were how to treat the levels above floor level and how
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many locations to assign for each SKU. Naturally, the number of storage locations available
per SKU is closely related to replenishment patterns and the safety stock set for each SKU,
which should mirror how important a SKU is in terms of cost for stock out, service level and
customer importance. These aspects are not included in the project scope and not in the
illustrative example either, although they in reality strongly affect number of pick locations
allocated to each SKU. Hence, the storage configuration and allocation recommended for the
Huta DC base its dimensioning solely on the outbound flow; number of picks and order
volume. To get a more realistic result the inbound flow to the warehouse and the
replenishment activities should be considered as well.

The aspect of seasonality examined in step 2, turned out to be of little importance for the
method choices apart from storage allocation. The other choices are likely to stay the same in
unless significant changes in priorities and conditions take place the different time periods. In
extreme cases the order picking or routing methods might be revised, e.g. if very large
outbound volumes and tight schedules indicate wave picking during peak periods, or of
congestion inhibit some of the routing procedures. This was not thought to be the situation for
the Huta DC. The demand for Thule both has the characteristics of a strong overall
seasonality and seasonality among the different SKUs. The two parts go hand in hand for
Thule; summer brings a large increase in total demand as well as certain products related to
season, while the low season has a low overall demand, but still a peak for the winter
products. However in general these differences have different implications; one concerning
the SKU allocation and possibly the order picking methods, and one concerning the
dimensioning of and content in the picking and/or class zones. The value of revising classes is
a result of products being related to season rather than a total change in demand. Should there
not be seasonality for the products, this update is not of relevance.

Overall, the outcome of the last three steps heavily depends on the priorities concluded in step
3, which once again point out how important it is to know what to prioritize in a tradeoff
situation. The interpretation of the method descriptions and recommendations is also crucial.
The wording is, as already stated, often vague, and warehouses with non-distinct or non-
extreme features easily end up in a fuzzy middle area in terms of research’s recommendations,
which affect the tools usability negatively. Moreover, the foundation of the recommendations
is compiled research, which means results from many isolated studies, and subjects are
combined in to general guidelines. The possible cocktail effect of these combinations forms
the main weakness of the tool’s results in terms of reliability. The quality of the results as well
as number of studies performed also varies widely between the decision areas. Together this
raises the question of the generalizability of the results, e.g. are results from a study in a
narrow-aisle warehouse valid in a warehouse with wide-aisles? The authors believe that if
several sources point in the same direction, despite examining slightly different warehouse
setups or without stressing the specificity in the studied situation, the conclusion is thought as
trustworthy.

For users of the decision support tool, the authors’ recommend to perform internal evaluations
in order to determine how the company specific setting affects the outcome. KPIs and
evaluations are not included in the resulting tool, but are still suggested to confirm that the
adjustments bring improvements, and also to quantify them. It is more likely that a company
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continuously uses the tool and adopts a reoccurring review process if it has clear incentives to
do so, i.e. measures and quantifies successful changes. Companies should also fill the gaps in
the tool or adapt its content to measured results as well as company specific conditions, which
would increase its performance and fit, as well as ease of use. Once the tool has been applied
a couple of times, the six steps should more or less be a quick update.
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8 Conclusions

This chapter will discuss the usage and analysis of the decision support tool. The outcome of
the master thesis will be concluded and the research questions answered. Finally suggestions
for further studies within this research area will be presented, which should be of interest
both for researchers and practitioners.

In order to wrap up the frame of reference, the illustrative example of Thule’s Huta DC, and
the analysis, they are linked to the purpose of the research in this chapter. By summarizing the
outcome concise answers to the research questions are provided. Chapter 8.1 corresponds to
the first research question, chapter 8.2 to the second research question, and the third and final
section of this chapter, 8.3, is devoted to general discussions and suggestions for future
research.

8.1 Resulting Design of the Decision Support Tool

The purpose of the decision support tool created in this master thesis is to provide guidance in
companies' decision making regarding which methods to use in their warehouse operations
connected to order picking. The idea is that the tool should be used for repetitively reviewing
and updating the changeable methods while accepting and adapting to fixed factors. As
concluded in the introduction and theoretical chapters, choosing suitable methods that ensure
efficient picking is very complex. The performance is affected by the preceding and
succeeding activities, why storage allocation and routing methods also should be included
when creating a supportive tool for easing decisions regarding order picking methods. The
intention was to cover the most essential parts when increasing picking efficiency, but that
mean the tool might be considered too general for some companies. In addition, few
researchers had taken on this wide approach, so most available research was conducted within
each specific area i.e. some of the interrelations between the method choices might be
unexplored theory-wise. Nonetheless, a theoretical foundation for a decision support tool was
established by summarizing the alternative storage allocation, order picking, and routing
methods, when they are suitable, and their strengths and weaknesses according to research.
Based on this, a conceptual model with step-by-step procedures evolved which uses order
data, warehouse features and product information as input. The structure was inspired by
other more fundamental design support models but with focus the decisions possible to update
relatively easy and often, i.e. which do not require large investments like physical remodeling.
Hence, the tool assumes and uses set conditions regarding especially warehouse layout and
resources available in order to simplify the decision-making and updating process. The same
logic was used for the order of the last three, horizontal steps; starting with the decisions that
lead to more fixed outcome, and ending with method choices that can be altered in an
instance. The order also corresponds to the amount of research available so that the initial
decision concerns the most well examined area and hence has the most profound theoretical
support.

The simple but structured design of the tool is a way of ensuring its ease of use in order to
enable continuous updates of the warehouse operations method choices. The factors to
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consider throughout the steps are specific, and the evaluations and comparisons of the method
alternatives detailed; all to provide well-founded support to companies' decision makers. The
abundance but also ambiguousness of advantages and disadvantages of the different methods
highlighted company objectives especially concerning warehouse operations as particularly
important to map and take in to account. Identified priorities help concretize preconditions,
vital aspects to consider as well as provide a ranking of their relative importance for the
company which can guide in tradeoff situations. Aligned with the company's overall goals,
the prioritized objectives carry the potential to rule what methods that are considered the best
fit for each individual warehouse setting. A simplified version of the decision support tool,
focusing on the overall structure can be found in Figure 44. The horizontal and vertical steps
of the tool combined manage to assemble, visualize and suggest adjustments for improved
warehouse operations. It builds on theory and research, but also requires careful
considerations depending on setting in order to bring improvements. Not all possible factors
or combinations are covered due to gaps in research, but the general structure is still enough
for supporting the decision making and improving the picking operations. The outcome of the
tool are guidelines for which storage allocation, order picking and routing methods that are
most suitable in a certain setting, e.g. during different time periods or in different areas of the
warehouse.

Decision Support Tool

*Warehouse info

“Product data * Order data + Company goals

Step 1: Step 2: Step 3:
Warehouse and product Order characteristics Objectives; priorities and
characteristicsand to consider tradeoffs
constraints

*Demand mapping
*Successively refined *Main objectives in
division of order data/SKUs warehouse operations and

«Identification of necessary
storage areas

*Rough division of SKUs in

to these storage areas

*Ranked and grouped list of their priority
SKUs

Step 4:
Storage allocation
method

Repeat each step
for all data Step 5:
portions until all
storage areas,
periods etc. have
been covered

Alignment check:

- Order picking method e Updated warehouse
oy operations methods
objectives

Step 6:
Routing method

—

Figure 44 Simplified version of the decision support tool (Gildebrand & Josefsson, 2014).
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8.2 Significant Features for Decision Support in Warehouse Operations

There are numerous features to consider in order to choose the most suitable warehouse
operations methods. For example, pick density guides the choice between random or
dedicated storage while share of full versus partial picks can rule the dimensioning of the
SKU allocation. Warehouses with specific characteristics or requirements such as temperature
or security restrictions obviously have to make suitable priorities to meet those. However, the
reviewed research, the construction of the decision support tool, as well as the field-trial
performed by means of the illustrative Huta DC example, lead to that some essential aspects
and characteristics for decision support in warehouse operations could be concluded. Three
key features to examine when using the tool to be able to make well-supported method
choices are described below.

The demand pattern is concluded to be the most important and influential feature to consider.
Mapping the prevailing demand pattern will provide valuable information of the overall, as
well as the SKU specific variations; seasonality. A high variation in overall seasonality might
mean that the most suitable method choices differ between the different seasons. This is also
true for variation in frequency on SKU level, even though the total variation might appear
stable. Warehouses that experience a high variation between seasons and SKUs are
recommended to put extra effort in to choosing SKU allocation method and to do an ABC-
classification. If performed on a general level despite strong variation among SKUs, the A-
classed SKUs in high season might turn out to be D-classed SKUs in low season, and thus
occupy a highly convenient location for no reason. One further feature to emphasize regarding
demand pattern is the level of skewness. The higher the skewness, the larger the possible
gains from reviewing and improving the current methods.

Company objectives and priorities are the next identified key features. Each company has
different products and customers and thereby also different requirements. As a consequence,
it has to identify a few, collectively chosen objectives with their warehouse operations that
affect which methods to use. This is to ensure a unified direction of the choices at hand, and
to raise an awareness of what is not prioritized. Decisions come with both benefits and
downsides, and being aware of the downsides is just as important as knowing the benefits.
Aiming for all objectives at the same time is an approach that is likely to end up draining
potential benefits, which is why the identified objectives also should be ranked according to
priority. The ranking will then help ruling in tradeoff situations where several method options
are possible, but do not meet the same objectives. To use the existing knowledge among
employees and managers about conditions and needs of the warehouse in question is central
in all decision-making.

A feature with significant impact on the resulting performance is pick list size. It differs from
the previous two features in that it relatively easy can be altered or adjusted, and that it more
or less can be decided straight away. Naturally, time constraints as well as order size also
affect the pick list size and have to be considered in this decision, but small or large pick lists
give different implications for suitable storage allocation, order picking and routing methods
why it is an important feature to consider. It has a similar effect as level of skewness i.e.
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research shows that the impact of many method choices appears to increase when pick list
size decreases.

8.3 Suggestions for Further Studies

The result of this thesis is final only in terms of the project scope. A suggested continuation
would be to strengthen the result further by testing the tool in practice and evaluating the
outcome after implementation i.e. using multiple real life cases instead of an illustrative
example. This should be done in order to increase the validity of the result. The study could
also benefit from expanding its scope to include also the areas of replenishment, inventory
levels and safety stock to get more thorough recommendations. All three are fairly easy to
review and adjust, and all carry the potential of bringing major improvements regarding e.g.
warehouse utilization, zone sizes, workload, service level, and to free up capital with only a
moderate level of effort. The study has revealed several areas where further research would be
needed to provide more comprehensive guidance when choosing the most appropriate method
for storage allocation, order picking and routing in a warehouse.

One identified area where additional research would be valuable is ABC-classification: how
to divide SKUs in to classes and according to which characteristics. Some suggestions are
provided, but reviewing also product value or customer importance and requirements could
strengthen the field. For example, using customer segmentation when classifying the SKUSs is
a criterion not discussed at all in the reviewed research, although it is a commonly proposed
strategy for SCM and other business areas (Chopra & Meindl, 2007).

Another, linked research area barely covered in theory is the allocation of classes into
corresponding zones when vertical picking area is considered. Vertical ABC-classification is
mentioned, but surprisingly few articles discussing ABC-classification and zoning mention
the implication from using vertical zoning. Instead, shaping the horizontal zones is a recurring
focus. Only assessing the storage locations on floor level appears to be a rather narrow
approach, considering that most warehouses have multi-level storage and the total range of
SKUs often is larger than the number of floor level pick locations. This means that there is a
possibility that the reserve inventory will be stored vertically, and that some low frequent
SKUs will have to be stored on less convenient, higher level locations. Another observation is
that there seem to be a lack of new research articles within the warehousing field, especially
that clearly take advantage of available technological support (e.g. ERP- or WMS systems) by
including such solutions to their recommendations.

In general throughout the research studied, more precise recommendations are called for. As
of now, the research is abundant with vague, ambiguous wordings that would need to be more
detailed in order to be real useful. Further, most research focus on either picking or storage
methods, rather than studying them jointly. That means the tool combine results from many
isolated studies and subjects, which is the main weakness of the results in terms of reliability.
The typical research article treats only one single area in relation to a warehouse with well-
defined characteristics. It is a likely scenario that combinations of successful implementations
from several studies do not bring the same benefits together as they do alone. It could affect
performance in a desired direction through synergies, or in a less preferable way through
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impairment. This means that there is a need for research that considers combinations of
factors and how each method choice affects and interacts with the others. Most previous
studies have also been conducted in a very specific setting, e.g. Chan and Chan (2011)’s
research on a manual, multi-level rack DC with CBS, which means that it is often difficult to
draw any general conclusions from the results. Hence, research that identifies general patterns
and try to establish general but specific guidelines for practitioners would be of use. One way
of doing this, directly connected to this study, would be to identify the gaps in the tool and
then examine in-use warehouses to get travel data to use in a simulation model. Then the
model could provide statistics for when each combination of methods would be most
appropriate.

As established in chapter 7.1 Analysis of Existing Theory, the research on how to handle
variations in demand over time is another scarce area, despite being a very common
phenomenon. For example, the research on possible gains from implementing a forward area
for frequently picked SKUs during high season is interesting, although not sufficient to
provide guidance in the support tool; additional research will be needed in order to evaluate
its good. Overall, further research and recommendations of how to meet and adapt to
fluctuating demand in terms of warehouse operations methods, as well as indications of the
magnitude of improvement would be of use.

Company-wise, recommendations for when to use the tool are needed. Should it be used with
a regular interval basis or based on the performance of the warehouse operations? One idea is
to use a KPI that continuously is updated. If the KPI crosses a certain level, it indicates that
another method might be more suitable, i.e. the choices should be revised through applying
the tool. Exactly which KPI and where to set the limits is to be investigated further, but it is
suggested to base the KPIs on the identified features that determined the method decisions to
begin with. Preferably the KPIs should be in an affectable process-based shape that triggers
the warehouse personnel to follow the advice and increase their picking efficiency. It could be
worthwhile to transform these demand-based figures into costs since increased costs quickly
get attention from managers and it is also easily communicated to the pickers. Cost-based
KPIs could also be a convincing measurement to use in the implementation phase to get
increased buy-in and commitment from everyone involved. How to successfully implement
the method choices the decision support tool recommends is yet another issue left for the
companies to deal with on their own; perhaps by using research conducted within the field of
change management.
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Appendix A — Interview Guide

Interview Questions for Master Thesis
Background

The new DC in Poland will handle a large number of SKUs. Since the order picking process
is the most resource intensive and thus also the most costly part of almost every warehouse, it
is of outmost importance that this process is set up in the best possible way.

The purpose of this project is to recommend a storage assignment method and picking process
especially designed to suit the characteristics and needs of the new Huta DC. The outcome
will be well anchored in the latest research within the field, in order to ensure that the result is
aligned with state-of-the-art theories.

Physical constraints of the DC as well as order characteristics will be considered as fixed,
since the factors will be used as input when designing our suggestion. Since order pattern is
most likely to vary both long and short term, focus will also include how a solution can be
updated or continuously revised in order to adapt to new circumstances.

Warehouse Operations

1. What have previously been the largest challenges in Thule warehouses?
2. What are the most time-consuming processes in a Thule warehouse?

3. What are the most distinct order characteristics for Thule?

4. What do you think will be the largest challenges for the Huta DC?

5. Indicate the 3 factors you consider to be main priorities for the new DC.:

O High warehouse utilization O Lower the risk of congestion

O Decrease travelled distance in picking O Reduce picking errors

[0 Decrease mix-up when sorting orders O Minimize double handling

O Decrease the overall labor O Guarantee a certain service level
[0 Decrease amount of damaged goods [0 System simplicity, ease of use
[0 Lower computer system dependence O Even workload

6. How has the order picking been conducted previously? (Single/batching)

7. How has the pick-path been decided previously?
8. What do you consider to be a suitable method for storing Thule’s SKUs?

9. What do you consider to be the best way of dealing with seasonality?

Do you have any further comments of knowledge that you think can be of relevance for
our project?
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Follow up questions:

10. Rank the top 5 factors you consider to be main priorities for the new DC in order of
importance, 1 to 5 with 1 being the most important (note that the two last alternatives

are added since the previous questionnaire):
High warehouse utilization

Decrease travelled distance in picking

Decrease mix-up when sorting orders

Decrease the overall labor

Decrease amount of damaged goods

Lower computer system dependence

Lower the risk of congestion

Reduce picking errors

Minimize double handling
Guarantee a certain service level
System simplicity, ease of use
Even workload

OooooOoooao
OoOoOooono

11. Are your top priorities corresponding to the overall company objectives of the Thule
Group? If yes, how? If no, why not?



Appendix B — Comparisons of Different Storage Allocation Methods

A comparison of the percentage increase in average fulfillment time of using diagonal or
rectangular storage configurations instead of within-aisle storage when using CBS and 2, 3,
and 4 storage classes is found in Figure 45. Comparisons of CBS and random storage
allocation methods using optimal routing procedures and transversal routing heuristics,

respectively, is found in Figures 46 and 47.
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Figure 45 Comparison of storage configuration strategies, the percentage increase in average fulfillment time of
diagonal and rectangular storage over within-aisle storage when using 2, 3, and 4 storage classes (Petersen, et al.,
2004).

CBS vs. Random Storage Optimal Routing
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Figure 46 Comparison of CBS and random storage using optimal routing procedures (Petersen, et al., 2004).

CBS vs. Random Storage Transversal Routing
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Figure 47 Comparison of CBS and random storage using transversal routing (Petersen, et al., 2004).



Appendix C — Order Data Sample

A larger sample of the order information provided by the Thule Group in the Excel sheet
Order data 12-13 can be found in Figure 48.

Delivery no |Unique pick # |Order number | Order number-Line|Trans ID Conv. Date |ltem type Item no |Item name UENB Ly |FEHIEE anum-e / a/
12-13 12-13 orderline 12-13 |pallet
2647951 2647951-9| 3100109329| 3100109329-100| Customer Order | 2012-07-18|61 - Load carriers 101004 |Load carrier Volvo Y286 36 3,00 573 12]
2647951 2647951-4| 3100109329| 3100109329-200| Customer Order | 2012-07-18|61 - Load carriers 101039|LCVOLVO V40 -04 24 1,00 1,11 24
2648030 2648030-1| 3100109338 3100109338-100| Customer Order | 2012-07-04|61 - Load carriers 101009|CB AUDI A4 SILVER VOTEX 32 1,00 1,15 32|
2648030 2648030-2| 3100109338 3100109338-100| Customer Order | 2012-07-04|61 - Load carriers 101009|CB AUDI A4 SILVER VOTEX 64 2,00 2,30 32|
2650767 2650767-1| 3100109524| 3100109524-100| Customer Order | 2012-07-25|61 - Load carriers 101008|CB AUDI A4 SVART VOTEX 32 1,00 1,15 32|
2664546 2664546-1| 3100110691 3100110691-200| Customer Order | 2012-07-10|61 - Load carriers 101043 |LC VAUXHALL CORSA CO1- 50 1,00 1,04 50
2683834 2683834-2| 3100112489| 3100112489-100| Customer Order | 2012-08-01|61 - Load carriers 101038|LCVOLVO 540 -04 24 1,00 1,11 24
2685711 2685711-5| 3100112727| 3100112727-800| Customer Order | 2012-07-13|65 - Bike 101000|BACKPAC RENAULT J81 8 2,00 2,36 4
2689833 2689833-4| 3100113136| 3100113136-100| Customer Order | 2012-08-08|61 - Load carriers 101039|LCVOLVO V40 -04 24 1,00 1,11 24
2689833 2689833-6| 3100113136| 3100113136-2200| Customer Order | 2012-08-08|61 - Load carriers 101063|LCVOLVO V7000- 32 2,00 2,23 16]
2689833 2689833-7| 3100113136 3100113136-800| Customer Order | 2012-08-08|61 - Load carriers 101063|LCVOLVO V70 00- 32 2,00 2,23 16|
2689833| 2689833-15| 3100115906| 3100115906-100| Customer Order | 2012-08-08|61 - Load carriers 101063|LCVOLVO V70 00- 32 2,00 2,23 16|
2702964 2702964-11| 3100114426| 3100114426-100| Customer Order | 2012-09-12|61 - Load carriers 101004 |Load carrier Volvo Y286 36 3,00 573 12]
2704232 2704232-1| 3100114542| 3100114542-100| Customer Order | 2012-07-24|61 - Load carriers 101042|LC OPEL CORSA C 01- 50 1,00 0,96 50]
2704670 2704670-1| 3100114167 3100114167-100| Customer Order | 2012-07-25|61 - Load carriers 101009|CB AUDI A4 SILVER VOTEX 96 3,00 3,46 32|
2705328 2705328-8| 6000082100 6000082100| Customer Order | 2012-07-26|61 - Load carriers 101044 |L.C Mazda 626 HB 97- 32 1,00 1,28 32|
2705328 2705328-1| 6000081454 6000081454| Customer Order | 2012-07-26|61 - Load carriers 101066|LC SAAB 9-5 SDN 98- 96 3,00 2,88 32|
2709350 2709350-1| 3100115057 3100115057-100| Customer Order | 2012-09-0661 - Load carriers 101009|CB AUDI A4 SILVER VOTEX 64 2,00 2,30 32|
2719102 27159102-3| 3100115287| 3100115287-400| Customer Order | 2012-08-09|65 - Bike 101000|BACKPAC RENAULT J81 12 3,00 3,54 4
2720199 2720199-5| 3100116111 3100116111-100| Customer Order | 2012-10-03|61 - Load carriers 101004 |Load carrier Volvo Y286 36 3,00 573 12]
2721511 2721511-2| 3100116234| 3100116234-400| Customer Order | 2012-09-07 |61 - Load carriers 101063 |LCVOLVO V70 00- 16 1,00 1,11 16|
2721511 2721511-3| 3100116234 3100116234-400| Customer Order | 2012-09-07|61 - Load carriers 101063|LCVOLVO V7000~ 16 1,00 1,11 16§
2724088 2724088-3| 3100113780 3100113780-400| Customer Order | 2012-08-17|61 - Load carriers 101004 |Load carrier Volvo Y286 36 3,00 573 12
2724403 2724403-2| 3100116399| 3100116399-100| Customer Order | 2012-09-19|61 - Load carriers 101039|LCVOLVO V40 -04 24 1,00 1,11 24
2724403 2724403-8| 3100116636| 3100116636-900| Customer Order | 2012-09-19|61 - Load carriers 101063 |LCVOLVO V70 00- 16 1,00 1,11 16|
2724403 27244039 3100116636 3100116636-900| Customer Order | 2012-09-1961 - Load carriers 101063|LCVOLVO V7000~ 16 1,00 1,11 16§
2724404| 2724404-12| 3100116400| 3100116400-100| Customer Order | 2012-10-10|61 - Load carriers 101004 |Load carrier Volvo Y286 36 3,00 573 12
2724404 2724404-6| 3100116400 3100116400-800| Customer Order | 2012-10-10|61 - Load carriers 101063|LCVOLVO V70 00- 32 2,00 2,23 16|

Figure 48 Order data sample, provided by the Thule Group (Risholm, 2014).



Appendix D — Full and Partial Pallet Compilations

Table 23 Compilation of the outbound volume

Compilations of all SKUs, the outbound
volume, and the number of unique pick lines

and unique pick lines (Risholm, 2014). A ratio
for the different storage areas is also created by

ever to be ordered in full or partial pallets, as

multiplying their respective percentage weight.
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Appendix E — Demand Skewness Low Season

The level of skewness in demand for full pallet picks, partial pallet picks and pick from flow
racks during low season can be viewed in Figures 49, 50 and 51.

Full Pallet Picks Low Season
SKUs Accumulated Share of Picks
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Figure 49 The percentage of SKUs picked in full pallets during low season that represent a certain accumulated share
of all unique pick lines. The red line indicates the level of skewness: medium to high.

Partial Pallet Picks Low Season
SKUs Accumulated Share of Picks
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Figure 50 The percentage of SKUs picked in partial loads during low season that represent a certain accumulated
share of all unique pick lines. The red line indicates the level of skewness: medium to high.

Flow Rack Picks Low Season
SKUs Accumulated Share of Picks
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Figure 51 The percentage of SKUs picked from flow racks during low season that represent a certain accumulated
share of all unique pick lines. The red line indicates the level of skewness: medium.
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Appendix F — Sample of SKU Classifications in High and Low
Season

The popularity of SKUs i.e. the number of unique picks per days and the corresponding A-,
B-, C, or D-classification can differ a lot between high and low season. The sample in Table
25 below illustrates this by presenting the popularity of some SKUs picked in partial pallets
and their high and low season classifications. Table 28 shows the criteria for the classes.

Table 25 Sample of SKUs picked in partial pallets, Table 26 Classification criteria in x picks per day.
sorted by picks per day during high season
High Season Low Season
Item numbd Picks per day| Class |Picks perday| Class A X > 2 X > 2
532002| 6,427 A 0,453 [3
754002 5,562 A 0 -
920013| 4,742 A 0,506 B B 0.5<x<2 0.5<x<2
561000 4,629 A 1,694 B
922013 4,59 A 0,406 c C 0.08<x<05 ] 0.09<x<05
970003 4,348 A 1,629 B
9310000 4,180 A 0,612 B D X <0.08 X <0.09
973002] 3,955 A 1,182 B
889200 3,472 A 1,706 B
1500034368] 3,022 A 1,724 B
928000 2,910 A 1,235 B
760000 2,831 A 1,871 B
183022] 2,798 A 1,876 B
183030] 2,573 A 1,959 B
970801 2,551 A 0,735 B
960100] 2,539 A 1,959 B
958500 2,011 A 0,076 D
184003| 1,966 B 1,765 B
963100] 1,944 B 1,529 B
910401f 1,933 B 0,729 B
532000, 1,888 B 2,035 A
183006| 1,876 B 1,759 B
184002 1,831 B 1,941 B
940000 1,831 B 0,624 B
183073| 1,820 B 1,571 B
949008] 1,708 B 1,041 B
959300 1,697 B 0,176 c
910301f 1,685 B 0,618 B
620801 1,663 B 1,712 B
861000 1,652 B 1,947 B
968001f 1,629 B 0,624 B
873000 1,404 B 0,365 c
538000 1,326 B 0,429 c
8320000 1,292 B 0,453 c
943005| 1,292 B 0,465 c
100016/ 0,910 B 0,076 D
920000 0,831 B 1,371 B
923001] 0,764 B 0,918 B
141726 0,742 B 0 -
921001] 0,742 B 1,253 B
931100] 0,730 B 0 -
805300 0,663 B 0,176 c
911000 0,539 B 0,094 c
821000 0,483 C 0,129 c
141239] 0,472 C 0,276 c
141622] 0,438 C 0,335 c
726000 0,393 C 2,759 A
727000 0,393 C 2,624 A
323000, 0,360 C 0,341 c
141281 0,348 ¢ 0,200 c
141660| 0,315 C 0,212 c
802000 0,303 C 0,224 c
183092 0,292 ¢ 0,235 c
739000 0,270 C 2,394 A
1500043215] 0,258 C 0,253 c
1500014671] 0,213 C 0,271 c
694500| 0,146 C 0,453 c
2004365080 0,034 D 0,535 B
2004705247| 0,034 D 0,518 B
591040| 0,011 D 0 -
2004705230| 0,011 D 0,376 c
2004125090 0 - 0,524 B
2004255095 0 - 0,376 C
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