
Using the QR Factorization to swiftly update
least squares problems

Oscar Olsson∗ and Tommy Ivarsson†

Centre for Mathematical Sciences, Numerical Analysis

The Faculty of Engineering at Lund University, LTH

June 5, 2014

Abstract

In this paper we study how to update the solution of the linear
system Ax = b after the matrix A is changed by addition or deletion
of rows or columns.

Studying the QR Factorization of the system, more specifically, the
factorization created by the Householder reflection algorithm, we find
that we can split the algorithm in two parts. The result from the first
part is trivial to update and is the only dependency for calculating
the second part.

We find that not only can this save a considerable amount of time
when solving least squares problems but the algorithm is also very
easy to implement.

∗osse.olsson@gmail.com
†tommy.ivarsson@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289947753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1
1.1 Motivation and overview . 1
1.2 Preliminaries and notation . 1

2 Research 3
2.1 Least squares . 3
2.2 Solving large systems computationally 3

2.2.1 QR Factorization algorithms 4
2.3 The Householder reflection algorithm 4

2.3.1 Calculating H1A and H1b̄ 5
2.3.2 Calculating H2H1A and H2H1b̄ 6
2.3.3 Calculating Hk . . . H1A and Hk . . . H1b̄ 8
2.3.4 The value wk . 10

2.4 The Recycling Householder Algorithm 10
2.4.1 MATLAB implementation 12
2.4.2 Add rows . 13
2.4.3 Delete rows . 14
2.4.4 Add columns . 14
2.4.5 Delete columns . 15
2.4.6 Change elements in A 17
2.4.7 Taking advantage of sparsity 17
2.4.8 Limitations . 18

2.5 Testing the algorithm . 18
2.5.1 Testing the relative error 18
2.5.2 Testing the numerical stability 19

2.6 Previous work . 22
2.6.1 Time complexity . 22
2.6.2 Memory consumption 23
2.6.3 Ease of implementation 23

3 Conclusion 25

4 Future topics 26

1 INTRODUCTION

1 Introduction

If everything seems under
control, you’re not going fast
enough.

Mario Andretti

1.1 Motivation and overview

Schoolbook examples of algorithms that solve systems of equations typi-
cally have the time complexity O

(
n3
)
. In fact the fastest known algorithm,

Williams algorithm, is O
(
n2.3727

)
[8, p. 1]. In other words, big systems cause

big problems in terms of computation times.
Let us assume that we, in the general case, can not go any faster than

Williams. Under this assumption one could still look at specific cases for
which a faster solution may be found.

Imagine we have just solved system S1 and want to add or delete rows
to or from it, creating system S2. Could we use the structures we created
solving S1 to speed up the process of solving S2?

In mathematical terms, assume the existence of a solution to the linear
system Ax̄ = b, with A ∈ Rn×m where n is very large. Can we under this
assumption minimize the computations required to solve the new system with
our modified A?

1.2 Preliminaries and notation

• A: Upper-case letters describe matrices.

• A[i, j]: Row i, column j of matrix A.

• A[i : j, k : l]: The submatrix created from row i to and including j and
column k to and including l of matrix A.

• ai,j: Element i, j of a matrix.

• ā∗,j: Column j of a matrix.

• āi,∗: Row i of a matrix.

Oscar Olsson, Tommy Ivarsson Page 1

1 INTRODUCTION

• a: Lower-case letters describe scalars.

• ā: Lower-case letters with a bar describe vectors.

• AT or āT: Superscript T describes that the entity is transposed.

Oscar Olsson, Tommy Ivarsson Page 2

2 RESEARCH

2 Research

If we knew what it was we were
doing, it would not be called
research, would it?

Albert Einstein

2.1 Least squares

The standard approach to approximate a solution to an overdetermined sys-
tem is the least squares method. The name of the method comes from the
fact that it minimizes the sum of the errors squared in the results of every
equation.

Overdetermined systems are everywhere. With this in mind, one could
quite easily imagine a machine in the real world that depends on the solution
to such a system to operate. A dependency on such a system would likely
be due to the system describing the real world to the machine in one way or
another. Looking at it this way the overdetermined system becomes a log of
reality.

Our machine would require updates of what is happening in the real
world, however it is likely that the reaction of the machine does not only
depend on the update but also on the previous state. Obviously we would
not want to solve the entire system again. What we would like to do is
somehow use the previous calculations in order to get the solution to the
updated system faster than if we solved the new system from scratch.

These things considered, we chose to concentrate our efforts on solving
least squares problems that have been slightly modified.

2.2 Solving large systems computationally

Computationally solving systems of equations using traditional methods could
introduce huge errors if the matrices used in the calculations are illcondi-
tioned. The standard solution to this problem is using the QR Factorization,
A = QR. Q is an orthogonal matrix and R is upper triangular. This gives
us Ax̄ = b̄⇔ QRx̄ = b̄⇔ Rx̄ = QTb̄. As R is upper triangular we can then
solve the system using back substitution.

Oscar Olsson, Tommy Ivarsson Page 3

2 RESEARCH

2.2.1 QR Factorization algorithms

There are several algorithms available for QR Factorization. We were inter-
ested in a fast but numerically stable algorithm.

• Graham Schmidt
Not numerically stable [7, p. 224].

• Householder reflection
Requires fewer operations than Graham Schmidt and is more stable in
the sense of rounding errors and error amplification [7, p. 224].

• Givens rotations
Has numerical properties as favorable as those for Householder reflec-
tion [2, p. 217]. However, not as efficient as Householder reflection [4,
p. 3].

Under these considerations we chose to study the Householder reflection al-
gorithm.

2.3 The Householder reflection algorithm

We consider the general case where A is any n×m matrix,

A =


a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m

a3,1 a3,2 a3,3 . . . a3,m
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,n


With each iteration i of the algorithm we create the matrix Hi. After m
iterations we have R = Hm . . . H1A and QTb̄ = Hm . . . H1b̄. This enables us
to solve Rx̄ = QTb.

To construct Hi we let ūi be the i:th column excluding the first i − 1
elements of Hi−1 . . . H1A, that is ūi = (Hi−1 . . . H1A)[i : n, i]. Let wi =

− ūi[1]
|ūi[1]| |ūi|, the Euclidian distance of ūi with opposite sign of ūi[1], and v̄i =

w̄i − ūi, where,

Oscar Olsson, Tommy Ivarsson Page 4

2 RESEARCH

w̄i =


wi
0
...
0


The sign of wi is chosen to be opposite of the first element in ūi to prevent

possible loss of accuracy in case wi ≈ ūi[1]. Then Hi = I − 2 v̄v̄
T

v̄Tv̄
.

2.3.1 Calculating H1A and H1b̄

Our first iteration will create H1A and H1b̄. Here,

v̄1 =


w1 − a1,1

−a2,1
...

−an,1

 , w1 = ±

√√√√ n∑
1

a2
i,1

The projection matrix P is constructed by the matrix v̄1v̄
T
1 where each ele-

ment is divided by the scalar v̄T1 v̄1.

v̄T1 v̄1 = 2w1(w1 − a1,1)

v̄1v̄
T
1 =


(w1 − a1,1)2 −a2,1(w1 − a1,1) . . . −an,1(w1 − a1,1)
−a2,1(w1 − a1,1) a2

2,1 . . . a2,1an,1
...

...
. . .

...
−an,1(w1 − a1,1) an,1a2,1 . . . a2

n,1


As H1 = I−2P we find that each element of the matrix H1, and thereby also
H1A and H1b̄, can be determined individually using nothing but the elements
in A and w1. This means that we can find expressions for each element in
H1A and H1b̄, consequently eliminating the need to calculate any of the
structures leading up to this point in the traditional sense of the algorithm.

Oscar Olsson, Tommy Ivarsson Page 5

2 RESEARCH

The elements of H1A

H1A[i, j] =



0 if j = 1 and i > 1

ā∗,1 · ā∗,i
w1

if i = 1

ai,j +
ai,1(w1a1,j − ā∗,1 · ā∗,j)

w1(w1 − a1,1)
otherwise

The elements of H1b̄

H1b̄[i] =


ā∗,1 · ȳ∗
w1

if i = 1

yi +
ai,1(w1y1 − ā∗,1 · ȳ∗)

w1(w1 − a1,1)
otherwise

This first iteration leaves us with H1A and H1b̄. The first row and column
in H1A have now been made triangular and are thereby in their final correct
state. This means that one can view H1A[2 : n, 2 : m] as the non-triangular
submatrix. The first element in H1b̄ is now also in its final correct state.

2.3.2 Calculating H2H1A and H2H1b̄

Calculating H2 is almost as easy as reiterating the process to calculate H1

using H1A and H1b̄ instead of A and b̄ as the basis of our calculations.
However we will only be using the non-triangular part of H1A, H1A[2 : n, 2 :
m].

If one were to consider A in our first iteration as the initial input, the
input for the second iteration would be H1A[2 : n, 2 : m]. This means that
the output from our second iteration is a matrix with one less row and column
than H1. We call this matrix Ĥ2. Ĥ2 has a static relationship to H2 described
in (1).

Oscar Olsson, Tommy Ivarsson Page 6

2 RESEARCH

H2 =


1 0 . . . 0
0

Ĥ2
...
0

 (1)

Just as when we calculated H1, every element in Ĥ2 can be expressed using
only the elements in the input matrix, in this case H1A[2 : n, 2 : m], and wi.

w2 =

√√√√ n∑
i=2

H1A(i, 1)2

The elements of H2H1A

Let ti,j = H1A[i+ 1, j + 1].

H2H1A[i, j] =



0 if i > j and j ≤ 2

H1A[i, j] if i = 1

t̄∗,1 · t̄∗,j−1

w2

if i = 2 and j > 1

ti−1,j−1+

ti−1,1(w2t1,j−1 − t̄∗,1 · t̄∗,j−1)

w2(w2 − t1,1)
otherwise

t̄∗,q · t̄∗,k = ā∗,q+1 · ā∗,k+1 −
(ā∗,1 · ā∗,k+1)(ā∗,1 · ā∗,q+1)

(ā∗,1 · ā∗,1)

ā∗,1 · ā∗,1 = w2
1

Oscar Olsson, Tommy Ivarsson Page 7

2 RESEARCH

The elements of H2H1b̄

Let si = H1b̄[i+ 1] and ti,j = H1A[i+ 1, j + 1].

H2H1b̄ =


H1b̄[i] if i = 1
t̄∗,1 · s̄∗
w2

if i = 2

si−1 +
ti−1,1(w2s1 − t̄∗,1 · s̄∗)

w2(w2 − t1,1)
otherwise

t̄∗,k · s̄∗ = ā∗,k+1 · ȳ∗ −
ā∗,1 · ȳ∗
ā∗,1 · ā∗,1

ā∗,1 · ā∗,k+1

ā∗,1 · ā∗,1 = w2
1

The second row of H2H1A depends on the dot products between the second
column and all columns to its right in A, as well as the dot products between
the first column and all other columns in A. All of these dot products have
to be available at this point.

2.3.3 Calculating Hk . . . H1A and Hk . . . H1b̄

In order to arrive at the point where we have the structures required to solve
the system we will need m iterations, that is, as many iterations as A has
columns. Hk . . . H1A will with each iteration move towards its final triangular
state by making one row and one column triangular per iteration. Similarly
Hk . . . H1b̄ will gain one correct element per iteration before arriving at its
final state, after the last iteration, where every element is correct.

In short, iteration k will not change the first k − 1 rows in neither
Hk . . . H1A nor Hk . . . H1b̄ and will render the k:th row correct in both.

Oscar Olsson, Tommy Ivarsson Page 8

2 RESEARCH

The elements of Hk . . . H1A

Let

ti,j = Hk−1 . . . H1A[i+ k − 1, j + k − 1]

si,j = Hk−2 . . . H1A[i+ k − 2, j + k − 2]

then

Hk . . . H1A[i, j] =

0 if i > j and j ≤ k
Hk−1 . . . H1A[i, j] if i < k
t̄∗,1 · t̄∗,j−k+1

wk
if i = k and j ≥ k

ti−k+1,j−k+1

+
ti−k+1,1(wkt1,j−k+1 − t̄∗,1 · t̄∗,j−k+1)

wk(wk − t1,1)
otherwise

t̄∗,q · t̄∗,p = s̄∗,q+1 · s̄∗,p+1 − (s̄∗,1 · s̄∗,p+1)(s̄∗,1 · s̄∗,q+1)

Clearly we are very dependent on the dot products between all the columns
in A. During the k:th iteration, the k:th row in Hk . . . H1A will be calculated
from the dot products of the k:th column and all the columns to its right in
A.

Oscar Olsson, Tommy Ivarsson Page 9

2 RESEARCH

The elements of Hk . . . H1b̄

Let

si = Hk−1 . . . H1b̄[i+ k − 1]

µi = Hk−2 . . . H1b̄[i+ k − 2]

ti,j = Hk−1 . . . H1A[i+ k − 1, j + k − 1]

γi,j = Hk−2 . . . H1A[i+ k − 2, j + k − 2]

then

Hk . . . H1b̄ =


Hk−1 . . . H1b̄[i] if i < k
t̄∗,1 · s̄∗
wk

if i = k

si−1 +
ti−1,1(wks1 − t̄∗,1 · s̄∗)

wk(wk − t1,1)
otherwise

t̄∗,p · s̄∗ = γ̄∗,p+1 · µ̄∗ − (γ̄∗,1 · µ̄∗)(γ̄∗,1 · γ̄∗,p+1)

When k = m we have reached the point where we have calculated QTb̄ =
Hm . . . H1b̄ and R = Hm . . . H1A. The system can now easily be solved using
the equation Rx̄ = QTb̄ and back substitution.

2.3.4 The value wk

It may be apparent to the reader that wk has no effect on the exact solution to
the system. As can be seen in Hk . . . H1A and Hk . . . H1b̄ each row is divided
by wk in both matrices so this does not affect the equality and therefore does
not affect the solution. However, wk affects the numerical properties of back
substitution.

2.4 The Recycling Householder Algorithm

The algorithm will be expressed as matrix-vector operations. This not only
lets us express it neatly, which improves readability, but also has the beautiful
consequence that easier implementation.

Furthermore, in yet another attempt to improve readability, we redefine
addition and subtraction between matrices which have differing dimensions.

Oscar Olsson, Tommy Ivarsson Page 10

2 RESEARCH

When such a situation arises it will be implied that the smaller matrix be
padded with zeros on the upper and left side until the dimensions of both
matrices agree.

The algorithm, expressed as matrix operations

Define U(M) as the upper triangular part of M , including the diagonal,
and Ik(c) as the identity matrix with the k:th diagonal element replaced
by c and let

G1 = I1(
1

√
ā∗,1 · ā∗,1

)U(ATA)

T1 = I1(
1

√
ā∗,1 · ā∗,1

)ATb

v̄k = Gk[k, (k + 1) : m].

Then

Gk = Ik(
1√

Gk−1[k, k]−Gk−1[k − 1, k]2
)(Gk−1 − U(v̄Tk−1v̄k−1))

Tk = Ik(
1√

Gk−1[k, k]−Gk−1[k − 1, k]2
)(Tk−1 − Tk−1[k − 1]v̄Tk−1)

R = Gm

QTb̄ = Tm

NOTE: Gk−1[k, k] − Gk−1[k − 1, k]2 = Gk[k, k] and multiplying with
Ik(

1
c
) is equivalent to dividing each element in row k with the element c.

Expressing the algorithm this way makes it clear that it has two distinct
parts:

1. calculation of the basis for the factorization, G1, and

2. factorization of the basis.

Calculating the dot products, clearly the most computationally heavy part of
the algorithm, takes place during the first part. Every step thereafter relies

Oscar Olsson, Tommy Ivarsson Page 11

2 RESEARCH

upon them. This means that by saving them we can update them easily if we
add or delete rows from the system. This lets us bypass having to calculate
the dot products from scratch, thereby massively reducing the amount of
computations required to solve the new system.

2.4.1 MATLAB implementation

Listing 1: First part of algorithm

function [G0,T0] = adaptiveqr_prepare(A, b)
G0 = triu(A’*A);
T0 = A’*b;

end

Listing 2: Second part of algorithm

function [R,d] = adaptiveqr_factor(R, d, varargin)
[m,˜] = size(R);
if nargin > 2

m0 = varargin{1};
else

[R,d] = finalize_row(R, d, 1);
m0 = 2;

end
% If starting row in greater than 2, perform facotrization

related to the
% starting row and below done in the iterations 2 to the

starting row index
for k = 2:(m0-1)

[R,d] = eliminate_row(R, d, k, m0, m);
end
% Perform the factorization from the starting row
for k = m0:m

[R,d] = eliminate_row(R, d, k, k, m);
[R,d] = finalize_row(R, d, k);

end
end

function [R,d] = eliminate_row(R, d, k, col, m)
Gr = R(k-1,col:m);
d(col:m,1) = d(col:m,1) - (d(k-1).*Gr’);
R(col:m,col:m) = R(col:m,col:m) - triu(Gr’*Gr);

end

Oscar Olsson, Tommy Ivarsson Page 12

2 RESEARCH

function [R,d] = finalize_row(R, d, k)
w = sqrt(R(k,k));
R(k,:) = R(k,:)./w;
d(k) = d(k)/w;

end

Listing 3: Solve system given first part

function [x, R, d] = adaptiveqr_solve(G0, T0)
[R,d] = adaptiveqr_factor(G0,T0);
x = R\d;

end

The prepare-function completes in nm2 + 3nm − m2 − 3m
2
⇒ O

(
nm2

)
operations, factor requires m3

3
+ m2

2
+ m

6
⇒ O

(
m3
)
, a complete solution has

the complexity O
(
nm2 + m3

)
, where n is the number of rows and m is the

number of columns.

2.4.2 Add rows

When adding rows, one would simply add the dot products of the update to
the existing dot products. This implies that the dot products of a previous
solution, G1 and T1, must be available.

Adding rows to a least squares system



Â =

[
A

Aδ

]

b̂ =

[
b

bδ

] ⇒
{
ÂTÂ = ATA+ AT

δAδ

ÂTb̂ = ATb+ AT
δ bδ

(2)

Listing 4: Add rows to first part

function [G0,T0] = adaptiveqr_add_rows(G0, T0, Ahat, Bhat)

Oscar Olsson, Tommy Ivarsson Page 13

2 RESEARCH

G0 = G0 + triu(Ahat’*Ahat);
T0 = T0 + Ahat’*Bhat;

end

Adding another p rows to the system would only require pm2 + 3pm −
m2

2
⇒ O

(
pm2

)
additional computations.

This function only replaces the prepare-function. The rest of the solve-
function still requires O

(
m3
)

calculations.

2.4.3 Delete rows

Deleting rows works similarly to adding rows. However, in this case, the dot
products are instead subtracted from the original dot products.

Deleting rows from a least squares system



A =

[
Â

Aδ

]

b =

[
b̂

bδ

] ⇒
{
ÂTÂ = ATA− AT

δAδ

ÂTb̂ = ATb− AT
δ bδ

(3)

Listing 5: Delete rows from first part

function [G0, T0] = adaptiveqr_delete_rows(G0, T0, a, b)
G0 = G0 - triu(a’*a);
T0 = T0 - a’*b;

end

2.4.4 Add columns

Adding another p columns to the n×m matrix A requires pm+ p2 new dot
products, but no previous dot product has to be updated.

Oscar Olsson, Tommy Ivarsson Page 14

2 RESEARCH

Adding columns to a least squares system

Â =
[
A Aδ

]
⇒



ÂTÂ =

[
ATA ATAδ

AT
δA AT

δAδ

]

ÂTb =

[
ATb

AT
δ b

] (4)

Listing 6: Add columns to first part

function [G0,T0,A] = adaptiveqr_add_columns(G0,T0,A,b,cols)
[n,m] = size(A);
[˜,p] = size(cols);
G0(:,m+1:m+p) = A’*cols;
G0(m+1:m+p,m+1:m+p) = triu(cols’*cols);
T0(m+1:m+p) = cols’*b;
A(:,m+1:m+p) = cols;

end

The time complexity of this algorithm is O
(
np(m+ p)

)
, compared to the

prepare-function, which has a time complexity of O
(
n(m+ p)2

)
.

2.4.5 Delete columns

Deleting p columns is simply a matter of removing all dot products related
to any of the deleted columns. More specifically, deleting the k:th column
is accomplished by removing the k:th column and the k:th row in G0. This
operation depends on the implementation of the matrix but the worst case
is O

(
(m − k)2

)
as every column to the right of the k:th column, and every

row below the k:th row must be realigned. Another O
(
(m− p)3

)
operations

are required to perform the factorization.

Oscar Olsson, Tommy Ivarsson Page 15

2 RESEARCH

Deleting columns from a least squares system


A =

[
Â1 Aδ Â2

]
Â =

[
Â1 Â2

] ⇒



ÂTÂ =

[
ÂT

1 Â1 ÂT
1 Â2

ÂT
2 Â1 ÂT

2 Â2

]

ÂTb =

[
ÂT

1 b

ÂT
2 b

] (5)

(6)

Removing column i from A is equivalent to removing column i and row
i from ATA. No new elements have to be calculated.

Listing 7: Delete columns from first and second part

function [G0, T0] = adaptiveqr_delete_columns(G0, T0, cols)
G0(cols,:)=[];
G0(:,cols)=[];
T0(cols)=[];

end

A more efficient but still easily implemented algorithm would be to remove
the k:th column and row from R and recalculating the elements below the
k:th row.

Listing 8: Delete columns from first and second part

function [R, d, G0, T0] = adaptiveqr_delete_columns2(G0, T0, R
, d, cols)

[G0, T0] = adaptiveqr_delete_columns(G0, T0, cols);
[m,˜] = size(G0);
R(cols,:)=[];
R(:,cols)=[];
d(cols)=[];
m0 = min(cols);
R(m0:m,m0:m) = G0(m0:m,m0:m);
d(m0:m) = T0(m0:m);
[R,d] = adaptiveqr_factor(R,d,m0);

end

Oscar Olsson, Tommy Ivarsson Page 16

2 RESEARCH

This algorithm requires O
(
m2 + (m− k − p)3

)
with k being the index of

the leftmost deleted column.

2.4.6 Change elements in A

If a few elements in A are changed, the dot products would have to be recal-
culated. Each dot product with a changed column is added to the difference
(ai,j − âi,j)ai,k, where i is the column with a changed element.

Listing 9: Changing elements in A

function [G0, T0] = change_elem(row, col, new_e, A, B)
[˜,m] = size(old_row)
diff_e = new_e - A(row,col);
for c = 1:m

if c <= col
G0(c,col) = G0(c,col) + diff_e*A(row,c);

else
G0(col,c) = G0(col,c) + diff_e*A(row,c);

end
end
T0(col) = T0(col) + diff_e*B(row);

This would require O
(
pm
)

calculations for p changed elements. The algo-
rithm actually only requires the rows from A and b̄ which are affected by the
change but for readability we included the full matrices.

2.4.7 Taking advantage of sparsity

Sparsity in A could be considered in the calculation of each dot product. For
example, adding a row with only one element would only require recalculation
of the dot product with that column and itself.

Adding a diagonal block to A,

Â =


A

0 . . . 0
...

...
...

0 . . . 0
0 . . . 0

C...
...

...
0 . . . 0



Oscar Olsson, Tommy Ivarsson Page 17

2 RESEARCH

would not require the previous dot product to be recalculated, however the
dot products with the new columns would have to be calculated. For a q× p
matrix, the number of operations to compute the dot products would be
O
(
qp2
)
.

2.4.8 Limitations

As the algorithm depends on the dot products of all the columns in A a very
large representation of floating point numbers might be required. The dot
product of any two columns, k and l, is limited by |āT∗,kā∗,l| ≤ ||A||2. The

Cauchy-Schwarz inequality states that |vTu| ≤ ||v|| · ||u|| for any vectors u
and v. Furthermore, ā∗,k = Aēk where ā∗,k is the k:th column of A and ek is
the k:th unit vector. This implies the inequality ||ā∗,k|| ≤ ||A|| · ||ēk|| with
||ēk|| = 1 which gives ||ā∗,k|| · ||ā∗,l|| ≤ ||A||2.

The above stated limitation might only become a problem if ||A||2 is
larger than the maximum floating point value on the machine.

2.5 Testing the algorithm

The typical approach to testing an algorithm would be to run the algorithm
for different inputs and compare our results to the correct results. However
this would require specific input which could lead to biased results.

Instead we test specific characteristics of the solution which can be deter-
mined by the input. This enables us to generate random input which avoids
biased test results.

2.5.1 Testing the relative error

1. Generate random A with condition number κ ≤ 10.

2. Generate random x̄ with ||x̄|| = 1.

3. Compute b̄ = Ax̄.

4. Solve Ax̂ = b̄ for x̂.

5. Compute δb̄ = Ax̂− b̄.

6. Check that ||x̂− x̄|| ≤ κ ||δb̄||||b̄|| .

Oscar Olsson, Tommy Ivarsson Page 18

2 RESEARCH

We ran this test on matrices where A ∈ Rn×n and n = [102 . . . 103] in steps of
102. Each size tested with 1000 different matrices. As can be seen in Figure

1, ||x̂− x̄|| was strictly smaller than κ ||δb̄||||b̄|| .

Listing 10: Testing the relative error

function [result] = test_relative_error()
result = [];
nbr_tests = 1000;
cond = 10;
rnd_space = 1000;
for n = 100:100:1000

fprintf(’%d: ’, n);
for i = 1:nbr_tests

% Generate As with K <= 10
A = randnCond(n,n,cond,rnd_space);

% Generate x with norm(x) = 1
x = rand(n,1)*rnd_space - rnd_space/2;
x = x/norm(x);

% Compute b = Ax
b = A*x;

% Compute delta_b = A*tilde_x-b
AQR = AdaptiveQR(A,b);
[sol_x,˜,˜] = AQR.solve();
delta_b = A * sol_x - b;

% norm(tilde_x - x) <= K*norm(delta_b)/norm(b)
result = [result; n norm(sol_x - x) cond * norm(

delta_b) / norm(b)];
fprintf(’.’);

end
fprintf(’\n’);

end

2.5.2 Testing the numerical stability

Testing the numerical stability is far from trivial. To capture any numerical
instability in the algorithm we must first ensure nothing but the algorithm
affects the result, hence, well conditioned matrices are required. If we were

Oscar Olsson, Tommy Ivarsson Page 19

2 RESEARCH

Figure 1: The difference between ||x̂− x̄|| and κ ||δb̄||||b̄|| .

Oscar Olsson, Tommy Ivarsson Page 20

2 RESEARCH

to solve random well conditioned systems, we would expect random solutions
satisfying x̄ = A−1b̄. However computing A−1b̄ might introduce errors and
reduce the certainty of the test. Instead, if we generate A with ||A−1|| = 1
and b̄ with ||b̄|| = 1, we could test the algorithm by checking the constraint
||x̄|| ≤ 1. If ||x̄|| ever becomes larger than 1 the algorithm suffers from error
magnification. However, for a given A and b̄, the inequality ||x̄|| ≤ 1 might
hold even though the error is magnified. In fact, equality is reached when b̄ is
aligned with the signular vector of A corresponding to the smallest singular
value. This is not likely to occur for a single choice of A and b̄, but generating
several b̄’s for each A and testing with several A’s would increase the chance
of hitting such a b̄.

1. Generate random A with ||A−1|| = 1.

2. Generate random b̄ with ||b̄|| = 1.

3. Solve Ax̄ = b̄ for x̄ with our algorithm.

4. Check that ||x̄|| = ||A−1b̄|| ≤ ||A−1|| · ||b̄|| ≤ 1.

This test was run with 1000 different A ∈ R100×100. Each A was tested with
1000 different b̄ vectors. The difference ||x̄|| − 1 was plotted, see Figure 2.

The largest error encountered in the test was maxi εi = 17εmach ≈ 1.89 ·
10−15 < 2 · 10−15, εi = | ||xi||− 1 |. This is within our accepted error bounds.
Only 0.1567% of the errors were larger than 10−15.

Listing 11: Testing the delta space

function [result] = test_delta_space(test_sizes,
tests_per_size)

rnd_space = 1000;
result = [];
for n = test_sizes

fprintf(’n=%d’, n);
A = randnCond(n,n,1,rnd_space);
for i = 1:tests_per_size

B = randnCond(n,1,1,rnd_space);
AQR = AdaptiveQR(A,B);
[x,˜,˜] = AQR.solve();
xn = norm(x);
bn = norm(B);
result = [result; n xn bn];
fprintf(’.’);

Oscar Olsson, Tommy Ivarsson Page 21

2 RESEARCH

end
fprintf(’\n’);

end

Figure 2: The difference ||x̄|| − 1 for each test, plotted with dots. The y-axis
represents the index of the different A matrices. For each index 1000 dots are
plotted, one for each b̄ vector. ||x̄|| − 1 should always be 0, which is not the
case. However, the distance from 0 is within accepted error bounds which
implies success.

2.6 Previous work

In 2008 Sven Hammarling and Craig Lucas set out to solve the same problem
but ended up finding a different solution [4]. They too use the QR Factoriza-
tion of the system. However, instead of updating intermediate results, they
update the final factorization.

2.6.1 Time complexity

The time complexity of both algorithms depend on which operation one
wants to execute, see Table 1 where we compare the time complexity of
Hammarling/Lucas to that of our algorithm.

Hammarling/Lucas outperform Olsson/Ivarsson in all mentioned updates.
Most notable is the growth rate m3 in Olsson/Ivarsson. However, this is neg-
ligable in comparison to the other growth rates.

Oscar Olsson, Tommy Ivarsson Page 22

2 RESEARCH

Update Hammarling/Lucas Olsson/Ivarsson Note
±p rows O

(
m2p

)
O
(
m2p+m3

)
p� n

+p cols O
(
nmp

)
O
(
nmp+ np2 +m3

)
p� m

−p cols O
(
mp(m− p− k) + p3

)
O
(
m2 + (m− k − p)3

)
p� m

Table 1: Time complexity of updating with Hammarling/Lucas compared
to Olsson/Ivarsson. When deleting columns, k is the left most index of the
removed columns. With A ∈ Rn×m and m� n.

2.6.2 Memory consumption

Another interesting aspect is the memory consumption, see table 2 where we
compare the memory consumption.

Update Hammarling/Lucas Olsson/Ivarsson Note
+p rows O

(
m2 +mp

)
O
(
m2 +mp

)
p� n

−p rows O
(
m2
)

O
(
m2 +mp

)
p� n

+p cols O
(
m2 + np

)
O
(
nm+ np+m2

)
p� m

−p cols O
(
m2
)

O
(
m2
)

p� m

Table 2: Memory consumption of updating with Hammarling/Lucas com-
pared to Olsson/Ivarsson. With A ∈ Rn×m and m� n.

Hammarling/Lucas require less than or equal memory compared to Olsson/I-
varsson. The largest difference is found when adding columns.

2.6.3 Ease of implementation

How easy an algorithm is to implement is of course a subjective matter. Not
only does it depend on which problem one is solving but it also depends on
who is performing the implementation. Typically one would try to consider
how complicated the structures and operations in the algorithm are. One
could also look at the cyclomatic complexity and the number of lines of
code.

MATLAB lets the programmer express an algorithm in ways very close
to those typically used in mathematics. Therefore many mathematical algo-
rithms, regardless of complicated structures and operations, are not difficult
to write in MATLAB. This is true as the language MATLAB uses was de-
signed specifically for mathematics. However, if one must use a programming

Oscar Olsson, Tommy Ivarsson Page 23

2 RESEARCH

language which was not designed for mathematics the case might be com-
pletely different.

Our algorithm uses far less complicated structures and operations than
Hammarling/Lucas and can also be implemented using fewer lines of code.
Furthermore our cyclomatic complexity is lower. Under these considerations
we would like to argue that our algorithm is easier to implement. Perhaps
not much so using MATLAB, but very much so using more traditional pro-
gramming languages like C/C++.

Oscar Olsson, Tommy Ivarsson Page 24

3 CONCLUSION

3 Conclusion

I think and think for months
and years. Ninety-nine times,
the conclusion is false. The
hundredth time I am right.

Albert Einstein

The benefits of our solution are most apparent when updating rows in
least squares problems. If p is the number of rows we want to add or delete,
and m is the number of columns in the system, our time complexity for
this operation is O

(
pm2 + m3

)
. At first glance this may not look too good.

However, considering that the least squares problem in general uses very
few columns, m becomes insignificant and thereby one could argue a time
complexity closer to O

(
p
)
. In other words, we update a solution in time

linearly proportional to the number of altered rows.
In fact, whilst not as fast, our algorithm lets us make almost any type of

modification to the original system, and does so with increased performance
compared to solving the new system from scratch. As our time complexities
are all heavily dependent on m this is of course not true for systems with a
square or nearly square matrix.

Yet another argument for using our algorithm when updating least squares
problems is memory consumption. Adding or deleting rows does not require
any knowledge of the individual elements in A. All we need is the dot prod-
ucts from the previous solution and the dot products from the matrix formed
by the rows we are adding or deleting. Depending on the size of A this could
significantly reduce the amount of memory our algorithm requires.

A somewhat beautiful consequence of the minimal memory consumption
is that we could theoretically solve systems where n has any size by simply
reading a few rows at a time and adding their dot products to the existing dot
products. We would never have to keep a huge A-matrix in memory. How-
ever, in practice we might run into the problem of saving huge dot products
efficiently.

Unfortunately the operations of adding or deleting columns, or changing
a single element in A, all require access to individual elements in A.

Analysing our results, it becomes apparent that what we have found is
in essence Gaussian elimination with a stabilisation factor w. Considering
all the effort which has been put into different issues surrounding Gaussian

Oscar Olsson, Tommy Ivarsson Page 25

4 FUTURE TOPICS

elimination, a few examples being the research of the numerical stability [5],
LU-factorization [2, p. 94], and the overall speed [3], it would not be unrea-
sonable to assume that our algorithm could benefit from existing research.

Furthermore, if the conditions are such that one knows that the systems
in question are well conditioned one could replace the Gaussian elimination
and the stabilisation factor with a faster algorithm, for example Strassen [6],
Coppersmith-Winograd [1] or Williams algorithm [8].

Our work has been concentrated around general systems. If we were
instead to assume a positive definite system we could perhaps exchange the
QR Factorization for something like the Cholesky decomposition which could
increase our performance.

Whilst we have not even tried to break the Williams barrier we have found
a specific case where our algorithm allows for a faster solution than taking
the general approach. The fact that using the specifics to our favor had such
an impact will have serious consequences for how we approach problems in
the future.

4 Future topics

It is always wise to look ahead,
but difficult to look further than
you can see.

Winston Churchill

As our solution depends on having the factorization of a related system
available we assumed the knowledge that the systems in question were in fact
very much alike. Clearly this is not always the case. One could very easily
end up in a situation where it is not known if the new system is related to a
previously solved system or not.

Consider a particular software that solves linear systems of equations.
How would that software determine if a system has been solved previously
unless the systems are solved succesively? Also, there could be cases in which
a user wants to solve a system and is not aware that the system is related to
a previously solved system.

Simply comparing systems would take too long but if there was an effi-
cient way to determine whether two matrices are related or not the areas of
application for our solution would widen immensely.

Oscar Olsson, Tommy Ivarsson Page 26

4 FUTURE TOPICS

We have assumed a general system, that is, we have not made any as-
sumptions about the systems being, for example, positive-definite. However,
if we could assume constraints on the input there would be room to inves-
tigate other methods to factorize the system. For example, if one made the
assumption that the systems are positive-definite, faster factorizations, as
the Cholesky decomposition, could be considered.

It would be very interesting to find out if it is possible to use our algorithm
to solve least squares problems where n is so large that we can not fit A in
memory.

One could also look at using the algorithm and general idea for solving
other types of problems. Could perhaps FFT of a continuous signal benefit
from our work? At least DFT uses a matrix which grows deterministically
and FFT is just a smart way of breaking DFT into subproblems [7, p. 475].

In fact one could quite possibly be able to use an adaptation of our work
in many cases where a new solution is dependent on previously calculated
dot products.

Oscar Olsson, Tommy Ivarsson Page 27

REFERENCES

References

[1] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, pages 1–6, New York, NY, USA,
1987. ACM.

[2] Gene H. Golub et. al. Matrix Computations. The Johns Hopkins Univer-
sity Press, Stanford University, 1996.

[3] I. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination
with partial pivoting for matrices with displacement structure, 1995.

[4] Sven Hammarling and Craig Lucas. Updating the QR Factorization and
the least squares problem. Unpublished manuscript, 2008.

[5] Nicholas J. Higham. Gaussian elimination. Wiley Interdisciplinary Re-
views: Computational Statistics, 3(3):230–238, 2011.

[6] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna
Tsao, and Thomas Turnbull. Implementation of Strassen’s algorithm for
matrix multiplication. In In Proceedings of Supercomputing ’96, pages
9–6, 1996.

[7] Timothy Sauer. Numerical Analysis. Pearson Education Inc., George
Mason University, 2006.

[8] Virginia Vassilevska Williams. Multiplying matrices faster than
coppersmith-winograd. In Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’12, pages 887–898, New
York, NY, USA, 2012. ACM.

Oscar Olsson, Tommy Ivarsson Page 28

