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Abstract

The arc of progression in the most common neurological affliction known as Alzheimer’s Disease
(AD), is characterized by a prodromal stage of Mild Cognitive Impairment (MCI). MCI subjects
have traditionally been diagnosed with a battery of cognitive tests, but in recent times two good
biomarker predictors of incipient AD have been identified. The cerebrospinal fluid levels of the
protein residues amyloid-beta and phosphorylated tau can be quantified and directly relate to the
imprint of associated pathologies in the brain. This work aims to elucidate the impact of tau- and
amyloid-related pathologies on the functional networks of the brain, as gauged by a resting-state fMRI
connectivity analysis. In this context, we aim to identify optimal model parameters that yield maximal
contrast between subspecies of MCI and healthy controls, such as the most sensitive frequency interval
for the Blood Oxygenation Level Dependent (BOLD) time-series and the resolution of whole-brain
parcellation schemes. The connectivity analysis exposes the impact of biomarker pathology and
outlines a tentative progression pattern, relating the decline of functional connectivity to increasingly
pathological levels of biomarkers. A progression hypothesisis proposed, reviewing pattern progression
in the light of neuronal communication breakdown and phase-lag. Furthermore, failure of key hubs
are identified using graph theoretical centrality measures and the relative group separations with
connectivity pattern is evaluated by means of support-vector machines.

Relative healthy controls, MCI with non-pathological CSF levels of biomarkers exhibit a widespread
pattern of reduced connectivity, likely due to a mix many dementia subtypes. MCI subjects with
pathological amyloid CSF levels but normal values of tau, has a large set of failing links converg-
ing on crucial network hubs: thalamus, caudate nucleus and putamen, and are additionally affected
in key regions such as hippocampus. This finding supports the view of Alzheimer’s progression in
terms of global disconnection syndrome by failing hub regions. Furthermore, these patterns are man-
ifested in relevant graph theoretical centrality measures. MCI with pathological levels of both CSF
biomarkers produce the strongest contrast relative healthy controls, involving reduced connectivity
beteween parietal and frontal areas, but also implicating areas linked with cognitive decline, such as
hippocampus and posterior cingulate cortex. The similarity of this contrast to that of controls vs.
Alzheimer’s subjects, indicates the presence of a functional progression pattern with two biomarker
levels. Our findings merit further investigation of the biomarker progression line using larger cohorts
further stratified with cognitive test scores.
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Resting-state fMRI som markör för progression fr̊an mild kognitiv störning till Alzheimers sjukdom

Alzheimers är den vanligaste neurologiska sjukdomen som år 2006 uppskattades p̊averka 27 miljoner av
världspopulationen. Sannolikt kommer mer än var hundrade person att vara drabbad år 2050. B̊ade EU
och USA har nyligen initierat forskningsprogram där stora resurser satsas p̊a hjärnforskning. Kartläggning
av ’the human connectome’ (samlingsnamn för olika sätt att karakterisera hjärnans strukturella och
funktionella arkitektur) har likställts med the human genome project. I satsningen ing̊ar en central del
som syftar till att först̊a och behandla neurologiska åkommor som Parkinsons och Alzheimers sjukdom.

En nyckelroll i connectomeforskningen spelas av funktionell MR, med dess förm̊aga att avbilda hjär-
nans funktionella arkitektur, dvs den regionala, neuronala aktiviteten och funktionella kopplingar mellan
dessa regioner. De mönster av syresättning och tillflöde av oxygenerat blod som mäts med MR-kameran,
är direkt relaterade till neurologisk aktivitet och kan användas för att kartlägga hjärnans funktioner.
Dessa kartor ger ovärdelig information om hur specialiserade funktioner samspelar och integreras, men
kan även användas för att lokalisera dysfunktionella epicentra associerade med olika neuropatologier.

För att först̊a mönstrens betydelse, är det nödvändigt att dela in patientmaterialet i grupper som re-
flekterar sjukdomsgraden. I sammanhanget har tv̊a biomarkörer i form av proteinrester som manifesteras
i cerebrospinalvätskan visat sig användbara. Grovt förenklat, kan sjukdomsförloppet karakteriseras som
att CSF-niv̊an av den ena biomarkören niv̊a stiger under en längre tid, medan den andra i ett senare
skede stiger i rask takt med allt sämre kognition. CSF-niv̊aerna av dessa biomarkörer är därför mycket
användbara för att stratifiera patientmaterial med m̊alet att karakterisera tillhörande patologi.

Resting-state fMRI syftar p̊a att mätningen görs i fr̊anvaro av ett klassiskt fMRI paradigm. Paradig-
met best̊ar i vanliga fall av att patienten i kameran utför n̊agon uppgift som syftar till att aktivera specifika
hjärnregioner. I resting-state avbildning är instruktionerna till patienten betydligt enklare: Ligg still, slut
ögonen, tänk inte p̊a n̊agot speciellt, försök att inte somna. För patienter med kognitiv nedsättning kan
fr̊anvaron av klassiskt paradigm vara en stor fördel. I detta vilotillst̊and är hjärnan l̊angt ifr̊an inaktiv och
i fr̊anvaron av yttre stimuli stiger vi in i en introspektiv fas. fMRI visar att denna fas domineras av ett
nätverk som via viktiga nav integrerar minnen och intryck med planerande och exekutiva funktioner. Här
ing̊ar simuleringar av potentiella framtider och handlingsförlopp som fokuserar alla v̊ara intryck och min-
nen i jakten p̊a deras logiska slutsats. Den mönsterjonglerande hjärnan och dess remarkabla komplexitet
har vuxit fram p̊a en evolutionär tidsskala och ger oss en unik förm̊aga att förutsäga framtiden.

Under kontinuerlig mätning av den spontana syresättningen i resting-state, aktiveras omr̊aden som
är helt centrala för kognition. Resting-state fMRI har därmed en unik förm̊aga att karakterisera kognitiv
dysfunktion och ger oss en ovärderlig inblick i sjukdomsförloppet.

För närvarande existerar ingen behandling mot Alzheimers sjukdom och sk bromsmediciner (denna
nomenklatur kan ifr̊agasättas) behandlar symptom, inte den bakomliggande patologin. Deep brain stimu-
lation, dvs svaga elektriska pulser i nyckelomr̊aden, har visat sig användbar i behandlingen av Parkinsons.
Liknande metoder kan komma att användas i kampen mot Alzheimers och kräver detaljerad kunskap om
funktionella kopplingar och hur dessa p̊averkas, s̊a att rätt m̊altavla väljs för behandlingen.

För att en behandling ska bli framg̊angsrik, krävs även att sjukdomen upptäcks i sitt prodromala
stadie. Detta förstadie till Alzheimers, vilket karakteriseras av en mild kognitiv nedsättning, är fokus för
v̊ar studie. Vi undersöker hur olika niv̊aer av cerebrospinala biomarkörer relaterar till skillnader mellan
patienter med kognitiva sv̊arigheter och friska, åldersmatchde individer. Förhoppningen är att hitta
mönster som kan stärka diagnoser och behandlingsval, att särskilja individer som kommer att utveckla
Alzheimers sjukdom fr̊an de som förblir stabila, men även att erh̊alla en djupare först̊aelse för hur hjärnans
funktionella arkitektur rubbas av sjukdomen.
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1 Introduction

2 Pathology

2.1 Alzheimer’s disease and other dementias

Alzheimer’s disease (AD) is the single most common neurological disorder affecting some 27 million people
world-wide (2006) and is estimated to affect approximately 1.2% of the world population by 2050 [1].
In developed countries, the prevalence is estimated to 1.5% at 65, increasing to 30% at 80 years of age
[2]. There is presently no known cure or effective treatment of the neurodegenerative disorder, which
ultimately leads to death, as the autonomous nervous system fails to maintain vital functions. From the
time of diagnosis, the average survival period is 8 years [3].

The primary risk factor of AD is age, with the vast majority of subjects diagnosed above 65, although
exits an early onset subgroup with a genetic component, providing clues to the origins of the disease.
Aside from age, a family member with AD and specifically genetic predisposition in the presence of
the APOE ∗ E4 allele are among the few confirmed other risk factors [2]. The association of AD with
pathological levels of certain biomarkers manifested in the cerebrospinal fluid, is much stronger than with
any of the identified risk factors [4]. These biomarkers will be used to define our patient cohorts.

The prodromal stage of AD known as Mild Cognitive Impairment (MCI) is most often characterized
with a battery of cognitive tests. These subjects suffer a 4-6 times higher risk of developing AD (15%
within a year) [5].

There are many forms of dementia, with different neuropathological origins: Alzheimer’s disease,
dementia with Lewy bodies, frontotemporal dementia, and dementia following other diseases (e.g. AIDS)
[2]. These dementias may be mixed with some neuropathological overlap, greatly complicating the task
of identifying AD pathways. One of our subgroups contains subjects with an MCI diagnosis1, but with
non-pathological levels of known AD biomarkers in the cerebrospinal fluid. This often loosely defined
group likely contains several different dementias in addition to those with an AD endpoint.

Vascular dementia (10-50%, estimates vary greatly depending on markers employed) is the second most
frequent form of dementia, caused by impaired blood flow and oxygenation [2]. Frequently associated
with several small strokes, vascular dementia can be identified by visual inspection of anatomical images,
meaning that this subgroup could be partially eliminated by QA protocols. However, about 10% of all
dementias are mixed, predominantly thought to be a juxtaposition of vascular dementia and AD.

Lewy body dementia [7] is the third most common major form of dementia and is defined by a set of
distinctive symptoms, e.g. vivid hallucinations. The so-called Lewy bodies refers to deposits of the protein
alpha-synuclein, which can be found in both Alzheimer’s and Parkinson’s subjects, thus complicating
their diagnosis with multiple pathways. In the early stages of Lewy body dementia, symptoms are often
Parkinson’s-like with disrupted movement, but also overlaps with AD symptom’s in the form of memory
problems.

The MCI group with non-pathological AD biomarker levels will contain a plethora of different demen-
tias, making this group particularly difficult to interpret. The MCI group with pathological levels should
be screened from the aforementioned afflictions by virtue of appropriate biomarker limits, but we cannot
completely exclude mixed dementias contaminating our primary target group - the MCIs at high risk of
AD.

2.2 Cerebrospinal fluid biomarkers

In terms of neuropathology, two biomarkers are primarily used in gauging progression [8]:

1. Extracellular plaques composed of residues of the protein amyloid beta (aβ42).

2. Intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated tau-protein (pτ).

Both aβ and pτ can be measured in the CSF. Although these biomarkers have proven to be quite good
predictors of incipient AD [4], the neural health degeneration likely precedes their manifestation by some
time. Here, Resting-State (RS) fMRI could provide auxiliary power by imaging early changes in the
brain’s functional architecture.

The so-called senile-plaques form when amyloid-β protein aggregates in extracellular space [8]. The
amyloid protein itself originates in sequential cleaving of a precursor protein by the two proteolytic

1The diagnosis based on complaints of memory loss and cognitive decline, then verified by a neurologist who makes use
of cognitive tests, such as ADAS [6].
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enzymes β- and γ-secretase, involving precursors of different length, aβ40 − 43. The precise function of
amyloid-β is unknown, it likely has a multifunctional role making its activity difficult to map out [9]. The
presence of amyloid plaques leads to oxidative stress and it has been shown that amyloid peptides can
induce ion flux through holes in the lipid membranes, allowing calcium ions to enter [10] and disrupt the
ion balance. As the level of amyloid plaques increase in the brain, the CSF-levels of aβ42 decrease. The
genetic component of early-onset AD is linked with enzyme deficiencies, which has fueled the notion of
an amyloid pathway being central to AD. Senile-plaques increase naturally with age - a phenomenon not
necessarily accompanied by cognitive decline. The normally aging group forms a reasonably discernible
constellation of lower amyloid levels as gauged by PET2, which we make use of in the definition of our
biomarker cohorts below.

Whereas the amyloid protein is extracellular, the tau protein is manufactured inside the neuronal
cell in order to assemble microtubules and promote their structural stability [8, 11]. Amyloid- and
oligomer-induced toxicity cause a chain-reaction of tau hyperphosphorylization, whereby the proteins
release from the microtubuli and polymerize into helical filaments, leaving a destabilized microtubule
assembly, Formation of so-called NeuroFibrillary Tangles (NFTs) ultimately lead to neuronal cell death,
with a severe impact on gray matter integrity and functional connectivity.

There situation of identifying early onset of AD is complicated by the potential existence of several
pathways, with some debate regarding the importance of the amyloid levels. The appearance of high levels
of NFTs in neurons with correspondingly high pτ CSF-levels is at least partly caused by the amyloid
pathology. This is consistent with increased pτ as hallmark of a relatively late disease stage.

The amyloid has been hypothesized to be the main pathway leading to AD, a theory supported by
the presence of the gene for the amyloid precursor protein in chromosome 21 combined with the fact that
Down’s syndrome almost invariably leads to AD in later midlife [12]. In addition, one of the identified risk
factors involves the coding of apolipoprotein 4 (APOE4), which is a very poor enhancer of the amyloid
breakdown compared to other protein varieties of similar function [13].

Tau pathology is thought to be related to amyloid pathology, but leads to more direct neural cell
damage in formation of NFTs. This is hypothesized to occur in cascades, where pτ releases and then
pairs with other τ , effectively disintegrating the microtubuli structure and the cell’s vital transport system
[14].

Amyloid burden can be more accurately measured using PET amyloid tracers (i.e. Pittsburgh com-
pound B), exhibiting a spatial pattern overlapping with the nodes of the Default Mode Network (DMN
- the network of the brain which dominates resting-state activity) [15], in particular the Posterior Cin-
gulate Cortex (PCC). This overlap has added fuel to the hypothesis of an dominant amyloid pathway,
causing many studies to focus on DMN dysfunction as gauged by independent component analysis. Be-
cause amyloid deposits occur normally with age, there are individuals with high amyloid burden, but no
detectable cognitive deficits. Tau pathology on the other hand, more indicative of cognitive impairment,
seems to accumulate more in the limbic system [16]. Therefore, we would expect significant differences
in hippocampus, parahippocampal complex, amygdala, thalamic nuclei and cingulate gyrus.

The chances of a successful treatment critically hinge on early detection of prodromal AD and even
though these biomarkers are useful in categorizing subjects, their CSF manifestation is most likely pre-
ceded by an earlier phase of degeneration [8, 17]. RS fMRI has the potential to image early onset changes
to functional networks of the brain and could form an important part of the diagnostic toolbox. Ad-
ditionally, the spatial resolution of fMRI allows mapping epicenters of functional degeneration and how
these evolve with disease progression.

Ideally, a biomarker should be specific, identify the present progression stage and the following time-
course of degradation (allowing the physician to choose treatment strategy), and should also be useful
in assessment of any treatment (for a short list of various markers see Ref. [8]). Besides its spatial
resolution and ability to image functional networks, fMRI methods meet the latter criterion, as it can be
used to gauge the neural health at any instant. More ambitiously, if a functional connectivity degradation
evolution could be mapped out, a useful scale for assessing disease progression would be within reach.
Furthermore, CSF biomarkers require a spinal tap, whereas fMRI has the added advantage of being
non-invasive.

2Of course, the normal group may contain very early AD subjects - perhaps it is more precise to speak of a potentially
very slowly progressing group and a latter stage group in faster decline.
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2.3 Biomarker cohorts for fMRI

The groups defined here follow the perceived progression pattern in terms of CSF-biomarker levels,
ultimately reflecting incipient AD. Somewhat oversimplified, the current working hypothesis is that a
longer period of decreasing aβ42-levels in the CSF (with correspondingly increased senile plaque levels
and oxidative stress) eventually leads to NFT-formation and increased pτ -levels.

One may attempt to create cohorts for fMRI studies using CSF-levels of τ -protein rather than its
hyperphosphorylated state. Similarly, the levels of total τ (i.e. tτ = τ + pτ) can be used as a predictive
biomarker (see Fig. 1 (d-f)).

pτ and τ are closely related (see Fig. 1 (c)) and respective cohorts result in similar fMRI difference
patterns. Indeed, pτ and τ appear to be in an almost one-to-one correspondence, albeit with increasing
spread for greater concentrations. In what follows, we therefore choose to focus on Functional Connectivity
(FC) as a function of pτ , rather than related quantities. From a neurophysiological point of view, it also
makes more sense to focus on pτ , as this is the form of the protein most directly related to NFTs and
neuronal dysfunction.

We use two biomarker space partitions that are particularly illuminating with regard to FC as a
function of biomarker space (see Fig. 1 (a,b)), designed to elucidate the relative impact on FC of aβ/senile
plaques and pτ/NFT, respectively. Beyond the scope of the present study, one may additionally combine
biomarker data with various cognitive test scores.

For the purposes of mapping changes in functional connectivity with disease progression, we define
the following groups:

HC Healthy age-matched Controls (HC). At the time of writing, biomarker data for this group is
in the process of being collected. This means that some subjects with pathological levels of
biomarkers is likely to be present (better classified as Maβ or Mpτ below).3

M0 Patients diagnosed with MCI, who have non-pathological levels of biomarkers in their CSF:

aβ > 550 ng/l and pτ < 80 ng/l.

These subjects have a lower risk of progressing to AD, or are in very early stages of the disease.
This group likely contains a broader spectrum of MCI, as caused by e.g. incipient vascular or
Lewy body dementia.

Maβ Patients diagnosed with MCI, who have pathologically low levels of amyloid-β residues in
their CSF:

aβ < 550 ng/l and pτ < 80 ng/l.

These subjects have high levels of senile plaques and suffer a high risk of progressing to AD.

Mpτ Patients diagnosed with MCI, who have pathologically low levels aβ as well as high levels of
pτ in their CSF:

aβ < 550 ng/l and pτ > 80 ng/l.

These subjects have high levels of plaques/NFT and suffer a very high risk of progressing to
AD. They are presumably in the latter stages of disease progression.

AD Patients with confirmed Alzheimer’s Disease.

The exact M0 group composition is unknown and contain broad spectrum of MCI subjects. Although
AD is the statistically dominant dementia, M0 is potentially populated by several varieties (see 2.1).
However, the common occurrence (50-70%) of AD dementia implies that most of the M0 subjects are
likely to progress along this path.

The exact limits on biomarkers are somewhat arbitrary and in scrutinizing Fig. 1 (with clustering of
data in mind), it appears likely that a lower level of pτ < 70 ng/l would in fact capture pτ -pathology
equally well with better statistics in the high-pτ range, although emerging patterns would certainly be
very similar.

Refinements of biomarkers predictive power have been made [4] by means of the quota q = αβ/τ ,
which gives the slope of the dividing line that somewhat arbitrarily cuts through a densely populated

3Less likely and disruptive, some contamination by undiagnosed MCI subjects remains possible (better classified as group
M0)
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Figure 1: CSF biomarker space (aβ42− and τ -levels) for MCI subjects. The MCI groups are defined according
to relative disease progression in terms of their CSF biomarker levels (a, b). The choice of NFT-measure is not
critical as pτ and τ are closely related (c). The three different measures of neuronal dysfunction caused by NFT:
(d) pτ , (e) τ and (f) total tτ = pτ + τ .

region of low aβ/high pτ -subjects. Although quotas cutting diagonally in aβ− pτ space may have added
predictive power in terms of incipient AD, they do not add greatly to the understanding of qualitative
FC-pattern trends and will therefore not be used in this work.

At the time of writing4, there are 126 HC, 135 MCI and 8 AD5 subjects, after applying QA protocols
(see Subsec. 4.2). The partitions of biomarker space in Fig. 1 (a) and (b), result in 70 M0, 42 Maβ and
18 Mpτ . These groups will we compared amongst each other as indicated in Fig. 2.

Tab. 1 summarizes the groups examined in this paper. The groups do not differ from HC in terms
of age or gender (with the exception of the small AD group), and their main defining characteristic is
the CSF biomarker configuration. The common general cognitive test Mini-Mental Examination Score
(MMSE) does not differentiate the groups very well, but follows the same trend as the simpler ADAS 3
word recollection score with worse test scores as aβ drops, but no detectable change with increasing pτ .

4These numbers will increase to approximately 500 MCI and HC when acquisition period ends.
5Due to the very low number of AD subjects, any associated results should be interpreted with great caution. AD will

only be compared with HC.

Table 1: Characterization of the groups studied in terms of mean values (standard deviations). With
the exception of AD, the groups do not differ significantly in age or gender. The two columns following
CSF levels refer to a general cognitive test (MMSE, range 0-30, low is bad), and a word recollection score
(ADAS 3, range 0-10, low is good). Note that CSFs of HC have not been analyzed yet and that ADAS
3 was not performed for the 8 AD subjects.

Group Subjects Age [y] Sex (% female) pτ [ng/l] aβ42 [ng/l] MMSE ADAS 3

HC 126 71.1 (4.1) 0.55 - - 29.2 (0.9) 1.7 (1.7)
M0 70 70.3 (5.6) 0.52 45.8 (12.0) 729.1 (171.4) 28.1 (1.6) 4.1 (2.5)
Maβ 42 71.4 (4.8) 0.45 54.7 (16.0) 417.8 (165.2) 27.6 (1.8) 5.6 (2.7)
Mpτ 18 71.8 (5.3) 0.56 97.2 (18.6) 365.6 (76.5) 27.9 (1.4) 5.4 (2.6)
AD 8 75.9 (6.7) 0.75 101.6 (25.7) 321.0 (57.1) 19.0 (3.7) -
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3 THE RESTING STATE AND DEFAULT MODE NETWORK

Figure 2: Statistical testing scheme. Double arrows indicate group-wise comparisons.
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Figure 3: Biomarker cohort and HC comparison graphical map that will be used in data presentation.

Whereas all MCI groups have significantly worse test scores compared to HC (p < 0.01, one-tailed t-test),
there is only a trend-level reduction for M0 relative Mpτ and Maβ , but M0 has significantly better ADAS
3 than the other MCI.

Note that there is no reason to expect a natural partition in functional connectivity corresponding to
a given biomarker partition. Functional changes may manifest themselves uniquely in any given subject,
as may senile plaque distribution and NFT formation. Therefore our comparisons yield significant group-
level differences and should not be mistaken for an average individual, rather the combined contribution
of several individuals who may not even be optimally bundled by the biomarker dividing lines.

A useful map labeling the various tests for significant differences between biomarker-defined cohorts
and HC is shown in Fig. 3. Whenever a HC-biomarker cohort comparison is made, the corresponding
area of biomarker space will be indicated. When two biomarker cohorts are compared, the border between
the adjoining areas will be indicated.

3 The resting state and default mode network

Our networks represent functional connectivity maps of the human brain, calculated from the sponta-
neous oxygenation oscillations that occur during the so-called Resting-State (RS). These patterns are
not random, rather they represent a specific phase of brain activity that takes place in the absence of
external stimuli and tasks. The RS approach contrasts the customary fMRI experimental design [18], in
which a paradigm is defined and task execution is required to activate regions of interest relevant to the
hypothesis. Naturally, not requiring a patient with cognitive impairment to perform a specific task is
advantageous. It greatly simplifies the experimental design, reduces the risk of spurious effects, minimizes
the hazards of a bias introduced by paradigm design or even its experimental implementation.

On the other hand, we will always face difficulties related to individual RS variations, and some steps
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3 THE RESTING STATE AND DEFAULT MODE NETWORK

must be taken to maximize the probability of true RS imaging. Motion artifacts can become a severe
problem as a continuous signal is recorded. Clearly, external stimuli in terms of auditory, visual and
sensory input should be kept to an absolute minimum. The setup is exceedingly simple compared to
task-based imaging and we simply instruct patient to relax with eyes closed and not to think of anything
in particular during a six minute fMRI scan, recording the spontaneous BOLD signal.

What does the brain do during this mysterious resting-state period? The most consistent network
that forms the major component in an Independent Component Analysis (ICA), is the so-called Default
Mode Network (DMN) [19]. The DMN signal is remarkably consistent across subject during RS imaging
- a fundamental feature our minds, in which the absence of sensory input triggers important high-level
processing.

Areas involved in DMN are deactivated during task execution and are therefore often referred to as
task-negative. The current hypothesis around which consensus has crystallized, is that DMN represents
an introspective phase of sorting, combining and processing past experiences in an attempt form an apex
of logical conclusions. Therefore, the DMN processing generates a plan for the future, a best guess of
things to come, based on past experiences.

Fundamentally holistic by nature, the brain forms a new whole out of scattered parts, i.e. impressions
and experiences. Evolution has shaped the brain and its functional and structural architecture into a
remarkable machinery acutely tuned to predicting future events, providing us with better chances of
survival.

Functional connectivity analysis [19] indicates that DMN consists of several interacting subsystems.
For example, the medial temporal lobe provides memories for the medial prefrontal lobe to access in
simulations involving the self. Particularly important in the DMN function are integrating parts such
as the posterior cingulate cortex, which acts as a hub and coordinator between the subsystems. Failure
to integrate autobiographical memories with frontal executive control, leads to a catastrophic cognitive
decline and vulnerable hub regions has therefore the potential to cause a global disconnection syndrome.

Various neuropathological afflictions such as AD, MCI, Parkinson’s, fronto-temporal dementia has
been linked to a deficient DMN. Given improved imaging techniques of the future, one may conjecture
that RS patterns hold promise as a potentially universal neural health gauge.

As mentioned, the DMN has been identified by ICA methods. Let us say we are tasked with the
objective of analyzing the various sources of voices in a room full of people, given that a number of
microphones have been placed. The precursor of ICA, so-called Principal Component Analysis, will then
provide us with archetypes of voices that represent the largest variation in the data. Orthogonalizing
these, we can then extract independent components, that form orthogonal base vectors spanning the data-
space. Now, equate the voices in the room with neurons firing to produce voices in the head (recorded
in the form of oxygenation patterns) and equate the microphones with fMRI voxels, and the analogy is
complete.

ICA extracts independent components of the spontaneous resting-state signal, which, in a normal
person, should yield the DMN. ICA would therefore seem ideal as tool to analyze DMN deficiencies, but
the method several drawbacks that makes it ill suited for our problem.

Firstly, ICA tends to smear and smooth out group differences, reducing contrast and power[20].
Secondly, the method does not order the components found in a consistent way across subjects, meaning
that manual inspection is usually required to identify DMN. Such an approach is not feasible with
hundreds of subjects in the cohort. Furthermore, the limited set of DMN regions are far from the
only active regions during resting-state and functional connectivity breakdown in other regions would
therefore be missed.

It is also very tempting to perform a dimensionality reduction via PCA. Unfortunately, even though
the DMN is a fairly consistent signal, there is substantial variation in the resting-state activation across
subjects in the same cohort. Indeed, we can never be quite sure what goes on in a patients brain when
instructed to lie down, relax and thing of nothing in particular. Despite this individual variation, it is
possible to identify consistent group differences at a statistically significant level. It does however mean
that the pathological contrast generally does not lodge in the principal components.

In the context of our analysis, we use high-resolution ROIs with multiple anatomical tags derived
from an anatomical atlas [21]. To condense notation we let sup=superior, inf=inferior, med=medial,
post=posterior, ant=anterior and mid=middle. The anatomical labels corresponding to the task-negative
or DMN network [22] contain or are in close proximity to the following anatomical atlas labels [21]: frontal
sup L/R, frontal sup med L/R, cingulum ant L/R, cingulum post L/R, parahippocampal gyrus L/R,
angular L/R, temporal mid R and temporal inf L [23]. These labels are of special interest because many
studies have chosen to focus on DMN dysfunction associated with cognitive decline. We have instead
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chosen to focus on a whole-brain analysis of which the DMN forms a part.

4 fMRI

In this section we will give a cursory description to the steps leading up to the functional connectivity
analysis, from imaging of the Blood Oxygenation Level Dependent (BOLD) signal and the associated
MR sequences, through the numerous preprocessing steps leading up to the gray matter signal used in
connectivity analysis. Finally, we describe the implemented quality assurance protocols used to purge
the material of artifactual data.

Since these techniques are fairly standard and not the focus of this paper, the depth of information
will be limited. For a more in-depth description, the reader is referred to Ref. [18], the book on which
the review in this section is based.

4.1 BOLD signal and acquisition parameters

In essence, heightened regional neuronal activity triggers an increased flux of oxygenated blood through
the area, which in turn alters the local magnetic properties, increasing homogeneity of magnetic suscepti-
bility. This mechanism produces more oxygen than the neuronal cells are consuming, producing a relative
surplus which can be measured. The measured BOLD signal itself, originates not only in oxygenation,
but susceptibility is also altered by interplay with blood flow and volume. Naturally, the changes in
blood flow are not on the same time-scale as the ionic currents measured in EEG, and the BOLD signal
is both blurred and delayed. Neuronal activity occurs on the scale of milliseconds, whereas the resulting
oxygenation dynamics is three orders of magnitude slower.

The hemodynamic response is an ideal function that comes into play whenever the neuronal activity
occurs in an idealized delta-spike fashion. Within 4-6 seconds, the response reaches a maximal peak
height, directly related to the amount of neuronal activity. The signal then decays back to baseline
within 12-20 seconds, with some undershoot.

There is variability across both brain regions and individuals of the hemodynamic response - something
which complicates the functional connectivity analysis. This effect can potentially be mitigated by using
measures that are less sensitive to noise (see Sec. 5.2).

In activation based experiments, one would typically use a template hemodynamic response function
and deconvolute the BOLD signal in order to reveal neuronal activity blocks. In this context, the (ap-
proximate) linear time invariant property of BOLD is very important. Linearity simply means that the
BOLD response scales linearly with neuronal activity, which implies the imaging of a summed response.
Time-invariance refers a BOLD signal that follows any time-shift in neuronal activity perfectly. This last
property is very important in our functional connectivity analysis, which relies on the correlation between
time-series, ultimately reflecting correlations between neuronal activity.

The Generalized Linear Model [18] approach (see below) to extracting the neuronal signal relies on
the linearity property, which can be broken by two distinct sources. Firstly, there may exist an intrinsic
non-linearity between BOLD and neuronal signal. Secondly, and perhaps less important in resting-state
imaging, there can be a non-linearity between stimulus and BOLD signal. This could for example occur
in repeated stimulation, where the subject adapts, producing a reduced neuronal response due to the
repetitive nature of the sensory input. Imaging resting state, we would perhaps be more vulnerable to
other variables, e.g. the time-of-day during which imaging is done.

In resting-state imaging, the continuous oxygenation signal is recorded and modeling the hemodynamic
response is less meaningful. Our GLM includes nuisance regressors for translation/rotation, estimated
physiological noise and the white matter/CSF signal, leaving us with the gray matter oxygenation oscil-
lations.

Since we are interested in imaging changes in local susceptibility, we choose T2* sequence gradient
Echo Planar Imaging (EPI). It is necessary to include the static dephasing of spins in order to pinpoint
the BOLD signal as local susceptibility changes.

6 minutes of spontaneous BOLD signal is recorded using the gradient EPI with TR/TE=2000/30 ms
in 3x3x3 mm3 voxels covering the whole brain in 33 slices (on a Siemens Trio 3T). The first ten seconds
of the time-series are dumped in anticipation of a steady state. Other resting state set-ups exist, such as
asking the subject to focus on an image of cross hairs. This procedure is designed to prevent the patient
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Figure 4: Banding artifact caused by motion between acquisition of interleaved slice sets.

from falling asleep, which disrupts the resting-state signal. The brain is geared to detect motion, and
focusing on a stationary object for a long time causes most of the field of vision to vanish. Studies have
shown that the two approaches lead to very similar results [24].

The fast EPI sequence is necessary to achieve a good time-resolution. The chosen sequence grants
a repetition time of 2 seconds, which could be pushed further down to a few hundred milliseconds with
greatly accelerated techniques such as multi-band EPI [25].

For the purposes of segmentation and registration, we also record a high-resolution MPRAGE anatom-
ical image (TR/TE=1950/3.4 ms, 1x1x1 mm3, 178 slices). The anatomical image can also be used to
quantify atrophy in selected regions and assess anomalies such as white matter damage and stroke effects.

4.2 Preprocessing and quality assurance

Preprocessing of fMRI data generally involves a large number of steps. These include distortion correction,
motion correction, slice timing correction, spatial smoothing of noise, and normalization to standard
space, regression of white matter/CSF/motion and temporal band-pass filtering to further block unwanted
signals. It is also necessary to perform brain extraction and segmentation to obtain gray matter/white
matter/CSF masks. At the end of all this, we are left with a gray matter activity signal, where unwanted
signals have been removed or regressed out.

Because we use gradient EPI, there is a large amount of distortion at air-tissue interfaces (e.g. sinuses
and ear canal), where main field homogeneity is disrupted. Here, signal drop-out can also occur, something
which can only be reduced by selecting an appropriate sequence. Distortion occurs because the gradients
used to encode location is scrambled by the inhomogeneity, disrupting in the phase-encoding direction.
Shimming has limited ability to reduce complex gradients from susceptibility differences. In so-called z-
shimming a shimming pulse precedes each image acquisition, counteracting the effect of the susceptibility
gradients [26]. Inferior and frontal/temporal lobes are most affected by distortion, owing to their proximity
to air cavities. Distortion can be corrected for using a field-map technique, where the phase difference
between two EPI with difference TE can be used to compute the field inhomogeneity, that is then used
to displace voxels to their real position.

We do not perform a distortion correction, but the effect is counteracted in the non-rigid registration
step and spatial smoothing. In addition, voxel time-series are averaged over regions of interest. It is not
clear that a distortion correction would lead to better results - a procedure such as the z-shimming pulse
will invariably lead to degradation of the signal in other parts of the image.

Slice timing correction is necessary because each acquisition has a certain duration. In our case, we
use interleaved slices, first even and then odd slices (for example), causing a mismatch in time between
acquisitions. This acquisition mode can also lead to an artifact called banding. If the subject moves
between the two interleaved acquisitions, the signals overlap an sum, causing bands to appear across the
image (see Fig. 4)

Motion is one of the major problems of fMRI, and must be dealt with accordingly. In bulk motion, the
whole head moves, which can be compensated by registration against a reference image. The reference
image is in turn aligned with the anatomical MPRAGE, in turn normalized to a standard space image,
which provides a template for locating group differences, We use the commonly employed Montreal
Neurological Institute (MNI) normalized space, based on hundreds of normal brains[27]
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Motion can lead to artifactual activation near the edges of the gray matter area that is imaged, due to
the sudden intensity increase caused by overlapping shifted voxels. The MRI signal can also be disrupted
by protons moved into a voxel from a neighboring slice. This so-called spin-history effect can cause large
intensity shifts a slice or set of slices (also giving rise to the banding artifact in Fig. 4).

Bulk motion is corrected for using a rigid transform with six degrees of freedom corresponding to
rotation and translation. Here we have an important quality assurance checkpoint and we apply a
relatively strict exclusion threshold for a maximum translation/rotation of 1 mm/1 degree.

Before functional connectivity analysis is performed, a spatial smoothing with a Gaussian of FWHM
of 6 mm is performed. This is mainly done to reduce noise, but some statistical analyses such as Gaussian
random field theory, require a certain degree of smoothness to be valid.

The high-resolution anatomical image is segmented and combined with tissue prior probability maps,
to obtain masks for white/gray matter and CSF. These are needed to extract the the gray matter signal
which best reflects neuronal activity. Severely atrophied brains with structural deviations cannot always
be included in the functional connectivity analysis, because their geometries deviate to the degree that
the segmentation algorithm fails (for this purpose we use SPM 8). These subjects have therefore been
excluded.

After discrimination against excessive motion and mask size deviations, 70 MCIs are removed and we
are left with MCI 130 subjects. Similarly, after QA, we have 126 healthy controls.

Equipped with motion correction data and the various masks, we are ready to extract the gray matter
signal. For this purpose, we use the CONN toolbox [28]. The voxel-wise gray matter time-courses
are obtained by solving a GLM, that includes regressors for gray/white matter, CSF and the motion
parameters, assuming that the primary contribution to the signal comes from linear composition of a
distinct set of sources. In order to proceed with the functional connectivity extraction, me must now
define our regions of interest, which is the subject of the next section.

5 Functional connectivity extraction

5.1 Parcellation strategies

A network consists of N nodes or ROIs with N(N − 1)/2 connections. The connections themselves
represent correlation between the average voxel time-series of each region. The simple question: ”Why
not use voxel data?”, has an equally simple answer: ”Because we cannot.”. Firstly, the calculation of the
network would simply take to long to be feasible when dealing with hundreds of subjects. Secondly, using
a relatively low resolution of a quarter million voxels, the network size requires a few hundred megabytes
and the size of the data cache would be enormous with prohibitively large transport times. Thirdly,
results are more susceptible to noise effects, although these could be adequately dealt with by clustering
algorithms. In fact, deriving ROI sets from resting state voxel data is to be preferred to coarse anatomical
schemes. In our analysis, we make use of a set of functionally homogeneous ROIs derived by Craddock
et al (see below) [20].

For many years, most FC analysis were based on a low-resolution anatomically derived set of ROIs.
A common choice was the atlas created by Tzourio-Mazoyer et al. [21]. This ROI-set is created by
means of an Automated Anatomical Labeling (AAL) procedure, wherein anatomical parcellation of a
single-subject, normalized, high-resolution T1 image from the Montreal Neurological Institute (MNI) was
performed. By delineating sulci to define landmarks, 45 ROIs in each hemisphere were then defined by
manual drawing.

The anatomical atlas has several severe limitations, making it ill suited for use with RS fMRI. Firstly,
the resolution is far too low to detect pathological changes between normal controls and MCI subjects.
This limitation means that a very well defined and strong contrast has to be present in order to detect
differences. Secondly, it is anatomically derived rather than functionally. Any ROI-set aimed at pinpoint-
ing differences in RS fMRI patterns should delineate functional subunits, which are hardly captured by
the coarse AAL partitions. One is left with two main choices: 1) subdivide the AAL atlas (or similar)
into a given number of subunits which hopefully contain the sought functional subunits, or 2) use real
voxel-resolution RS data from healthy brains with normal function to derive a set that on average will
capture the functional subunits.

Such a method has been devised by Craddock et al. [20] and since our analysis crucially depend the
chosen ROI sets, we give a brief description of their construction here.

13
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Craddock et al. motivate their approach by listing several key observations. Clearly, functionally
homogeneous regions are extremely advantageous in whole-brain FC analyses and this objective is clouded
by: the experimental bias of manually drawn ROIs (or even the selection of a small subset), the mismatch
between the brains anatomical macro-structure and its functional architecture, and the smoothing of detail
that comes with clustering methods that look for functional networks such as Independent Component
Analysis (ICA).

Construction of functionally homogeneous ROIs proceeds by spatially constrained spectral clustering
of whole-brain RS fMRI 4x4x4 voxel data from 41 healthy subjects with mean age 29. In other respects
the RS FC extraction is very similar to ours, e.g. the regressing out of motion, white matter and CSF
signals, and bandpass filtering below 0.08 Hz6.

The model is based on the very effective so-called NCUT spectral clustering algorithm, which is
particularly robust against outliers and can easily incorporate constraints [29]. The voxel data can
considered as similarity graph, where weights connecting the nodes (voxels) represent some measure
of similarity. Each voxel constitutes one node in the network and spatial coherence is maintained by
restricting connections for each voxel to a local neighborhood. The graph is cut into a given number of
clusters while seeking to maximize intra- and minimize intercluster similarity, adding a normalization to
balance cluster size. This is the problem of graph cuts. Every time the graph is cut, a cost is incurred
equal to the sum of cut connection weights. Cutting a given graph G defined by a connection matrix
with similarities wij connecting node i and j, into subgraphs A and B is given by

cut(A,B) =
∑

i∈A,j∈B
wij . (1)

To avoid catastrophic shrinkage to a single voxel, a normalization factor is introduced,

Ncut(A,B) =
cut(A,B)∑

i∈A,n∈G win +
∑
i∈B,n∈G wjn

, (2)

where n runs over all nodes in the graph. Now we do not only minimize the cutting cost, but also maximize
the within-cluster similarity. The normalization inflates the clusters by simultaneously increasing the
within-cluster wij , but may introduce some bias toward equal sizes.

Two measures of similarity are evaluated in Ref. [20]: a suprathreshold applied to Pearson correlation
between voxel time-series rt > 0.5, and the same threshold applied to FC maps (themselves consisting of
correlation) belonging to a node rs > 0.57.

Reproducibility is then evaluated by comparing the results for a single subject to that of the result of
the whole group with that particular individual excluded (this can be done for example with a measure
such as the variation of information or the Dice coefficient). In addition the resulting homogeneity of the
clusters is evaluated and the accuracy of reproducing default mode networks between various anatomical
atlases and the functionally derived ROI-sets.

Each individual is clustered, where after corresponding binary affinity networks (weights are either
one or zero) are averaged and clustering is reapplied to the resulting matrix.

The conclusions of the work can be summarized as: rt produces the best reproducibility, cluster
homogeneity improves as the number of clusters increase at the expense of reproducibility. Comparing
with the atlases, the clustering method gives superior representation of voxel data for more than one-
hundred ROIs. This behavior is consistent with resolution being the crucial factor and one may indeed
obtain good results with random, equally sized partitions [30]. In general, anatomical atlases perform
better for motor and visual networks than for DMN.

In this work we evaluate the AAL atlas with 90 ROIs and ROI-sets optimized for functional homo-
geneity of various sizes, generated by Craddock et al. prioritizing reproducibility with rt.

What is the downside of this seemingly ideal approach to ROI-selection? Apart from the increased
noise level, a large number of functionally derived ROIs reduces tractability and labeling becomes in-
creasingly problematic. Technically, we mitigate this problem by assigning each ROI a label composed
of the largest overlapping anatomical AAL regions and their associated volume percentage. Simplifying
further still, in figures with labels to follow below, the AAL regions are computed and overlaid using a
labeling algorithm taking the given imaging viewpoint into account [31].

6We could also have derived ROI sets ourselves for our healthy age-matched subjects, but since biomarker data is
currently not available for these, we have instead chosen a ROIs set derived from halt young subjects.

7We may imagine sitting on each voxel and seeing a certain distribution of intensities generated by other voxels within
our range of vision. The algorithm works by grouping voxels with similar viewpoints within a common radius.
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5.2 Connectivity measures

The choice of functional connection strength lies at the very core of the FC analysis, completely defining
the network and its properties. It is generally unclear what the optimal choice is and the answer depends
on the hypothesis to be tested and its related contrast.

Pearson correlation is the most common choice for connectivity measure, perhaps due to the strong
contrasts it produces. In addition, there is only so much you can do with the poor time-resolution of
most RS fMRI data. Using a state-of-the-art multiband EPI sequence the time-resolution can be pressed
down to an impressive few hundred milliseconds. The high frequency information contains potentially
valuable information[32], but can only be accessed by recording physiological data during acquisition, for
subsequent regression of the unwanted signal[33].

Other measures are mutual information (representation independent similarity measure based on rela-
tive occurrence), coherency[34] (coupling of the signals frequency spectra), partial correlation (correlation
between two regions residues after linear regression with controlling variables), mean phase coherence (see
below) and synchronization likelihood (see below).

In this work, we have chosen a basic, simple and powerful measure of connection strength, correlation,
reflecting linear dependencies between regions. This power to detect weak contrasts is not without its
price. Correlation comes with some major drawbacks, many of which have become apparent during the
course of this work. Correlation analysis is however perfectly doable, as long as you are aware of these
pitfalls, This situation is precarious when attempting to identify progression patterns.

The pitfalls will be outlined in great detail below, but consists mainly of the following two points.
Firstly, the presence of negative coupling strength (negative correlation) causes breakdown of the graph
theoretical formalism used to characterize of network topology. Common practice is to cut negative values
(which are in minority) or binarize the connection matrix by a more or less arbitrary threshold. However,
the negative correlations appear to play an important role, signaling a reduced connectivity in the form of
an increased lag between regions. This effect becomes apparent in the latter stages of disease progression.

In addition, correlation has a worrisome blind spot. The measure erroneously equates the following
two situations: two periodic time-series of identical shape but a relative shift of a quarter period, and
two completely random signals. Both situations result in correlation zero. There is a subset of links in
a normally functioning brain, that come with an intrinsic approximate phase shift of a quarter period8.
Complete functional breakdown of these links, can therefore not be directly detected,

There are other connectivity measures which do not suffer from the maladies of correlation. A subvari-
ety of generalized synchronization, called synchronization likelihood (SL), is by construction a probability
in the interval [0, 1]. SL reconstructs the dynamical attractors phase space via time-embedding vectors
and Takens’ theorem [35, 36, 37]. Time-embedding simply means that we cut out segments (or vectors)
of the complete time-series. For region k at the discrete time-step i, the vector is

Xk,i = (xk,i, xk,i+1, ..., xk,i+m−1) (3)

where m is the so-called embedding dimension, defining the length of our time-series cut-outs. These
segments are then compared within the same time-series using some similarity metric, for example the
Euclidean distance. When two different time-series have internal recurrence at the same two time-points,
likelihood of synchronization increases.

SL starts by considering the approximation to the correlation integral in chaos theory, which measures
the mean probability that two states at different times (i.e. our vectors) are the same, and is used to
extract a critical distance for each region. This critical distance is chosen to ensure that a specified
fraction p of the time-embedded vectors (time-series cut-outs) are considered as recurrences.

p =
1

(N − w + 1)(N − w)/2

N∑
i,j=1

Θ(j − (i+ w − 1))Θ(εk − |Xk,i −Xk,j |), (4)

where we have N time-embedding vectors, w is a time-window reducing autocorrelation effects, Θ is the
Heaviside function and εk is the critical distance for region k that produces (say) p = 0.05. Equipped
with the various ε, we can now define the synchronization likelihood between two regions k and l as
simultaneous recurrences within the two series, as specified by the associated critical distance,

Skl =
1

p

1

(N − w + 1)(N − w)/2

N∑
i,j=1

Θ(j − (i+ w − 1))Θ(εk − |Xk,i −Xk,j |)Θ(εl − |Xl,i −Xl,j |). (5)

8The natural phase-shift is related to the physical distance between regions, but this may not be the whole truth and it
would be best to consider it as a more abstract functional distance.
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(a) (b) (c)

Figure 5: Different measures of functional connectivity. The panels show the 840x840 mean subject connectivity
matrix for healthy controls: (a) correlation (Fisher-Z transformed), (b) synchronization likelihood, and (c) mean
phase coherence.

Therefore, the measure can detect non-linear relationships, i.e. the two different regions do not have to
execute the exact same sequence, as long as they repeat their region-specific patterns at same points in
time. 9

Another measure of great interest in this context is based on the phenomenon of phase-locking. Phase
locking is a fundamental property of many dynamic, non-linear systems, frequently occurring in nature,
for example in the synchronization of firefly flashes.

The abysmally poor time-resolution of RS fMRI is made even worse by further bandpass filtering away
physiological noise. In addition, there can be individual variations in hemodynamic response, making
comparison even more susceptible to this intrinsic noise. However, the relative phase could still remain
relatively robust across individuals.

The instantaneous phase of a signal is elegantly calculated by first rendering the signal in its so-called
analytic representation. This is conveniently done via a Hilbert transform, where after the instantaneous
phase angle can be easily extracted [38],

φk,i = arctan(
H(xk,i)

xk,i
), (6)

where H is the Hilbert transformation acting on time-series xk of region k with discrete time index i10.
An index characterizing phase-locking probability between regions k and l can now be computed as:

Φkl =
√
〈cos(∆φ) 〉2 + 〈sin(∆φ)〉2 (7)

where ∆φ = φk − φl and the brackets indicate temporal average.

Both phase index and SL originate in EEG analysis, where the time-resolution is in milliseconds, but
the spatial resolution is limited. EEG and fMRI can be used in conjunction in attempts to amend their
respective shortcomings.

Although beyond the scope of the present paper, synchronization likelihood and phase coherency are
important candidates for measures that could allow pinpointing progression patterns. A comparative
plot of the 840x840 mean connection matrix (for 840 regional time-series of spontaneous gray matter
oxygenation) for healthy controls is shown in Fig. 5. The measures of phase coherence and synchronization
likelihood are more conservative than correlation and give a smaller amount significant differences, but
are on the other hand perhaps less sensitive to the noise present in our RS fMRI data.

Furthermore, it is important to note that the presence of high correlation or indeed phase coherence
does not necessarily imply a direct functional link between the two areas. In this sense, synchronization
likelihood is a better measure of functional connection, with its ability to capture non-linear relations.
As such, it measures probability of connectivity, regardless of the local shape or representation of the
neuronal/BOLD signal.

9The value of non-linearity is perhaps greater when analyzing EEG with a superior time-resolution, than RS fMRI data.
10Note that we should extend the arctan function to the range [−π, π] by respecting the complex plane quadrant.
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5.3 Statistical analysis and multiple comparison error control

There are many ways elucidate hypothesized group differences by means of statistical analysis. Perhaps
the simplest approach is to perform Students’ t-test on all connection weights (correlations) in the network
and then some form of generic multiple comparison correction such as the Benjamini-Hochberg method
[39].

The multiple comparison problem can easily get out of hand when mass-univariate testing of some
350 000 links, reducing the number of corrected significant links to zero. Using the most conservative
correction methods (such as Bonferroni where one simply multiplies the p-values by the number of tests)
this is almost certainly the case. T-tests are only valid for normal distributions when in general we have
a mixed set of distributions.

There are then non-parametric tests, such as the Mann-Whitney U-test, but these are of a more
conservative nature and not always suitable for weak group contrasts. A convenient solution is the non-
parametric permutation tests, in which one generates the empirical null distribution by creating random
groups (of the same sizes as the original groups) [40, 41]. In terms of how conservative the results are,
permutation tests generally fall somewhere between t-tests and Mann-Whitney U tests.

Permutation testing can be computationally expensive and a simple t-test serves as a good indicator
of what to expect after permutation convergence (somewhat overestimated). In this paper, we present
permutation tests of two kinds: 1) testing for individual links, and 2) search for connected components
comprising links above a given significance threshold. The two methods are described in the subsections
to follow.

Due to the computationally demanding nature of permutation testing and the resources at hand
during the course of this work, link-testing was limited to 10000 permutations. Although the number of
permutations needed varies with group, calculations since then has shown this is in general not enough to
ensure convergence. However, the component search converges quickly and is in very good correspondence
with the link tests. It is however important to underline that the individual link tests in some cases
correspond to a higher type I error than reported below. The component search method has been
constructed precisely to fill the need of a less conservative method.

5.3.1 False Discovery Rate

The permutation testing at individual link level is performed by first pooling the data for the two groups
under consideration, and then create two new, random groups of the same sizes as the original groups
[40]. The null hypothesis asserts that the group labels are exchangeable under the constraints this
randomization scheme (i.e. given group sizes). The test statistic (for example in our case the difference
in mean value) is then stored in a null distribution, specific to each link. Two new groups are then
generated and the procedure repeated until the null distribution has stabilized along with any p-values
derived from it. The two-tailed p-value of the link in question is computed as the fraction of the absolute
of the null distribution that is greater than the test-statistic for the originally postulated groups. This is
the reason why permutation testing is so expensive. Generating completely random groups in a Monte
Carlo fashion, it takes a long time to calculate the crucial tail of the distributions.

The problem of performing several hundred thousands of tests is that you will get a number of false
positives by virtue of the sheer number of tests. This False Discovery Rate (FDR) has to be controlled,
for which a number of methods exist. We use a popular method of intermediate conservativeness known
as the Benjamini-Hochberg control of FDR [39] It is also possible to perform the multiple comparison
correction at once in the permutation testing scheme. One would then pool all link distributions, and
create a maximal test-statistic distribution against which all link differences in the postulated groups are
gauged [40]. This scheme is not suitable for the RS fMRI data and is far too conservative to be of any
use. It gives strong control over experiment-wise type I error [42].

The Benjamini-Hochberg procedure controls FDR and the family-wise error rate in the weak sense.
We use a step-up procedure that controls the FDR at level α. The procedure begins by sorting all the
uncorrected p-values in ascending order, creating an array pi where i refers to the link number i = 1, ..., Nl.
We then locate the largest element in the sorted array that satisfies

pi =
i

Nl
α, (8)

Call this index imax. Significance is now declared for all i = 1, ..., imax. What we are in fact doing, is to
divide all uncorrected p-values by a constant imax/Nl that becomes large when the relative proportion
of low-lying p-values grows.
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5.3 Statistical analysis and multiple comparison error control5 FUNCTIONAL CONNECTIVITY EXTRACTION

The point of this procedure is to adjust the type I/II error balance in accordance with the distribution
of significances found. For instance, if all p-values are already close to unity, except for a handful of
them, then a false positive is disastrous. If we find tens of thousands of low, uncorrected p-values, a false
discovery is less disastrous.

The procedure considers all linktests to be independent, which is not really the case. A better way to
handle the multiple comparison problem is to look for connected components of highly significant links
and gauge their significance against a null-distribution of component sizes. This procedure is covered in
the next subsection.

5.3.2 Network-Based Statistic (NBS)

Controlling the FDR and family-wise error rate in the weak sense, as outlined in the last subsection,
is often too conservative. This situation is the starting point for Zalesky et al, who designed a less
conservative method called Network Based Statistic (NBS) [41]. The procedure can be summarized in
the following points:

• Select a suprathreshold t-statistic tsup (in our case a the t-value from a t-test)

• Evaluate test statistic t for all links across our two postulated groups.

• Retain the set of links which satisfies t > tsup and seek connected components of links.

• Store the size of these components.

• Generate a null distribution of maximal component sizes by pooling the two groups and randomly
assign new group labels, matching the original group sizes.

• Seek the largest component with t > tsup between the randomized groups and log its size in the
null distribution.

• The p-value of the component found to differ between the original groups is the fraction of random-
ized null distribution sizes greater than the original component size.

Because we select only the largest components in the null distribution, multiple comparison has been
controlled. The procedure generally converges p-values to three decimals within 10000 permutations.
This number is generally much smaller than that required for link-testing convergence, although the
algorithm seeking components increase the computational burden and memory requirements.

There are both advantages and drawbacks to this method. It comes with a greater power to detect
weak contrasts and multiple comparison control is enforced within a generally low number of permutations.
With the ability to identify failing network components, comes the failure in locating individual links.
In fact, we cannot point finger at a given link in the significantly different component. We have by
construction asked the question ”What is the probability of finding a significantly different component
this big for random groups of given sizes?”. Generally this question leads to interesting answers.

There are two useful measures of component size: 1) the number of links (extent) 2) sum of the links’
t-values (intensity). Intensity is suitable for stronger contrasts, whereas the extent has some added power.
In this work, we only use intensity as a measure of component size.

Zalesky et al are careful to characterize the method as a complement to mass univariate link testing,
as outlined in the previous subsection. One can also speculate that many neurological disorders lead to
disrupted subnetworks and parts of these would be clearly visible as failing components. Note that all
components presented in this paper constitute a connected set of links where healthy controls have higher
correlation than MCI or AD. The method implicitly assigns significance to particular nodes with a large
number of failing links, which on their own constitute a weak contrast. One node and many failing links
is hardly a random pattern.

It is also necessary to select a suprathreshold, a procedure for which there is no rule. This is also a
strength of the model, because exploring different values of supratheshold exposes the relative weakness
of contrasts and the spatial spread of highly significant regions into weaker ones, hinting at common
epicenters for dysfunction. This is a very useful feature when attempting to gauge relative contrast
strength for different group comparisons.

18



6 OPTIMIZATION OF CONNECTIVITY PARAMETERS

6 Optimization of connectivity parameters

In the sections to follow, we will characterize differences in functional connectivity between biomarker
cohorts and how these patterns evolve with disease progression. Summarizing the procedure leading up
to this point, we quantify functional connectivity using correlations between BOLD time series of gray
matter ROIs during resting state activity of the brain. We then form a functional network consisting
of N(N − 1)/2 links (correlation values) connecting the N specified ROIs. Significant group differences
are determined by performing Student’s t-test on each of the N(N − 1)/2 network links across subjects,
and subsequently apply a multiple comparison correction (FDR) with permutation testing [41, 43], which
finally yields a corrected type-I error used to declare significance. The remaining set of links is the subject
of below analysis, where we will also analyze the connected network components emerging from the NBS
approach.

To begin with, we examine how differences between subgroups in biomarker space depend on the
temporal and spatial scales chosen for the FC analysis. The temporal scale is set by the frequency
band of the GM spontaneous oxygenation signal, a choice in theory limited by TR, but in practice by
physiological noise and scanner drift. The spatial scale is set by the number, size and position of ROIs
used in the analysis, i.e. essentially the resolution underlying the FC calculation. In theory, this choice
is limited by the noise level, but in practice by computational resources.

The results of the frequency and ROI analysis will motivate our choice of parameters used in the
calculation of significant differences between MCI subgroups, HC and AD. Although many patterns of
significant FC differences will be shown in the subsections treating parameter optimization, these patterns
and trends will not be fully addressed until subsection 7. We will, however, comment on FC frequency
dependence and offer an interpretation in the light of disease progression.

Unfortunately, calculating the functional connectivity in all different frequency intervals and for many
subjects was beyond the capability of available resources. At the time of writing, functional connectivity
data in all frequency intervals was therefore only available for the MCI group and for a relatively low
resolution ROI-set of 392 regions. This resolution is likely good enough, but crucial data in the form of
connectivity for all frequencies for healthy controls was not available. The results below represent the best
choice of frequency, based on the available data. Since then, examination of high-res data for HC−MCI
has shown that a highly sensitive interval is the all-encompassing interval f = 0.01−0.1Hz. 11. However,
the majority of significant differences encountered in 0.01-0.1 Hz are in fact coming from 0.03-0.06 Hz.
In addition, the encompassing interval contains more noise, such as physiological and motion signal, and
is probably more susceptible to artifacts.

6.1 Frequency dependence

Albeit an active area of research, consensus is currently that the spontaneous oxygenation signal measured
in RS fMRI is related to neuronal activity. One might therefore conjecture that EEG studies of the
frequency dependency in neuronal activity may have some bearing on the oxygenation oscillations. In this
context, neuronal activity as measured by EEG reveals clusters of neurons in close proximity correlating
at higher frequencies, whereas long distance correlations occur at lower frequencies [44].

There are various strategies for selecting the frequency interval of the spontaneous BOLD timeseries
used for FC analysis. The simplest approach is to select a frequency interval that remains reasonably
unaffected by physiological interference from breathing and heart beat [45]. In the same way, low fre-
quency scanner drift can be eliminated by imposing a lower bound. This line of reasoning typically leads
to selection of an interval f = 0.01− 0.1 Hz.

Although this choice will likely reduce physiological noise, the higher frequencies could be accessed by
recording the physiological data during image acquisition and subsequently regressing them out of signal
[46, 45]. However, this procedure would require a short repetition time and a high time resolution [46],
necessitating state-of-the-art optimized sequences, such as multiband-EPI [25]. Since our sequence has
TR = 2000 ms, the highest frequency available is 0.5 Hz - not likely to be sufficient even if physiological
data were available.

In addition, band pass filtering induces some correlations, but CONN accounts for this effect by
correcting the number of degrees of freedom [47].

The pragmatic approach is to select the interval most sensitive to the pathology of interest [48, 30, 49].
Focusing on the lower frequencies below 0.1 Hz in order to avoid physiological noise, we may further band

11The new data represent a larger set of subjects with different QA protocols and segmentation routines - results cannot
be combined with the data of this thesis.
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Figure 6: Coloring scheme by lobe. Illustration is of 840 node ROI-set.

pass filter the signal and look for an optimal subinterval, with regard to some distinguishing feature in
the resulting FC or graph theoretical measure.

Supekar et al. select the interval that corresponds to the greatest clustering coefficients12 in binarized
FC matrices, for both HC and AD: f = 0.01−0.05 Hz [48]. Wang et al. chose the frequency interval that
produced significantly lower mean wavelet correlation and higher proportion of short-range connections
(< 45 mm) in amnestic MCI relative HC: f = 0.031−0.063 Hz [30]. The most sensitive frequency interval
may vary with neurological affliction. Schizophrenia, for example, appears to contrast HC in a relatively
high frequency interval compared to MCI and AD: f = 0.06− 0.125 Hz [49, 50].

Given the hypothesis of correspondence between EEG and RS fMRI frequencies, the interval most
sensitive to differences between say MCI and HC, becomes a reflection of the most salient spatial range
of communication breakdown (we will explore this dependence further in subsection 7).

In order to assess frequency dependence we calculate FC in the ranges 0.01-0.1, 0.01-0.03, 0.03-0.06
and 0.06-0.10 Hz. For the purposes of identifying the most optimal interval, we select a reasonably high
resolution set of 392 ROIs13, extracted by spectral clustering and optimized for functional homogeneity
[20] (see subsection 5.1 for details). We seek the interval which maximizes the number of significant
differences between important MCI groups, where in general the contrasts are relatively weak. The two
MCI partitions employed in the analysis of frequency-dependent differences are (see Fig. 1 (a) and (b)):

1. Effect of aβ-pathology (group M0 vs. Maβ):

(a) aβ > 550, pτ < 80 ng/l (70 subjects),

(b) aβ < 550, pτ < 80 ng/l (42 subjects),

2. Effect of τ -pathology, (group Maβ vs. Mpτ )

(a) aβ < 550, pτ < 80 ng/l (42 subjects),

(b) aβ < 550, pτ > 80 ng/l (18 subjects),

referred to as the aβ- and pτ -partition, respectively.
The FDR-corrected type I error is set to α = 0.01 and we seek significant differences between the

partition subgroups. The number of significantly different FC-links (a.k.a. edges) and number of linked-
up ROIs (a.k.a. nodes), as well as their relative numbers, will be used in gauging the relevance of intervals.
In addition, we look at the mean FC of groups and the total FC of significantly different sets of links.
Each node is colored by lobe according to color coding scheme displayed in Fig. 6.

Fig. 7 (a) and (b-c) show emerging FC differences as a function of frequency interval for the pτ - and
aβ-partition, respectively. In these figures, the size of the spheres (centered on a given ROI and colored
by lobe) corresponds to what is known as nodal degree in graph theoretical parlance: the number of links
connecting to a given node14.

Using a familiar train of thought from statistical threshold mapping, having a large number of links
with small number of nodes would amount to highly significant patterns. We may therefore naively seek
a large quota Edges/Nodes, i.e. the number of significantly different links over the number of ROIs
involved.

12The clustering coefficient is higher in optimally organized networks which exhibit modularized processing. These
modules is then further connected on a global scale.

13As is shown below, high resolution ROI parcellations is essential to successful identification of biomarker phenotype by
FC pattern. However, 392 ROIs is sufficient for the purposes of identifying the frequency intervals of interest.

14Note that the sphere size is scaled according each graphs data. If the graph is considered without inspecting the link
density, the sphere size may be misleading when comparing different graphs.
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Figure 7: FC frequency dependence for pτ - and aβ-partition in (a) and (b-c) respectively. The connectivity
graphs show links that are significantly greater or smaller (sign is indicated by > or < placed on interface between
compared areas in biomarker space). For the pτ -partition only Maβ > Mpτ FC is present.

Table 2: Maβ > Mpτ edges and nodes.

Frequency band [Hz] Edges Nodes Edges/Nodes

0.01-0.10 12 21 0.57
0.01-0.03 4 7 0.57
0.03-0.06 18 26 0.69
0.06-0.10 3 6 0.50

Table 3: M0 < Maβ edges and nodes.

Frequency band [Hz] Edges Nodes Edges/Nodes

0.01-0.10 23 38 0.61
0.01-0.03 49 64 0.77
0.03-0.06 15 22 0.68
0.06-0.10 ∅ ∅ ∅
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Figure 8: Box-plots of subjects mean FC for the biomarker subgroups. Despite poor significance, a trend towards
reduced FC with pτ and increased FC with aβ is visible across the MCI groups. P-values result from a two tailed
t-test.

For the pτ -partition, the emerging interval of interest from this procedure is f = 0.03 − 0.06 Hz.
Visually, the cluster of nodes in the left frontal lobe adds to this conclusion (see 7 (a)).

Turning to the aβ-partition (see Fig. 7 (b)), we see that as aβ drops, FC decreases in a very small
group of nodes connected to the same central node in corpus striatum. The group is so small however,
that the quota loses meaning, and the intervals f = 0.01 − 0.1 Hz and f = 0.03 − 0.06 Hz basically
perform equally well, whereas f = 0.06− 0.10 Hz yields only two links.

As seen in Fig. 7 (c), the major effect of lower aβ appears to be an increased connectivity with many
significant differences for M0 < Maβ . Even though f = 0.03− 0.06 Hz performs well, f = 0.01− 0.03 Hz
yields a larger number of significant differences while maintaining a low number of nodes, and we note a
trend towards cluster formation in the left hemisphere. Increased FC also appears in f = 0.03− 0.06 Hz
implying either 1) compensatory effect in response to the oxidative stress caused by increased amyloid
burden, 2) a reflection of the multitude of MCIs in M0 relative Maβ .

The trends across aβ− and pτ -partitions hints at a potential FC progression pattern involving a
slowing down of oscillations (shift to lower frequencies) and a compensatory mechanism in response high
amyloid burden. The compensatory effect may really stem from an inhomogeneous M0.

Fig. 8 shows box-plots of the subjects mean FC (Fisher transformed correlation between regional
time series),

ρs =
1

N(N − 1)/2

N(N−1)/2∑
i=1

ρsi (9)

where subject s belongs to group s = M0,Maβ ,Mpτ and the mean is over all links in the N = 392 node
network.

With a caveat for very poor significance (as can be expected when forming mean of all network links),
the aforementioned trends are surprisingly discernible given the relatively crude measure employed; the
mean values reflect the set of the significantly different links in Fig. 7. We note in passing, that the
mid-range (f = 0.03− 0.06 Hz) and encompassing (f = 0.01− 0.1 Hz) intervals have the lowest p-values,
performing roughly equally well.

Discarding the vast majority of links, we now inspect total FC of subject s on the differing set of links
for group g1 and g2,

ρ̃g1>g2,s =
∑

i∈Sg1>g2

ρsi (10)

as is shown in Figs. 9. Sg1>g2 denotes the set of links where the FC of g1 is significantly greater than
g2. In Fig. 9 all total FC between displayed subgroups are significantly different (p < 0.001), hinting at
a crude classification parameter.

Referring to Fig. 9 (a), it can be seen that f = 0.03− 0.06 Hz is performing very well, with an almost
clean separation of pτ -subgroups. Fig. 9 seems to indicate that all intervals except the highest one, do
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roughly equally well in separating the aβ-subgroups. However, the lowest interval results in by far the
greatest difference between subgroup means, although this effect is accompanied by an increased spread.

In summary, it appears that the encompassing interval f = 0.1 − 0.01 Hz is able to pick up some
differences seen more clearly in the subintervals, but the power to detect these contrasts is reduced. In
addition, the main effects of aβ- and pτ -pathology appear to lodge in different intervals, implying a
potential benefit of monitoring more than one interval.

Focusing on the subintervals, f = 0.03− 0.06 Hz is the most sensitive to pathology overall, reflecting
both reduction and enhancement of FC. This finding is consistent with previous results [48, 30].

We conclude that f = 0.03 − 0.06 Hz is a good choice of interval for detecting biomarker related
differences in FC, with a an excellent separation of pτ - and a good separation of aβ- partition subgroups.
It appears however, that the lowest subinterval f = 0.01− 0.03 Hz is sensitive to the increase of FC with
aβ-level, and we keep an eye on this interval when analyzing the aβ-partition.

6.2 ROI resolution dependence

In this subsection we analyze how significant FC differences depend on the choice of ROIs and the spatial
resolution underlying the FC calculation. For this purpose, we select the appropriate frequency interval
identified in the previous subsection, i.e. f = 0.03− 0.06 Hz.

Resolution is the parameter expected to have the greatest influence on the FC analysis. Intuitively,
it is not hard to understand why. Choosing large ROIs gives poor resolution, such as in the commonly
applied AAL parcellation[21] based on anatomical landmarks. This will average the constituent time-
series from several, functionally distinct volumes encompassed by the larger ROI, reducing power when
testing for differences in correlation. On the other hand, choosing too small ROIs and high resolution
can cause problems with noise.

Clearly, a desirable strategy would be to perform the FC analysis on a voxel-to-voxel basis for each
subject. In a secondary stage, one could then proceed to identify functional centers and significant dif-
ferences via statistical mapping. Such a procedure would be prohibitively computationally demanding
when dealing with hundreds of subjects. To illustrate the problem, consider the preprocessed GM signal,
comprising approximately 240000 voxel timeseries in our approach. The resulting single subject connec-
tivity matrix would contain a staggering 29 billion links and require 115 Gb of storage in single precision
floating point numbers.

A more feasible strategy along the same lines was proposed by Craddock et al. in Ref. [20], who
used spectral clustering to extract a user-specified number of ROIs optimized for functional homogeneity
(see subsection 5.1 for details). It should be noted that for a sufficiently large number of ROIs one can
achieve good results even with randomly chosen, equal volume ROIs [20, 30], indicating that resolution
is the crucial component. However, the functional parcellation algorithm should be capable of picking up
more subtle nuances in the delineation of functional centers, providing a clear advantage, even though
these centers are then averaged across many subjects to produce a functional atlas.

Here, we look at how FC differences evolve starting from the low resolution anatomical parcellation
AAL [21] (N = 90), to functional parcellations of increasing resolution (N = 180, 392, 840) [20] (see Fig.
10), using the same two biomarker partitions as in the previous subsection. Since the contrast between
the MCI groups is relatively weak, we will augment this study with ROI-dependent trends in MCI-HC
differences.

Figs. 11 (a,b) and (c,d) show how the connectivity differences in the pτ - and aβ-partitions develop
with increasing resolution. Not until N = 392 does a pattern of reduced FC emerge for pτ > 80 relative
pτ < 80 [Maβ > Mpτ , see Fig. 11 (a)]. This pattern is greatly reinforced and expanded when N is
doubled.

Only for the highest resolution does a structure of enhanced FC (Maβ > Mpτ ) appear with links
between MTL and corpus striatum [see Fig. 11 (b)]. The compensatory effect that did not appear for the
pτ -partition in the frequency analysis of the previous subsection, does in fact appear here at the highest
resolution level, highlighting the relative weakness of pτ -compensatory effects.

Similarly, for the aβ-partition [see Fig. 11 (d)], the enhanced FC pattern begins to appear for N = 392
and is further developed at N = 840. In Fig. 11 (c)), we see hints of reduced connectivity starting at
N = 180, but only at N = 840 does the pattern extend from the left Corpus Striatum.

The frequently used AAL parcellation yields only a single link for the pτ - and none at all for the
aβ-partition. Such an overwhelmingly poor performance is a clear indicator that the coarse anatomical
parcellation is unsuitable to detect weak contrast and can easily produce misleading results.
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Figure 10: The four sets of ROIs evaluated: AAL [21] with N = 90 (excluding cerebellum for this anatomical
set only) three ROI sets optimized for functionally homogeneity [20] with N = 180, 392, 840.
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Figure 11: Significant FC differences as a function of ROI set for pτ -partition (a-b) and aβ-partition (c-d).
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Figure 12: Significant HC-MCI FC differences as a function of ROI set.

With caveat for contamination in the HC group, the HC-MCI contrast should be greater than MCI-
MCI and therefore we expect already the low resolution ROI sets to pick up differences. Fig. 12 shows
the results of comparing HC to the MCI subgroups. Indeed, the low resolution ROI sets show traces of
the patterns that grow stronger with N . Still, the highest resolution proves superior, and clearly does a
better job at finding weaker contrasts [MCI > HC Fig. 12 (b,c)] . Relative MCI-MCI, HC-MCI develops
more gradually, such that stronger contrasts can be accessed with low resolution ROI sets. This is a
useful insight that allows us to also make use of the lower resolutions in providing a simplified overview,
when needed.

As before, we can quantify the performance of the ROI-set by the number of significantly different
edges, associated nodes, and edges/nodes (see Fig. 13), demonstrating the greater performance of the
high resolution ROI-set. The figure also hints at the relative scale of group differences; comparing panels
(b, d) to (a, c, e) in Fig. 13 and focusing on N = 840 we see that the HC-MCI contrast is indeed stronger
than MCI-MCI.

Fig. 13 (a) and Fig. 12 (a) show a massive number links with reduced FC in M0 relative HC. This
pattern is fairly consistent at all resolutions, but peaks with some 400 edges and edges/nodes = 1.31 for
N = 840, still corresponding to a small fraction of all possible connections: 400

840(840−1)/2 ≈ 0.1%. Such

a large number of links in a supposedly early stage of dementia may seem surprising, but it should be
remembered that M0 is a fairly inhomogeneous group of MCI subjects. In addition, just looking at the
number of links is misleading in this case, as it does not reflect the total FC reduction15.

In Fig. 13 (b) the M0 > Maβ dominates (red curve); this is the strong compensatory effect previously
noted. Moving on to panel (c) the Maβ > Mpτ is stronger, but the trend in (a) has been lessened by the
compensatory effect visible in (b). In this context, we note some similarity between the corresponding
patterns in Fig. 12 (b) and Fig. 11 (c), hinting that M0 is closer to HC than Maβ .

As pτ increases (Fig. 13 (d)), FC again drops further with only a small compensatory effect. We note
the similarity between Fig. 11 (a) and Fig. 12 (c) - the latter qualitatively similar but stronger than the
former, hinting that Maβ is closer to HC than Mpτ .

All these observations points to a progression pattern related to biomarker levels involving different
regions at different times. We will return to this progression pattern later on.

The NBS method looks for whole components and has the potential to find weaker contrasts with a
greater number of connected links below a user-specified significance suprathreshold (see subsection 5.3).
This procedure only works when there are connected components differing between groups, restricting
results to HC-MCI.

15I.e. we have many, but small differences. This pattern will be further addressed below.
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Figure 13: Nodes and edges as a function of ROI set. The dashed curves represent the number of significantly
different edges and the associated nodes. Inset numbers by data points show edges/nodes. Note the inverted
order of the curves in panel b, marking the compensatory effect.
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Figure 14: Nodes and edges of NBS components representing group differences between HC-MCI for suprathresh-
old values of t = 3.0 and t = 3.5. Only values with an associated inset edges/nodes value converged to a significant
component.
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Fig. 14 shows the nodes and edges as a function of N for the NBS components from HC-MCI testing.
Qualitatively, the curves are similar to the ones in 13 but involving many more links. In addition the
edge-to-node ratio is much greater, as expected from a clustering approach such as NBS. Note the absence
of any compensatory components, which makes sense given that increased FC with disease progression
probably represents isolated and sporadic attempts at restoring communication.

These network components are hard to visualize even though they constitute a small fraction of
the total number of possible links (350000 for N = 840). However, the components can be useful in
examining topological properties and graph theoretical measures that require richer statistics. Although
our initial approach is to set the suprathreshold as high as possible in order to identify the most significant
components, this threshold can be lowered further in order to facilitate comparisons and generate larger
components.

Summarizing this subsection, high resolution is paramount to identifying contrasts between our co-
horts, in particular for the weaker MCI-MCI contrast.

7 Connectivity

We are now in a position to fully address the differences in FC patterns that emerge when selecting
temporal and spatial scales optimized to differentiate MCI groups, i.e. a frequency interval of f =
0.03 − 0.06 Hz and the highest spatial resolution with 840 ROIs optimized for functional homogeneity.
In addition, we study the effect of lowered aβ in f = 0.01 − 0.03 Hz. HC-AD comparisons will only be
included as parenthetical data, due to the small group size and poor statistics.

Fig. 15 shows how the MCI-MCI and HC-MCI significant FC differences vary across biomarker space.
This figure will serve as a road-map along the progression that naively starts with a reduction in aβ
and ends with an increase in pτ . Although there appears to be a progression trend, consistent across
MCI-MCI and HC-MCI patterns, we again underline the two important caveats: 1) it is important to
remember that M0 (aβ > 550, pτ < 80) is an inhomogeneous group of MCI, whose exact composition
is unknown and 2) since biomarker data for HC is currently missing, some contamination from subjects
with pathological biomarker levels cannot be excluded.

We begin by looking at the distribution of FC values and link-length dependence, and then proceed
to analyze link patterns in more detail employing an important graph measure known as strength. At
the end of this section, we will summarize our findings and compare with available literature.

7.1 Distance dependence

There are various definitions of the length of the links that connect the network nodes. The continuous
connectivity value opens up for definitions of functional distance, but in this subsection we address the
dependence of FC on physical Euclidean distance between ROI centeroids (nodes).

Fig. 16 shows some plots relevant to the distance dependence analysis, exemplified by properties of
the 840× 840 mean connectivity matrices of HC and M0. In (a) the number of links binned by distance
and FC are shown, and in the last column the M0 histogram has been subtracted from that of controls
(this operation is valid when the same binning is used in both plots).

We first note the general characteristics of FC-distance distributions: a sharp tail of short-distance,
high-FC links, spreading into a majority pool centered around FC ≈ 0.2 and d ≈ 8 cm. Very long links
cross over into negative correlations, hypothesized to represent long-range integration of distributed,
modularized processing [51]. An increased shift towards negative correlations can also be interpreted as
a pathological effect, representing a time-lag, possibly the effect of signal rewiring.

An area where HC has many more links than M0 emerges close to the distribution centers at d ≈ 8
cm in the upper range of connectivities. This area is accompanied by a corresponding increase in low-FC
M0-links, indicating the presence of a general downshift in connectivity. There appears to be no marked
specific length scale of this downshift in M0 connectivity; the affected links form a subset uniformly
sampled from the full distribution of links. This is hardly surprising, given the inhomogeneous character
of M0.

Fig. 16 (b) shows the distribution of link-lengths for N = 840 and panel (c) the distribution of link-
lengths in the HC 6= M0 subset. Comparing them, we see reduced FC in M0 at all length scales. This is
consistent with the widespread pattern in Fig. 15 (a), likely representing several pathologies at once. As
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Figure 15: Significant FC differences between HC-MCI and MCI-MCI for N = 840 and f = 0.03− 0.06 Hz. The
same map for N = 340 can be found in appendix A.
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Figure 16: FC-distance plots. (a) shows histograms with links binned by FC and distance for the HC group
mean (left) and M0 (center) connectivity matrix, and finally the difference between these (right). In (b) and (c),
the N = 840 and HC 6= M0 link-length distributions are shown, respectively. (d) and (e) show corresponding
FC-distance scatter-plots, and (f) the histogram of (e).

we will see below, despite a large number of widespread links, the pattern is associated with a relatively
low reduction in M0 subjects’ mean FC.

Fig. 16 (d) shows scatter-plots of FC versus distance for HC and M0 on the set of significantly
different links, and panel (e) their FC difference versus distance. The latter is shown as a histogram in
(f), where the majority FC reduction is seen to be centered on approximately FC = 0.17 and d = 8 cm.
This distance coincides with the majority link length (see Fig. 16 b), consistent with a FC reduction on
a subset of links roughly uniformly sampled from the full link set.

Similarly, we can examine distance dependence in the set of links separating MCI-MCI and HC-
MCI groups for all biomarker partitions. Fig. 17 shows FC histograms and scatter-plots of significantly
differing links (see Fig. 15), and Fig. 18 the physical length distribution of these links.

Turning to the M0 → Maβ transition, there are similarities between M0 6= Maβ and HC 6= Maβ [cf.
Fig. 17 (b,c) and (d,e) with FC patterns in Fig. 15], but also crucial differences. Comparing M0 > Maβ

and HC > Maβ we see that the pattern of reduced MCI-MCI indeed overlaps HC-MCI [Fig. 15 (b) and
(c)], albeit with a weaker contrast, and the link distributions in Fig. 17 (b) form a subset of those in (d).

In the same way, the enhanced, compensatory FC patterns (i.e. HC < M0 and M0 < Maβ) have
similarities, but now the MCI-MCI contrast that is stronger and more widespread. Enhanced FC (M0 <
Maβ) is found in interhemispherical frontal connections and for some temporal/frontal areas converging
on the superior parietal lobe. Arguably easier to interpret (owing to the complex, heterogeneous character
of M0), HC < Maβ has a small number of left-right links in the frontal area, albeit with much stronger
presence in the anterior-most parts. This handful of short-ranged (< 5 cm) and unusually strong MCI
connections stick out in Fig. 17. There are two reasons to be very careful with results from the front-most
parts: 1) these are susceptible to motion artifacts due to large distance from pivot point, 2) susceptibility
artifacts are strong in this region. Having said all that, the left right pattern seems to persist towards
anterior parts.

According to amyloid levels, M0 subjects are in an earlier stage than Maβ subjects, hence the relative
functional proximity to controls, resulting in HC 6= Maβ patterns similar to M0 6= Maβ . As such, the M0

subjects have a subjective diagnosis of MCI, but are unlikely to progress to AD within the foreseeable
future.

One could also argue that the M0 < Maβ compensatory FC contrast is stronger than HC < Maβ

due to control contamination. However, if HC was greatly contaminated with low aβ subjects, then the
HC > Maβ pattern should also weaken, and not expand and strengthen as it clearly does. Rather, it is
possible that the differences in contrast stem from the comparison of different MCI groups (e.g. vascular
or Lewy body dementia) to MCI with low aβ (marking incipient AD). However, it is interesting to
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Figure 17: Distribution of FC values on the significantly different set of links (see Fig. 15).
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Figure 18: Distribution of physical link length for significantly different FC (see Fig. 15).
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link set number of links d± σd [cm] skewness

HC > M0 386 7.6± 2.5 0.25
M0 > Maβ 25 6.8± 1.7 0.00
M0 < Maβ 81 7.0± 2.8 0.20
HC > Maβ 165 7.4± 2.3 -0.14
HC < Maβ 26 7.0± 2.9 0.00
Maβ > Mpτ 82 9.0± 2.7 -0.43
Maβ < Mpτ 15 6.5± 2.0 -0.14
HC > Mpτ 188 9.8± 2.4 -0.73

Table 4: Mean link distance, standard deviation and skewness for the differing sets of links resulting from
univariate testing with controlled FDR.

note that vital parts of entorhinal cortex and corpus striatum appear with reduced connectivity already
for M0 > Maβ , and it is tempting, however speculative, to attribute this to early aβ-pathology. The
inhomogeneous character of M0 makes it difficult to draw strong conclusions. Another possibility is that
a larger number of HCs (126) relative M0 (70) gives a different statistically prevailing pattern. Increased
subject numbers and biomarker data for HC will help in answering these questions. Subdividing the MCI
groups with cognitive test scores can also provide valuable information.

In Fig. 18 red bars indicate the number of links where M0 < Maβ , HC < M0 and Maβ < Mpτ

whereas blue bars indicate inverted relations. In each subpanel, an extra histogram referring to NBS is
included for HC-MCI comparisons, and an extra panel for univariate difference testing in f = 0.01− 0.03
Hz is included for MCI-MCI.

Comparing Fig. 18 (a) and (b), we see that the NBS-based component contains a lot more links and
the distance distribution has widened - now more similar to the full distribution of link lengths [Fig.
16 (b)]. This is to be expected from the connected component search, which incorporates links with
lower significance. Overall, NBS produces many more links than FDR, but in spite of this, the distance
distribution remains very similar [see Figs. 18 (b,f,j)], only widening slightly.

Figs. 18 (c) and (e) clearly show that the number of compensatory FC links is much greater for
M0 < Maβ than HC < Maβ (red bars), and that the number of links with reduced FC is much greater in
HC > Maβ relative M0 > Maβ (blue bars). As discussed above, this paradoxal effect occurs despite some
qualitative similarities between the HC-MCI and MCI-MCI patterns. The difference in link numbers
carry through to the mean FC of subjects.

The compensatory distribution of M0 < Maβ in 18 (c) is relatively wide, containing a subset of longer
interlobular links [see Fig. 15 (b)]. Likewise, HC > Maβ has a wide distribution, containing short
links within corpus striatum, and longer links between cortex and this hub region [see Fig. 15 (c)]. We
interpret deviations from the all-link distribution in Fig. 16 (b) as manifestations of symptomatic changes
in regional connectivity, rather than a random, uniform sampling of all possible links.

f = 0.01 − 0.03 Hz is of interest mainly in association with the compensatory effect of M0 < Maβ ,
possibly representing a slowing down of oscillations in early stages of disease progression. This slowing-
down effect appears to be related to that of increasing time-lag between oscillations, which leads to
reduced FC and is related to interregional connectivity failure. Looking at Figs. 18 (d) and (c) the
distance distribution in the two frequency intervals are remarkably similar, reflecting a common origin
involving the same patterns and regions (although exact ROIs connected in encompassing region may
vary).

Figs. 18 (g) and (h) witness of a much smaller spillover-effect into f = 0.01 − 0.03 Hz going from
Maβ to Mpτ , and the effect seems to be associated with pathological aβ, leaving a mark earlier on in the
progression 16.

The scatter-plots of (f) and (h) (representing Maβ > Mpτ and HC > Mpτ ) reveal similar distributions
that belong to similar patterns with long, interlobular links [see Fig. 15 (d) and (e)]. Interestingly, panel
(g) shows a strong shift to positive values in a small group of nodes in the posterior left temporal lobe
connecting to corpus striatum [see Fig. 15 (d)].

The mean distance, standard deviation and skewness of the distribution of links resulting from univari-
ate testing with controlled FDR is shown in table 4, and the corresponding values for NBS components

16It is also possible that it is not a slow-down effect at all, rather the set of links in M0 6= Maβ operate in a broader band
relative Maβ 6= Mpτ . However, given the similarities between M0 < Maβ in the two bands, the hypothesis seems plausible.
Calculating the lower band FC for controls could help in answering this question.
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link set number of links d± σd [cm] skewness

HC > M0 3680 7.8± 2.6 0.22
HC > Maβ 1475 7.6± 2.5 0.09
HC > Mpτ 2417 9.5± 2.7 -0.50

Table 5: Mean link distance, standard deviation and skewness for the NBS components.

are listed in table 5. These values should be compared with that of the full distance distribution of links
with mean distance (8.0± 3.0) cm and zero skewness.

The NBS components have a smoothing effect on the distributions, causing a reduction in skewness
magnitude, without affecting mean values. NBS components generally contain one permille of the total
number of links, and the univariate link testing yields 0.1 permille.

There is no great reduction in mean link length for reduced FC sets when aβ drops, but a substantial
increase when pτ increases. The mean values is not always very characteristic, but we see a stronger
trend in skewness, which reduces with lower aβ, and then further as pτ increases.

For the enhanced FC, we generally have to few links to draw conclusions regarding distributions, with
the exception of M0 > Maβ , which appears to be biased towards shorter links, as one might expect from
a compensatory effect.

An important general conclusion from Fig. 17 is that the differences appear to be general shifts in FC
distributions, with a very similar FC difference for all links after controlling the FDR. It is also clear from
Figs. 17 (f-h), that the separation in FC between Maβ 6= Mpτ and HC 6= Mpτ is the greatest overall.
In fact, the FC-distance profile of AD [see Fig. 17 (i)] is very similar with regard to both FC difference
magnitude and long-distance bias. Clearly, in the latter stages of disease progression, distributions are
skewed towards longer link length [see Figs. 17 (f-h) and 18 (g-h)]. The distribution now peaks around
10 cm signaling the breakdown of long distance communication, affecting global process integration.
This observation fits well with the description of AD as a disconnection syndrome hypothesized in the
literature. The detailed analysis of these disconnection patterns will be presented in the subsections to
follow.

7.2 Strength

We will now analyze the difference in FC patterns in greater detail, relying on various graphing techniques
as well as an auxiliary graph measure known as strength. To provide background for the detailed analysis
of group differences, it is instructive to inspect properties of the group mean connectivity matrices. Fig.
19 shows the group mean matrices of HC and M0.

Strength is a very important and fundamental graph theoretical measure that greatly facilitates iden-
tification of FC trends. The strength si of node i is defined as

si =
N∑
j=1

φij (11)

where φij is the FC between node i and j, which in our case amounts to correlation between ROI time-
series. In other words, we sum all the connections to a given node in Fig. 15. Strength is a generalization
of the degree measure introduced above (representing sphere size in Fig. 15) to a weighted formalism
that deals with continuous connection values rather than binary links. Although si is defined for each
subject with connectivity set {φij}, it is more useful to restrict the use of Eq. 11 to group mean matrices,
and work with group g mean strength sgi of node i corresponding to the group mean set of connectivities
{φgij}, i.e.

sgi =

N∑
j=1

φgij (12)

Fig. 19 (a) illustrates Eq. (12) for the two group mean FC matrices of HC and M0. We note the
presence of negative correlations, strong and widespread enough to completely dominate the strength of
certain regions, most notably the caudate nuclei in corpus striatum and parts of thalamus [Fig. 19 (a)],
but also several subsets in the frontal lobe.

The price of reducing the number of features under scrutiny via Eq. (11) from a massive N(N−1)/2 =
840 × (840 − 1)/2 = 352 380 to N = 840, is clearly a heavy reduction in power. If we restrict the sum
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Figure 19: Group mean matrices for HC (top left) and M0 (top right), where the bar graphs in the topmost part
shows nodal strength (sum of matrix columns). The lower matrix (b) shows the significant FC difference and the
overlying bar-plot the resulting strength difference. Although only a small fraction of links differ significantly,
certain crucial regions appear with many connections forming dotted lines in the matrix (b) and leaving a clear
imprint in the strength profile.

over FC to a subset of significantly different links, we get a much more useful quantity that can be used
to assess the relative importance of regions. We define

σg1i =
∑

j∈{g1 6=g2}

φg1ij (13)

as the mean strength of node i in group g1 on the set of links that separate group g1 from g2. This set
{g1 6= g2}, comprises all links that show significantly greater/smaller FC difference between groups g1
and g2.

We further define a very useful measure: the difference in mean strength between the two groups g1
and g2 on the set {g1 6= g2},

∆σi{g1 6= g2} =
∑

j∈{g1 6=g2}

(φg1ij − φ
g2
ij ) (14)

This magnitude in strength difference is a very informative measure that is also directly related to the
statistical significance level. Fig. 19 (b) illustrates Eq. 14 for groups HC and M0, i.e. ∆σi{HC > M0}.
Here it can be clearly seen which nodes are greatly affected by reduced FC, and we can the identify the
two greatest peaks as part of right thalamus and left putamen.

7.3 General features

We note some striking features in the general connectivity architecture, present irrespective of group
affiliation. Generally within lobes, we find blocks of highly correlating nodes that have weaker or even
negative correlations with most other nodes. These blocks are manifestations of modularized processing,
integrated by long range connections with a tendency toward negative correlations.

For now, we illustrate the importance of this pattern with a simple example. Fig. 20 shows the
HC average matrix, indicating two modules or highly connected blocks in the corpus striatum region.
Remarkably, one part (comprising caudate nuclei) anti-correlates with the vast majority of nodes, whereas
the other part (containing putamen) generally correlates with a roughly equal magnitude. The resulting
modules and their associated negative and positive connections to cortex are shown in Fig. 20.

The caudate nuclei bear a striking negative correlation signature, highlighting its unique role as a hub
and integrator of signals on a global scale, receiving information from the cerebral cortex and working
in tandem with putamen. This remarkable topology leaves a powerful negative footprint in the strength
profile [see Fig. 19 (a)]. As we shall see, these two structures are heavily implicated in the cognitive
decline associated with pathological CSF biomarker levels.
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Figure 20: Illustration of two modules in corpus striatum. The right column shows the negative correlations
with a module comprising the caudate nuclei with successive addition of lower-magnitude links by thresholding.
Similarly, the left column shows the positive correlation with putamen (in actuality constituent of a module also
comprising insula and thalamus).
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Figure 21: Box-plots of total FC and mean FC standard deviations (box legends are indicated in the lower right
plot). The top row (from left to right) shows total strength: signed, positive and negative. The bottom row shows
box plots of the corresponding standard deviation of mean FC values.

Fig. 21 shows box plots of the total signed, positive and negative functional connectivity, as well
as the standard deviation of corresponding average FC values. The plots represent all 350 000 links
in the N = 840 network, and we do not expect to see any features distinguishing groups using such
crude measures (significant differences with respect to controls are marked with the p-value coming from
two-sample t-tests with assumed unequal variance).

However, some interesting features emerge. The positive weights form a clear majority of all links,
and statistics are very similar to that of the full, signed set of links. AD contains only 8 subjects and
should be interpreted with great caution. Statistics are better for the other groups: HC(126), M0(70),
Maβ(42) and Mpτ (18).

We note here again the pattern of compensatory17 FC associated with a reduction in aβ. Relative
HC, there is a significant total connectivity reduction of M0 and Mpτ , but not Maβ . The pattern of
significances carries through to the negative correlations, reinforcing the image of a general downshift in
FC. The MCI with both pathological levels of aβ and pτ (i.e. Mpτ ) exhibit a very asymmetric distribution,
stretching much farther into the negative range.

No significant differences in average variance are found for signed and positive connections, although
qualitative trends carry over from the total FC plots. For the negative correlations, there appears to be
a general increase in variance for all MCI relative HC, consistent with a pattern of reduced FC affecting
the same general areas, but with a spread in severity, or even specific node-node connection.

7.4 HC versus MCI with non-pathological CSF

Group M0 consists of 70 subjects with an MCI diagnosis, but with non-pathological levels of CSF biomark-
ers, i.e. aβ > 550 ng/l and pτ < 80 ng/l. Fig. 22 shows the links where univariate testing with controlled
FDR reveals significantly reduced correlation in group M0 relative controls, i.e. where HC > M0. We
refer to this set of links as {HC > M0}.

In these link plots we have added a lot more information; link diameter is now proportional to the
correlation magnitude and colored according to the signed value. In addition, the spheres marking node
positions are now given a radius proportional to strength magnitude (not the degree as in Fig. 15), with
blue color for positive strength and red color for negative strength. In the connectivity analysis we always

17It is indeed possible that there is compensatory increase in connectivity in response to oxidative stress and increased
amyloid burden. It is also possible that what we are seeing is a consequence of the wide variety of MCI in M0.
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Figure 22: HC > M0 link plots, which HC on the left and M0 on the right. Links are colored by signed value
of correlation (thermometer in center) and the diameter is proportional to absolute magnitude. In addition, the
sphere radius signifies strength magnitude, with red color for negative and blue for positive strength.

use strength on the set of differing links to highlight relative importance of nodes, i.e. in Fig. 22 spheres
represent ∆σi{HC > M0} as defined in Eq. 14.

Although the difference in links appear to be somewhat omnipresent, it is important to note that only
a tiny fraction of all possible links form the set {HC > M0} (roughly 0.1 permille). However difficult to
make out in Fig. 22, there is a pattern that we will attempt to expose using thresholding techniques and
maximal intensity projections of HC-MCI differences in strength. The strength difference is formed from
by summing group mean connectivity matrix differences (see Eq. 14).

A few important features can be inferred already from Fig. 22. The inset box-plot shows subject’s
mean FC. Although a large number of links differ significantly (relative other HC-MCI comparisons), a
clear majority of these links do not come with large differences in FC [this is also clear from Fig. 17 (a)].
We note in passing some similarity with Fig. 20 where the vital parts of corpus striatum link up with
sensory/motor parts of cortex, but only very sparsely to the frontal lobe, already hinting at which central
network parts are affected.

On closer inspection, we find a number of long distance links (& 8 cm), where the FC reduction of
M0 extends into the negative range [this is also clear from Fig. 17 (a)]. These negative correlations (dark
blue links) are clearly visible as they lead to negative strength (red spheres) in isolated areas. The effect
is strongest in the frontal superior parts, and in particular appears lateralized to the left hand side.

The majority of reduced FC links run between the parietal and corpus striatum region. Regional
differences are easier to see if we focus on the difference in strength on the differing set of links, i.e.
∆σi{HC > M0} defined in Eq. 14.

Fig. 24 (a) shows the result of thresholding ∆σi{HC > M0} to retain the largest differences in strength
and the connections from which they originate. Maximal intensity projections (MIPs) of ∆σi{HC > M0}
are shown in Fig. 23 (b). Fig. 24 is the result of applying a suprathreshold to ∆σi and then an anatomical
labeling algorithm [31], that identifies the overlap of functionally relevant regions with members of a
coarser 116 anatomical ROI set [21], and assigns multiple labels accordingly.

Referring to Fig. 24, both sides of thalamus have high strength differences, but the right part has
twice as large difference, easily identifiable with numerous links in Fig. 23. Connectivity of putamen is
bilaterally reduced, but includes a part of pallidum on the right. The negative nodes appearing in the
front left part emerge with strong differences for parts of frontal mid/sup left. Cingulum posterior has
differences of the mid-range magnitude, and forms part of a contiguous group extending bilaterally to
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6.3

0.1

Figure 23: Strength differences for {HC > M0}. (a) shows the effect of applying a suprathreshold to retain high
strength difference regions and their connecting links (sphere size is proportional to strength difference). In (b),
MIPs of all the strength difference of all regions is shown, revealing a maximum in thalamus R.

Figure 24: These MIPs are the result of applying a suprathreshold to the strength difference of {HC > M0} and
then employing a labeling algorithm[31], which assigns multiple labels to functional regions according to overlap
with region of anatomical ROI set (with 116 ROIs) [21].
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precuneus, the middle part of cingulum, supplementary motor area and the paracentral lobule. There is
also a group of nodes with higher strength difference centered in the parietal region of the left hemisphere
containing parts of parietal inf L, postcentral L, precentral L, supramarginal L and temporal sup L.

We may refine our observations further, by looking at the connectivity of the 13 nodes of greatest
strength difference, represented graphically in Fig. 25 and listed in table 6.

The table indicates total difference in strength ∆σi{HC > M0} for node i, the associated mean FC
difference ∆σi/ni (standard deviation is approximately 0.02 in all cases) over the ni links connected to
node i and part of the set {HC > M0}. Since the functional nodes can overlap several anatomical regions,
they are denoted by regions of greatest and second greatest overlap (only overlap >25% is considered).

The last column of table 6 contains short list of the most salient connections grouped by proximity,
as well as isolated links of interest. Connections are denoted by the anatomical regions having majority
overlap with the functional centers of interest.

Thalamus R has an overwhelming number links with reduced FC and it is quite remarkable that
such a small area has so many failing connections. In general, it can be seen from table 6 that different
functional centers in close proximity or even with the same anatomical label (such as putamen R in entry
5 and 8) appear, pointing to the possibility of grouping these.

The underlying geometrical pattern is a central hub region involving thalamus and putamen (some-
times in proximity to or overlapping caudate nucleus and pallidum) connecting to several distinct clusters
of nodes centered on: 1) postcentral L parietal region, 2) medial superior region involving precuneus,
post/mid cingulum and supplemental motor area, 3) cuneus and occipital inf. There are also failing
connections between the posterior L and medial superior centers, which both have reduced FC with the
corpus striatum hub, hinting at a connected component.

Both thalamus R and putamen L connect to a region involving the postcentral L, and indeed thalamus
R connects to a part of putamen L directly (this part of putamen L also has a small overlap with
hippocampus L). Thalamus R has a large number of reduced FC links with the occipital lobe: to a central
cluster around cuneus, and bilaterally involving occipital inf, overlapping with parts of the temporal lobe
and cerebellum crus. A region close to the interface between cerebellum, occipital and temporal lobes
appears affected, particularly on the right hand side.

Putamen L overlapping with pallidum, has only one link to each of the three occipital centers (occ
inf L, cuneus, occ inf R) but a large number of links leading to the medial superior region involving
precuneus, cingulum mid and the paracentral lobule.

Putamen R shows a connection pattern similar to its left hand counterpart, especially when pooling
the two functional centers 5 and 8 in table 6.

The connections to the prefrontal cortex appear to be relatively few, but some important links between
hippocampus R and frontal sup/mid L have attained negative FC. This area in the frontal lobe appears
several times in the reduced correlation patterns.

Postcentral L is very frequent, connecting bilaterally to putamen and thalamus, as well as to cingulum
mid/post and precuneus. Interestingly, cingulum post has reduced FC links to many functional centers of
the left temporal lobe. Temporal sup/mid L has in turn reduced FC connections to the post/precentral
R and hippocampus L.

There is a particularly interesting set of links running between hippocampus/parahippocampal R and
several nodes in the frontal mid L area. These can be seen as a bundle of negative links (see Fig. 22
upper right panel) running diagonally from the right temporal lobe to the left frontal cluster of nodes.
Comparing with HC, we see correlations of similar magnitude, but with positive sign. This change of
sign is manifested in the nodal strength on the significantly differing set of links (causing them to change
color from blue to red in Fig. 22).

Summarizing our findings, a corpus striatum hub region has reduced connectivity to three main
centers; 1) the postcentral L region; 2) the cingulum mid region 3) occipital centers. The postcentral L
region (1) also has reduced connectivity with the central region (2). Reduced FC is also found between
the cingulum post and temporal sup/mid L. The right hippocampus has reduced connectivity with several
nodes in the frontal left lobe.

The FDR controlled univariate testing hints at a network component with reduced FC, and one might
therefore expect the NBS search algorithm to produce results. Using a suprathreshold of t = 3.0, we find
an large component comprising 3680 links (≈ 0.1% of all links). The corresponding link plots are shown
in Fig. 26 and strength MIPs in Figs. 27 and 28.

Comparing the box plots in Figs. 22 and 26 we see that the difference in subject’s mean FC increases
substantially for the large NBS component, originating in both a reduction in M0 and an increase in
HC connectivity, consistent with the algorithm’s ability to locate weaker contrasts. The reduction in
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Figure 25: Connections of the thirteen regions with highest strength difference on the link set {HC > M0}.
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Figure 26: 3680 links form the connected network component with reduced FC in M0 relative HC.

FC causing negative strength (red spheres) now extends to both sides of the anterior prefrontal cortex.
Negative nodes of smaller magnitude can be found in the front-most part of HC, and comparing links
with M0 indicates that the majority of these are shifted down in FC by a characteristic amount.

Looking at the more revealing strength plots (see Figs. 27 and 28) it is clear that the connectivity
difference pattern is very similar, although the maximum strength has quadrupled. However, some areas
have increased their relative strength with the added power of NBS: frontal sup L, frontal inf orb R;
putamen, caudate; hippocampi; cingulum mid and most notably: cingulum post.

7.5 HC versus MCI with pathological aβ-levels

This MCI-group consists of 42 subjects with low levels of aβ in the CSF (aβ < 550 ng/l), corresponding
to a high amyloid burden, but pτ levels remain below 80 ng/l with lower levels of NFTs.

Figs. 29 and 30 show the correlation values of HC and Maβ on the set of links defining reduced and
compensatory FC, respectively (i.e. {HC > Maβ} and {HC < Maβ}). Backtracking to the biomarker-
FC road map in Fig. 15, it is clear that the most important trend is a large set of reduced FC links
converging on a corpus striatum hub.

Comparing the box plots in Figs. 22 and 29, shows that the Maβ subject’s mean FC has not only
decreased relative control, but virtually all individuals now lodge in the negative region. Again, we see
low-correlation, longer links shifted to negative FC (this is also apparent from Fig. 17 (d)). Comparing
Figs. 18 (a) and (e) we see that a greater proportion of longer links are now affected. The mean link
length is similar to HC > M0, but skewness has shifted sign (see table 4) as a result of long intermodular
links of reduced FC. Negative strength appears in isolated HC nodes, but completely dominates the Maβ

link plot. Turning to HC < Maβ , it is clear that most compensatory links appear across hemispheres in
the anterior part of prefrontal cortex (see Fig. 30).

MIPs of strength difference on the link sets are shown in Figs. 31 and 32 for HC > Maβ . The
{HC > Maβ} MIP (see Figs. 31 and 32) is completely overshadowed by the very large differences in
the central corpus striatum hub, involving a maximum in caudate R with a difference in the adjoining
putamen R. On the left hand side we also find large differences, but in a more widespread area extending
to the superior part (caudate L) and in the inferior part (putamen L) of corpus striatum. We also find
differences in familiar areas (see previous subsection): precuneus and the right hand side interface between
temporal, occipital, and cerebellum.

Proceeding with the more detailed connectivity analysis, table 7 and Fig. 33 exposes the connectivity
of the 13 areas with greatest strength difference on the set {HC > Maβ}. Comparing tables 6 and 7,
we note that the mean FC difference on the subset of links from {HC > Maβ} responsible for the nodal
strength difference of Maβ has increased relative M0.

Caudate R has reduced correlation with a large number of nodes (37) - a remarkable figure for such
a small region. Among these links we find distinct subsets grouped by proximity. One set of links leads
to a central crest mainly comprising cingulum mid stretching from cingulum ant to post and overlapping

42



7 CONNECTIVITY 7.5 HC versus MCI with pathological aβ-levels

0.1

22.3

Figure 27: Two different suprathresholds applied to strength difference (a) and MIP of strength difference on
{HC > M0} NBS component.

Figure 28: Suprathreshold and labeling algorithm applied to strength difference for NBS component of HC > M0.
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Figure 29: Group mean FC values for the link set {HC > Maβ}.

S
u

b
je

ct
’s

 m
e

an
 F

C

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 30: Group mean FC values for the link set {HC < Maβ}.
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0.1
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Figure 31: Applied suprathreshold to {HC > Maβ} (a) and MIPs of strength difference (b).

Figure 32: Applied suprathreshold and labeling to {HC > Maβ} strength difference in Fig. 31.
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Figure 33: Connectivities of the 13 nodes with highest strength difference for {HC > Maβ}.
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Figure 34: Cut with low strength difference threshold reveals a group of nodes including hippocampus R, parahip-
pocampal R, amygdala R, and putamen R.

with these. Familiar nodes like supp motor area and some overlap with adjoining precuneus form part
of this group. Caudate R also has reduced connections with the neighboring putamen R and pallidum
R, and a cluster appears involving postcentral L and temporal sup L. Somewhat similar to thalamus
R, the largest number of nodes showing reduced FC with caudate R form three occipital centers: two
appear bilaterally at occipital inf near the cerebellum crus interface involving fusiform and one central
area overlapping with occipital sup, cuneus and calcarine.

Turning to caudate L, we pool entry 2 and 3 in table 7 - these both lodge in the upper left part
of corpus striatum. Whereas inferior caudate R has reduced FC with superior parts, upper caudate L
mainly fails with inferior parts of the brain. Apart from connections to the bilateral occipital inf clusters,
a strikingly large number of key regions linked with cognitive decline appear bilaterally: hippocampus,
parahippocampal, temporal mid and cingulum post. The part of caudate L overlapping with pallidum L
(entry 4 in table 7), has reduced FC with central superior occipital cluster, hippocampus R, amygdala R
and several nodes in the left temporal lobe. The anterior part of caudate L (entry 5) also has reduced
FC to hippocampus R, and a few nodes in prefrontal cortex.

Although the single region of caudate R exhibits the greatest reduction in connectivity, pooling the
entries of caudate L (sometimes overlapping with putamen L) gives a much larger number of failing links.
In addition, key regions form a part of this link set. A superior part of caudate R, has reduced FC to
inferior parts, involving parahippocampal R with some hippocampus R overlap.

Putamen L, has similarities with caudate L and reduced FC to superior parts bilaterally to postcentral
and to precuneus/cingulum mid, as well as the frequently occurring occipital inf R interface. Both caudate
L and R has reduced FC to putamen R, which in turn has reduced FC to the cingulum mid and postcentral
L regions (similarly to caudate R).

The remaining entries in table 7 are generally part of the larger caudate connectivities. Hippocampus
figures more prominently in Maβ , mostly the right hand side as evidenced by node 14 and 15 in the sorted
list of greatest strength difference (see appendix A). Fig. 34shows a cut of the inferior parts of the brain,
with a low strength difference threshold to reveal a contiguous group of nodes including hippocampus R,
parahippocampal R, amygdala R and putamen R (in proximity to caudate R).

By virtue of the highly connected hub region involving primarily caudate nuclei, a large connected
component can be identified using the NBS method. As before, the NBS yields a component with an order
of magnitude more links (see Fig. 35 for link plots and Figs. 36 and 32 for strength plots). Although
the pattern from univariate testing is greatly reinforced with a large number of links of reduced FC
with corpus striatum, there are also a large number of links appearing between parietal/occipital inf and
prefrontal areas. These are already visible in the set resulting from univariate testing, but appear much
more numerous in the NBS component. Those connecting the posterior-most parts to the prefrontal
cortex are extremely long and some of them are already in the negative for controls - the same links then
obtain minimal FC in Maβ .

Comparing the boxplots of Figs. 29 and 35 we see that (unlike M0) the subject’s mean FC is not
greatly affected by the increase in links from NBS.

Apart from a maximum strength difference that is six times greater in NBS than in the FDR controlled
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Figure 35: NBS component of {HC > Maβ} yields an order of magnitude more links than univariate testing
with FDR control.

set, it is hard to see any qualitative differences. Thresholding (see Fig. 37) reveals a set nodes with a
difference in strength similar to the set identified in the detailed connectivity analysis, but anterior
parahippocampal/hippocampus L appears much stronger in the NBS component18.

18Although not shown here, choosing a lower threshold in Fig. 32 produces a similar image to the NBS MIP in Fig. 37,
but hippocampus L has a much lower strength difference.
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0.1

36.0

Figure 36: Threshold applied to strength difference (a), and MIP of strength difference (b) for NBS component
{HC > Maβ}.

Figure 37: Threshold and labeling algorithm applied to strength difference of NBS component {HC > Maβ}.
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Figure 38: FC values on {HC > Mpτ}.

7.6 HC versus MCI with pathological aβ- and pτ-levels

This MCI group consists of 18 subjects with both low levels of aβ and high levels of pτ (greater than 80
ng/l), corresponding to high levels of senile plaques and NFTs, respectively. These subjects are at very
high risk of progressing to AD [4].

Mpτ has the highest difference relative controls in subject’s mean FC on the set of links resulting from
univariate testing (see box-plot in Fig. 38). Remarkably, all MCI subjects have negative and all HCs
have positive mean FC on {HC > Mpτ}. If the set of links {HC > Mpτ} could be used in a classification
scheme (it cannot, since feature selection has been performed with all group subjects), then the relatively
crude decision function sgn(

∑
i,j∈{HC>Mpτ} φij) would suffice to classify all subjects.

We note a large set of links with negative correlations between the superior parietal region and left
prefrontal cortex, which also has reduction into the negative with a set of nodes in the temporal lobe. We
find links which in controls have large positive correlation connecting to the left posterior part, having
been heavily reduced in the MCI group. Many links connecting diagonally across hemispheres with the
posterior right, have switched sign relative HC.

The MIPs (see Figs. 39 and 40) reveal clusters of nodes with large strength differences in temporal
mid left and frontal left parts, as well as parts of superior medial parietal with emphasis to the right.
Both hippocampi appear with relatively large differences, but the value for the right one is twice as large.
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0.2
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Figure 39: Threshold applied to strength difference (a) and MIP (b) of {HC > Mpτ}.

Figure 40: Threshold and labeling applied to strength difference MIP for {HC > Mpτ}.
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Figure 41: Difference in nodal strength (∆σi) on respective link set (left), the number of links (ni) in strength
values (center), and the mean FC difference (∆σi) on the subset of links contributing to the strength value (right).
The x-axis corresponds to node number, ranked by ∆σi in the given link set.

We now proceed with the in-depth analysis of the connectivities of the nodes with greatest strength
difference. The 13 nodes with greatest strength difference are listed in Table 8 and illustrated in Fig. 42.

Comparing table 8 with tables 6 and 7 we see that ni for the nodes with very high ∆σi is generally
greater in the latter two. This is reflected in the maximum strength differences: 6 with 10 links for
{HC > Mpτ}, 7.8 with 37 links for {HC > Mpτ}, and 6.3 with 33 links for {HC > M0}. However, the
mean FC of the links forming the strength value has increased substantially in {HC > Mpτ}.

Fig. 41 shows how the strength difference (∆σi), number of associated links (ni) and mean FC
difference (∆σi/ni) varies for the sets {HC > Mpτ}, {HC > Maβ} and {HC > M0}. Again, very little
hard conclusions can be drawn regarding M0. Naturally, the strength difference is related to the number
of links involved and the differences are not as localized in Mpτ as in Maβ with its corpus striatum
hub. Initially larger, the {HC > Maβ} link numbers drop from the nodes with the highest differences
in strength (belonging to caudate), to coincide with the link numbers for {HC > Mpτ}. Comparing the
three plots of Fig. 41 shows that the origin of the greater ∆σi in {HC > Mpτ} relative {HC > Maβ} is
the link FC differences rather than their numbers.

The greatest strength difference ∆σi{HC > Mpτ} occurs in a medial superior parietal part overlapping
with both precentral R and postcentral R. Most of this difference originates in connections with prefrontal
nodes, located in the frontal sup/med L and frontal mid/inf L parts. In addition two links in the left
temporal lobe show reduced FC.

Next, temporal inf R has reduced FC to an area overlapping both amygdala R and hippocampus
R, as well an area in overlapping amygdala L and putamen L. Interestingly, there is reduced FC to the
symmetrically placed node of temporal inf R/cerebellum crus R in the left hemisphere. There is also a set
of reduced FC links to the postcentral L area. Although ∆σi is large, it mainly comes from a reduction
from high positive correlations in HC, to approximately zero correlation in Mpτ , setting it apart from the
majority of high ∆σi nodes which originate in negative correlations.

Temporal mid L (entry 3) has reduced connectivity to an area in temporal inf R, and more strikingly
a cluster of nodes overlapping thalamus R, hippocampus R and parahippocampal R, and even a small
part of thalamus L and hippocampus L. The strongest reduction in FC is to cingulum post L and we also
find strongly reduced FC to the adjoining precuneus. Temporal mid L (entry 6 in table 8 neighboring
entry 3) also has reduced FC to precuneus, and in addition cuneus/calcarine, and cerebellum crus R.
This last part has in turn reduced FC with putamen L and several nodes in the left temporal lobe.

It is clear from the MIP of strength difference (see Fig. 40) that the left part of prefrontal cortex has
several adjoining areas with reduced FC. One such area is in frontal inf orb L (entry 4 in table 8), which
has its heaviest reduction in FC with an area overlapping thalamus L and hippocampus L, but also with
a number of regions in the superior medial parietal area overlapping precuneus, paracentral lobule L and
post/precentral. The nearby area, frontal mid L (entry 5), also has reduced FC with the superior parietal
area, and additionally a single link to putamen R is affected.

Frontal mid/sup L occur frequently, most often failing with pre/postcentral - the superior medial
parietal, preferentially on the right-hand side.

We note that front mid/inf orb L has reduced FC to thalamus L/hippocampus L (see entry 10 and
4). Hippocampus R, overlapping with putamen R and temporal sup R (entry 11), further reinforces the
pattern of hippocampi-prefrontal disconnection, failing with both frontal inf/mid orb R and a cluster of
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Figure 42: Connectivities of the 6 nodes with highest strength difference in table 8 for {HC > Mpτ}.
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7.80.0 36.00.0

NBS

Figure 43: Strength differences of {HC > M0},{HC > Maβ} and {HC > Mpτ} using a single common color-scale
(FDR on left and NBS on right).

nodes in the left hemisphere: frontal sup/mid L and frontal sup med L.

The maximum strength difference in Fig. 39 is much lower than that of {HC > M0} and {HC > Maβ}
which can affect comparison with the two other sets. It is better to compare the strength differences
across groups on a common scale and we choose the highest maximal strength difference over all group
comparisons as a common maximum. Comparative plots with the same color-scale of strength differences
for {HC > M0},{HC > Maβ} and {HC > Mpτ} are shown in Fig. 43.

Although some similarities between the {HC > M0} and the other two groups can be found, com-
parison is always muddled by the heterogeneous character of M0, and we focus our efforts on comparing
{HC > Maβ} and {HC > Mpτ}. The similarity between {HC > M0} and {HC > Mpτ} is the corpus
striatum hub, which in the former is located in thalamus and putamen rather than caudate.

There is an eyesore when comparing {HC > Maβ} and {HC > Mpτ}: the {HC > Maβ} corpus
striatum hub failure is not present or hardly visible in {HC > Mpτ}. In fact, this pattern hints at a
progression and we will address the possible reasons for the missing hub below, when summarizing of FC
differences. For now we note that some areas, for example the left prefrontal lobe, medial parietal and left
temporal areas, have weak pockets of strength differences that increase when going from {HC > Maβ}
to {HC > Mpτ}.

Figs. 44, 45 and 46 show the link plots and strength difference for the NBS component {HC > Mpτ}.
In the link plot we see that the subject mean FC on the NBS component does not change significantly,
and that the qualitative diagonal trend now extending to right anterior prefrontal cortex.

Thresholding the strength difference (see Fig. 45) produces a much more dense, but very similar
pattern with lateralization to the left.

Comparing the MIPs, we see that the NBS strength difference maximum increases by a factor five,
and the pattern spreads out, merging contiguous nodes. The added power of NBS reinforces the clusters
comprising several nodes in the left temporal and prefrontal lobe. The prefrontal cluster expands to the
superior, and the temporal cluster forms a contiguous chain of nodes stretching into the medial parts.

Also, cingulum posterior appears bilaterally with reduced connectivity to both hippocampi and
parahippocampal parts, as well as frontal L and temporal L nodes (see Fig. 47 for cross sectional
map). Hippocampus L and R appear with reduced strength, along with parahippocampal, putamen
and amygdala. The difference in ∆σi between the right and left hippocampus is reduced in the NBS
component.
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Figure 44: NBS component connectivity on {HC > Mpτ}. HC on the left and Mpτ on the right.

0.2

13.1

Figure 45: Strength difference for NBS component {HC > Mpτ}.
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Figure 46: Suprathreshold and labeling algorithm applied to NBS component {HC > Mpτ}.
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Figure 47: Cut revealing inferior regions (see right), to which suprathreshold and labeling algorithm has been
applied to NBS component {HC > Mpτ}, in order to expose hippocampus, parahippocampal areas, amygdala
and cingulum posterior.

7.7 MCI with low vs high aβ-levels

The NBS algorithm fails when it comes to MCI-MCI comparisons and we are left with results from
univariate testing.

Although M0 is difficult to compare with, we can draw some conclusions regarding its general position
in the group landscape. Referring to the biomarker map in Fig. 15, we will now show results for panel
(b), i.e. M0 6= Maβ . The link plots for {M0 > Maβ} and {M0 < Maβ} are shown in Figs. 48 and 49,
MIPs of strength differences in Figs. 50 and 51.

{M0 > Maβ} involves a relatively small number of links on which M0 subject’s mean FC is centered
on zero, and Maβ has shifted to the negative side. Superior caudate L has reduced connectivity with sym-
metrically situated bilateral posterior temporal nodes, a few nodes in prefrontal L, and a contiguous set
of nodes involving amygdala R, putamen R and hippocampus R. The latter also has reduced connectivity
with frontal mid orb R.

Despite the smaller number of links in the set, some very interesting patterns emerge. The hippocam-
pus/parahippocampal/amygdala R nodes connect mainly to different parts of caudate L, but there is also
a link with a relatively large, negative weight to caudate R, despite the short distance between them.

There are similarities between {M0 > Maβ} and {HC > Maβ} that imply a relative closeness of
M0 and HC. On the other hand, there are great differences manifested in {M0 < Maβ} with enhanced
FC (see Fig. 49). Here we find links running mainly in the inferior-superior direction, scattered across
the brain, with the single largest strength difference bilaterally in precuneus, and isolated pockets in
post/precentral L and parahippocampal R. With the exception of these nodes, mostly isolated links
between two otherwise unconnected nodes occur. The box-plot of the mean FC (see Fig. 49) indicates a
smaller FC difference, something which can be clearly seen in Fig. 17 (c) and points to a pattern with a
relatively poor separation. The distance distribution of links is fairly broad (see Fig. 18) and a positive
skewness indicates a bias towards shorter links (see table 4).

Although we can certainly benchmark our MCI groups against HC, comparing the MCI-groups directly
has one distinct advantage: the absence of biomarker data for HC circumvents the potential contamination
with undiagnosed MCI. On the other hand, we are faced with a plethora of possible MCI conditions in
M0.

Turning now to the f = 0.01 − 0.03 Hz versions of {M0 6= Maβ}, link plots and MIPs are shown in
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Figure 48: Connectivity of M0 (left) and Maβ (right) on the set {M0 > Maβ}.
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Figure 49: Connectivity of M0 (left) and Maβ (right) on the set {M0 < Maβ}.

Figs. 52-55. The pattern in Fig. 52 also contain links with superior caudate L, but appears otherwise
random with more isolated links. The distance distribution for the compensatory FC in f = 0.01− 0.03
Hz is very similar to that of the adjacent band and we also find links running in inferior-superior direction.
There are two interpretations of the ’spill-over’ effect into the lower frequency band.

1. The slowing down of oscillations is something that could occur in the earlier phases of cognitive de-
cline, causing the appearance of enhanced FC in the lower interval. This occurs with a geometrically
similar, simultaneous compensatory enhancement of FC in f = 0.03− 0.06 Hz.

2. The appearance of patterns in a lower frequency interval could be symptomatic of another affliction,
connected with e.g. the structural changes in vascular dementia, that populates M0. The fact that
the major low frequency pattern appears when comparing with M0 supports this hypothesis.

Again attributable to the diffuse character of M0, interpretation number 2 appears most feasible - pat-
terns of high discriminative power can lodge in different bands depending on affliction (for example
schizophrenia [49]).
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0.2

1.3

Figure 50: Threshold applied to strength difference (top row) for {M0 > Maβ}, MIP of strength difference
(center), and MIP with applied labeling algorithm (bottom).

-1.6

-0.2

Figure 51: Threshold applied to strength difference (top row) for {M0 < Maβ}, MIP of strength difference
(center), and MIP with applied labeling algorithm (bottom).
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Figure 52: Connectivity in f = 0.01− 0.03 Hz of M0 (left) and Maβ (right) on the set {M0 > Maβ}.
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Figure 53: Connectivity in f = 0.01− 0.03 Hz of M0 (left) and Maβ (right) on the set {M0 < Maβ}.
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7 CONNECTIVITY 7.7 MCI with low vs high aβ-levels

0.3

1.2

Figure 54: Threshold applied to strength difference (top row) for {M0 > Maβ} and f = 0.01− 0.03 Hz, MIP of
strength difference (center), and MIP with applied labeling algorithm (bottom).
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Figure 55: Threshold applied to strength difference (top row) for {M0 < Maβ} and f = 0.01− 0.03 Hz, MIP of
strength difference (center), and MIP with applied labeling algorithm (bottom).
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Figure 56: Connectivity of Maβ (left) and Mpτ (right) on the set {Maβ > Mpτ}.

7.8 MCI with low vs high pτ-levels

Here we directly compare the two groups of MCI that have low levels of aβ/high amyloid burden, one of
which has high levels of pτ (more than 80 ng/l CSF) and NFTs. Whereas both groups suffer high risk of
developing AD, the group with pτ > 80 ng/l is presumably in the latter stages of progression.

Connectivities of Maβ and Mpτ on the link sets {Maβ > Mpτ} and {Maβ < Mpτ} are shown in Figs.
56 and 57 and corresponding MIPs of strength differences in Figs. 58 and 59.

Comparing Figs. 38 and 56 we see a similar difference in mean FC in {HC > Maβ} and {Maβ >
Mpτ} and a qualitatively similar contrast, although certainly weaker and {HC > Maβ} has many more
parietal/temporal-prefrontal links.
{Maβ < Mpτ} displays some structure with nodes in the left temporal lobe connecting to caudate

nuclei (and a single link between hippocampus R and caudate L). This structure contributes to a reduction
in FC magnitude that leaves {HC > Mpτ} with a gaping hole replacing the failing central corpus
striatum hub. Comparing the connectivity of hippocampus R and caudate L across {M0 > Maβ} and
{Maβ < Mpτ}, we note that the reduced FC value between M0 → Maβ increases for Maβ → Mpτ . The
increase in FC is however not as great as in the initial reduction. The reason for this seemingly paradoxal
behavior, hints at a fundamental mechanism of connectivity evolution with progression, which we will
attempt to clarify in the sections to come. For now, we note a crucial piece of information: almost all
the links in Maβ < pt swing from negative to values close to zero.

The MIPs (see Figs. 40 and 58) reinforce the image of a strong qualitative correspondence despite a
weaker contrast.
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Figure 57: Connectivity of Maβ (left) and Mpτ (right) on the set {Maβ < Mpτ}.
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Figure 58: Threshold applied to strength differences on the set {Maβ > Mpτ} (a), MIPs of strength differences
(b) and labeling algorithm and threshold applied to MIPs (c,d).
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-0.3
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Figure 59: Threshold applied to strength differences on the set {Maβ < Mpτ} (a), MIPs of strength differences
(b), and labeling algorithm/threshold applied to MIPs (c,d).

7.9 Controls versus AD

The confirmed AD group consists of 8 subjects (9 before applying QA) and the results should be inter-
preted with caution. The connectivity of {HC > AD} is shown in Fig. 60 and corresponding strength
differences in 61.

With the exception of one suspicious looking individual, all subjects have negative mean FC on
{HC > AD}, whereas the HC are positive, neatly separating the groups by the sign of the summed
connectivity.

As expected, we find similarities with the {HC > Mpτ}, but also some striking differences. With
the caveat of a low number of subjects, we note that although the diagonal pattern of long links across
hemispheres appears to be present, there are holes in {HC > AD} corresponding to clusters of nodes
in {HC > Mpτ}. For example the cluster in the prefrontal and the temporal left lobes are absent.
Indeed, the nodes with high strength differences seem to have shifted to neighboring nodes. Bilateral
parahippocampal areas flare up on the MIPs, as does hippocampus R and to a lesser extent hippocampus
L. These nodes have predominantly reduced FC with frontal mid/sup areas.

The NBS component search fails to converge for the high-resolution ROI-set with 840 nodes, but
does however converge for 392 ROIs. This is most likely due to the increased variability of functional
connectivity breakdown in the confirmed AD state. Fig. 62 shows the 392-ROI component for {HC >
AD}, where the absence of nodes in the left frontal and temporal lobes can be clearly seen. Comparing
the MIPs for the N = 392 NBS components of {HC > pτ} and {HC > AD} in Figs. 62 and 63, exposes
the trend further.

In the next section we will summarize how functional connectivity changes with biomarker configu-
ration, and attempt to interpret the results as an expression of disease progression, with valuable insight
into the regional decline of functional networks with increasingly pathological levels of CSF biomarkers.
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Figure 60: Connectivity on the set {HC > AD}.
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22.3

Figure 61: Threshold applied to {HC > AD} strength difference (a) and MIPs of strength difference. max is
2.9, min 0.2
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Figure 62: MIP of NBS component for {HC > AD} using 392 ROIs.
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Figure 63: MIP of NBS component for {HC > Mpτ} using 392 ROIs.
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8 SUMMARY OF CONNECTIVITY IN BIOMARKER SPACE

8 Summary of connectivity in biomarker space

In this section we summarize the essential features of connectivity variation in biomarker space over
all groups (following Fig. 15): {HC 6= M0}, {M0 6= Maβ}, {HC 6= Mpτ}, {Maβ 6= Mpτ}, {HC 6=
Mpτ}, {HC 6= AD}.

1. {HC 6= M0}. M0 subjects have an MCI diagnosis, but non-pathological levels of both aβ and pτ ,
possibly representing a plethora of conditions. This group has a widespread, diffuse and relatively
weak FC reduction relative controls [see Figs. 15 (a) and 22]. Masked by this diffuse pattern,
we see the emergence of large strength differences in a central hub region in the inferior corpus
striatum area involving primarily putamen and thalamus (see Figs. 23 and 24). This hub has
failing connections to a parietal region (involving postcentral L), medial superior region (involving
precuneus, cingulum post/mid), occipital parts (involving cuneus and occipital inf). Cingulum
post has reduced connectivity to the left temporal left lobe, which in turn has reduced FC to
hippocampus L. Hippocampus R has reduced FC with nodes in right prefrontal cortex. Cingulum
post, parahippocampal R, amygdala R and anterior parts of hippocampus appear with clearer
strength differences in the NBS component. The relevance of these patterns for progression to AD
is unclear due to the inhomogeneity of M0. However, the subgroup of interest is contained therein
and we can look for similarities with {HC > Maβ} in an attempt to isolate relevant patterns.
Subject’s mean FC difference on {HC > M0} is the lowest of all HC-MCI comparisons.

2. {M0 6= Maβ}. Comparing M0 directly to Mpτ gives us an idea of how the transition to pathological
levels of aβ affects connectivity, keeping in mind that M0 contains a wide variety of MCI. {M0 >
Maβ} reveals larger areas of corpus striatum failing - for example a superior part of caudate L flickers
out as aβ drops, with reduced FC to many temporal nodes, e.g. a cluster containing amygdala R,
putamen R, and parahippocampal R/hippocampus R. {M0 < Mpτ} contains mainly scattered links
with few exceptions of several links connected to one node, e.g. precuneus. The connectivity
of key areas linked with cognitive decline is reduced, i.e. caudate nucleus and hippocampus R,
parahippocampal R and amygdala R. How the {M0 < Mpτ} should be interpreted is related to the
character of M0 - a matter to which we will return below. Patterns in f = 0.01 − 0.03 Hz have
similarities with the higher frequency interval, but contain a large, seemingly random component
as evidenced by the number of isolated links. It may represent oscillation slowdown in initial stages
of connectivity deterioration and/or an artifact of M0 group inhomogeneity.

3. {HC 6= Maβ}. As aβ drops below 550 ng/l, the reduced FC pattern of {HC > Maβ} has condensed
to reveal a more sharply defined corpus striatum hub (see Fig. 15). The hub now primarily comprises
caudate nuclei and putamen (see Figs. 39 and 40). Caudate R has a very large set of reduced
FC links with qualitative similarities to the area with the greatest strength difference in {HC >
M0}: thalamus R, in close proximity. Caudate L extends over a greater volume and encompasses
superior parts of corpus striatum, having reduced connectivity with several key areas: hippocampus,
parahippocampal, temporal mid, cingulum post, as well as many occipital and prefrontal nodes.
Both hippocampi figure more prominently in Maβ and the right side is again more pronounced,
forming part of a contiguous group containing parahippocampal R, amygdala R and putamen R,
in proximity to (and with reduced FC to) caudate R. The NBS component has a stronger anterior
parahippocampal/hippocampus L difference. Subject’s mean FC relative HC on {HC > Maβ} is
greater than that of {HC > M0} and virtually all values for Maβ are now in the negative.

4. {Mpτ 6= Maβ} offers insights regarding the transition from lower to higher pτ -levels. {Maβ > Mpτ}
is similar to {HC > Mpτ}, albeit with a weaker contrast containing fewer parietal-prefrontal links.
{Maβ < Mpτ} contains a very small set of links associated with caudate nuclei, shifted to from
negative to values of small magnitude. Comparing {M0 > Maβ} and {Maβ < Mpτ} reveals a striking
correspondence between the decrease in FC between the key areas of caudate and hippocampus for
the transition M0 → Maβ and the increase in FC between the same areas for Maβ → Mpτ . This
observation hints at a fundamental pattern of cognitive decline profoundly related to physiological
mechanisms at work.

5. {HC 6= Mpτ}. When pτ increases above 80 ng/l we find a large set of links with heavy reduction
in FC. Clusters of nodes with high {HC > Mpτ} strength difference appear primarily in temporal
mid left lobe, prefrontal left lobe and a superior medial parietal region (with more weight on the
right). There are many links with reduced FC between the superior parietal and prefrontal L re-
gions. Temporal mid L has reduced FC with hippocampus, thalamus and cingulum post/precuneus.
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Frontal nodes with reduced FC to the superior parietal region also have decreased correlation with
hippocampus, putamen R and parts of the right temporal lobe. Very large strength differences are
also found in temporal inf R having reduced FC to hippocampus/amygdala R and putamen/amyg-
dala L. The general pattern can be summarized as primarily prefrontal L-superior parietal failure,
but also prefrontal/temporal L-parahippocampal, temporal L-cingulum post/precuneus/cuneus re-
duced FC. Again, hippocampus R figures more prominently. The reduced FC corpus striatum hub
previously observed shines with its absence. Subject’s mean FC difference {HC > Mpτ} is the
greatest of all HC-MCI, with positive values for HC and negative for Mpτ .

6. {HC 6= AD}. Finally, we compared HC to AD, with the major caveat of having only 8 AD subjects.
The {HC > AD} pattern has both quantitative and qualitative similarities to {HC > Mpτ}, but
there are also some crucial differences. The HC-AD difference in subject’s mean FC is slightly
greater in {HC > AD}, as one would expect. On the other hand, there are fewer links which,
although they follow a parietal-prefrontal connection pattern similar to {HC > Mpτ}, clearly lack
the clusters of nodes in left temporal and prefrontal lobes. Hippocampus, predominantly on the right
side, exhibit reduced FC to frontal mid/sup. The NBS component search fails for {HC > AD},
which may be connected to increased variability and too few subjects.

9 Progression

In this section, we will attempt to connect the above outlined patterns and identify progression between
them. This leads us to postulate an hypothesis related to the fundamental mechanisms at work. Finally,
we will attempt to verify this hypothesis by a series of targeted tests.

To begin with, we will outline the quantitative trend in terms of the FC reduction magnitude, and
then move on to evaluate pattern changes. Keeping in mind the similarities between {HC > Maβ} and
{Maβ > Mpτ}, we have also seen similarities between {HC > Maβ} and {M0 > Maβ}. Considering
{M0 < Maβ} largely as an artifact of M0 inhomogeneity, we see that qualitatively, M0 is more similar to
HC than Maβ , which in turn is closer to HC than Mpτ . These relations carry over to quantification in
terms of distributions of subjects mean FC (comparing boxplots in corresponding link plots):

δ(M0) > δ(Maβ) > δ(Mpτ ), (15)

where δ(G) is the difference between mean FC of MCI group G and HC on the link set {HC > G},

δ(G) ≡ Φ(HC, {HC > G})− Φ(G, {HC > G}), (16)

in which we have further defined Φ(G, {S}) as the mean FC over NS links in the set S and NG subjects
of group G,

Φ(G, {S}) ≡ 1

NGNS

NG∑
s=1

∑
i,j∈S

φs,ij . (17)

To get an idea of the relative importance of the two biomarkers, we may drop the aβ condition altogether
and simply compare MCI with pτ < 80 to pτ > 80. The results are shown in Fig. 64. Comparing with
Fig. 15, we see that the {(pτ < 80) < (pτ > 80)} pattern is very similar to {Maβ < Mpτ}, reaffirming
the relative strength of contrasts, with pτ > 80 being the strongest.

We now proceed to look for a progression in patterns and seek to identify fronts and epicenters of
functional connectivity degradation. All the while, we log essential nodes and earmark them for further
investigation. Figs. 65 show strength differences of group means on {HC > M0}, {HC > Maβ} and
{HC > Mpτ} on the same color-scale with applied suprathreshold and labeling algorithm. These images
are useful when comparing ROIs across groups that have similar anatomical labels but actually correspond
to different functional centers.

Let us begin by considering the actual group mean strength (rather than strength differences) of
HC, Maβ , Mpτ and AD on the two link sets {HC > Maβ} and {HC > Mpτ} shown in Fig. 66. The
purpose of plotting strength on the wrong set of links is to highlight variations from the means of Maβ

and Mpτ with biomarker. We cannot expect a progression pattern to pop out, because we are simply
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Figure 64: Results of dropping the aβ condition and simply comparing pτ > 80 to pτ < 80.

7.80.0

Figure 65: Strength difference of group means on{HC > MCI} using same color-scale
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transposing the FC values up and down in biomarker space on a set of links which distinguishes Maβ or
Mpτ from HC. Nevertheless, the procedure gives an idea of functional proximity of groups.

For {HC > Maβ} we see very little negative strength HC except for weak negativity in caudate R. In
Maβ , negative strength dominates with minimum in caudate R. The only node staying in the far positive
over all groups is putamen L. Mpτ has mixed positive and negative strength of weak magnitude. In
particular, superior caudate L vanishes and caudate R loses magnitude. The statistically poor AD group
shows a similar pattern, somewhat weaker.

For {HC > Mpτ} (see Fig. 66) we find virtually no negative strength in HC, with the exception of
weak negativity in the anterior-most part of the prefrontal cortex. This negative region expands to the
left in Maβ which also weakens in patches corresponding to Mpτ minima. Overall, the Maβ pattern is
more similar to HC than Mpτ , which is completely dominated by negative strength. AD shows a patchy
landscape of positive and negative, with small magnitudes overall.

The observed trends are quantified in Fig. 67, which shows the mean FC of group means on the two
sets. We find decreasing values with progression dipping into a minimum for the group defining the link
set (remember that the link set is extracted to maximally separate HC and the Maβ or Mpτ ) and then
increases to small magnitudes, closer to zero.

We did not include M0 in the strength plots, because it contains large, diffuse patterns are obscuring
the progression trends. Before proposing a progression hypothesis, we make a brief excursion to discuss
the how M0 should be interpreted.

If we accept the very plausible conjecture that M0 contains many MCI subjects that are irrelevant
(e.g. vascular dementia) to the type we are attempting to isolate (i.e. those likely to progress to AD),
then the patterns observed across groups make more sense. Let us illustrate this notion by attempting
to interpret table 5 in light of the heterogeneous character of M0.

We obtain a very large number of links in the set {HC > M0}, but as we have seen, the overall
reduction in FC is relatively low compared to the other sets. The positive skewness indicates a shorter
link bias. This widespread, weaker reduction in FC, is consistent with several phenotypes being mixed in
the {HC > M0} group comparison. In other words, we are forced to look at M0 as a group containing
obfuscated features of the MCI group with incipient AD. As such, we can see some similarities with Maβ ,
i.e. the corpus striatum hub instead being shifted to putamen and thalamus. These similarities will be
the starting point for our attempts at identifying progression.

Maβ should contain a more homogeneous set of MCI, much more likely to be in an intermediate stage
of incipient AD. Here we see a very clear {HC > Maβ} pattern with a hub region involving less links
than {HC > M0}, but with a stronger reduction in FC. The skewness is small and positive, signifying a
widening distribution where a subgroup of longer links has begun to grow (see Fig. 18).

When pτ -levels rise above 80 ng/l, the striking hub region vanishes {HC > Mpτ}. Instead we find a
larger set of longer links with heavily reduced FC. Table 5 shows sizes of NBS components are consistent
with the above reasoning and a have a skewness that reflects successively longer link failure.

Fig. 15 is very revealing and can be used as a starting point for deciphering potential progression
patterns. Starting from panel (a), we have the widespread, diffuse low FC reduction of M0. Panel (b)
shows how the pattern in (a) is modified when M0 →Maβ , resulting in the upper part of panel (c). We
see that if we take {HC > M0}, remove {M0 < Maβ} and add {M0 > Mab}, we end up with something
qualitatively more similar to {HC > Maβ}. The increase in FC going from M0 to Maβ causes both a part
of the {HC > M0} pattern to fade, but partially overshoots the HC FC, resulting in the {HC < Maβ}
interhemispherical links in prefrontal cortex.

The observed patterns prompt the question: what does panel (b) represent? We are left different
interpretations of {M0 6= Maβ}, depending on the unknown MCI mixture of M0.

1. M0 is very contaminated with MCI of a different origin/end point relative those progressing to AD.
The widespread, diffuse character of {HC > M0} originates in a superposition of several phenotypes
associated with the subgroups of M0. Given the sharpness of the {HC > Maβ} pattern, the diffuse
character of {HC > M0} and {M0 < Maβ}, and given that a progression towards AD should mainly
involve a reduction in FC, we may discard {M0 < Maβ} as largely irrelevant to the progression
pattern - an artifact of MCI subspecies contamination. Armed with this simplification, we seek a
progression pattern observing that {M0 > Maβ} outlines central hub parts for M0 →Maβ , involving
strength reduction in caudate sup/inf L, caudate R, putamen R, amygdala R and hippocampus R
(see Fig. 50). Most strikingly, the caudate-hippocampus connectivity is reduced in the transition
M0 → Maβ . As we have seen, the most prominent regions with the largest strength differences in
{HC > M0} are putamen L/R, caudate R in close proximity to hippocampus R, and thalamus R (see
Figs. 24 and 28) - nodes not as prominent, but also present in {HC > Maβ} (see Figs. 32 and 37,
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Figure 66: Strength of group means on{HC > Maβ} and {HC > Mpτ}.
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Figure 67: Mean FC on group mean matrices masked by the link sets {HC > Mpτ} and {HC > Maβ}.
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set nodes
{HC > M0} thalamus R [620], putamen/pallidum L [593]

putamen R/pallidum R [605], putamen R [599, 602]
{HC > Maβ} 587 1 caudate R [587, 586], caudate L [579, 570, 580]

caudate L/pallidum L [604], putamen R [598],
putamen L [593], caudate L/putamen L [578]

{HC > Mpτ} pre/postcentral R [18], temporal mid L [672, 685],
putamen/hippoc/temp sup R [263],
frontal inf orb L [162], front sup L [34],
frontal mid/sup L [76], frontal mid orb L [10]

Table 9: {HC > MCI} nodes selected for progression tests (unique ROI identifiers in square brackets).

a slightly lower threshold gives two more nodes overlapping hippocampus R and parahippocampal
R). Given the hypothesis of a contaminated M0, we may therefore speculate that the following
major progression pattern is present:

(a) For the MCI → AD subgroup in M0 with non-pathological levels of aβ: Initially, primarily
connections with the inferior parts of corpus striatum are affected, involving putamen L/R,
caudate R and thalamus R, with more weight to the right and weaker strength difference
for hippocampus R and parahippocampal R. This being likely, follows from the proximity to
the {HC > Maβ} hub and the diffuse, spread out, weak FC character of {HC > Maβ} and
{M0 < Maβ}.

(b) Pathological aβ-levels in Maβ : The reduced FC hub expands to encompass both superior
and inferior parts of caudate L. Amygdala R, putamen R and hippocampus R obtain greater
strength difference. Hippocampus R also obtains stronger FC difference (with caudate and
prefrontal) and expands to the posterior part. The NBS component reveals weaker strength
difference in parahippocampal L and hippocampus L (see Fig. 37).

(c) A weak, compensatory effect occurs interhemispherically in the anterior parts of prefrontal
cortex. This compensatory effect presents itself in response to oxidative stress, and is weak in
the sense that it is only a small part of {M0 > Maβ}, with the remainder being a strong part
originating in confounding MCI subjects (similarly for the corresponding parts in {HC > M0}).

2. M0 is not greatly contaminated, and contains a majority of MCI that will progress to AD. The full
pattern of enhanced FC in {M0 > Maβ} is a real and strong compensatory mechanism in response
to increased oxidative stress. In this case the initial stages in M0 are characterized by a diffuse set
of relatively weak reduction in FC, that is counteracted by the strong compensatory effect [see Fig.
15 (b)] for M0 → Maβ . At the same time the corpus striatum hub of reduced FC is expanded as
described in 1 (a) and (b).

3. We are seeing the combined effect of 1 and 2, at an unknown ratio.

Although an M0 contaminated by confounding MCI appears to be a more likely scenario, the unknown
mixture of M0 opens up for different interpretations. Since the mechanisms cannot be untangled, it would
perhaps be more prudent to adopt point 3.

For the purposes of continued exploration, we log the nodes of {HC > M0} that show great strength
differences in proximity to the hub region, hypothesizing that these are the most likely early signatures of
the {HC > Maβ} pattern. We also add the nodes with the greatest strength difference in {HC > Maβ},
all belonging to the central corpus striatum region (see table 9).

Proceeding with {HC > Mpτ} we a larger population of longer links affected (primarily between
superior parietal-temporal L/prefrontal L regions). The reduction in FC in single links is now much
greater than for the other MCI groups. There are clear qualitative and quantitative similarities between
{Maβ > Mpτ} and {HC > Mpτ}, consistent with Maβ being more similar to HC than Mpτ .

The Maβ → Mpτ transition clearly has a major impact on the functional connectivity with a very
large set of links affected and we have added to our list of suspects parts of the clusters of nodes in
temporal left, prefrontal left and parietal lobes (see table 10).

But what about the small, highly relevant set {Maβ < Mpτ}? Also, in the Maβ →Mpτ transition, we
are faced with the gaping hole in {HC > Mpτ} where the corpus striatum hub should be. Indeed, how
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set nodes

{M0 > Maβ} caudate L [570, 579, 580, 575], amygdala/hippocampus R [346],
caudate R [586, 587], putamen/pallidum R [600],
hippocampus R [324], hippocampus/parahippocampal R [326]

{M0 < Maβ} precuneus L/R [540], parietal sup L [481], precuneus R [555]
{Maβ > Mpτ} frontal inf orb L [162], frontal mid/sup L [76], occipital mid L [397]

temporal mid L [672], precuneus L/R [540], postcentral/parietal inf L [454]
frontal sup med/frontal sup R [232], paracentral lobule R [568]
frontal med orb L/cingulum ant L [243], precentral R/postcentral R [18]

{Maβ < Maβ} caudate R [586], caudate L [570], temporal mid L [668],
hippocampus R [324], temporal inf L [730],
frontal sup medial L/R [223], frontal inf tri L [145]
temporal pole sup L [656], cerebellum L [807], temporal mid L [680]

Table 10: {MCI 6= MCI} nodes selected for progression tests (unique ROI identifiers in square brackets).

come the reduction in connectivity between key regions of {M0 > Maβ} increases in {Maβ < Mpτ}? The
caudate-hippocampus correlation decreases for M0 →Maβ but increases again for Maβ →Mpτ . Further
clues are provided in {Maβ < Mpτ} (see Fig. 57), where we note that most of the links connected to
caudate, have gone from negative to small magnitude, with almost vanishing correlation.

To explain the vanishing hub and similar phenomena, we postulate a progression mechanism.

Nodes which are initially in phase, or separated by a phase factor related to their distance,
become increasingly time-lagged due to failing connectivity, resulting in a correlation reduc-
tion. The increased phase factor and correlation reduction cannot continue indefinitely, and
after a period of negative correlations, more or less random fluctuations occur, resulting in a
correlation that approaches zero.

It is important to note that we cannot rule out compensatory mechanisms and the remodel ling of func-
tional architecture as contributing to an observed increase in connectivity with illness progression. The
two mechanisms of 1) increasing phase factor/time-lag leading to random fluctuations and 2) compen-
satory response/functional remodel ling cannot be cleanly untangled, at least not using correlation as a
measure of connectivity. Indeed, the two mechanisms may present themselves at the same time.

The progression hypothesis does however predict a pattern which is somewhat different from what one
would expect from a purely compensatory mechanism. According to the hypothesis, a typical link that
begins to deteriorate initially undergoes reduction in FC, corresponding an increasing time-lag between
functional centers and their oxygenation time series. This can be viewed as an increase in the effective,
functional distance between areas, possibly corresponding to an actual increase in wiring length.

At some point, even maintaining a lagged relation becomes untenable and the functional connection
is lost, manifested as a relative increase in correlation magnitude that goes from negative to zero (or very
small magnitude values). This progression pattern is elusive and would not be easily detected simply
searching for strictly decreasing correlations with perceived progression.

Although compensatory effects cannot be cleanly untangled, it appears likely that they would result
in boosting correlation into the positive range, or at the very least maintaining approximate variability
in values across subjects. The progression hypothesis predicts a negative correlation, that swings back
towards zero in discontinuous leap, marking the sudden loss of synchronicity with an inherent variability
across group subjects. Such a pattern is already hinted in Fig. 67, which represents the relatively crude
measure of subject mean FC.

Fig. 68 reveals a disturbing property of correlation as a functional connectivity measure. The sine
function in panel (a) can be phase shifted by ∆φ in order to emulate a communication delay in (b). Panel
(d) shows the correlation coefficient between the sine function and the phase shifted version for shifts
ranging from zero to 2π, i.e. a full cycle of the sine function. At ∆φ = π/2, the correlation vanishes
as the cosine and sine functions are orthogonal. However, there is clearly a phase-locking between the
two time-series. This situation is missed by the correlation as an FC measure. In fact, it is equated
with the situation in panel (c), which is a random curve that has approximately zero correlation with
the sine function. Increasing the shift further, the correlation becomes negative as we enter the region of
anti-phase relationship between the curves. This situation can be recognized in the FC analysis and as
we have seen often exists in a crossing of the origin as cognition deteriorates.
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Figure 68: Correlation as an FC measure has a blind spot when two identical cyclic time-series are shifted by a
quarter of the period. In this case correlation is zero even though phase-locking and synchronization is present.
The situation in (b) is equated to (c), with a random series and no synchronization. The lower panel shows
correlation between a sine curve and its phaseshifted counterpart for various phase-shifts ∆φ

We now look for the progression signature, keeping in mind the following caveats that will obscure
such a pattern:

1. a compensatory mechanism may be present in parallel (probably resulting in positive FC if domi-
nant),

2. limited subject numbers in combination with inherent variability in connectivity breakdown can
make the progression hard to pinpoint,

3. due to the massive number of links present, we will look at strength differences on link sets across
groups and not all constituent links may follow the same progression time line (but if they do, then
the node in question is certainly highly relevant),

4. the biomarker limits defining our MCI subjects are somewhat arbitrary and may not correspond to
an optimal progression time line, in the sense that the resulting groups are not defined before and
after the most common breakdown points occur.

Maintaining perspective on the confounding effect of compensatory FC on the hypothesis of time lags,
it is highly unlikely that the large corpus striatum hub structure could be amended by a compensatory
increase in FC in such a far progressed group as Mpτ , suffering from both high levels of senile plaques
and NFTs.

In addition to the nodes from {HC > MCI} selected for testing (see table 9), we choose the ten nodes
with the greatest strength difference in {M0 > Maβ}, {Mpτ > Maβ} and {Mpτ < Maβ}, but only the
three strongest in the diffuse set {M0 < Maβ} (hypothesized to be mainly an effect of M0 MCI phenotype
multiplicity). These nodes are enumerated in table 10.

Fig. 69 shows box plots of the total strength on the network (with out restricting to any link set) for
the nodes of interest for HC > MCI (see table 9) for all the subjects and groups.

We have now disregarded the link sets completely and calculated the more noisy, full network nodal
strengths. For the nodes of interest emerging from {HC > M0} and {HC > Maβ} we have included the
M0 subjects as these may contain a subset progressing to Maβ . M0 has been excluded when looking at
the nodes from {HC > Mpτ}, since this group is far removed from the pτ -pathology.

Despite the noisiness of the full strength, we see dips in the FC distributions for the groups corre-
sponding to the MCI group in the nodes selected from looking at the {HC > MCI} set.

The nodes from {HC > M0} are clearly different as they mainly lodge in the high positive strength
range. That the full strength measure is less specific is seen for putamen/pallidum R, which has no

76



9 PROGRESSION

significant differences relative HC. None of the nodes follow the proposed progression pattern, which we
could hardly expect for the M0 group.

In the nodes from {HC > Maβ}, we see more of the expected pattern: an increasing bias towards
the negative correlation that then shifts towards the zero. Mainly caudate, i.e. the nodes with the
strongest differences, follow the progression pattern well. One exception is putamen L, which we have
seen maintains a positive strength over all groups, even on the link subset where the most negative
strength is expected (see Fig. 66)). We noted already in the introductory parts that whereas putamen is
highly connected with positive correlations, caudate forms a hub region with many negative correlations
(see Fig. 20). The diffuse character of full strength makes the inherent character of the nodes manifest
itself with a great number of links not differing between groups.

In the same way, for the {HC > Mpτ} nodes we can see dips in the Mpτvalues sometimes followed by
an increase in AD.

Fig. 70 shows the strengths now restricted to the indicated link sets for the nodes selected by inspection
of the same sets. We remind the reader that these strengths, although more specific, still contains tens
of links. The dip in M0 strength on {HC > M0} is now more pronounced but (with the exception of
putamen R) is not followed by a great increase. The fact that values generally don’t approach zero after
M0 could stem from MCI homogeneity.

{HC > Maβ} follows the pattern more clearly, in particular caudate. AD sometimes behaves strangely,
but statistics is very poor, so this is to be expected. Putamen is again prone to staying in the positive,
although the decrease in FC seems to proceed down the line, perhaps an indication of a slower decay.

For {HC > Mpτ} we now find great negative dips over Mpτ . Maβ does not show reduction relative
HC at the α = 0.05 level, with the exception of frontal mid/sup L, although there appears to be a trend
in many cases.

We can also plot the strength on the {MCI 6= MCI} set for the nodes with the greatest strength
difference (see table 10). These are shown in Fig. 71 for {M0 6= Maβ} and Fig. 72 for {Maβ 6= Mpτ}.
These sets contain fewer links and are directly relates MCI groups.

Comparing nodes between{M0 > Maβ} and {HC > Maβ}, shows the same progression pattern.
The trends are remarkably similar, but M0 appears to behave more like HC. This is not strange since
{M0 > Maβ} is extracted by looking for maximal differences. It is interesting to note that several
hippocampus nodes exhibit a progression trend.

{M0 < Maβ} is a result of interference from other MCI phenotypes, or a powerful compensatory
mechanism in precuneus. Either way, we do not expect to see the progression pattern, but we may have
a prototype for the compensatory effect.

Turning to {Maβ > Mpτ} (see Fig. 72) we find similar qualitative trends as in {HC > Mpτ}, albeit
with a boost of Maβ values coming from the search for links of maximal difference between the two MCI
groups. In {Maβ < Mpτ} most nodes follow a progression like trends, in particular the key nodes of
hippocampus R and caudate R. Others show a signature more indicative of compensatory FC, but very
few links are involved here.

We can quantify this behavior and calculate the correlation between strength and continuous biomark-
ers levels. Table 11 shows how the full strength of the nodes from {HC > MCI} sets correlate with
aβ- and pτ -levels across all MCI, as well as correlation with aβ across the union group M0 ∪Maβ and
correlation with pτ across the union group Maβ ∪Mpτ . Correlation values for p < 0.05 are reported
and multiple comparison correction has not been applied, meaning that all results should be regarded as
trends.

None of the nodes from {HC > M0} have a significant correlation with biomarkers, to be expected if
multiple MCI are present. For {HC > Maβ} the most interesting parts of the corpus striatum hub failure
emerge, and exhibit reduced FC over all MCI with decreasing aβ. When looking at all-MCI-correlation
values, is important to remember that the to biomarkers correlate with each other - a lower aβ correlates
with a higher pτ (r = −0.34, p = 0.0001). The caudate nuclei show reduced FC when aβ decreases in
M0 ∪Maβ , but show an even stronger increase with increasing pτ . This is the progression mechanism by
which the corpus striatum hub vanishes, and it is remarkably clear given the non-specific full strength
measure.

{HC > Mpτ} cannot show the increase in strength following loss of synchronicity since the next step
is AD, for which biomarker levels are presently unavailable. We do however see the clear reduction in FC
with increasing pτ , indicative of a node on its way to lose synchronization.

Table 12 shows the same correlation values as in table 11, but the strength is now calculated on the
relevant set of links, rather than the whole network. Here, putamen R emerges as the only node for
{HC > M0} with reduced strength for increased pτ . For {HC > Maβ} the other nodes in addition to
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Figure 69: Total strength variation (without link subset restriction) across groups for the nodes of interest from
HC > MCI. Lines at the bottom of each box plot denotes significant difference between indicated group and
HC.
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Figure 70: Strength variation on indicated set across groups for nodes selected by inspecting the same sets.
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Figure 71: Strength on M0 6= Maβ sets for selected nodes.
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Figure 72: Strength on Maβ 6= Mpτ sets for selected nodes.
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set node raβ all MCI rpτ all MCI raβ M0 ∪Maβ rpτ Maβ ∪Mpτ

{HC > Maβ} caudate R 0.19 0.34
caudate R 0.29 0.38 0.34
caudate L 0.22 0.38
caudate L 0.23 0.45
caudate L 0.18 0.27 0.35

{HC > Mpτ} temporal mid L −0.18 −0.40
temporal mid L −0.39
frontal inf orb L −0.17 −0.32
frontal sup L −0.32
frontal mid/sup L −0.28
frontal mid orb L −0.26

Table 11: Correlation between biomarkers and full strength of nodes of interest from {HC > MCI}. Only
correlation values for which p < 0.05 are shown (uncorrected). The 3rd column shows correlation between total
strength on networks and aβ over all MCI subjects, the 4th column the same quantity for pτ . The 5th column
shows correlation between full nodal strength and aβ over pooled M0 and Maβ subjects, and the last column the
same quantity for pτ over pooled Maβ and Mpτ subjects.

caudate show weaker traces of the progression signature, mainly with reduction in strength with increased
pτ . Also {HC > Mpτ} shows more nodes with reduced strength with increasing pτ across all subjects
and with a higher correlation magnitude when restricting to the union set Maβ ∪Mpτ . A similar effect
can be seen for {HC > Maβ}.

Table 13 shows the correlation between strength on indicated sets and biomarker levels for all MCI
and the two union sets. {M0 > Maβ} shows clear evidence of the progression trend, and we see that
raβ for the union set has been boosted by the direct MCI-MCI comparison. The compensatory effect
in precuneus gives two correlation coefficients with negative sign, showing a reduction with increased pτ
after an initial increase with dropping aβ. {M0 6= Maβ} shows that reduced strength follows decreasing
aβ levels across all MCI.

Likewise, {Maβ > Mpτ} indicates reduced strength with increasing pτ across all subjects, and an even
stronger effect in the M0 ∪Maβ union set.

Our hypotheses allows us to extrapolate the front of maximum lag and identify epicenters of functional
connectivity breakdown. The major epicenters have already been identified: in the corpus striatum hub,
putamen L/R expands to caudate L/R in the transition M0 → Maβ . In addition, nearby hippocampus
R nodes begin to lag.

Then, for Maβ →Mpτ , the corpus striatum hub suffers total synchronicity break down, and a strong
time lag occurs for longer interlobular links, primarily between parietal superior and prefrontal left, but
also involving temporal left lobe. Hippocampus R loses synchronicity with caudate and connections with
prefrontal nodes are lagged, as is hippocampus L-prefrontal.

Not only do we have very poor statistics for the AD group, but this group is also more prone to
produce artifacts. There does however appear to be a indications of a breakdown in prefrontal L cluster
(prominent in {HC > Mpτ}), marked as an gaping hole in the AD NR = 392 NBS component. Less
obvious, the temporal L cluster of nodes also appears to have suffered synchronicity breakdown. The
front of maximum time-lag is then shifted to adjoining areas.

Correlation is in fact not the only way to measure functional connectivity, there are many other
information theoretic measures such as mutual information or Synchronization Likelihood (SL). The
latter is often employed in EEG studies [36] and has even been applied to resting state fMRI [52].
Synchronization likelihood is perhaps better suited to monitor progression patterns, where our hypothesis
would simply manifest itself as a successive reduction in this measure, making it easy to identify trends.
Additionally, SL takes on values in [0, 1], which makes it appropriate for a number of graph theoretical
measures. Coherency is another measure that is based on separating the signal into several sub-bands
and look for correlations in reciprocal space, at the same time extracting the phase lags [34]. Given the
observed trends, correlation seems particularly ill equipped to study progression compared to SL and
coherency these measures.

Graph theory is often applied to connectivity as measured by correlation and in doing so disregarding
problematic negative values, or even applying an arbitrary threshold for binary connectivity matrices.
Switching FC measure, not only seems appropriate given the observation of increasing lag and breakdown,
it also resolves technical problems with applying group theoretical measures of network properties and
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set node raβ all MCI rpτ all MCI raβ M0 ∪Maβ rpτ Maβ ∪Mpτ

{HC > M0} putamen R −0.20 −0.18
{HC > Maβ} caudate R 0.18 0.26 0.37

caudate R 0.33 0.46 0.51
caudate L 0.20 0.30 0.42
caudate L 0.26 0.37 0.49
caudate L 0.29 0.36 0.42
caudate L/pal L 0.28
putamen R 0.20 0.27 0.35
putamen L 0.30
caudate L/put L 0.19 0.37

{HC > Mpt} pre/postcentral R −0.36 −0.20 −0.51
temporal mid L −0.36 −0.47
temporal mid L 0.20 −0.35 −0.54
put/hipp/t sup R −0.31 −0.46
frontal inf orb L −0.43 −0.58
front sup L −0.31 −0.48
frontal mid/sup L −0.34 −0.53
frontal mid orb L 0.20 −0.40 −0.52

Table 12: Correlation between biomarkers and strength of nodes on link sets of interest from {HC > MCI}.
Only correlation values for which p < 0.05 are shown (uncorrected). The 3rd column shows correlation between
strength on given link set (first column) and aβ over all MCI subjects, the 4th column the same quantity for
pτ . The 5th column shows correlation between nodal strength on the given set and aβ over pooled M0 and Maβ

subjects, and the last column the same quantity for pτ over pooled Maβ and Mpτ subjects.

topology.
In the sections to follow, we have chosen to apply graph theoretical measures such as strength and

betweenness, that are relatively easily generalized from binary to weighted formalism, although interpre-
tations may require some caution.
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set Nodes raβ all MCI rpτall MCI raβ M0 ∪Maβ rpτ Maβ ∪Mpτ

{M0 > Maβ} caudate L 0.34 0.43 0.57
caudate L 0.29 0.33 0.33
caudate L 0.34 0.42 0.41
amyg/hipp R 0.36 0.43 0.34
caudate R 0.34 0.44 0.28
hipp/parah R 0.26 0.33 0.45
put/pal R 0.25 0.30 0.36
caudate L 0.31 0.35 0.32
hipp R 0.25 0.38 0.49
caudate R 0.22 0.26 0.23

{M0 < Maβ} precun L/R −0.37 −0.40 −0.38
par sup L −0.35 −0.42 −0.32
prec R −0.35 −0.41

{Maβ > Mpτ} frontal inf orb L −0.33 −0.54
frontal mid L −0.37 −0.61
occipital mid L −0.22 −0.43
temporal mid L −0.36 −0.19 −0.62
precun L/R −0.30 −0.58
postc L/par inf L −0.24 −0.50
f sup med/f sup R −0.27 0.22 −0.52
parac lob R −0.38 −0.65
f med orb/cing ant L −0.28 −0.51
prec/postc R −0.31 −0.20 −0.53

{Maβ < Maβ} caudate R 0.37 0.32 0.66
caudate L 0.18 0.34 0.35 0.73
t mid/inf L 0.36 0.64
hipp R 0.25 0.38 0.49
t inf L 0.27 0.25 0.54
f sup med L/R 0.36 0.19 0.55
f inf tri/oper L 0.30 0.35
t pole sup L 0.30 0.35
cerebellum 0.23 0.27 0.55
t mid L 0.27 0.49

Table 13: Correlation between biomarkers and strength of nodes on link sets of interest from {HC > MCI}.
The 3rd column shows correlation between strength on given link set (first column) and aβ over all MCI subjects,
the 4th column the same quantity for pτ . The 5th column shows correlation between nodal strength on the given
set and aβ over pooled M0 and Maβ subjects, and the last column the same quantity for pτ over pooled Maβ and
Mpτ subjects.
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10 Graph theoretical measures

In this section we will evaluate the performance of a few basic graph theoretical measures on our func-
tional connectivity networks. We do this to simplify the horrendously complex networks of hundreds
of thousands of links in an attempt to condense the information and highlight particularly interesting
nodes. Here, we choose to focus on measures that yield properties of individual nodes. In doing so, we
gain tractability, but suffer a major power loss, as the degrees of freedom are reduced from 350 000 links
to 840 nodes.

There is a wide range of graph theoretical measures that can be used to characterize networks, of-
fering potentially valuable information on how normal function is disrupted. Unfortunately, most of the
fundamental nodal measures suffer from the loss of power that comes with a massive reduction in degrees
of freedom, yielding weak contrasts with few or no significant differences.

Topological properties of networks are commonly evaluated by thresholding the networks into binary
entities where all links above a more or less arbitrary threshold are set to unity and all those below
are deleted. Some methods address this arbitrariness, by for example thresholding at maximal efficiency
[53]. However, we are still removing ourselves from and severely marginalizing the original data cache,
potentially introducing unknown artifacts.

The alternative is to remain within a fully weighted formalism, which is less tangible, less developed,
mathematically and conceptually more difficult, not to mention computationally more demanding. For
example, in order to pinpoint topological alterations of the binary networks, it is necessary to normalize
some measures using a large number of random networks drawn from an ensemble with the same degree
distribution as the networks under consideration. In the case of weighted networks, corresponding algo-
rithms exist, approximately preserving strength and sign distributions of the weighted network [51]. The
generation of these networks are computationally far more demanding relative their binary counterparts.
Additionally, even though weighted null networks goes a long way towards generalizing many important
binary measures, it does not resolve the more serious formalism breakdown due to the presence of negative
links.

Indeed, what does it mean to assign negative weight between two regions? In our case it simply
means that the two gray matter oxygenation curves are shifted towards an anti-phase relationship. In
general network theory, there is little room for attaching such a meaning, where links should ideally reflect
connection strength or probability, confining the weights to a mathematically well behaved normalized
interval, e.g. [0,1].

Attempts have been made to deal with the troublesome negative weights, by interpreting it as a
property of longer links that integrate modularized processing [51]. Rubinov and Sporns in Ref. [51]
shift focus to partitions or modules of positively correlated regions integrated via negative intermodular
correlations. Indeed, we have already noted the bias toward negative weight for longer links. Their
approach attempts to split measures into a positive and negative part, with interpretations bordering the
hypothetical, critically hinging on the interpretation of negative weights. To make matters worse, some
authors regress out a global signal in the GLM, inducing large amounts of artifactual negative correlations
void of physical meaning.19 Currently, the debate regarding global signal removal has produced consensus
that the regression produces artifacts. Whereas the hypothesis regarding the functional role of negative
correlations, however hard to pinpoint, may hold some truth, the matter of how to deal it with and
interpret results is far from resolved.

Given the observed trends in our biomarker cohorts, i.e. a general reduction in connectivity pushing
into the negative for the individuals far progressed along the tentative biomarker time-line, it is clearly
unsuitable to apply a binary threshold if one hopes to isolate and highlight these patterns. One could
of course study different thresholds or even windows of thresholds. This approach results in a massive
amount of data without hope of a clear interpretation.20

Separating into a positive and negative part is generally a bad idea for most measures, because such a
sharp division does not capture the connectivity reduction across the origin very well. We have also seen
that positive FC often swings over into the negative with roughly equal magnitude, indicating that one
would be ill advised to take the absolute value, as one might when hypothesizing that negative weight
has distinct functional origin rather than being a sign of pathology (when both may in fact be true at
the same time).

19Unfortunately the tantalizing hypothesis of Ref. [51] is based on publicly available resting-state data, where the global
signal has been regressed out. Their framework of splitting measures into a positive and a negative part fails due to small
number of negative weights if global signal regression is omitted.

20The author is speaking from first-hand experience here.
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No matter how one transforms the correlation, it is intrinsically and fundamentally unsuitable for a
full graph theoretical analysis. In order to perform a complete analysis, one should ideally: 1) retain
a weighted formalism in order to avoid marginalizing data and introducing artifacts, 2) avoid using a
connectivity measure that produces values without a clear probabilistic meaning. Failure to fulfill this
last point destroys one of the most desirable graph theoretical properties of a functional connectivity
measure, which should reflect connection strength that can ultimately only be stated as a probability.

Synchronization Likelihood (SL) [52, 35], a form of generalized synchronization derived from signal
theory, so far mostly applied to EEG/MEG data, does fulfill these requirements, providing a probability
of synchronization. Although beyond the scope of this paper, SL appears to pave a feasible road to a
complete graph theoretical analysis. Even then, one would be faced with the difficulties of a weighted
formalism and a severe reduction in power using nodal measures21, something which can perhaps be
amended by increasing ROI-resolution further. The correlation analysis can as we have seen provide
valuable insights on its own, but in conjunction with a fully weighted graph theory, calculations are
cumbersome, the formalism tends to break down, results become are hard to interpret as negative weights
are cut or some other trick is used to amend the failing formalism.22

In view of these difficulties, we focus here on a few simple measures that can be applied without
null network normalization; nodal strength and betweenness and eigenvector centrality. In the case of
the two centrality measures, we are forced to consider only positive weights, as these measures are ill
defined for negative weights. Arguably the most fundamental measure of network differences, second to
individual links, strength has already been employed in the previous section. Before, we merely used it
as a tool to highlight relevant regions in the set of significantly different links. Below, we will explore the
significant differences in strength, keeping the full network of links and additionally limiting calculations
to connected network components.

The strength of a high resolution ROI-node is composed of 839 link values, reducing it’s power relative
link-testing, but at the same time mitigating multiple comparison problems. In this situation, we can
attempt to boost power by looking for spatially contiguous ROIs.

As we have seen, characteristic hub regions with reduced FC is a recurring theme. The graph theo-
retical measures of eigenvector and betweenness centrality are designed to yield high values for regions
that play a central role in the network. It is therefore reasonable to expect that the centrality measures
can provide additional insights - an hypothesis which we will test below.

Comparing 840 nodes across groups, we still need to control the FDR, although the problem is much
less severe than for 350 000 links. Again, we employ random permutations to construct a distribution of
t-statistics for each nodal measure, which is then used to assign a p-value to the node in question. The
number of permutations is chosen large enough to produce consistent FDR controlled p-values (in general
100000 permutations is sufficient 23)

We assign p-values by a two-tailed comparison, taking the absolute of the generated distribution of
t-values and calculating the fraction of values greater than the t-statistic of biomarker groups. Once p-
values have been assigned via the distribution from permutation testing, we perform Benjamini-Hochberg
(BH) multiple comparison correction and threshold at α = 0.05.

The FDR correction may be overly conservative, assuming that nodal tests are independent, although
their proximity may play an important role, depending on the nodal measure in question. To enhance
power, we can repeat the trick commonly used in statistical parametric mapping. As before, we first apply
a t-statistic suprathreshold to uncorrected t-test values, qualifying the most important nodes for a subse-
quent component search. The connected component thus identified consists of a number of neighboring
nodes with t-values exceeding the chosen suprathreshold.

To enumerate the neighbors of a given ROI we dilate it with a box kernel of dimensions chosen to
reflect the spatial domain of influence, i.e. we define what constitutes a neighbor. Choosing kernel size
too large will generate very large clusters and choosing it too small could cause the component search
to miss important clusters. Fig. 73 shows how the matrix defining neighboring nodes varies for different
kernel sizes. It is tempting to extend the range by choosing a larger kernel, but this will affect the null
distribution of component sizes so that power is reduced. In general, the 3x3x3 kernel seems to have the
greatest power and is employed in all component searches below.

The null size distribution is generated by pooling the two groups tested for nodal differences, and
randomly partitioning into two new groups preserving old group sizes. Then, the suprathreshold is

21There are also measures that retain the connectivity space dimensionality, and that should therefore not suffer severe
power loss.

22Again, speaking from first-hand experience here.
23This is only a small fraction of the complete distribution. For example, we would have to enumerate and test a staggering

(Ng1 +Ng2 )!/(Ng1 !Ng2 !) = 168!/(126!42!) ≈ 1040 partitions of HC pooled with Maβ .
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3x3x3 5x5x5 9x9x9

Figure 73: The neighbor matrices for different kernel sizes. A black dot indicates that the nodes (x and y-axis)
are defined as neighbors.

applied and the size of the largest contiguous component found is logged in the size distribution. Any
component found in our biomarker groups is declared significant its size is in the top 5% of the null
distribution.

It is not evident how to define the size of a component. As for NBS, we may consider the number of
constituent ROIs (these have roughly equal voxel numbers), i.e. the extent of the component. We may
also choose to sum the t-values in the component and ’intensity’ as our size. For the nodal measure,
intensity appears to grant more power and has been employed in the results presented below. Note
that we may have components comprising of a single node when we choose intensity as size-measure. A
Benjamini-Hochberg correction is applied to the components found, but power is sustained relative the
all node permutation since the components of significantly greater size comprise a small number.

There is no rule for selecting the supra-t value - it can be regarded as a parameter that allows us
to probe the spatial extension of high-difference regions. In the end, results should be interpreted with
knowledge of the brains functional architecture. As before, the component search should be seen as a
complement to the FDR controlled results, providing auxiliary power. In the figures, the presence of
a suprathreshold will indicate the use of component search, where components with p < 0.05 are after
multiple comparison correction are kept.

Nodal measure analysis will be presented for the most important group comparisons, i.e. HC versus
M0, Maβ and Mpτ . All results are derived from permutation testing with 100 000 permutations where
after p-values are corrected and differences declared significant at the significant at the α = 0.05 level.
When measures are calculated on connected components, the component used is always the one with the
highest suprathreshold present for all HC −MCI comparisons, i.e. the components found for t = 3.5
(any t-value in the figures, refers to the supra-t value used in searching for components of ROIs, not
links).

10.1 Nodal strength

We now consider strength resulting from the full network of 350 000 links. We could also look at significant
strength differences on the network components, but this will simply reproduce the previously presented
MIPs of since all nodes are then flagged as significant. Fig. 74 (a) shows the results of component search for
HC > M0. Since we use intensity and not extent as a measure of size, single nodes can appear at a given
suprathreshold, even though no significant results were found when permutation testing the individual
node values. In that case, the FDR control becomes conservative for the 840 tests and eliminates all
significances. FDR control is also applied to all the components found and single nodes may survive if
their intensity is strong enough, but are more susceptible to discrimination than a contiguous set of nodes
who are shielded by their total sum of t-values. The price of this shielding is of course that none of the
constituent nodes can be flagged as individually significant (we plot all the components in one figure).

Remarkably, several key regions already highlighted in the connectivity analysis appear, despite the
massive reduction in degrees of freedom. At t = 3.5, we find the nodes with the greatest group differences,
recovering the familiar anterior nodes with putamen, pallidum and thalamus R, as well as the posterior
center with parts of cingulum mid and precuneus. Lowering to t = 3.0, these extend focii to include
cingulum post, putamen L, pallidum L, caudate L and R, as well as parts of Hippocampus L and R,
parahippocampal and amygdala.
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HC-M0 mean strength difference t=3.5, max/min = 64.4/49.6

HC-M0 mean strength difference t=3.0, max/min = 64.4/40.2

HC-M0 mean strength difference t=2.5, max/min = 64.4/35.7

HC-Mp  mean strength difference t=2.5, max/min = 84.1/60.1

HC-Mp  mean strength difference t=3.0, max/min = 84.1/78.8

HC-Ma , mean str. diff. nodal and component t=4.0 search, max = 95.

HC-Ma , mean strength difference, t=3.5, max/min = 95.1/78.7

HC-Ma , mean strength difference, t=3.0, max/min = 95.1/53.1

HC-Ma , mean strength difference, t=2.5, max/min = 95.1/47.5

(b)(a)(a) (b)

(c)

Figure 74: Areas where strength is significantly greater in HC relative M0 (a), Maβ (b), and Mpτ (c).
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Going lower still to t = 2.5, we now see a remarkably symmetric image, with two clusters in front,
both sides of corpus striatum extending to hippocampus, and two posterior clusters that are slightly
misaligned.

Looking at Fig. 74 (b) and HC > Maβ , again only the nodal component search reveals results for
the full network strength, with a single node component in caudate R at t = 4.0 that expands to involve
putamen, pallidum and caudate L as the suprathreshold is lowered. At the lowest t = 2.5 thalamus R,
familiar from HC −M0, appears.

For HC > Mpτ , fig. 74 (c) reveals isolated nodes in the component search at t = 3.0 and the
more familiar pattern with a streak of nodes in temporal and frontal left appears only at the lower
suprathreshold t = 2.5. Another feature catches the eye in the strength difference plot for t = 2.5 -
cingulum posterior and precuneus now make an appearance.

This relatively weak strength contrast is unexpected, given the large FC reduction associated with
the network components for this comparison. The fact that this is the smallest group with only 18
subjects may be a contributing factor. However, the weakness is consistent with the hypothesis of a
progression that starts with an FC reduction, wanders into the negative and ends with a complete loss of
synchronicity. As we have already noted in Sec. 9: correlation as a connectivity measure has a blind spot
when the phase lag between two times series is a quarter of a period. Looking at Fig. 29, it is clear that
HC has a large set of weak magnitude links that become negative for Maβ . It appears unlikely that the
negative correlation with the corpus striatum would suddenly arise with a sudden increase in magnitude
of functional connectivity. More likely, a rough quarter period phase shift is inherent in these connections
in normally functioning brains, effectively rendering group differences for these links between HC −Mpτ

invisible, even though they have suffered catastrophic connectivity failure and are fluctuating randomly
and independently. This crucial inference on the evolution of FC with progression follows from Figs. 68,
29 and 38. The troublesome blind spot of correlation as FC measure also impacts compensatory effects,
which may just be regions with an inherent and normal anti-phase relation for which correlation becomes
zero when communication breaks down. Such long-distance, anti-phase relations are however rare.

10.2 Eigenvector centrality

This is a centrality measure related to Google’s so-called PageRank score[54].
The basic idea of PageRank is that each page is assigned a score based on the number of external

links leading to that page. This would just give us a version of degree or strength, but PageRank and
eigenvector centrality impose yet another condition: the nodal score is boosted when linked up to other
nodes that are also highly connected. In the same way, we can consider a node in our network to be extra
important if it is connected to nodes, which are also highly connected.

Eigenvector centrality, also known as Gould’s index of accessibility [55] embodies these ideas in a
mathematically rigorous way. The calculation is simple enough: the elements of the eigenvector cor-
responding to the largest eigenvalue of the connectivity matrix gives the eigenvector centrality for all
network nodes. We will now make a brief theoretical excursion to explain why this gives the desired
measure.

One way to calculate the eigenvector with the largest eigenvalue is by power iteration[56]. This
method is rather inefficient and may converge very slowly, but provides a useful intuitive picture of how
the centrality measure is calculated. The power iteration starts from an approximation of the sought
eigenvector b0, in which we may set all elements to unity. Convergence towards the dominant eigenvector
is then assured by iterating a normalized product with the connectivity matrix Z,

bk+1 =
Zbk
||Zbk||

(18)

One may visualize this by first placing unity on each of our nodes in the network (b0,i = 1 for all nodes
i = 1, ..., N). Then, each unit is propagated to connected neighbors weighted by the associated link
contained in Z. This corresponds to Zb0, which is normalized to unity before reiterating. Now each node
contains a value different from unity and in the next iteration the new values are propagated with the
same network weights, and so on until convergence is reached. Convergence is assured if there exists a
single greatest non-degenerate eigenvalue and the initial vector has a non-zero component in the direction
of the sought eigenvector.

In this way, iteration causes high values to accumulate at nodes with high connectivity to other nodes
with high connectivity and the measure can therefore be categorized as self-referential. Clearly, it would
be ill advised to use negative weights in this context, as interpretation is completely lost.
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Negative links invalidate the premise of the Perron-Frobenius theorem [57], on which the measure is
based. The theorem states that a non-negative primitive matrix has a non-degenerate largest eigenvalue
that is positive, to which a unique eigenvector with positive entries is associated.

Non-negative simply means that all elements are positive definite and primitive means that the ele-
ments of Zn (n ∈ N) are non-negative. In fact, since we have no self-connections or directed links, matrix
element ζij of ζ = Zn contains the multiplied link weights in crossing between node i and j in paths of
n steps. Clearly, Zn is primitive if Z is non-negative and real.

Let v0 be the eigenvector of the greatest eigenvalue λ0, and let b0 be our initial guess in the power
iteration,24 which can always be written as a normalized linear combination of eigenvectors vi with
coefficients βi such that

b0 =
∑

βivi. (19)

Repeated application of the connectivity matrix now yields,

Zkb0 =
∑

λki βivi. (20)

Dividing by λ0β0 and letting k →∞ we see that

Zkb0

λ0β0
→ v0, (21)

which follows since λ0 > λi causing
(
λi
λ0

)k
→ 0 as k →∞.

Eigenvector Centrality (EC) potentially offers greater sensitivity than strength, although results are
hampered by the cutting of negative correlations. A more complete picture could be found by switching to
a measure that does not suffer from the same limitations, such as synchronization likelihood. Nevertheless,
we find many similarities between strength and eigenvector centrality, as seen by comparing Figs. 74 and
75. It is hard to assess the importance of negative links in this comparison, because eigenvector centrality
is by its very nature more condensed, and highlights regions that are highly connected to other highly
connected regions.

As for strength, we only find results for the component search. For HC > M0 (see Fig. 75 (a))
Thalamus R and cingulum mid/precuneus appear to be the most significant hub regions with reduced
centrality. These are further expanded to include putamen/pallidum R, cingulum mid R and supp motor
area as t is lowered.

Comparing with strength (c.f. Figs. 74 (b) and 75 (b)) the greatest difference now occurs in caudate
L rather than R. At t = 3.5, 3.0 EC and strength become identical, indicating that this region is very
central indeed. t = 2.5 further exposes thalamus L, whereas the corresponding strength reveals thalamus
R. We can presently only speculate that a positive definite FC measure would reveal a more symmetric
EC.

Note that according to the progression hypothesis, some of these areas could very well be badly
affected in Mpτ group also, suffering complete loss of synchronicity but rendered invisible to correlation
by intrinsic quarter-period phase factors.

The same occipital/temporal med R shows up in strength and EC (Figs. 75 (c) and 74 (c)), further
expanding first at t = 2.5 to include a similar part in the left hemisphere as well as a frontal mid in the
left prefrontal lobe. The same sparsity as in the strength maps can be attributed to a corpus striatum
hub with loss of synchronicity, rendered invisible by correlation artifacts.

10.3 Betweenness centrality

The measure in the previous subsection was designed by geographers, but betweenness centrality, like
many practical graph measures, was born out of the analysis of social networks [58]. The calculation of
betweenness centrality is resource demanding, although calculation times have been reduced with more
efficient algorithms [59].

Betweenness centrality of node v is defined as[58, 59]:

B(v) =
∑
s6=t

σst(v)

σst
, (22)

24b0 must have some overlap with v0 for the power iteration to work.
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HC-M0 mean eigenvector centrality difference, t=3.5, max/min = 0.0073/0.0058

HC-M0 mean eigenvector centrality difference, t=3.0, max/min = 0.0073/0.0052

HC-M0 mean eigenvector centrality difference, t=2.5, max/min = 0.0073/0.0045

HC-Mp  mean eigenvector centrality difference, t=3.5, max = 0.011

HC-Mp  mean eigenvector centrality difference, t=2.5, max/min = 0.011/0.072

HC-Ma  mean eigenvector centrality difference, t=4.0, max = 0.0085

(a) (b)

(c)

HC-Ma  mean eigenvector centrality difference, t=3.5, max/min = 0.0085/0.0063

HC-Ma  mean eigenvector centrality difference, t=3.0, max/min = 0.0085/0.0063

HC-Ma  mean eigenvector centrality difference, t=2.5, max/min = 0.0085/0.0056

Figure 75: Areas where EC is significantly greater in HC relative M0 (a), Maβ (b), and Mpτ (c).
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where none of the nodes summed over must be equal to v. σst is the number of shortest paths between node
s and t (σii = 1) and σst(v) is the corresponding measure for paths running through node v. In words,
betweenness centrality of node v is the fraction of all shortest paths that run through v. The denominator
is generally unity for weighted networks, where the degeneracy of binary networks is virtually absent. So
in the weighted formalism, we sum the number of shortest paths that cross the node of interest, meaning
that hub regions should have high values.

We now have to define what constitutes a distance measure. Intuitively, the inverse of link weights
fulfill the desired properties, approaching infinity when the link weight becomes very small and resulting
in short distances for large weights. The inverse is commonly employed for weighted networks [60].

We are again struck by the difficulty with negative connection weights: from the basic connectivity
analysis we know them to play a crucial role, however, there is no room for it in the graph theoretical
formalism. Consider a small negative weight, that corresponds to a large negative distance. If we allow
these, they will be ordered by virtue of their sign as being far closer (negatively so) and more important
than links with high positive values, which on all accounts is wrong. One could take the inverse absolute
value of the correlation as distance measure, but basic correlation analysis implies that one will then miss
zero crossovers and the crucial latter stage pattern changes. We are left with the only option of cutting
negative weights.25 These problems are non-existent for measures like synchronization likelihood, phase
coherence, coherency, representing a probability of functional connection.

The bottleneck in (22) is that of the shortest path calculation, a problem often attacked with variants
of Dijkstra’s algorithm [61], for which the prerequisite is non-negative weights.26

Dijkstra’s algorithm can be used to calculate the shortest distance matrix for all nodes, which in
turn can be combined with a measure known as the clustering coefficient, to produce another measure
called ’small-worldness’. This measure attains a seemingly universal range of values in natural networks,
characteristic of integrated modularized processing.27

Finding shortest paths is very central to graph theory and we give a brief description of Dijkstra’s
approach here [61]. For betweenness centrality, we need to find the shortest path between two given nodes
u and v.

Let’s say we start iterating from u looking for the shortest path du,v to v. Each pair of nodes is
connected with a path comprised of links with specified length (inverse positive correlation in our case).
We traverse the network from the initial u, in each iteration sitting on current node c with neighbors cn,
looking for the target, v.

To begin with, all nodes are marked unvisited and assigned infinite tentative distance from the initial
node (which itself has zero distance). Nodes are either marked as visited or unvisited. Once visited during
iteration for du,v, the node will not be revisited.

At current node c, tentative distances du,cn are calculated for all of its neighbors cn (those marked
unvisited) by adding the tentative distance du,c to dc,cn . When all neighbors have been considered, c is
marked as visited. If c = v, i.e. the current node happens to be the target node, we are done. Otherwise,
we select the cn with the smallest tentative distance as our current node c and repeat the procedure.
Ultimately we will we reach v, or the smallest tentative distance is infinity (in which case there is no
shortest path).

(22) was probably first designed with binary networks in mind, and we may speculate that better
power to discriminate groups would result from summing the shortest path values traversing ν.

β(ν) =
∑
s6=t

γst(v)

γst
, (23)

where γst is the shortest path length from s to t. The higher power is probable because we would boost
the values of hub-regions that have strong weights (short link distances) converging on them. We have
already seen the presence of high differences in hub regions using strength and eigenvector centrality - in
particular for group Maβ .

25Omitting the Fisher Z transform, we can shift correlation values into the positive range by adding unity. Now we have
lost the meaning of negative weights and would not consider their intrinsic functionality by demoting them to the lowest
range of functional connectivity, when we know that high magnitude negative correlations exist and are important. On the
other hand, we would perhaps capture the effect of a reduced connectivity from positive to negative, although the centrality
values themselves would be incorrect.

26There are shortest path algorithms which under certain conditions allow negative weights (not distances), i.e. the
Floyd-Warshall algorithm [62]. It would be fairly useless to us, since there is no still no physical meaning attached to paths
derived from negative correlation values.

27The clustering coefficient becomes complex valued with negative links. Regardless, small-worldness calculation in
weighted networks is marred by technical difficulties. Alternatively, somewhat arbitrary thresholding into binary networks
allows one to proceed.

92



11 SVM SEPARATION OF GROUPS

{HC>M0} mean betweenness centrality difference, max/min = 0.015/-0.002 {HC>Ma } mean betweenness centrality difference, max/min = 0.013/0.0

{HC>Mp } mean betweenness centrality difference, max/min = 0.019/0.0 

(a)

(b)

(c)

Figure 76: Panel (a) shows betweenness centrality differences calculated on the network component HC > M0

(t = 3.5) using individual node permutation search. The center row is thesholded to positive differences (HC has
larger BC than M0). The bottom row shows areas where M0 has higher BC than HC. Panel (b) and (c) show
group mean BC differences where HC > Maβ and HC > Mpτ , respectively.

For betweenness centrality we only get results if we restrict the calculation to the differing network
component (here we use the t = 3.5 NBS component). Then the contrast is strong enough that we do
not need the nodal component search and Fig. 76 shows the results of permutation testing each node.
As with the other measures, BC for M0 shows a maximum for thalamus R (see Fig. 76 (a)), highlighting
it as a key hub afflicted by functional connectivity breakdown. Again, cingulum mid appears stronger
and we also find frontal mid L. Among others, both hippocampus and cingulum posterior appears in the
mid-range of differences. Interestingly, a few regions appear with BC greater in MCI than HC, possibly
signaling a compensatory mechanism (we use two-tailed t-test), which explains the proximity of one such
region to cingulum mid/post. Turning to HC −Maβ the familiar corpus striatum hub is highlighted as
maximally different in Fig. 76 (b). This is no surprise as these central hub regions have been implicated
many times before. Interestingly, hippocampus and thalamus are flagged bilaterally.

Finally, Fig. 76 (c) shows group mean BC difference for HC > Mpτ . Here we get a much stronger
contrast than for strength and EC, and we see echoes of the frontal/temporal left clusters previously
identified, as well as precentral R and a mid-range difference in both hippocampi. The cerebellum/tem-
poral/occipital interface on the right is also clearly visible. The corpus striatum hub shines with its
absence, but again this probably has to do with the use of correlation as FC measure. Of course, cal-
culating BC on a component of links (which is common practice) does tend to amplify the contrast.
However, no such enhancement could be found when calculating EC on components.

11 SVM separation of groups

In this section we quantify how well separated the predefined MCI groups are in functional connectivity
space. Any classification attempt is preceded by a feature selection - this is a difficult step, which some
may argue largely constitutes the art of classification and machine learning.

Here we only assess the relative separation of groups using a mock-classification scheme, where we
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allow so-called Support Vector Machines (SVMs)[63] to perform a pseudo-classification. It is not a
real classification, because we supply the classifier with a feature selection filter or mask: the subset
of links identified with group differences, as calculated by permutation testing. In a real classification,
feature selection must be performed on a training set, held completely separate from the validation set.
Nevertheless, supplying the feature filter will give us a very good idea of the relative degree of separation
of the groups in FC space that these patterns represent. Part of the reason for doing this, is that the
permutation testing is computationally far too costly to be employed in a rigorous classification scheme.
This, would require an alternate strategy and represents a much more difficult challenge.

Although we will generate Receiver Operating Characteristic (ROC) curves, it is important to under-
line that these represent pseudo-classifications aimed only at mapping out the relative degree of separation
of groups. Likewise, the pseudo-classification scores elucidate the separation implied by FC patterns.

We begin by providing a brief theoretical background of SVMs (for more details see Ref. [64]). The
SVM is an algorithm that constructs optimal separation planes given two or more classes of data. The
plane may not be linear and is generally a hyperplane separating data in higher dimensions. For example,
two-dimensional data is separated by a line, three-dimensional points by a surface.

Originally proposed by Vapnik in 1995 [65], SVMs are now part of the standard arsenal with a good
balance of speed and accuracy.

The basic idea is to construct the separating hyperplane out of linear combinations of the data points
skirting class border (so-called support vectors). At the same time, the algorithm seeks to maximize the
margin between the two groups, yielding the best separation plane for the given training data.

To get a feel for how this is done, consider looking for the optimal hyperplane separating a set of
n-dimensional data points xi ∈ Rn, with corresponding two-class labels yi = {−1, 1}. The set is said to
be linearly separable if there is a w ∈ Rn and b ∈ R such that

yi(w · xi + b) ≥ 1, (24)

for all points in the set. This equation is the result of combining the equations for the two class margins:
w ·x+ b = ±1. Between these margins, runs the optimal hyperplane, defined by setting the expression in
parenthesis to zero, i.e. w ·x+ b = 0. The distance of point xi to the hyperplane is (with sign depending
on which side of the plane we are)

di =
w · xi + b

w
, (25)

where w is the length of vector w. Rearranging (25) for diw and substituting into (24) shows that
yidi ≥ 1/w, i.e. the minimum distance of any data point to the hyperplane is 1/w (in the linearly sepa-
rable system under consideration). Furthermore, hyperplane parameters can be rescaled into a canonical
representation where the distance to the closest point is exactly 1/w′, where w′ is the rescaled parameter.
Working in the canonical representation, the optimal hyperplane for a linearly separable set is now defined
as the one which has maximal distance to the closest data point.

We now have a clear optimization problem where we attempt to maximize 1/w, subject to the con-
straint yi(w · xi) ≥ 1 for all i in the set. In practice, it is easier to minimize w · w/2, rather than
maximizing 1/w. The optimization problem can be solved by starting from the Lagrangian

L =
1

2
w ·w −

∑
i

αi [yi + i(w · xi − 1)] (26)

and locating saddle points where L is minimized as a function of w, b and maximized as a function of the
Lagrangian multipliers αi. Seeking the minimum we get

∂L

∂b
=

∑
i

yiαi = 0 (27)

∂L

∂w
= w −

∑
i

αiyixi = 0 (28)

which can be substituted into (26) to yield the dual form

L(α) =
∑
i

αi −
1

2

∑
i,j

αiαjyiujxixj (29)

to be maximized with positive definite Lagrangian parameters subject to the constraints
∑
yiαi = 0 and

αi ≥ 0.

94



11 SVM SEPARATION OF GROUPS

The Karush-Kohn-Tucker (KKT) conditions generalize the Lagrangian multipliers by allowing in-
equalities as conditions. The KKT conditions for a stationary point x∗, arise in maximizing a function
f(x) subject to l inequality conditions gi(x) and m equality conditions hi(x). If the constraints are dif-
ferentiable near a stationary point x∗, there exists KKT multipliers µi and λi analogous to Lagranges’
multipliers. The conditions for stationarity can then be stated as

∇f(x) =
m∑
i=1

µi∇gi(x∗) +
l∑
i=1

λi∇hi(x∗) (30)

In maximizing (29) subject to the constraint
∑
i yiαi = 0 and αi ≥ 0 we obtain the KKT conditions

ᾱi
[
yi(w̄ · xi + b̄)− 1

]
= 0 (31)

We only have non-zero αi for those points that satisfy the condition yi(w · x + b) = 1, meaning that
the optimal hyperplane parameter calculated as

w̄ =
∑
i

ᾱiyixi, (32)

is a linear combination of only a few xi, so-called support vectors. These points are nearest to, and define,
the optimal hyperplane. Once the optimal hyperplane has been determined, the class of a given point x
is simply determined by sgn(w̄ · x + b̄).

To deal with the situation when the points are not linearly separable, Vapnik proposed allowing a soft
margin [65] that allows finding a solution with some misclassifications. Adding a regularization parameter
C, we seek a solution to the same optimization problem in the dual form (29), but now subject to the
condition 0 ≤ α ≤ C. The classification is no longer parameter free and the hardness of the margin is
controlled by C, where a high C minimizes the number of misclassified points corresponding to a hard
margin, but potentially over-fitting the hyperplane.

In addition, a linear separation may not always be sufficient and we can introduce a non-linear kernel
function k(xi,xj) into the dual form.

L(α) =
∑
i

αi −
1

2

∑
i,j

αiαjyiujk(xixj) (33)

This enables a more complex hyperplane which can better delineate the class border. With the non-
linear kernel comes an obvious risk of over-fitting, which can be adjusted by modifying kernel function
parameters. Below, we use a Radial Basis Function (RBF) kernel: k(xi,xj) = e−γ‖xi−xj‖ and so we
optimize SVMs with two parameters: the regularization parameter C and the range of the radial basis
function via γ.

As a precursory step, the FC data is centered around its mean and rescaled to have unit standard
deviation. This tends to improve classification accuracy.

Finally, more than one class can be separated at the same time via multiple hyperplanes and so-
called multi-SVMs. Mostly commonly these consist of several binary classifiers working together in some
scheme. Some algorithms solve the multiclass problem in a single optimization[66, 67]. This is particularly
interesting, as it allows pitting all classes against each other at the same time. Below, we will make use
of the single optimization approach to see how well HCs and the MCI groups can be simultaneously
separated[66].

We begin with binary classifications of various groups and as a first step we perform an optimization
of our SVMs with a grid search for RBF γ and regularization parameter C. Fig. 77 show the True
Positive Rate (TPR), False Positive Rate (FPR), and Balanced ACcuracy (BAC) as a function of the
two optimization parameters. The latter is an accuracy measure which reduces the effect of performance
estimate boost due to difference in group numbers, defined as the average of sensitivity and specificity.
The measures are evaluated by 100 training/validation sessions with 50% random, stratified hold-out. In
choosing the optimal parameters, we prefer to let the TPR remain high at the expense of an increased
FPR, all the while keeping an eye on the BAC. In Fig. 77 we see that whereas the TPR landscapes are
relatively similar, the FPR is substantially reduced as we go from M0 to Maβ to Mpτ , where the BAC
peaks. Whereas the NBS components yield a surprisingly sharp threshold as γ is increased (reducing the
range of the RBF) it is less so for the FDR controlled results. Here, the BAC also increases with perceived
progression. We fix the parameters to values that work reasonably well for all group comparisons feature
filtered by FDR - γ = 30 and C = 1, and similarly for the NBS filter, with a somewhat softer margin.
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Figure 78: The averaged ROCs from 500 pseudo-classifications with optimal SVM parameters (separately deter-
mined for FDR and NBS filtered inputs) reveal a slightly better separation for the FDR filter. All curves are for
the highest resolution ROI-set.

We can now compare the results of the pseudo-classifications using the NBS and FDR feature filter
by 500 50% hold-out, stratified randomizations into training and validation sets. ROCs are constructed
with the test scores in the form of distances from the optimal hyperplane, for which the FPR-TPR curve
is generated by transposing the hyperplane from its optimal position. The final ROC is an average of
the 500 ROC curves for each randomized pseudo-classification, shown in Fig. 78. Resulting confidence
intervals would be too small to be visible in these plots. We see that the FDR filter gives a slightly better
separation of the groups than the NBS filter. This is hardly surprising, as the many of the links present
in the NBS component are not flagged as individually significantly different.

We now look at how the relative group separation depends on the ROI-resolution. After the initial
optimization step using FDR controlled feature filters, we generate ROCs in an analogous fashion. The
results are shown in Fig. 79.

There are a few important conclusion to be drawn from these ROCs. Classification accuracy is very
poor for the low resolution sets, where the 90 AAL ROIs do not even produce any MCI-MCI differences.
For higher resolutions, the MCI-MCI are well separated relative MCI-HC comparisons, possibly an
effect of HC contamination. The groups become easier to separate with perceived progression along in
biomarker space. For HC versus M0, a high TPR can be obtained, but only at the cost of a relatively
high FPR, thus reinforcing the relative closeness of the two groups. The best separations are obtained
for the highest resolution and HC-Mpτ as well as Maβ-Mpτ .

These results are reflected in the test scores shown in Fig. 80, where each subject has been tracked
across training-validation randomizations and the test scores (hyperplane distances) recorded. Fig. 80
show the mean and standard deviations of the scores for each subject across 500 randomizations.

We can also perform a simultaneous separation of the groups using a multi-SVM, and again we
optimizing parameters with respect to accuracy. Fig. 81 shows the test scores for the three decision
functions associated with the separating hyperplanes, revealing that M0 and Maβ are relatively closer to
each other than the distant Mpτ group. This is again showing that pτ overall has a larger impact on the
functional connectivity.

The mean confusion matrix of 500 randomizations in Fig. 81 reports the average misclassifications of
two groups. Each row in the confusion matrix shows what the corresponding group has been classified
as on average. The so-called Matthews coefficients reported in the tables reflect the correctly classified
fraction of each group, when seen as a binary one-against all classification.

Finally, we can also throw HC in the mix and let the multi SVM attempt separation by combining
the group feature filters with each subjects FC. The results in Fig. 82 indicate that HC is closest to M0,
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Figure 79: The ROCs for FDR controlled results and various resolutions.

which is closest to the MCI group Maβ . By the Matthews’ coefficient Mpτ is the best separable group
overall.
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Figure 80: Subject test scores across 500 training-validation randomizations clearly show the importance of a
high resolution ROI-set.
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Figure 81: Simultaneous separation of the three MCI groups. 2D plots indicates test score averages for the three
decision functions associated with each hyperplane. The 3D plot shows the mean test scores for all decision func-
tions at once (M0=blue, Maβ=magenta, Mpτ=red). The tables show the mean confusion matrix and Matthews’
coefficients for the MSVM applied to the three MCI groups. Each row in the confusion matrix shows the average
fraction of the row group as classified as the column group.

Figure 82: Test scores for multi-SVM separation MCI and HC. The first four plots show the test scores for
each decision function and the lower plots show difference perspectives of the mean test scores for three decision
functions (green indicates HC). The mean confusion matrix and Matthews coefficients for the MSVM applied to
all MCI groups and HC. Each row in the confusion matrix shows the average classification of the row group as
the column group.
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12 COMPARISON WITH LITERATURE

12 Comparison with literature

In conclusion, we have compared HC to MCI with non-pathological biomarker levels, those with patho-
logical aβ, and high levels of pτ . Relative HC, the M0 group exhibits a widespread pattern, perhaps
containing the signature of several dementias. Key regions, such as thalamus, putamen and posterior cin-
gulate cortex have reduced connectivity. This is the largest MCI group and most likely has the greatest
overlap with MCIs studied in the literature.

In Maβ , a powerful signature appears with reduced FC converging on a corpus striatum hub, mainly
comprising caudate, putamen, with radiating links to among others thalamus, amygdala R and hippocam-
pus R among others.

Relative HC, Maβ has a heavy FC reduction in a a large number of links involving frontal and sup
parietal regions. This pattern has some similarities with HC > AD.

Additionally, we found that the connectivity patterns manifest themselves in the graph theoretical
centrality measures. Noise levels are high enough to disrupt classification in a rigorous cross-validation
scheme, although the groups are increasingly separable with higher resolution.

The difference in mean FC on the HC-MCI components gradually increases with perceived progression
across M0, Maβ and Mpτ , pushing into the negative correlations. This drift indicates an increasing time-
lag between functional centers as the disease progresses, hinting at a progression pattern.

There appears to be some indication, although observations could be muddled by correlation blind
spots, that a progression pattern is discernible. Loosely speaking, we find epicenters around putamen,
caudate and thalamus, that spread with worsening biomarker levels to involve temporal, parietal and
frontal areas. Further testing and calculations is needed before such claims can be substantiated and
complementary FC measures such as coherency or synchronization likelihood are needed.

Relatively little work has been performed relating RS fMRI to CSF biomarker levels, and most studies
stratify MCIs according to a battery of cognitive tests. A cautionary note on group sizes is also appro-
priate. Many of the references cited here have 10-20 individuals in their groups. This is nowhere near
enough to claim the presence of a universal signal, and results must always be interpreted with some
caution. With groups of these sizes, chances of spurious effects are high.

The reader should also note the we have chosen to do a whole-brain connectivity analysis, whereas
many of the studies are based on ICA analysis which will identify salient networks, but smooths interac-
tions. In addition, many authors focus on classical areas implicated in cognitive decline, ab initio. Studies
that exclusively focus on single seeds and the associated connectivity introduce a bias in the literature,
reinforcing images without a clear relation to the whole data set, without biased filtering.

It is certainly be true that the DMN is affected, for example the Posterior Cingulate Cortex (PCC)
is commonly occurring in ICA studies. But when dealing with a larger material it is a fundamental
mistake to focus on isolated regions ad hoc. Many other differences may be equally important, but are
then disregarded as not being relevant to cognitive decline. Fair enough: there is a diverse and complex
pattern present, and not all of it may be relevant to the postulated hypothesis. One should not forget
that MCI are diagnosed as such because of a distinct set of symptoms. These symptoms may be less likely
to appear if non-classical regions are afflicted, which does not mean that the neuropathology is absent.

Having said all that, the DMN is the dominant network in resting-state analysis and is also of particular
interest as it overlaps with amyloid depositions. Furthermore, hippocampus and the medial temporal
lobe are part of DMN [68], and these structures are associated with episodic memory loss, the first AD
symptom.

One study of interest relates the quota of aβ to pτ to changes in DMN identified by ICA [69]. The
groups consist of 21 AD, 36 MCI (lower MMSE score including memory score, i.e. amnestic MCI),
Other Dementias (OD) and subjective cognitive impaired (SCI, presumed low MMSE but with not so
low memory score, i.e. non-amnesic MCI28)

The 36 MCI subjects in this study have a remarkably high level of aβ (842± 352 ng/l). In addition,
the pτ levels are not particularly high (59 ±24), such that their definition mostly overlaps with our group
M0, which we believe to be populated by a larger set of subspecies with less relevance to AD conversion.
On the other hand, the authors of Ref. [69] even include OD, which contains a diffuse and wide variety
of dementias, most of which seem irrelevant to the CSF biomarker pathway to AD. AD, OD, MCI and
SCI subjects pooled show weak voxel-wise correlation between CSF quota and ICA DMN components in
a very small cluster of 17 voxels located mostly in left cuneus (adjusted for age, gender and gray matter

28The SCI are only described as having subjective cognitive complaints but not failing objective cognitive tasks. However,
comparing with MCI and the only cognitive test-scores available, there is not significant difference. Probably, the difference
lies in memory tasks.
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intensity). The authors of Ref. [69] proceed to analyze partial correlation between the very limited part
of cuneus/precuneus and the CSF quota for various groups separately, finding only that the MCI group
had moderate statistical significance. Their largest group (MCI) also has the largest spread in biomarkers
levels. We also note that motion discrimination parameters are 3 mm, rather than our more conservative
1 mm. Unfortunately, using a more conservative QA protocol is no guarantee of artifact free material,
and motion artifacts remain in the form of a global signal disruption even after regression, with a more
or less heavy impact on contrasts [70, 71]. Motion thresholds are often set higher in cohorts of limited
size. Relating these findings to our results does not lend itself easily, but their largest group (MCI) seems
to resemble mostly our M0 - precisely the group that gives most connectivity difference in PCC, relative
controls (there is even larger differences on the left). One possibility is that the voxel mask they derived
by ICA does not really reflect pathology to sufficient degree. This is could be the case because: 1) the
mask is derived with a wide variety of dementias, many not relevant to AD at all, 2) their MCI group -
the only isolated group correlating with CSF in the tiny mask - does not reflect pathological CSF, 3) the
choice of CSF quota, when likely pτ has the heaviest impact on FC, 4) the high tolerance for motion in
combination with small groups makes contrasts weak.

Another recent study of interest, focuses on the effect of biomarkers on connectivity [72]. This study is
interesting, but unfortunately of very limited overlap with the groups in our study. The authors studied
correlation between DMN functional connectivity and decrease/increase in aβ/pτ levels in a large group of
207 subjects with normal cognitive functions. Targeting a population with normal cognition, the authors
hypothesize that changes in CSF biomarker levels will still have a detectable impact on DMN function,
thereby locating signatures potentially preceding the onset of cognitive decline. The cohort had normal
Clinical Dementia Rating (CDR), and mean biomarker levels aβ = 624± 254ng/l and pτ = 61± 31ng/l.
The analysis directly focuses on posterior cingulate. A seed consisting of the voxels within a 6 mm radius
placed on the MNI PCC center, where after correlation with all other voxels in the gray matter time
series was calculated. This was done for all subjects in the subgroup with 8 AD and 8 controls. The seed-
based correlation maps were then averaged over the 8 individuals in each subgroup. By simply taking
the difference between the two group averaged maps, the authors concluded that there was a relative
reduction in correlation between PCC and the other DMN nodes, which motivated them to use this seed
for their subsequent analysis. This seems only to have served as a motivation for ROI creation, as it
had no statistical power to speak of. Using this seed on the 207 subjects with normal cognitive function,
correlation (Spearman rank partial correlation) between DMN connectivity and CSF biomarkers was
examined. The biomarkers were treated as continuous variables, adjusting for variables such as age,
PCC/MTL volume, and aβ when testing for pτ . The authors employed limits for pathological CSF
biomarker: aβ <> 500 ng/l and pτ <> 80 ng/l.

Decreased aβ was found to correlate with reduced PCC-MTL connectivity and increased pτ with
reduced PCC-left MTL connectivity (only trend-level reduction in PCC-right MTL and PCC-medial
prefrontal cortex). One should note however, that subjects termed aβ positive (aβ < 500 ng/l), probably
include many individuals with that are pτ positive. The fact that the pτ effect has been embedded in
the aβ pathology in this way, means that the two effects have not really been untangled. The high
degree of similarity between the pτ and aβ analysis is perhaps an indication of pτ ’s dominant role. This
may seem counter-intuitive, because of the weaker correlation found for pτ , but that is probably just an
effect of the very small number of subjects remaining in the high pτ -range. In addition, it is hard to
believe that many cognitively normal subjects can be found with such high pτ -levels. Comparison is also
made harder because the authors have limited themselves to a connectivity with a 6 mm radius sphere
located on PCC. Regarding our HC controls as having higher levels of aβ than M0, posterior cingulate
has reduced connectivity to left medial temporal parts. Other than that, it is difficult to compare and
find any correspondence. Then again, all our MCI have been diagnosed as cognitively abnormal, whereas
the cohort of Wang et al consists of cognitively normal subjects.

Many connectivity analyses have been performed on MCI material stratified by cognitive tests and
criteria. Wang and co-workers investigated wavelet correlation differences (in intervals similar to ours)
between 37 amnestic MCI (aMCI: i.e. with cognitive difficulties and memory problems, the most probable
prodromal AD stage) and 47 controls [30]. The diagnosis was made with Petersen’s criteria [73] and a
battery of cognitive tests including MMSE, clock drawing test, Auditory Verbal Learning Test (AVLT)
and Clinical Dementia Rating (CDR). This study is particularly interesting, since the imaging parameters
used are almost identical to ours. This includes using a Siemens Trio 3T scanner, removal of five first
volumes, SPM8 preprocessing, TR=2s and choosing to not remove the global signal (given the controversy,
see Refs. [74, 75]). They have a longer total acquisition time than us (478 s rather than 350 s) which
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should result in a better statistical basis for connectivity analysis29. Wang et al used 1024 random ROIs
of roughly equal size and calculated Pearson correlation between wavelet coefficients from a maximal
overlap discrete wavelet transform. The authors attempt a wide range of graph theoretical measures,
but the main results stem from an NBS analysis [41]. Furthermore, the authors used linear regression to
relate connectivity and cognitive test scores.

The basic analysis reveals that only in the frequency interval f = 0.031− 0.063 Hz is there a signifi-
cantly lower mean wavelet correlation and higher proportion of short range correlations for MCI. Looking
at our results, we do not have the frequency information for high resolution ROIs, nor do we have them
for HC. Since M0 is closer to HC than the other groups we can only relate this to a trend-level reduction
in FC between M0 and Maβ , which we find to be greatest in the same frequency interval. The authors
therefore focus on this particular interval in the remaining analysis.

The comprehensive graph theoretical analysis revealed small world network topology, but in terms of
characterizing pathology only a significantly longer path length was found for MCI. This is a reflection
of the observed reduction in correlation, as the distance measure is essentially just the inverse of the
correlation 30.

The specificity/sensitivity of the component separating the groups was determined by ROC analysis
to be around 85 %31.

Analysis of the mean nodal strength, revealed 27 areas with reduced FC including bilateral frontal
superior gyrus, precuneus and mid temporal gyrus, bilateral caudate and right putamen. These differences
had p < 0.01, but were uncorrected for multiple comparison (which in all likelihood leaves nothing).

Comparing with our results from the graph theory section, we find good correspondence, with dif-
ferences in frontal superior for M0 − HC (extending bilaterally for lower suprathresholds), putamen R
at higher significance levels, both caudate, as well as precuneus, cuneus and posterior cingulate. In
HC−Maβ , we find strong signatures in caudate and putamen R. The MCI group of Ref. [30] most likely
reside in both M0 and Maβ , as these constitute the most numerous population of MCI.

The component analysis reveals reduced FC on a network that mostly resembles HC > M0, with
many intermodular connections linking somatosensory, motor, visual processing. Since most MCI reside
in M0, the resemblance with M0 is perhaps not surprising.

Regarding putamen and caudate, which figure largely in our analysis, these are identified as key nodes
receiving input from cortex via thalamus. The authors note no specific deficiency in thalamus, but we do.
These regions appear to be very central to the MCI pathology, shown to entail both gray matter atrophy
in volumetric analysis [5] and metabolic disruption in PET studies [76].

In Ref. [5] Madsen et al choose to focus on caudate nucleus rather than the more commonly targeted
medial temporal lobe and cortical structures. Memory function in hippocampus and the medial temporal
lobe are known to be affected by both plaque and NFT pathology early on, whereas caudate atrophy has
more often been associated with impaired motor skills and Parkinson’s. However, both τ and amyloid
aggregate in caudate which is also known to be involved in the formation of new and autobiographical
memories.

Madsen et al used 3D surface mapping techniques to assess caudate atrophy in 100 AD, 200 MCI and
100 HC32. The caudate volumes were found to be significantly lower in MCI than in HC - by 2.5% on
the left and 4.4% on the right. Controls were found to have the highest bilateral caudate nucleus volume,
reduced in MCI and lowest in AD. Furthermore, this atrophy was associated with age and clinical dementia
rating and other cognitive test scores. However, only the right-hand volume was associated with MCI-to-
AD conversion and τ -levels. No association with CSF amyloid levels was found, but PET may provide
better correspondence. There is also a natural asymmetry of the caudate in normally aging brains with
caudate R approximately 4% larger than L. This asymmetry was found to vanish for the AD subjects,
meaning that the right hand side atrophy is greater. In Ref. [5] right caudate atrophy was found to be
associated with τ CSF levels. The hypothesis that goes along with the volumetric data analysis is that
neuronal atrophy follows the amyloid and NFT pathology. The authors of [5] also point out that caudate
atrophy may be secondary to loss of afferent connections to other regions, and that these may be more
relevant to clinical differences between groups. The right hand caudate greatly overlaps with our ROI

29One the other hand, without global signal regression and no scrubbing or correction for global signal disruptions, as
described in the last section of this thesis, longer times means greater chance of a severe global signal disruption manifesting
itself in the correlation.

30Dijkstra’s algorithm does identify shortest paths along several node jumps, but in general shortest path mainly consists
of a direct link

31A matlab toolbox was cited in the ROC analysis, but no cross-validation scheme was mentioned in this context.
32The subject material is from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), accessible through

www.loni.ucla.edu/ADNI/Data/
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that has the single largest reduction in strength in Maβ relative HC (see 33). The reduction in aβ going
from M0 to Maβ does involve a simultaneous increase in pτ , which is not surprising as the to markers are
connected, and as we have noted Mpτ may suffer from a correlation-blind-spot (resulting in the corpus
striatum hole in HC−Mpτ ). Comparing low and high pτ MCI groups directly for the highest resolution,
reveals clear differences in both left and right caudate, with slightly higher relative FC reduction on the
right.

The rare condition known as hyperthymesia involves a very detailed autobiographical memory seems
to be connected with enlarged medial temporal lobe and caudate. We also note in passing that Deep Brain
Stimulation of the fornix (a structure connecting hemispheres just underneath corpus striatum in close
proximity to the caudate) in an attempt to treat morbid obesity, resulted in superior autobiographical
memory as a surprising side-effect [77]. This hints at a possibly fruitful DBS target in treatments aimed
at stemming the progression of cognitive decline. As Madsen notes, there is in fact an association between
the Body-Mass-Index (BMI) and caudate atrophy.

The Caudate has also been histologically implicated with amyloid and τ aggregations [78]. It is the
anterior part of caudate which displays most atrophy - and plays an important role in cognitive processing,
by integrating information from the dorsolateral attention and planning orbitofrontal cortices [5].

We have also found reduced functional connectivity in other subcortical gray matter and basal ganglia,
putamen and thalamus. These have reduced volume in AD, and the volume reduction correlates with
cognitive decline [79].

We have previously noted a genetic component, that causes individuals with Down’s syndrome to
develop AD. This decline is associated with bilaterally reduced volume in hippocampus and caudate, as
well as putamen R and amygdala R [80]. PET studies of dopamine receptors found a significant reduction
in both caudate and putamen [81]. The corpus striatum is affected in other neuropathologies, such the
autosomal disorder Huntington’s disease.

In a similar 3d surface mapping volumetric study of hippocampus volume (again using the large
ADNI material), the loss rates were found to be related to a worsening condition with 0.7%/year in HC,
3.1%/year in MCI and 5.6%/year in AD, correlating with cognitive test scores [82].

Choo et al studied atrophy in PCC and MTL, focusing in particular on the entorhinal complex
and hippocampus [83]. Anatomical scans and diffusion tensor imaging was used to gauge atrophy and
white matter damage. With cohorts of 19 MCI, 19 AD and 18 HC, it was found that both MCI and
AD had reduced PCC volumes relative HC. The entorhinal complex also showed significant atrophy, but
only AD showed significant volume change in hippocampus. MCI showed FA changes in parahippocampal
cingulum, whereas AD was affected in both parahippocampal and posterior cingulum. The MTL volumes
correlated with these FA values, and the authors conclude the presence of direct PCC atrophy and effects
of fiber degeneration caused by MTL atrophy. Regarding our 8 AD, we find hippocampus R and PCC
having significantly reduced FC, although they are not the strongest signatures. The MCI as stated
many times, most likely reside in M0, which has a clear posterior cingulum signature. Hippocampus
appears more prominently in the high pτ group, which should be closest to AD. Both parahippocampal
and hippocampus appear in the network component HC > Maβ , with failing connectivity to the corpus
striatum hub region.

We have found that the strongest contrast is associated with levels of pτ , this reflects the general
findings of other groups. For example, using the ADNI data, it has been shown that τ concentrations
progressively increase from controls to MCI to AD [84].

CSF levels of τ have been related to temporal lobe atrophy, but only at trend-level with hippocampus
[85], which may explain why we don’t see more of this central region in our data.

More work has been done comparing HC to AD, an easier target, arguably the starting point in
understanding the pathology. Unfortunately the available number of AD in our analysis is limited to 8
subject, which is not enough to make statements with any statistical accuracy.

Li et al attempted an ambitious Bayesian network learning analysis to assess global connection dif-
ferences (16 HC and 14 AD) in resting-state networks identified with ICA [86]. The Bayesian network
approach allows extracting directionality of couplings, but these are not given much attention since the
time resolution of RS fMRI is insufficient to claim such relations. The ICA network revealed a dominant
DMN, but also other networks were found including lateral/medial visual, auditory, sensorimotor, self-
referential, self-referential and dorsal/ventral attention networks. Many of the nodes we have identified
belong to DMN such as PCC and parahippocampal complex, but key nodes such as caudate/putamen
form part of the self-referential network. The networks identified by ICA were used to create network
templates for subsequent Bayesian network analysis. Bayesian network analysis based on representing
the system with a directed, acyclic graph [87]. The approach analyzes conditional dependencies, e.g. a
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set of symptoms generated by a set of diseases with certain probability. Weak or no connection means
that there is no conditional dependence. The authors note that previous studies have shown the DMN to
be prone to accepting incoming connections from the other nets, which fits with picture of information
integration and simulation being central functions. Led by this notion, the authors created an integration
index quantifying the number of incoming DMN connections, regarding it as an accurate measure of
cognitive function. This index was significantly reduced in AD. Despite our poor AD statistics, we note
a large number of connections leading to DMN nodes as part of the reduced connectivity set. Li et al
also show is that the connection between sensorimotor, self-referential and ventral attention network is
heavily reduced in AD. This could correspond with our finding that connections between caudate/puta-
men and and nodes in the sensorimotor/attention network have significantly reduced correlation for both
M0 and Maβ . One drawback of global network communication is that detailed spatial information is
lost, making comparison problematic. For the high pτ group we do not find these links, likely due to
an intrinsic, approximate quarter period delay in these links. Hippocampus and other nodes of DMN
such as cuneus/precuneus instead appear more strongly, as does connections between parietal superior
(sensorimotor) and frontal left (parts of self-referential, attention). Looking our AD group it generally
appears that DMN components are figuring largely, but the sensorimotor self-referential disconnection
can also be seen. Since Mpτ resembles AD more than the other groups and should be closest by the
progression hypothesis, it could also suffer from the quarter period correlation artifact.

Rambouts et al studied DMN, comparing 28 MCI, 18 AD and 41 HC [88]. This study did not target
resting-state specifically, rather the deactivation of it during visual encoding tasks. The deactivation
refers to decrease in brain activity and it was found that the deactivation of DMN became progressively
less complete, going from HC to MCI to AD. Petrella et al follow a similar path as Rambouts and focusing
only on the DMN during a face-name memory task, and concluded that the DMN integrity thus gauged,
is capable of separating MCI that progress to AD from those that remain stable within a 2-3 year period
[89]. Attempts have been made to create multivariate models predicting the endpoint of cognitive decline
and assess the role of DMN in boosting power. One such study by Koch et al showed relatively low
numbers for RS fMRI DMN, but the authors noted that larger samples would yield better results [90].
As noted in the last section of this thesis, there is good reason to expect reduced power unless extra
care is taken dealing with motion artifacts related global signal anomalies. In addition, their TR=3s is a
bit on the long side, possibly exacerbating the effect. Excellent classification results have been obtained
combining functional and structural connectome data [91].

An interesting study [92], examined DMN with RS fMRI stratifying according to pathogenic presenilin-
1/2 and amyloid precursor protein, thereby targeting known genetic components of AD. The authors
found decreased FC in posterior cingulate/precuneus most severely in carriers with clinical dementia and
to symptomatic carriers, which in regard to our results fit the M0 group best, where MCI generally end up,
by sheer probability of numbers. This study has a very conservative motion discrimination, recognizing
the particularly sensitive motion dependence in RS fMRI [93]. Again, DMN studies focus on a limited
(however very interesting) part of the connectome. Amyloid distribution overlaps with DMN, causing
many to focus on this network. This is part of the reason why PCC is so frequently reported.

In a study by Sorg et al, resting-state network differences between 16 HC and 24 amnestic MCI was
examined [94]. In addition a voxel-based morphometry analysis was performed. The authors interpret
their results in the light of the two biomarkers, and begin by noting that tau pathology starts in MTL and
correlates well with both cell loss and atrophy, whereas amyloid deposits in neocortex and less in MTL.
Furthermore they note that MTL atrophy correlates with dementia and tempoparietal hypo-metabolism.
Their main finding is that selected areas of DMN and executive attention network exhibited reduced
network related activity. Note that the ICA RSN analysis in general does not consider interaction be-
tween the networks (exceptions exist, e.g. [87]), although ICA template correlations and anti-correlations
measure the integrity of networks. We find similarities between our HC > M0 differences and the DMN
significant differences, both in the PCC and in the parietal superior regions. In the same data, we have
reduced connectivity between temporal L and parietal/corpus striatum regions. Intriguingly, it seems
that the HC > M0 corresponds better with the areas of significant gray matter atrophy in the MTL.

Liu et al undertook a graph theoretical study of 16 MCI, 18 AD and HC. Among their findings were
a decreased nodal centrality in the medial temporal lobe for the MCI relative HC. They further noted
decreased centrality in the MTL, frontal gyrus and amygdala in MCI relative AD. However, the ROI-set
had very a low resolution (90 regions [21]), although partial correlation is used33 The results are hard

33Partial correlation is the correlation between residuals of two series after linear regression using all other timeseries.
This procedures give correlation between the two time series, controlled for all other timeseries, and gives a more direct
measure of functional connectivity.
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to compare with, since a more or less arbitrary binarization threshold has been applied, tuning it for
each subject to produce the same number of edges in each graph. Proceeding to compare our results, we
should compare our weighted betweenness centrality to their binary version. Although we in general find
reduced centrality in important hub regions, such as thalamus, putamen and caudate, we do indeed find
some laterality with amygdala R and hippocampus R in HC > Maβ ,M0. Both hippocampus appear to
have significantly reduced centrality in our case and we find many areas in the medial temporal lobe. Note
that we have restricted our calculation to the network components, which produces more significances.

A famous graph theoretical analysis targeting nature’s ubiquitous small-world property is performed
by Supekar et al [48]. This is a purely binary formalism with arbitrary correlation thresholds (same
degree thresholding - so not completely arbitrary). Furthermore, the resting state data predates the
seminal papers demonstrating the severe impact of small, sudden movements on correlation analysis
[93, 70, 71]. Note that in our analysis we suffer from the same effects, but we have attempted to mitigate
their impact by applying strict QA limits, including a global signal variation threshold. Supekar et
al perform a bandpass filtering into several bands, and then focus on a very low frequency interval
0.01-0.05 Hz, with the rationale that clustering coefficients are highest in this band, resulting in a small-
world topology (path length did not vary between intervals). When comparing AD and HC, the group
average correlations was controlled for by always selecting a threshold to obtain the same number of
links, choosing to disregard the fact that correlations are in general lower in AD, with the rationale that
this evokes topological differences. In this way, the authors determine a significantly lower correlation
coefficient for the AD group, resulting in the loss of small-worldness. Later in the paper, the another
analysis is preformed where correlation differences are examined. The regions are limited to 90 and
differences very broadly described as reduced correlation within the temporal lobe, between thalamus
and temporal/occipital/frontal lobe, between temporal lobe and corpus striatum. Another interesting
find is that varying the threshold they find regions where the difference in local clustering coefficient
are maximized in both hippocampus, with slightly larger differences on the right. Right hand laterality
can also be found in our AD data. This kind of laterality may seem strange for homologous parts, but
seemingly identical parts in the two hemispheres often have lateralized functionality.

13 How I learned to stop worrying and love resting-state fMRI

During the course of this work several mistakes have been made. Personally, I prefer to learn from my
mistakes and not try to hide them. In this section, the shortcomings are highlighted and their logical
conclusion and extension is revealed. On another personal note, I believe one should never stop asking
questions. If, heaven forbid, you suffer from pathological performance anxiety and find yourself in deep
waters where the pressure of generating results is getting to you: stop and think. Ask yourself what you
are doing, what know and what you can prove. That is how good science is made.

If you have made it this far, you may very well have asked the question: ’Why so damn long? What’s
this guys problem?’ The problem is precisely: to find the truth. Such an ambition can easily turn into
obsession, even though the whole enterprise may fall short due to a kink somewhere in the long data
processing chain, common in fMRI. Unfortunately for the disinterested reader, this obsessive behavior
involves running through data at its deepest level before drawing conclusions.

The link permutation tests in this work are limited to 10000 permutations, which in all honesty is not
enough to claim precise statistical significance. After this work was completed, additional computational
resources became available, which in combination with highly effective parallel codes revealed that some
groups may in fact require millions of permutations to converge completely (to be fair, the majority of
links converge much quicker than this). The tails of the null-distributions in the Monte Carlo simulation
are just too elusive by their improbable nature.

Apart from the importance of computational resources and the power of brute force, I learned that
although the link distributions are not always normally distributed (rather the whole set of links is a mix
of distributions), a simple t-test with multiple comparison correction can quickly gauge contrast strength.
If you find significant differences in sufficient numbers, you may proceed with a few million permutations
in the hope that these will not vanish. The situation is not as serious as it may seem - the component
searches confirm that the contrasts located by link permutation search are valid. The component search
is much better at locating weak contrasts and deals with the multiple comparison problem in a smart
way, generally converging reliably within 10000 permutations. The less conservative nature of component
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search is confirmed by the similarity with link testing using a low number of permutations, corresponding
to a higher alpha and lower significance.

The frequency interval on which the main focus of this work is centered (f = 0.03−0.06 Hz), is perhaps
not ideal. However, the best selection was made with available frequency data at the time (intermediate
resolution with 392 ROIs, MCI data) according to sound selection criteria. Since then, calculation of an
enlarged cohort of subjects (and with modified QA criteria) in all frequency intervals for both HC and
MCI has revealed strong HC-MCI contrast is in f = 0.01− 0.1 Hz. This is not as bad as it seems either,
because analysis of the same data reveals that the intermediate interval has very similar contrasts to that
of the encompassing, with preserved laterality and trends, albeit with a somewhat weaker contrast. This
is a finding in itself: f = 0.03 − 0.06 Hz lodges most of the contrast. In addition, the larger frequency
interval contains more noise, and may be more heavily impacted by motion and physiological signals.

On the bleeding edge, resting state imaging has proven far more challenging than first anticipated.
Scrupulously eyeballing time-series data and associated correlation matrices, has since the time of writing
revealed a very disturbing pattern. The pattern is revealed when plotting all matrices on the same color-
scale and consists of certain subjects with large global signal changes, and overall higher correlation than
the others. Turning to the literature, recent research shows that motion artifacts caused by sudden head
movements as small as 0.5 mm is enough to cause a global signal peak [71, 70]. One may attempt (as
we since have done) to reduce this effect by excluding subjects with large variations in global signal.
Neither conservative motion limits, nor motion regression, eliminate the artifact in derived connectivity
measures. The pseudo-motion parameters of the bulk motion correction are not the real ones, but those
of a mathematical transform that mimics the real movement. As such, their correspondence with motion
induced global signal changes can be quite poor.

Correlation is badly affected by global signal changes, that falsely enhances global correlation between
all areas. Again, things are not as bad as they seem. We have focused on the HC-MCI patterns, which
in general contain enough subjects that the effects of random motion are averaged out and there are no
detectable differences in group motion profiles. The noise probably weakens our contrasts considerably,
and may very well explain the miserable failure that results when attempting a correctly cross-validated
classification.

The motion-to-global-signal-effect can be eliminated by global signal regression, but this is a des-
perate move that induces artifactual anti-correlations. An aggressive and effective approach is so-called
scrubbing, in which frames with sudden motion are completely removed [70]. This approach can be com-
bined with strategies to reduce global signal disruption by the so-called median angle approach [95]. In
addition, one may include the movement in neighboring frames, adding many more motion regressors to
tackle the effect [96]. In our case, scrubbing leads to heavily decimated data and the pseudo-motion is
not accurate enough to eliminate the global signal change. Adding more motion regressors suffers from
the same problem. A more fruitful approach is perhaps to target the handful of frames that are outliers
in the signal variation curve, and eliminate them in the nuisance regression step.

Like I said, the important thing is to learn from your mistakes.
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