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Abstract

In this paper I study a model for credit risk in a portfolio of sovereign
bonds, based on (van der Hoorn, 2009). The model is based on historical
credit rating changes and the joint distribution of the losses for di�er-
ent bonds is modeled with an assumption of an underlying multivariate
Gaussian variable. Di�erent risk measures for the portfolio are calculated
using Monte Carlo simulations and the performance is improved by the
use of importance sampling. I investigate di�erent methods on how to
improve the model and the estimation of the parameters of the model. I
also develop methods to valuate the certainty of the risk measures based
on a statistical view on the input data, which give clear indications that
the small size of input data gives low accuracy for the risk measures. An
attempt to write an algorithm to �nd the optimal portfolio with respect
to the risk measures is also performed and the results are discussed.
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1 Introduction

1.1 Background

This master thesis is written as a project for the central bank of Sweden, Sveriges
Riksbank. One of the Riksbank's main tasks is to maintain �nancial stability
in the Swedish economical system. Therefore, the Riksbank has a large reserve
of foreign currency, which could be used for example for emergency loans in
case a large Swedish bank cannot repay a loan in foreign currency, to save that
bank from bankruptcy. Nowadays, the foreign exchange reserve consists mainly
of sovereign bonds from di�erent countries, which has the bene�t compared to
pure exchange of giving some return while still having their value closely linked
to the value of the currency. However, owning bonds always come with some
amount of credit risk and that is the topic of this thesis.

Credit risk is the risk that the issuer of a bond do not repay his debt or that the
market value of the bond drops because investors believe that the probability
of this has increased. When such events happen it usually means large losses
for the owner of the bond and therefore, managing credit risk has become really
important. For a commercial bank, large credit losses could be devastating,
leading the bank into bankruptcy if its capital reserve is not large enough. The
Riksbank does not face this kind of threat, but managing credit risk properly is
still in the Riksbank's interest, since large credit losses might hurt its reputation
and since it is important that the foreign currency reserve remains big enough
to handle, for example, a �nancial crisis.

The use of risk measures has become very popular in credit risk management.
Risk measures aim to quantify the risk in a credit portfolio in di�erent ways
and some widely-used risk measures will be introduced in section 2.2. These
risk measures are the main output of the model I am studying in this thesis.
The reason why risk measures have become so popular is because they make it
easy to evaluate and compare di�erent credit portfolios with respect to credit
risk. For example, the measure Value-at-Risk (VaR) tries to indicate how large
the credit loss could be in a �worst-case-scenario� (VaR is essentially a large
percentile of the credit loss distribution). For a commercial bank, VaR could
be matched with its capital reserve to make sure that losses can be covered.
Risk measures are used by investors, but also by policy-makers and regulators
to make sure that the banks do not take on too much risk. For example, they
play a central role in the Basel Accords which are recommendations on banking
laws and regulations by the Bank of International Settlement.

To calculate the risk measures, one needs a model for the credit risk. The
challenge in modeling credit risk is the limited amount of data combined with
the wish of estimating the tail of the credit loss distribution. The risk of bond
issuers defaulting is usually very small, especially for sovereign issuers. If a
default happens, however, the credit loss is usually very large. This gives a
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loss distribution with a very long and fat tail. At the same time, the small
number of observed defaults makes it hard to estimate the tail with high con-
�dence. This is a typical extreme value problem. At portfolio level, another
big challenge is how to model the joint loss distribution of di�erent bonds. The
correlation is known to be positive in most cases, but how to model and estimate
the distribution is problematic and also su�ers from the limited amount of data.

The model I will use in this thesis is essentially the same as the one presented
in (van der Hoorn, 2009), which is a model that has been used by the European
Central Bank (ECB). The di�erences between my model and the ECB model
are minor, but include how future cash�ows are discounted and the number of
rating classes used. However, when it comes to estimating the model parame-
ters and evaluating the certainty of the model I have investigated some di�erent
methods than those in the ECB paper, for example by estimating asset corre-
lations from CDS spreads. The ECB model belongs to a group of models that
started becoming popular in late 90s, when the RiskMetrics� Group lauched the
benchmark model CreditMetrics�, which is presented in (Gupton et al., 1997).
What is special and in common for this kind of models is that

� they use credit rating classes to describe the di�erent states that a bond
can end up in and default is the lowest rating class. The probability of
migration to another class is based on historical data of migrations. These
are collected into a so called migration matrix.

� they use a mark-to-market approach to evaluate credit losses, which means
that a decrease in bond value one year from now due to a rating change
is seen as a credit loss, even if the bond issuer never defaults later on.

� they model the joint distribution of losses for bonds with asset correlation,
by assuming an underlying multivariate Gaussian variable, i.e. they use a
Gaussian copula, with a �xed correlation matrix.

The bene�t of the �rst two points, compared to a basic default/no-default model,
is that it smoothens the credit loss distribution, better re�ecting the actual
credit risk that a bond owner faces. Furthermore, one can now make use of
credit rating data in the model. As drawbacks on the �rst two points one could
mention that one now has to trust the correctness of the credit rating agencies
and that it is still the default state that will give the largest losses, which could
mean that the use of rating classes contributes more to making the model more
complicated, than to making the estimate of the loss distribution tail better.
The reason for the third point, is that in the old default/no-default models it
was hard to estimate the default correlation between di�erent bonds with any
certainty, since defaults are so rare. By instead assuming some underlying asset
in the fashion of (Merton, 1974), there is a whole new range of data that could
be used for the correlation estimation. In CreditMetrics, they mainly looked
at corporate bonds, which meant that they could use stock movements and in-
dustry variables for the correlation estimation. For sovereign bonds, this is not

6



possible and therefore the esimation becomes harder. In the ECB paper they
use a constant asset correlation of 24%, which of course removes the bene�t of
the asset correlation model entirely. Voices has also been risen, for example in
(Wilmott, 2007, pp. 274-275), that models like this with �xed correlation pa-
rameters are generally bad, since the correlation does not seem to be constant
when looking at asset time series.

In addition to CreditMetrics-type models, there exist a wide range of well known
models for credit risk that are used in the industry. These include the KMV-
model and the Credit Portfolio View-model. The KMV-model is similar to the
CreditMetrics-model in that it uses the Merton-model with an underlying asset.
While the CreditMetrics-model uses the underlying asset mainly to model cor-
relation, the KMV-model consider corporations' total asset and equity values
to extract the probability of default and KMV's own risk measure, Distance
to Default. The KMV-model is however best suited for corporate bonds. The
Credit Portfolio View-model includes macroeconomical factors to explain the
credit risk. It seems natural that the probability of default for a bond issuer
would increase during unstable periods in the world economy and therefore the
macroeconomic variables should have some explanatory value. This can be seen
as an alternative to model the correlation between bonds explicitly. For a more
detailed introduction to these and other common credit risk models, see (Bluhm
et al., 2003, chapter 2).

1.2 Purpose

The main purpose of the thesis is to implement, develop and evaluate the ECB
model for the Riksbank's portfolio. This includes investigating di�erent meth-
ods for estimating the parameters of the model. I look at methods from both
the ECB- and CreditMetrics-paper as well as some methods I develop my-
self. Given the model and the parameters, I calculate the risk measures using
Monte Carlo-methods. Most of the theory for this is presented in the ECB- and
CreditMetrics-paper, but I also add methods for calculating con�dence bounds
for all risk measures and extend the methods to include importance sampling.
Being able to calculate the risk measures, I analyse some di�erent portfolios, to
see how di�erent compositions of bonds a�ect the risk measures. I make a study
on the convergence rates of the Monte Carlo-methods. I perform a sensitivity
study to see how much the risk measures are a�ected by changes in the model
parameters. Especially, I develop a method to see how the measures are a�ected
when using a migration matrix that is not too unprobable to have generated
data, which results in some kind of con�dence bound for the risk measures.

I also look at the problem of �nding the optimal portfolio with respect to the
risk measures, i.e. the portfolio with the lowest risk. There is a theoretical
background for this problem in (Rockafellar and Uryasev, 2000) and another
good background can be found in (Iscoe et al., 2012). These papers say that the
problem is convex under some conditions and that it can be solved numerically.
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I try to solve the problem myself, using a genetic algorithm.

1.3 Results

The main results of this master thesis show that the model I examine gives risk
measures of low certainty. This should however come as no surprice, knowing
how limited the historical sovereign bond data is. Any model that tries to say
something about the tail of the loss distribution should face the same problems.
The methods I tried to use to smooth to the migration matrix was unsatisfactory
and can be discarded. The same goes for the method used to estimate the asset
correlations from CDS spreads, which rather shows weakness in the assumption
of constant correlation. The comparison of di�erent portfolios shows that the
credit risk is decreased by owning higher rated bonds and by diversi�cation,
which was also expected. Comparing di�erent Monte Carlo methods show that
the calculation speed is increased by the use of importance sampling. The error
induced by the Monte Carlo methods is small, even for small sample sizes, as
compared to the model error. The genetic algorithm returns low-risk portfolios,
but is unable to converge to the optimal portfolio at an acceptable rate.

None of these results can be said to really contribute to improve the model.
The problems with the model were known before and the improvements I have
tried to come up with have not worked out. The thesis mainly establishes
the fact that credit risk is really hard to quantify with certainty, especially for
sovereign bonds.

1.4 Outline

The thesis starts in section 2 with a brief introduction to credit risk and risk
measures, which can basically be skipped for readers familiar with these sub-
jects. This is followed by a presentation of the Monte Carlo methods with
importance sampling that will be used, in section 3. Section 4 introduces the
model, �rst as one-dimensional in 4.1 and generalized to many dimensions in
4.2. Section 4.3 explains methods for calculating risk measures and in section
4.4 di�erent methods for estimating the parameters is discussed. This is fol-
lowed by results and validation in section 5 and the optimization problem in
section 6. The thesis ends with a discussion in section 7. The reader is expected
to be familiar with basic mathematical statistics and some basic economics.
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2 Credit risk

Credit risk is the risk of a counterparty not ful�lling its �nancial obligations.
The easiest way to think about it is as the risk a bank takes when it accepts to
give a customer a loan. If the customer is unable to repay his loan in time, the
bank will generally loose money. There are other risks associated with lending
money as well. For example, if in�ation rises and the interest rate of the loan is
�xed, the money repayed to the bank may be worth less in terms of actual goods
than the money lent, even if the customer repays the loan in time. This might
be referred to as in�ationary risk. Similarly, if a Swedish bank buys bonds from
an American company, which is a way of lending the company money, the bank
faces a currency risk. If the USD/SEK-ratio decreases the money received from
the company, once changed back to SEK, might be worth less than the initial
investment. In�ationary risk, currency risk and other risks that do not depend
on the counterparty's ability to ful�ll its obligations are not considered to be
credit risks. Therefore, when modeling credit risk, it is important to keep all
other types of risk outside of the model.

In this paper, credit risk will be de�ned as the possibility of losses due to
defaults or credit rating changes among counterparties. That a counterparty
defaults in this context simply means that it fails to repay the entire loan in
time, e.g. that it misses a coupon payment. A credit rating change means that
the market price of a bond changes because a major rating agency has changed
its credit rating. More about this in the next section. For an introduction to
credit risk, see for example (Bluhm et al., 2003) or (Du�e and Singleton, 2003).

2.1 Credit ratings

A credit rating agency is a company that issues ratings for di�erent kind of loans.
The ratings are meant to show what credit quality an investor can expect from
di�erent obligors. Most rating agencies uses some kind of letter combination for
di�erent ratings, e.g. AAA for an obligor with a very small estimated probability
of default. See �g 2.1 for an example.
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Figure 2.1: Rating classes from Standard & Poor's. Source:
www.standardandpoors.com.

To decide what rating to give an obligor, the rating agencies consider both
qualitative and quantitative information about the obligor's economical situa-
tion and tries to predict its future ability to repay debt. This information could
be both hard �gures, for example the obligor's current total debt, and facts that
are more di�cult to interpret, like the current political situation in the obligor's
country. It is a di�cult and exhaustive job to analyze all this information,
therefore many investors use credit ratings issued by rating agencies instead of
doing this analysis on their own.

The three by far most well-known and used credit agencies Fitch, Standard
& Poor's and Moody's are all American, but there exists other smaller rating
agencies from other parts of the world as well. Since so many investors use credit
ratings from these three agencies, their ratings a�ect the market prices of bonds
and other tradable debt. For example, an investor owning bonds issued by a
large AA-rated country can at any time sell them at the bond market, assuming
some liquidity on the bond market. However, if the country is downgraded to
A-rating the market price is likely to instantly drop, reducing the present value
of the investor's portfolio. The risk the investor faces by owning the bonds can
be considered as credit risk.

Example 1. A simple model for credit risk could look as follows. A Swedish
investor owns a bond issued by a British company. The company is B-rated by
a rating agency that only uses four di�erent rating classes: A, B, C and D for
default. The bond matures in three years and then pays the owner 100 GBP.
The current market price of the bond is 86.38, which corresponds to a 5% yield
since

100

1.053
= 86.38.

It is assumed that the yield is constant for this rating and that the investor
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has a one-year-risk horizon. In one year the bond will have the market value
86.38 · 1.05 = 90.70. However, it is also assumed that an upgrade to rating A
gives an 10% increase in market value, a downgrade to C a 10% decrease and a
default gives a 50% decrease resulting in the values in table 1. The probabilities
of these di�erent states are assumed to be known as well.

Credit rating Market value GBP Probability L

A 99.77 0.05 −9.07
B 90.70 0.90 0
C 81.63 0.04 9.07
D 45.35 0.01 45.35

Table 1: Di�erent scenarios for the bond one year from now.

Since it is in some sense expected that the bond will stay in rating class B,
the random variable L describing the credit loss in one year from now, is de�ned
as the di�erence between the forward value given that the bond stays B-rated
and the actual forward value. This results in the di�erent values of L that can
be seen in table 1. Also, the probability function of L is shown in �gure 2.2.
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Figure 2.2: The probability distribution of L in example 1.

The shape of the probability function is typical for credit risk. There is a
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large probability of small or no loss and a small probability of a very large loss.
Notice how the model tries to capture the credit risk in isolation. By holding the
bond, the company in reality faces an interest risk as well, since the yield of the
bond might change even without a credit rating change. Fixing the yield and
subtracting from the forward value of a B-rated bond is an attempt to exclude
the interest rate from the model. In the same way, if the company wanted to
evaluate the risk in SEK instead, they could eliminate the currency risk from
the model by �xing the exchange rate.

2.2 Risk measures

In order to quantify the credit risk in a portfolio it is common practice to use
risk measures. To get the full picture of what the risk structure looks like,
it is of course best to study the full probability density function of the loss
L. However, this may be inconvenient if one for example wants to compare
two di�erent portfolios. If it is possible to �nd a single number that in an
appropriate way describes how big the risk is, it would be possible for a bank
to analyze time series of how the risk in the portfolio changes, make policies
about how big risks that are acceptable and to minimize the risk given some
constraints. In the following sections some commonly used risk measures will
be presented. A reference for risk measures is (Dowd, 2002, pp. 27-44), which
especially introduces and discusses V aR and ES. EL and UL are pretty straight
forward, but are also de�ned in (van der Hoorn, 2009, pp. 125-128).

2.2.1 Expected Loss

Expected loss (EL) is simply de�ned as the expected value of the loss L, i.e.

EL = E[L].

EL is a very basic measure of risk and has some obvious drawbacks since it does
not say anything about the di�usion of L. However, for risk-neutral investors,
portfolios with the same EL are considered equal. Theoretically, any rational
investor without any other information about the loss distribution would always
prefer the one with the lowest EL. In reality, however, investors are known to
be risk-averse, i.e. they do not want to risk loosing money unless they are
compensated for it. For example, a bank would in general not lend 100 USD
with a 25% interest rate if the probability of getting the money back is 0.8, even
though

EL = 0.8 · (−25) + 0.2 · 100 = 0.

To accept giving the loan at all the bank would demand a higher interest rate.
However, in a situation where the bank has a choice between two di�erent
borrowers with equal probability of paying back the loan, the bank will always
choose the one which gives the best interest rate, or equivalently, the lowest
EL. This illustrates in what way EL can be used as a risk measure. If two loss
distributions are known to be otherwise more or less similar, the one preferred
is usually the one with the lowest EL.
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2.2.2 Unexpected Loss

Unexpected Loss (UL) is de�ned as the standard deviation of L. UL is com-
monly used in risk management to show the di�usion of the distribution. For
risk-averse investors, UL is of course preferred low. UL is a good measure when
the loss distribution is light-tailed or approximately Gaussian (of course, when
the distribution is perfectly Gaussian, EL and UL describes the distribution en-
tirely). Unfortunately, for credit risk the loss distribution is often heavy-tailed
since defaults often imply large losses. Therefore, UL works less well for credit
risk than it does for many other kinds of risk.

2.2.3 Value-at-Risk

Value-at-Risk (V aRα) is a widely used risk measure that focuses on the highest
percentiles of the loss distribution. It can be de�ned as

V aRα = min{l : P (L > l) ≤ 1− α}, (2.1)

where α usually represents a large part of the probability mass and typical
values are α = 0.95 or α = 0.99. The idea behind Value-at-Risk is that it
should show a �worst-case scenario�, e.g. V aR0.99 could be interpreted as the
amount of money that the loss will only exceed in one year out of a hundred, in
the long run. See �g 2.3 for a graphical example. If the probability density fL(l)
of L is continuous and 6= 0 on one interval only, then a more easily-interpreted
de�nition of V aRα can be used

V aRα = {l : P (L > l) = 1− α}.

I will sometimes in this paper, somewhat sloppy, use this de�nition even when
the distribution is discrete to simplify my reasoning.
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Figure 2.3: This graph shows an example of a loss density. The red section
represents 5% of the total area. Thus, V aR0.95 = 4.74.

A big reason to why V aR has become so popular is that it is in general
easy for everybody in an organization to understand the concept, as compared
to UL. It can also be argued that V aR tells more about the tail than UL
does. However, there are some well-known problems with using V aR as a risk-
measure. For example, it is di�cult to choose α in a way that both shows how
large the losses could be in a very extreme case and how large they would be on
just a bad day. For this reason it is common to look at V aR for many α:s at the
same time. Another problem with V aR is that it does not satisfy sub-additivity,
i.e. for two random variables L1 and L2

V aRα(L1 + L2) ≤ V aRα(L1) + V aRα(L2)

does not hold in general (Dowd, 2002, p. 34). This is a problem since it
contradicts the intuition that diversi�cation, i.e. to hold many di�erent assets,
lowers the risk. When optimizing a portfolio in terms of V aR, the properties of
V aR could lead to absurdities, which can be illustrated with an example.

Example 2. Consider two assets with loss distributions L1and L2. L1 takes the
value 0 with probability 0.95 and the value 1000 with probability 0.05. L2 takes
the value 900 with probability 0.991 and the value 109 with probability 0.009.
Most people would agree that the �rst asset is less risky, but V aR0.99(L1) = 1000
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and V aR0.99(L2) = 900, so V ar0.99(L1) > V ar0.99(L2). This extreme example
shows that V aR can lead to absurdity as a risk measure.

2.2.4 Expected Shortfall

Expected Shortfall (ES) is a risk measure that tries to �x the drawbacks with
V aR. ES is known by many names in the risk literature, with Expected Tail-
Loss, Conditional VaR and Tail VaR being the most common ones. The de�ni-
tion looks as follows

ESα = E[L|L > V aRα].

So, while the de�nition of V aR0.99 could be interpreted as the amount that the
loss will exceed on average in only one year out of a hundred, ES0.99 can be
interpreted as the expected value of the loss in those worst 1% years. For the
loss density in �gure 2.3, ES0.95 is calculated as the center of mass of the red
section, i.e.

ES0.95 =
1

0.05
·

∞̂

V aR0.95

l · fL(l)dl = 5.92,

where fL(l) is the probability density. Unlike for V aR, sub-additivity always
holds for ES (Dowd, 2002, p. 37). Moreover, ES can handle cases like the one
in example 2 in a better way, since the whole tail a�ects its value. The problem
with choosing a good α still remains, but is perhaps made somewhat smaller,
since ES is always a�ected by the outermost part of the tail.

3 Monte Carlo methods

Monte Carlo methods is used in statistics in order to make calculations. The
basic idea is to use a mathematical model for a phenomenon that appears ran-
dom in order to make simulations. If the simulations are easy to generate, then
one can produce a large sample and use the law of large numbers to approxi-
mate for example the expected value of some process. Monte Carlo simulations
works best, compared to other methods, when working with complex models of
high dimension, since it may then be di�cult to calculate things analytically or
even numerically with deterministic methods. An introduction to Monte Carlo
methods can be found in (Sköld, 2006).

In credit risk, when working with a portfolio of risky assets, the dimension
is usually high and Monte Carlo simulations are therefore very useful. For now,
set aside the underlying model and just consider the case when it is possible to
generate samples from the random loss variable L. Let N be the number of sam-
ples generated and let L1, L2, . . . , LN be the generated samples. An estimate of
EL can then be calculated as the mean, i.e.

ÊL = L̄ =
1

N

N∑
i=1

Li.
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The estimate is unbiased and by the law of large numbers ÊL → E [L] as
N →∞. The central limit theorem makes it possible to construct a con�dence
interval for a given N . Since

√
N
(
ÊL− E[L]

)
∼ N

(
0, σ2 (L)

)
for large N a two-sided q-con�dence interval for EL can be constructed as(

ÊL− λq/2
σ(L)√
N
, ÊL+ λq/2

σ(L)√
N

)
, (3.1)

where λq/2 denotes the the q/2-quantile of the standard normal distribution and
where σ2 (L) can be approximated by

σ2 (L) ≈ 1

N − 1

N∑
i=1

(
Li − L̄

)2
. (3.2)

Now, instead assume that EL is known. In this case UL can be estimated with
basically the same method. Let Xi = (Li − EL)2, i = 1, . . . , N . Then

V̂ [L] = X̄ =
1

N

N∑
i=1

Xi

is an unbiased estimator of the variance of L since

E
[
V̂ [L]

]
= E

[
1

N

N∑
i=1

Xi

]
=

1

N

N∑
i=1

E[(Li − EL)2] = V [L] .

Thus, an estimate of the variance of L is available and a con�dence interval
can be constructed in the same way as for EL. Since UL is de�ned as the
standard deviation of L, taking the square root of this estimate and the con�-
dence bounds will give an estimate and a con�dence interval for UL. Of course,
another estimate of UL is given by the square root of (3.2), but the method I
present here makes it easier to construct a con�dence interval.

To get an estimate of V aRα, �rst order the simulated samples. Let L(1), L(2), . . . , L(N)

denote the ordered samples, such that L(1) ≤ L(2) ≤ · · · ≤ L(N). The de�nition
of V aRα (2.1) suggests that a good estimate should be the smallest value l
such that at most 1 − α of the samples are larger than l. Using the empirical
distribution function

F̂L(l) =
1

N

N∑
i=1

1{Li<l} (3.3)

as an approximation of the true loss distribution function would imply that the

estimate should be V̂ aRα = L(dαNe) (using d.e as a notation for rounding to the
nearest larger integer). Intuitively, this estimator is asymptotically unbiased. A
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way to construct a con�dence interval for V aRα is presented in (Gupton et al.,
1997, pp. 150-151). The method is based on the binomial distribution. Given
the true value of V aRα, the random variable Y representing the number of
samples larger than V aRα is binomially distributed, i.e. Y ∈ Bin(N, 1 − a).
Notice, that for some integers A,B, such that, 0 < A ≤ B < N the event

A ≤ Y ≤ B

is exactly the same event as

L(N−B) < V aRα < L(N+1−A).

For example, if it is known that the number of simulated samples that exceed
V aRα is greater than or equal to 3, but smaller than or equal to 6, then one
knows that third largest sample must greater than V aRα and that the seventh
largest sample must be smaller than V aRα and vice versa. Because of this, a
con�dence interval for Y gives con�dence interval for V aRα as well. If N is fairly
large and α is not too close to one (rule of thumb: if Nα(1−α) > 10 (Blom et al.,
2005)) a normal approximation can be used for Y , i.e. Y ∼ N(Nα,Nα(1−α)).
A q-con�dence interval for Y is thus(

Nα− λq/2
√
Nα(1− α), Nα+ λq/2

√
Nα(1− α)

)
and an interval for V aRα can be constructed as(

L(
bN−

(
Nα+λq/2

√
Nα(1−α)

)
c
), L(

dN+1−
(
Nα−λq/2

√
Nα(1−α)

)
e
)) ,

where the rounding has been chosen to make the interval as large as possible.
This bias will decrease as N increases.

For estimating ESα we can use the fact that we already have an estimate of

V aRα. If we insert V̂ aRα into the de�nition of ESα we see that ESα is the ex-
pected value of losses greater that V̂ aRα. Thus, we can use the ordered samples
to get the estimate as

ÊSα =
1

N − dαNe

N∑
i=dαNe+1

L(i)

, i.e. as the mean of the losses greater than V̂ aRα. In the same way a con�dence
interval for ESα can be constructed by taking the mean of losses greater than
the con�dence bounds for V aRα. Another, equivalent way of estimating ESα
is as

ÊSα = V̂ aRα +
1

(1− α)N

N∑
i=1

max(Li − V̂ aRα, 0), (3.4)
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which does not need the samples to be ordered. To show why this estimator
works we consider the distribution function

FL|L>x(l) = P (L ≤ l|L > x) =
P (x < L ≤ l)
P (L > x)

=
FL(l)− FL(x)

P (L > x)
.

Taking the derivative of both sides gives

fL|L>x(l) =
fL(l)

P (L > x)
.

Now

E [L|L > x] =

ˆ ∞
x

l · fL|L>x(l)dl =
1

P (L > x)

ˆ ∞
x

l · fL(l)dl =

1

P (L > x)

ˆ ∞
x

(l+x−x)·fL(l)dl =
1

P (L > x)

(
xP (L > x) +

ˆ ∞
x

(l − x) · fL(l)dl

)
=

x+
1

P (L > x)

ˆ ∞
0

max(l − x, 0) · fL(l)dl = x+
1

P (L > x)
E [max(L− x, 0)] .

Inserting x = V aRα on both sides �nally gives

E[L|L > V aRα] = V aRα +
1

P (L > V aRα)
E [max(L− V aRα, 0)]

⇔ ESα = V aRα +
1

1− α
E [max(L− V aRα, 0)] , (3.5)

which explains the estimator in (3.4). We will return to this estimator in section
6 on optimization.

3.1 Importance sampling

Importance sampling (IS) is used in Monte Carlo methods as a so called variance
reduction technique. The idea behind IS is that some possible outcomes of the
random variable might be more important for the estimation than others and
to make sure that these outcomes are included in the samples one can tweak
their probabilities. For example, in credit risk there is typically a small chance
of very large losses. As the estimates of V aR and ES depend strongly on the
largest outcomes of the simulation these estimates can vary a lot depending on
if the simulated sample contains many or few of these largest outcomes. Since
the probability of the largest losses is typically very small, the estimators will
have a large variance.

With IS the probability density fL(l) of L is replaced by an instrumental distri-
bution gL(l) that will typically increase the probability of the more important
outcomes. To be able to get correct estimates using the instrumental distri-
bution, the estimators presented in the last section will have to be changed
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to compensate for this. When calculating the expected value of an arbitrary
function φ(L) we used in the last section that

E[φ(L)] =

ˆ
φ(l)fL(l)dl ≈ 1

N

N∑
i=1

φ(Li),

where Li are the simulated samples from fL(l). Now, when instead using the
instrumental distribution for simulating we can use that

E[φ(L)] =

ˆ
φ(l)fL(l)dl =

ˆ
φ(l)

fL(l)

gL(l)
gL(l)dl =

ˆ
φ(l)ω(l)gL(l)dl ≈ 1

N

N∑
i=1

φ(Li)ω(Li),

where Li is now simulated using gL(l) and ω(l) = fL(l)
gL(l) is called the weight-

ing function. This gives us a way to make estimations using the instrumental
distribution gL(l), using the weighting function of each sample as a way to com-
pensate for its new probability.

EL can now be estimated as

ÊL
IS

=
1

N

N∑
i=1

Liω(Li).

A con�dence interval can also be constructed similarly to that in the standard
case. The only di�erence is that the estimate of σ in (3.1) is replaced by

σ2 ≈ 1

N − 1

N∑
i=1

Liω(Li)−
1

N

N∑
j=1

Ljω(Lj)

2

.

For the importance sampling to be meaningful this new estimate of σ should be
lower than the old one. This will maybe not be the case when estimating EL
because EL does not depend that much on the tail events, but it will be for the
other risk measures. Assuming as before that EL is now known, we can also
make an estimate of UL as

ÛL
IS

=

√√√√ 1

N

N∑
i=1

(Li − EL)2ω(Li)

and construct a con�dence interval similarly to before.

To get an estimate of V aRα I will take a slightly di�erent approach since V aRα
is not de�ned as an expectation of a function of L, but a rather as a percentile
to the probability density fL(l). Assume now that V aRα is known but that α
is unknown. We could then get an estimate of α using that

α = P (L < V aRα) = E
[
1{L<V aRα}

]
,
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so

α̂ =
1

N

N∑
i=1

1{Li<V aRα}ω(Li)

is an unbiased estimate of α. Now, again assume that α is known and that
V aRα is not. If we could �nd a number V aR′α s.t.

α̂′ =
1

N

N∑
i=1

1{Li<V aR′
α}ω(Li) ≈ α,

V aR′α should be a pretty good estimate of V aRα. A way to �nd such a num-
ber V aR′α is the following. Order the samples L1, . . . , LN like in the last sec-
tion to obtain the ordered sample L(1), . . . , L(N). By summing up the weights
ω(L(1)), . . . , ω(L(N)) in reverse order we can �nd a number k s.t.

1

N

N∑
i=k+1

ω(L(i)) ≤ 1− α,

but

1

N

N∑
i=k

ω(L(i)) > 1− α.

By comparing with the de�nition of V aR it can be argued that V̂ aRα
IS

= L(k)

will be a good estimator. This method of course requires that 1
N

∑N
i=1 ω(L(i)) >

1−α. To construct a con�dence interval for V aRα when using IS I will use the
same reasoning as in the standard case. However, in this case we do not know

the probability of a simulated sample being larger than V̂ aRα
IS
, but the best

estimate is naturally N−k
N . Therefore I let Y ∈ Bin(N, N−kN ) and proceed as in

the standard case.

For ESα we once again use that we have already estimated V aRα and use
(3.5), which gives the estimator

ÊSα
IS

= V̂ aRα
IS

+
1

1− α
1

N

N∑
i=1

max(Li − V̂ aRα
IS
, 0)ω(Li) =

V̂ aRα
IS

+
1

1− α
1

N

N∑
i=k+1

(L(i) − V̂ aRα
IS

)ω(L(i)).

The con�dence interval for ESα can be constructed in a similar way, using the
con�dence bounds for V aRα.
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4 Modeling

I will in this section introduce a portfolio model for credit risk. The model is
very similar to one that ECB has used, presented in (van der Hoorn, 2009).
This itself is clearly based on the framework model CreditMetrics�, presented
in (Gupton et al., 1997). I start by explaining how the model works for a single
bond. This is then extended to a model for a portfolio of bonds. I show how the
di�erent risk measures can be calculated and �nally, I discuss how the di�erent
parameters of the model could be handled and estimated.

The main purpose of the model is to provide a way to make estimates of the
di�erent risk measures presented in section 2.2. This is mainly done by using
Monte Carlo simulations, since the model provides a simple way to generate
random portfolio credit losses from the loss distribution FL(l). These simula-
tions can of course also be used to get a picture of what the whole FL(l) looks

like using the approximation F̂L(l), de�ned in (3.3). In section 6 we will also
see how the model can be used for minimizing the risk.

4.1 One-dimensional model

If the portfolio consists of only one bond or bonds from a single obligor, the
model will be one-dimensional. In this case the model will be much simpler
since the joint probability functions of di�erent bonds do not have to be con-
sidered. The one-dimensional model will in fact be very similar to the model
described in example 1. For the model to work there must exist a rating system
that links every obligor with a certain rating. In the ECB-model 9 di�erent rat-
ing classes is used, but in the model I have implemented I have used 18 di�erent
rating classes from AAA to D and the ratings has been taken from Fitch1. The
number of rating classes does not matter for the explanation of the model and
it is unclear how it e�ects the performance as well. The reason why I use 18
is mainly a practical matter of data availability. Sometimes the ratings will be
referred to as numbers rather than letters in their natural order, i.e. AAA= 1,
AA+= 2, . . . , D = 18.

As mentioned before the risk horizon considered will be one year. The model
could be generalized to work for di�erent time horizons as well, but this will lie
outside the scope of this paper. One of the most important parameters for the
model will therefore be the probabilities of rating changes for di�erent obligors
in one year's time. A fundamental assumption will be that obligors that have
the same rating today will have the same probability of a rating change to a
given rating in one year's time. These probabilities can therefore be presented in
a so called migration matrix. Migration is just another word for rating change.
If the number of di�erent ratings is r the size of the migration matrixM will be
r×r and on position (i, j) the matrix will contain the probability that an obligor

1The complete list of ratings is AAA,AA+,AA,AA-,A+,A,A-,BBB+,BBB,BBB-

,BB+,BB,BB-,B+,B,B-,C,D.
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of rating i migrates to rating j in one year's time. An example of a migration
matrix can be seen in table 2. In practice migration matrices is usually based o
n historical data, which will be described in section 4.4.1.

From/To A B C D

A 0.86 0.119 0.02 0.001
B 0.05 0.90 0.04 0.01
C 0.02 0.05 0.91 0.02
D 0 0 0 1

Table 2: A �ctional migration matrix with 4 rating classes. Every row contains
the probabilities of migration to the rating classes represented by the columns.
For example, the probability of an obligor upgrading from C to A is 2% and the
probability of a B-rated obligor moving into default is 1%.

In addition to assuming that obligors with the same rating have the same
probabilities of migration it will also be assumed that they are associated with
the same yield. This means that all future cash �ows coming from bonds issued
by the same obligor will be discounted using the same discount factor. The
discount factor used for an obligor with rating i will be denoted dfi. Now,
suppose that we have a portfolio containing bonds issued by a single obligor
with rating iold and that we will receive cash �ows at times t1, t2, . . . , tk of sizes
CF1, CF2, . . . , CFk. Then the value of the portfolio one year from now will be

FV =

k∑
j=1

dfiold
tj−1CFj ,

assuming that the obligor's rating does not change and that tj ≥ 1 for all i. In
the same way, if the obligors rating changes to i, the new value will be

k∑
j=1

dfi
tj−1CFj .

If the obligor defaults no future cash �ows will be received, but we instead
assume a constant recovery rate RR, so that the new value will be FV ·RR. We
are now ready to de�ne the conditional credit loss CLi given a rating change as

CLi =

{
FV −

∑k
j=1 dfi

tj−1CFj if i 6= D

FV (1−RR) if i = D.
(4.1)

L can thus be seen as a random variable that takes the values CL1, CL2, . . . , CLr
with probabilities from the migrations matrix, i.e. M(iold, 1),M(iold, 2), . . . ,M(iold, r).
The probability function pL(l) of L is thus very simple and it is straight forward
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to calculate the risk measures EL,UL,V aR and EL analytically. For example,

EL =

r∑
τ=1

M(iold, τ) · CLτ

UL =

√√√√ r∑
τ=1

M(iold, τ) · (CLτ − EL)
2
. (4.2)

4.2 Multi-dimensional model

The issue when moving from the one obligor portfolio to a portfolio consist-
ing of many obligors is how to model the joint distribution of rating changes,
while keeping the marginal distributions for single obligors equal to the one-
dimensional model. One cannot assume that the migrations of di�erent obligors
are independent since it is presumable that countries that are strongly linked
economically will have a similar economical situation and will hence move simi-
larly in credit ratings. That this is the case for corporations is shown empirically
by Gupton et al. (1997, pp. 81-83), where they estimate con�dence intervals for
default correlations among �rms, which do not cover zero.

Instead, a model in the fashion of the classical model by Merton (1974) will
be used. The idea is that for every obligor there exist an underlying Gaus-
sian random variable Z. If the obligor is a company, Z could be thought of as
the total value of all the company's assets one year in the future. In my case,
where the portfolio consists of obligors that are sovereign states, the interpre-
tation of Z is not that simple. It may however be thought of in a similar way
as the amount of money the state could make available in the near future. It
is also assumed that there exists some �x numbers qD, qC , . . . , qAA+ such that
qD ≤ qC ≤ · · · ≤ qAA+. These numbers are meant to represent certain levels of
debt that corresponds to the di�erent rating classes. Especially, qD represents
the total value of the payments that the obligor has to make one year from now.
If the obligor is unable to make the payments, i.e. if Z < qD, the obligor will
default. In the same way, qD ≤ Z < qC means that the obligor gets rating
C, qC ≤ Z < qB− means that the obligor gets rating B- etc. However, we
already know the probabilities of these events from the migration matrix. So,
if the obligor has rating i these probabilities, for the Z linked to that obligor,
would be P (qAA+ ≤ Z) = M(i, 1), P (qAA ≤ Z < qAA+) = M(i, 2), . . . , P (Z <
qD) = M(i, 18). Now, given the migration matrix the relationship between Z
and qD, . . . , qAA+ is �xed so Z can be normalized to a standard Gaussian vari-
able, i.e. Z ∈ N(0, 1) and then (the normalized version of) qD, . . . , qAA+ can be
uniquely determined. If Φ−1 denotes the inverse standard Gaussian distribution
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function then

qD = Φ−1(M(i, 18))

qC = Φ−1(M(i, 17) +M(i, 18))

...

qAA+ = Φ−1(

18∑
j=2

M(i, j)).

This implies that qD, . . . , qAA+ will be the same for obligors of identical ratings.
The relationship of M ,Z and the q:s is visualized in �g 4.1. Now, a new matrix
Q can be constructed. Q will have size r × r − 1 and each row will contain the
values qD, . . . , qAA+ corresponding to the di�erent initial ratings.
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Figure 4.1: This graph shows the probability density of Z together with the
values qD, qC , qB derived using the second row in the �ctional migration matrix
M in table 2. The areas under the graph named A, B, C and D have sizes equal
to the probabilitiesM(2, 1),M(2, 2),M(2, 3) andM(2, 4). For a B-rated obligor
the rating one year in the future can thus be decided by comparing the outcome
of Z to the di�erent q:s. For example, the event qD ≤ Z < qC is equivalent to
the obligor being downgraded to C.

Using the model with underlying Gaussians we can now construct the multi-
dimensional model. Consider a portfolio with n obligors. We construct the
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multivariate Gaussian vector

Z̄ =


Z1

Z2

...
Zn

 ,
where Z1, . . . , Zn are the underlying Gaussians linked to obligor 1, . . . , n. Since
all Z1, . . . , Zn are standard Gaussians they all have mean 0 and variance 1, but
we introduce the covariance matrix

Σ =


1 ρ1,2 · · · ρ1,n

ρ2,1 1 · · · ρ2,n

...
...

. . .
...

ρn,1 ρn,2 · · · 1

 ,
where ρi,j is the correlation between Zi and Zj implying that ρi,j = ρj,i and
−1 < ρi,j < 1 for all i 6= j. The di�erent ρ:s will be input parameters to the
model and how to estimate them will be discussed in section 4.4.3.

The underlying multivariate variable Z̄ describes the joint distribution of rating
changes completely and the credit loss L for the n-obligor portfolio can now be
de�ned as

L =

n∑
i=1

Li,

where Li now denotes the credit loss from obligor i, de�ned as in one-dimensional
model. While it was fairly simple to compute the probability function pL(l) of
L for the one-dimensional model, for the multi-dimensional model it quickly
becomes computationally impossible as n grows. The Riksbank's portfolio typ-
ically consists of n = 30 obligors. Using the system with r = 18 rating classes
implies that there is a total of rn = 1830 ≈ 5 · 1047 combinations of rating
changes for the di�erent obligors. To calculate the probability of each of these
outcomes one has to integrate the multivariate Gaussian density function over
an n-dimensional rectangle. For example, to calculate the probability that all
obligors default one must integrate over the rectangle with corners in

−∞
−∞
...
−∞

 ,

qD,1
qD,2
...

qD,n

 ,
where qD,1, etc. are the qD:s associated with the ranking of obligor 1 etc. A
quick test in Matlab using the built-in function mvncdf and n = 25 (which is
the highest dimension that the Matlab function allows) shows that each such
integration takes approximately 0.3 seconds. Needless to say, calculating pL(l)
exactly using this method is not possible.
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4.3 Calculating risk measures

We saw in the last section that it was very hard to obtain the probability func-
tion of the credit loss L exactly as the dimension of the model became larger.
One can however say much about the credit risk just by examining the risk
measures EL,UL,V aR and ES. In this section I will show how these can be
calculated. EL and UL can be calculated exactly analytically and all of them
can be approximated using Monte Carlo methods. The Monte Carlo method
will give an approximation of pL(l) as well.

To calculate EL is very simple since the joint distribution of rating changes
does not matter. We have

EL = E [L] = E[

n∑
i=1

Li] =

n∑
i=1

E [Li] ,

where E [Li] is the expected loss from obligor i, calculated as in (4.2). To
calculate UL is a little trickier and more time consuming, but can be performed
in acceptable time. UL is computed as

√
V ar [L]. We have that

V ar [L] = V ar[

n∑
i=1

Li] =

n∑
i=1

V ar [Li] + 2
∑
i<j

Cov [Li, Lj ] .

Here each V ar [Li] can be obtained as the square of UL in (4.2). In the second
term Cov [Li, Lj ] can be calculated by �rst computing the joint loss probability
function for the corresponding two-obligor portfolio, let us call it pL′,L′′(u.v).
Then E [Li · Lj ] can be calculated as

E [Li · Lj ] =

r∑
u=1

r∑
v=1

uvpL′,L′′(u.v)

and Cov [Li, Lj ] = E [Li · Lj ]− E[Li]E[Lj ]. To get every pL′,L′′(u.v) one must

do r2 integrations over a bivariate normal density and there will be n(n-1)
2 co-

variances to calculate resulting in n(n-1)
2 r2 integrations in total. For the typical

case r = 18, n = 30 this gives ≈ 105 integrations in total. A Matlab test shows
that each integration takes approximately 0.006 seconds in the bivariate case,
so calculating UL for the whole portfolio would take something like 600 s = 10
minutes. This shows that UL is de�nitely computable analytically, but using
Monte Carlo methods will be much faster and accurate enough so that is the
method that I will use from now on.

To use the Monte Carlo methods explained in section 3, one needs to be able
to generate pseudo-random samples from of the portfolio credit loss variable
L. This can be done by �rst simulating the multivariate Gaussian vector Z̄
of underlying variables. This can be done for arbitrary mean and covariance
matrix with the Matlab function mvnrnd. I will not go into detail how this
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is done mathematically, but it involves a Cholesky factorization of the covari-
ance matrix Σ and is explained in (van der Hoorn, 2009, pp. 130-131). Once
Z̄ is simulated each Zi can be compared to the adequate row in the matrix Q
that corresponds to that obligors current rating. This way one gets the rating
changes of all obligors in the portfolio and the credit loss for each obligor can
be obtained. Summing them up gives L. To make the simulation fast I have
noticed that it is advantageous to �rst �guess� that each obligor will stay in
the same rating class, when comparing the values in Z̄ to those in Q. This is
because there is usually a high probability for the obligors staying, so making
this guess reduces the number of comparisons.

A test on my computer shows that each sample from L takes approximately
2.5 ·10−6 seconds to generate when n = 29, so a million samples or so can easily
be generated. Now, when it is possible to generate such a large sample from L,
the methods in section 3 can successfully be used to give good approximations
of the risk measures. An approximation of the probability function can also be
constructed as

p̂L(l) =
1

N

N∑
i=1

1{l=Li},

where N is the number of samples (this is more or less equivalent to the EDF
de�ned in (3.3)). The probability function can be visualized by plotting a his-
togram of the samples, for results see section 5.

Usually the probabilities of downgrade or default for obligors are very low.
Therefore the probability function will naturally look skew with a fat tail, like
in example 1. The risk measures V aR and EL that depend mostly on the
tail of the distribution are therefore sensitive to the largest samples from the
simulation. Since the worst outcomes will occur very seldom even in a million
samples, this will result in a high variance for the estimates of V aR and EL
and large con�dence intervals. The variance can be decreased by the use of
importance sampling as explained in section 3.1. For IS to work we need to
�nd an instrumental distribution gL(l) that will simulate the larger losses with
a higher probability. This can be done in a number of ways, but the method
I will use is to change the mean for the underlying variable Z̄. Originally the
mean µZ̄ = 0̄, but since low outcomes for the elements in Z̄ implies downgrades
we can increase the probability of downgrades in the simulation by lowering the
mean of Z̄. How much the mean should be lowered for the di�erent obligors
to get a high variance reduction depends on the probabilities in the migration
matrix. If we denote the original density function of Z̄, fZ̄ and the new one gZ̄ ,
then we can construct the weighting function ω needed for the IS estimators as

ω(L) =
fZ̄(Z̄)

gZ̄(Z̄)
.

Now we have everything we need to calculate the risk measures using importance
sampling. There is also a way to estimate pL(l) using the IS generated samples.
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Since
pL(l) = P (L = l) = E

[
1{l=Li}

]
,

then

p̂ISL (l) =
1

N

N∑
i=1

1{l=Li}ω(Li).

4.4 Estimating parameters

So far in this section I have presented the model and showed how the di�erent
risk measures can be computed, given this model. However, for the model to be
useful, we need a good way to estimate the parameters that the model is based
upon. These parameters include the migration matrix, the conditional credit
losses and the correlation matrix.

4.4.1 Migration matrix

The migration matrix M is supposed to contain the probabilities of obligors
being in the di�erent rating classes in one year's time given their current rating
classes. The most basic way of estimating this is of course to look at historical
data and register how many migrations there has been between each combination
of ratings every year. The rating agencies all provide these historical matrices,
see �g 4.2 for an example.

Figure 4.2: A migration matrix from Fitch simply re�ecting the average number
of rating changes every year in the period 1995-2011 among the sovereign issuers
that Fitch rates.

The matrix in �g 4.2 is typical for the migration matrices that the rating
agencies provide. It has a lot of zeroes, re�ecting that it is unusual for obligors
to migrate more than one or two rating classes in one year. There are however
some exceptions, for example the 1.72% that has moved from AA- to B-. The
reason to why the matrix looks like this is of course that the data is very limited.
It has only been collected for 17 years and there are presumably not that many
issuers in every rating class. To use this matrix directly in the model is probably
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a bad idea and doing so gives very unrealistic results. I did a quick test with
this matrix and some di�erent �ctional portfolios of the same value. The test
showed a much higher level of risk, in the sense of V aR and ES, for portfolios
that contained obligors with rating AA-, than for example portfolios containing
obligors rated A-. This is very contradictory, since the whole idea behind the
rating system is to show which obligors that are more risky.

To make the model more realistic I would like to change or re-estimate the
matrix in some way. I have looked at a few options for this. In the ECB
model presented in (van der Hoorn, 2009) they do this by only focusing on the
probability of default (PD) for every rating class. Since the default state gives
the biggest losses this is the most important to change and they argue that
even if it there are no observed defaults for the highest ratings, it could happen
and therefore the probabilities in the last column should be positive and in as-
cending order. Hence, they assign positive PD:s for all initial rankings. What
probabilities to use seems mainly subjective, but they try to use something
that seems reasonable. For example they let the PD for AAA-rated obligors be
0.01%, for AA-rated 0.04% and so on. To make sure every row sums to one they
lower the probabilities on the diagonal. This method is very ad hoc, but may
generate results that seem more reasonable than when using the original matrix.

In (Gupton et al., 1997) they mention some properties that are desirable for
a migration matrix, for example that better ratings never should have a higher
chance of default or downgrade to a certain rating and that the chance of mi-
grating to a given rating should be greater for more closely adjacent rating
categories. They then try to �nd a �best� �t in some least squares sense to the
original migration matrix, while keeping these constraints ful�lled. In addition
to �tting to the original matrix they also try to make it �t some other data, for
example historical migration averages for longer time periods than one year by
assuming Markov properties, i.e. that the migration matrix for n years should
be equal to Mn. They do not say exactly what method they use for �nding
the least squares �t, but I try to do something similar to their method using
the build in Matlab function lsqnonlin. I use three di�erent migration matrices
as input, corresponding to one, three and ten years migration times. Unfortu-
nately, I �nd it very hard to make the method robust and at the same time keep
every probability greater than zero, guarantee that every row has sum one, etc.

Instead, I try something di�erent, inspired by the method that we used to
construct the multi-dimensional model, with the underlying Gaussian variables.
Recall that underlying variable Z could be thought of as the total value of the
obligors assets and qD, . . . , qAA+ as some �xed levels of debt. When we con-
structed the multi-dimensional model we let all Z:s be standard normal and the
q:s be di�erent for every initial rating. Now, instead assume that there only
exist one set of qD, . . . , qAA+ and that there exists di�erent Z:s for every initial
rating and let us call them ZAAA, . . . , ZC . I will assume that each Z has a
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di�erent mean µAAA, . . . , µC and that all have the same variance σ2 = 1, s.t.

qD ≤ µC < qC ≤ µB− < · · · ≤ µAA+ < qAA+ ≤ µAAA. (4.3)

This assumption would be consistent with their current rating. I �x qD = 0,
otherwise translating all the q:s and µ:s an equal distance would just result in
the same thing. My idea is now to try to �nd q:s and µ:s s.t. the probabilities
of the Z:s migrating to the di�erent rating classes match the probabilities in
the historical migration matrix. Given all the q:s and µ:s the probability of
migration from one rating class to any other can be calculated. For example,
the the probability of migration from BBB to B+ is

P (qB ≤ ZBBB < qB+) = FZBBB (qB+)− FZBBB (qB).

These probabilities can then be used to construct a new, re-estimated migration
matrix. This method will have the bene�t of keeping every row sum in the
matrix equal to one and as well every element strictly greater than zero. In
addition some order relations will automatically be ful�lled, for example that the
probability of default is lower for better ratings. Unfortunately, Fitch does not
include what number of obligors that has been used to calculate each percentage
in the historical migration matrix. If this had been the case it would have
been possible to treat the historical migration matrix as pure data and I could
probably had come up with some Maximum Likelihood estimator, given this
model. I would then �nd the q:s and µ:s that were most likely to generate the
data.

Now, I will instead use a least squares method that minimizes the sum of
the squared di�erences between each element in the historical migration matrix
and each element in the migration matrix implied by the q:s and µ:s (except the
last row). I use the built in Matlab function lsqnonlin, and as starting values
I use µC = 0.5, qC = 1, µB− = 1.5, qB− = 2 . . . and so on. To make sure that
the order condition (4.3) is ful�lled I add an extra penalty to the function if it
is not. The function runs in a few seconds. A numerical test of this method is
presented in the following example.

Example 3. In this example I will use a historical migration matrix from Fitch
with only eight di�erent rating classes to make it easier to look at the result.
The least squares method is used to estimate a new migration matrix. The
results are presented in table 3.
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From/To AAA AA A BBB BB B C D

AAA 0.9862 0.0138 0 0 0 0 0 0
AA 0.0379 0.9242 0.0273 0.0095 0 0.0047 0 0
A 0 0.0273 0.9235 0.0437 0.0055 0 0 0

BBB 0 0 0.0631 0.8931 0.0340 0.0049 0.0049 0
BB 0 0 0 0.0939 0.8449 0.0490 0 0.0122
B 0 0 0 0 0.1000 0.8684 0.0263 0.0053
C 0 0 0 0 0 0.2500 0.5000 0.2500
D 0 0 0 0 0 0 0 1

From/To AAA AA A BBB BB B C D

AAA 0.9862 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AA 0.0384 0.9375 0.0240 0.0000 0.0000 0.0000 0.0000 0.0000
A 0.0000 0.0275 0.9286 0.0439 0.0000 0.0000 0.0000 0.0000

BBB 0.0000 0.0000 0.0637 0.9019 0.0343 0.0000 0.0000 0.0000
BB 0.0000 0.0000 0.0000 0.0951 0.8553 0.0496 0.0000 0.0000
B 0.0000 0.0000 0.0000 0.0000 0.1004 0.8719 0.0272 0.0006
C 0.0000 0.0000 0.0000 0.0000 0.0001 0.2507 0.4985 0.2507
D 0 0 0 0 0 0 0 1

µC qC µB qB µBB qBB µBBB qBBB µA qA µAA qAA µAAA

Starting value 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Estimates 0.7 1.3 3.3 4.5 6.2 7.5 9.3 10.8 12.6 14.5 16.4 18.2 20.4

Table 3: Tables for example 3. The top table shows the historical migration
matrix. The middle table shows the re-estimated migration matrix and the
bottom table shows the starting values and estimates of the q:s and µ:s.

As can be seen in the results from example 3, the new migration matrix is
not very di�erent from the old one. The biggest di�erence is that the prob-
ability to move from rating AA to rating B has been signi�cantly lowered as
well as for some of the default probabilities and the probability mass has been
moved towards the diagonal. I have tried this method for some other migration
matrices as well and have got more or less the same result. Small probabilities
outside of the main diagonal has been more or less erased. It is hard to say if
the new matrix is more or less realistic than the old one. The new matrix does
ful�ll order relations between ratings, but this has been done by basically eras-
ing probabilities that violates it. The new matrix also has positive probabilities
for every migration, but the ones that are far from the diagonal are so small
that they do not make any numerical di�erence anyway2. One can also question
how likely the observed historical migration matrix is given the new estimated
one. One issue with this least squares method is that it treats all probability

2The PD for AAA-rated obligors in example 3 is even smaller than the smallest number

Matlab can handle ≈ 10−325 so it is treated as identically zero.
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di�erences equally. If the historical matrix would for example show a 0.1% PD
for AAA this would be a signi�cant risk factor, but the method would just erase
this probability rather than raising the probabilities for downgrades. As a �x to
this I tried to come up with a way to weigh the elements of the matrix di�erently
in the least squares function, but I was not able to make much improvement.

For the calculations below I will use the historical matrix in �g 4.2. For com-
parison, I will also use the same matrix but with the PD:s tweaked in the same
way as in the ECB paper.

4.4.2 Conditional credit losses

The conditional credit loss (CLi) indicates how big the credit loss is for an
investment in a single obligor i given the obligors rating one year from now. As
de�ned in (4.1), the CLi depends on four things:

� The time points of the future cash �ows (tj)

� The sizes of those cash �ows (CFj)

� The discount factors (dfcr(i)) associated with the di�erent credit ratings

� The recovery rate (RR).

I have let cr(i) denote the credit rating of obligor i. The �rst two points are
usually known exactly, since that is how bonds work. Every bond pays speci�ed
amounts on speci�ed payment dates. For the Riksbank's portfolio, however,
I have not been able to get hold of this information, probably because the
portfolio is very big and contains a lot di�erent bonds that are registered in
di�erent systems, so it is a technical problem to get all tj and CFj in a single
list. Instead, I have been given the current total market value of each position
converted to SEK (TVi) and the modi�ed duration (MDi) of each position. The
MDi is the center of mass of the future cash �ows along the time axis and could
be de�ned as

MDi =

∑
j CFjtj∑
j CFj

.

Given the limitation of the data, I will instead view it as if there was only one
future cash �ow from each obligor, having a size that equals TVi if discounted
by dfcr(i). Formally,

TVi = (dfcr(i))
MDiCFMDi ,

where CFMDi is the cash �ow replacing the old ones.

The models assume that there exists a �xed discount factor for every rating
class that can be used to discount all future cash �ows. Looking at market
bond yield data one sees that this assumption is not perfectly true. The yield
can vary quite much for countries in the same rating class and for di�erent ma-
turities. The yield can also be lower for lower rated countries, for example on
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the 1st of July 2012 the yield for Japanese 10-year bonds was 0.83% while the
corresponding value for French bonds was 2.69%, even though France is rated
AAA and Japan is rated A+ by Fitch3. This is non-intuitive, but is a sign of
that the market cares about other things than Fitch's ratings and credit risk.
However, this might not be such bad news for our model anyway, since we are
mainly interested in the change of market value, when the ratings change. If
France was downgraded to Japan's rating, we can be pretty sure that the yield
would not decrease to the same yield as Japan, but instead increase due to the
higher risk associated with the lower rating. Therefore, a good way to estimate
the conditional credit losses might had been to look at how much the market
value of di�erent bonds has changed after rating changes, but I do not have
that kind of data. Instead, I just choose di�erent values for the di�erent yields
in an ad hoc way such that they reasonably match the current market yields of
bonds from countries with the same rating and with maturities that are close
to the MD:s. Each discount factor is then calculated as one divided by the
corresponding yield.

For the recovery rates, there is very little data, since very few countries has
defaulted during the last 15 years. The complete list can be seen in table 4. It
is hard to come up with a single number for the recovery rate, based on this
data. As can be seen the recovery rates varies a lot and the countries in this data
set is generally of much lower rating than the ones in the Riksbank's portfolio.
For the model I use something in the middle, so I let RR = 0.55.

3Source: www.tradingeconomics.com.
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Year Defaulting Country Recovery rate (%)

1998 Russia 50
1999 Pakistan 65
1999 Ecuador 60
2000 Ukraine 60
2000 Ivory Coast NA
2001 Argentina 30
2002 Moldova 95
2003 Uruguay 85
2003 Nicaragua 50
2004 Grenada NA
2005 Dominican Republic 95
2006 Belize NA
2008 Seychelles NA
2008 Ecuador NA
2010 Jamaica 80

Issuer-Weighted RR 67
Value-Weighted RR 36

Table 4: Recovery rates on sovereign defaults during the last 15 years. The last
two rows shows the average RR weighted per issuer and weighted by the total
value of bonds respectively. Source: Moody's.

I now have everything needed to calculate the conditional credit losses. Since
there was some uncertainty in all the parameters used to calculate the CL:s it
will probably result in some model error and to make this part of the model
satisfactory, better data is needed. It will be important to update the CL:s
frequently as for example the MD:s change.

4.4.3 Correlations

The correlation between obligors' underlying assets is an important parame-
ter for the risk measures, since a high correlation makes it more probable that
countries get downgraded at the same time. These events will result in the
largest portfolio losses. The correlations are typically positive, since countries
usually react similar to changes in the world economy. There exist some known
methods to estimate the correlations in the correlation matrix Σ. In (Gupton
et al., 1997), which mainly focuses on corporate bond, they look at the com-
panies' stocks time series to make an approximation of the companies' assets
and estimate the correlation from this. They also group the companies into
di�erent groups, depending on sector and geographical location and estimate
the correlations in the di�erent group. They then come up with a clever way to
base the correlation between two companies on the groupings.

Since our portfolio consist mainly of sovereign issuers, we cannot use the same
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technique. Countries do not issue stocks, so we cannot use that method to
estimate the correlations. Maybe the method with groupings could be used, ex-
ample by raising the correlation between countries in the euro zone, but we still
need something to base the estimations on. The ECB approach is to just use
24% for all correlations, since this is suggested by Basel II4 to be an upper limit
for the correlation. This method would result in estimates of the risk measures
that will be more like upper limits of the risk measures.

I will try a di�erent method for estimating the correlations, based on CDS
spread data and inspired by Friewald (2009). A Credit Default Swap (CDS) is
a credit derivative that works like an insurance against default. An illustration
of the CDS contract can be seen in �gure 4.3.

Figure 4.3: An illustration of how a CDS works.

For every CDS contract, there will exist a reference bond. The buyer of the
CDS contract, will pay an insurance rate s per year of the value V of the bond
to the protection seller. If the issuer of the bond defaults, the protection seller
pays the buyer an amount equal to the value of the bond and receives the bond
in return, retrieving whatever the defaulted bond pays. In this way, in case of
a default the protection buyer reduces his losses by V (1 − RR), where RR is
the recovery rate. CDS:s are quoted daily which means that there exists market
prices, quoted in the insurance rate s. One can thus assume that the prices will
be fair. At least one can assume that the market is liquid enough to make prices
for CDS:s on di�erent bonds equally close to their fair price and since our main
intention is to estimate correlations, this approximation should be adequate. If
we assume a constant hazard rate, i.e. the probability of defaulting is the same
at any time point in the next year, then a fair price of the CDS would be such
that the insurance rate s equals the hazard rate λ of the bond multiplied by
(1−RR), i.e.

λ =
s

1−RR
.

4Basel II are recommendations on banking laws and regulations issued by the Bank of

International Settlement.
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Hence, the probability of default in one years time should be

PD = 1− exp(−λ · 1) = 1− exp(− s

1−RR
).

Given the recovery rate RR (we will assume as before that RR = 0.55) we now
have a way of estimating the probability of default in one year's time based
on the market CDS prices. The market CDS prices will of course only re�ect
investors' opinions on what the PD is and not the true PD itself, but this can
be seen as an approximation.

As input to this method I will use daily CDS prices from the time period 2008-
2012 for 5-year bonds from some di�erent countries. I denote the price of a CDS
si(t) for obligor i at time t. Similarly I denote the PD for the next year implied
by the CDS price PDi(t). The prices are quoted about 260 times per year, so I
let the length of one day be d = 1

260 and nd = 260. Now, recall the model with
the underlying process that we used to construct the multi-dimensional model.
To be able to use the CDS data for estimating correlation I will for each obligor
i de�ne an underlying process Zi(t) by

Zi(t+ d) = Zi(t) + εi(t+ d),

where εi(t) ∈ N(0, d) and independent for t = d, 2d, 3d, . . . . This implies Zi(t+
1)− Zi(t) =

∑nd
k=1 εi(t+ kd) ∈ N(0, 1). I will as before assume that the exists

�xed constants qiD for each obligor such that if the process is below qiD a year
from now the obligor defaults. Thus{

P
(
Zi(t+ 1) < qiD|si(t)

)
= PDi(t)

P
(
Zi(t+ d+ 1) < qiD|si(t+ d)

)
= PDi(t+ d)

⇔

{
P
(∑nd

k=1 εi(t+ kd) < qiD − Zi(t)|si(t)
)

= PDi(t)

P
(∑nd+1

k=2 εi(t+ kd) < qiD − Zi(t+ d)|si(t+ d)
)

= PDi(t+ d)
⇔

{
qiD − Zi(t) = Φ−1(PDi(t))

qiD − Zi(t+ d) = Φ−1(PDi(t+ d))
⇒

Zi(t+ d)− Zi(t) = Φ−1(PDi(t))− Φ−1(PDi(t+ d)). (4.4)

By using (4.4), we have a method to estimate the increments of the underlying
process. Using this method for di�erent obligors will generate di�erent processes
which can be used to estimate the correlation between them. What we are
interested in is the correlation ρ between two assets over a one year time period.

ρ = corr (Zi(t+ 1)− Zi(t), Zj(t+ 1)− Zj(t)) = Cov (Zi(t+ 1)− Zi(t), Zj(t+ 1)− Zj(t)) =

Cov

(
nd∑
k=1

εi(t+ kd),

nd∑
k=1

εj(t+ kd)

)
=

nd∑
k=1

Cov (εi(t+ kd), εj(t+ kd)) = ndCov (εi(t), εj(t))
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ndcorr (εi(t), εj(t))·
√
V ar(εi(t))V ar(εj(t)) = ndcorr (εi(t), εj(t))·d = corr (εi(t), εj(t))

= corr (Zi(t+ d)− Zi(t), Zj(t+ d)− Zj(t)) .

This means that the correlation can be estimated by simply using the standard
estimator for correlation on the asset increment time series.

Germany France Greece Japan New Zeeland Sweden USA

Germany 1 0.73 0.26 0.09 0.13 0.57 0.41
France 0.73 1 0.31 0.11 0.14 0.61 0.42
Greece 0.26 0.31 1 0.06 0.04 0.23 0.18
Japan 0.09 0.11 0.06 1 0.06 0.09 0.09

New Zeeland 0.13 0.14 0.04 0.06 1 0.12 0.12
Sweden 0.57 0.61 0.23 0.09 0.12 1 0.34
USA 0.41 0.42 0.18 0.09 0.12 0.34 1

Table 5: Asset correlations between some countries estimated from CDS prices.

Table 5 shows a few correlation estimates. The estimated correlations seem
reasonable in the sense that countries that are closer to each other geograph-
ically have a higher correlation, but some correlations seem maybe too high
in the light of the Basel II suggestion of a maximum correlation of 24%. One
reason to this could be that the data is taken from a very special time period,
in the aftermath of the �nancial crisis. However, since we have earlier assumed
that the correlation is constant over time, this would be inconsistent with the
model.

To test whether the constant correlation is a good model I test what happens
if the correlation is estimated just using one year of data at a time. I use a
sweeping time window of length 260 and make a new estimation for every time
lag. How the correlation changes over time for some di�erent combinations of
countries is plotted in �g 4.4. As can be seen the correlation seems to be chang-
ing quite much over time, which indicates that either the assumption of the
constant correlation is bad or the method of estimating the correlation is.
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Figure 4.4: Correlations estimated from CDS data using a one year time window
for some di�erent combinations of countries.

Another problem when using a correlation matrix estimated like this is that
there is no guarantee that the matrix is positively semi-de�nite, which is required
for a correlation matrix. To be able to use the matrix for calculations, this must
be �xed in some way. For this reason, and because I do not have CDS data for
all obligors in the Riksbank's portfolio, I will just use the ECB ad hoc approach
with all correlations equal to 24% from now on.

5 Results and Validation

In this section I will show some calculations done based on the model, with
some di�erent parameters to investigate how these a�ect the model. I would
very much like to validate the model by looking at real credit loss data. The
problem is of course that the risk measures, V aRα and ESα, states something
about what happens in extreme cases and therefore requires a huge amount of
data to be validated. For example, if we have an estimation of V aR0.999 that
is too high we would need 5000 years of data with no losses greater than our
estimation to be able to reject it statistically with 95% signi�cance! Needless to
say, this is impossible and instead I will try to estimate how wrong the model
could be, by looking at the input data.
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When calculating the risk measures I will look at two di�erent portfolios. One
real portfolio that the Riksbank held some time ago consisting of n = 29 po-
sitions of high rating, 14 of them AAA. The portfolio is chunky, a few large
positions represent more than 80% of the total value. I will call this portfolio
�portfolio A�. The other portfolio is completely �ctional and is given the same
n, value and durations as portfolio A. I will call this portfolio �portfolio B� and
it will contain positions of equal value and of all di�erent ratings.

To begin with, I looked at the loss distribution for the di�erent portfolios us-
ing the standard Monte Carlo method, the historical migration matrix and the
correlation matrix with all o�-diagonal correlations equal to 24%. The result is
shown in �g 5.1. The loss distribution is much wider for portfolio B as expected
since it contains much lower credit quality. One can clearly see jumps in port-
folio A's tail, which comes from the chunkiness, while portfolio B's tail is much
more smooth.
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Figure 5.1: Histograms of simulated losses and an approximation of the proba-
bility function for portfolio A and B respectively. The �gures on the right are
close-ups on the tails of the distributions, showing the 5% largest losses.

I continued with estimating the di�erent risk measures for the portfolios,
for some di�erent values of α. The results can be seen in table 6 and �g 5.2.
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Observe that portfolio B has lower EL than portfolio A, but that V aR and ES
are about 20 times higher. Observe also how V aR and ES increase rapidly as
α approaches 1.

% of portfolio value EL UL V aR0.999 ES0.999

Portfolio A −0.0091 0.0281 0.3016 0.3453
Portfolio B −1.0325 1.4054 6.0330 7.0727

Table 6: Risk measures for the two portfolios, calculated using standard Monte
Carlo and the historical migration matrix.
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Figure 5.2: V aR and ES for the two portfolios and for some di�erent values of
α, calculated using standard Monte Carlo and the historical migration matrix.

Next, I looked at the uncertainty of the risk measures that comes from the
Monte Carlo methods. In �g 5.3 I have plotted the 95% con�dence intervals
for V aR0.999 and ES0.999 as functions of the sample size. As can be seen the
intervals are much narrower when using IS. It should be mentioned, however,
that the calculations take about twice the time when using IS, but the interval
at half the sample size for IS is much narrower than that for full sample size
standard Monte Carlo. Since the biggest problem is memory rather than time, IS
is de�nitely to prefer. The sizes of the con�dence intervals for IS are equivalent
to an error of less than one percent, which is acceptable. The model error and
errors that come from the parameters are probably much larger.
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Figure 5.3: Comparison of the sizes of 95% con�dence intervals for V aR0.999

(above) and ES0.999 (below), when using standard Monte Carlo (left) and Monte
Carlo with importance sampling (right).

I wanted to validate the model by looking at how big the error from the
parameters could be. I started with the migration matrix. First, I looked at
the method proposed by ECB where they tweak the PD:s to numbers that they
think are more reasonable. Table 7 shows the same results as table 6, but with
the tweaked migration matrix. As can be seen, all risk-measures increase some,
especially ES which increases about 20%.

% of portfolio value EL UL V aR0.999 ES0.999

Portfolio A −0.0091 0.0423 0.3042 0.4036
Portfolio B −0.9064 1.5724 7.2338 8.4727

Table 7: Risk measures for the two portfolios, calculated using the tweaked
migration matrix.

Next, I wanted to see how wrong the historical migration matrix could be
from a more statistical point of view. The idea was to �nd a �worse� migration
matrix that was still not too unlikely to have generated the data. As mentioned
before, Fitch does not say how big the data set is that their migration matrices
are based on, but I found a migration matrix from S&P with 8 rating classes
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that has this included. For validation purposes I therefore made this analysis
for the S&P matrix instead, assuming that the error for the Fitch matrix would
be of roughly the same size. The S&P data can be seen in table 8.

From/To AAA AA A BBB BB B C D

AAA 455 13 0 0 0 0 0 0
AA 9 262 6 0 1 1 0 0
A 0 12 272 14 0 0 0 0

BBB 0 0 16 230 9 2 0 0
BB 0 0 0 20 275 15 4 2
B 0 0 0 0 23 256 9 5
C 0 0 0 0 0 7 7 8

n

468
279
298
257
316
293
22

Table 8: Migration history from S&P. Each element in the n-column shows the
sum of the corresponding row in the matrix.

I denoted the matrixH, the elements in the matrix nij and elements in the n-
column ni for i = 1, . . . , 7, j = 1, . . . , 8. Each element pij in the usual historical
migration matrix would then be estimated as p̂ij =

nij
ni
, which is in fact the ML-

estimator (Rydén and Lindgren, 2000, pp. 62-66). I would now like to construct
a con�dence interval for the elements pij . The idea could then be to use the
upper bounds for the elements to the right of the diagonal and lower bounds for
the elements to the left of and on the diagonal. This would create a migration
matrix that would generate larger losses. The elements nij can be seen as
outcomes of binomially distributed variablesXij ∈ Bin(ni, pij). In the same way
each row in the matrix can be seen as outcomes of a multinomial distribution.
Con�dence intervals based on the normal distribution can unfortunately not
be constructed, since the normal approximation is invalid for the elements in
the matrix where nij = 0. Instead I used the binomial distribution directly by
implementing a numerical method in Matlab and looked for numbers pUij and

pLij such that

max
(
pUij |P

(
X̃ij ≤ nij

)
≥ α

)
, X̃ij ∈ Bin(ni, p

U
ij)

min
(
pLij |P

(
X̃ij ≥ nij

)
≥ α

)
, X̃ij ∈ Bin(ni, p

L
ij),

for some small number α. pUij and p
L
ij could then be used as con�dence bounds

for each element5. There are two problems with the approach of using the
bounds to construct a new matrix. The �rst problem is how to make sure that
each row sums to one. The second problem is how to treat the fact that I am
looking at many variables at the same time. If I would use the con�dence bound
for a small α for every pij , then each nij would not be too improbable, but all of
them at the same time would be. Therefore I compared the probability of each

5This will be one-sided con�dence intervals, for di�erent sides depending on what side of

the diagonal the element is on.
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row of H given the new matrix to the probability of each row in H given the old
matrix6. Since each row of the matrix in table 8 is multinomially distributed,
the probability function for row i is

mnpdfi(ni,:pi,:) =
ni!

ni1!, . . . , ni8!
pni1i1 pni2i2 · · · p

ni8
i8 .

The ratios ri between the probability of each row given the new and the old
matrix with elements pnewij and poldij can thus be calculated as

ri(p
new
i,: , poldi,: ) =

mnpdfi(ni,:p
new
i,: )

mnpdfi(ni,:poldi,: )
.

The nice thing here is that a lot of factors cancel (all that are taken factorial)
and ri is actually not that troublesome to calculate numerically, especially if
one calculates the logarithm of the expression �rst. To get an idea of what a
suitable size is for the ratios I compared to what the corresponding value is for
99%-con�dence bounds for the standard Gaussian distribution.

ϕ(q0.99)

ϕ(0)
= 0.067,

where ϕ is the standard Gaussian distribution and q0.99 the 99%-quantile. I
created a new matrix by using di�erent α:s for each element and by simply nor-
malizing each row to make it sum to one (the row sum for each row was already
close to one so this should not make a big di�erence), making the ratio for each
row close to 0.067. This required α:s in the interval 45 − 95% for the di�erent
rows. The matrix can be seen in table 9 under the name MCB1.

I constructed one more con�dence bound for the migration matrix, this time
only focusing on the diagonal elements and the PD:s. Concerning only two el-
ements in each row I could see them as binomially distributed and I did not
have to use the messy multinomial distribution. This way I was also able to use
higher con�dence levels for the single elements. I used the ML estimation of
the migration matrix as a base and moved probability mass from the diagonal
elements to the PD:s according to a 99% binomial con�dence interval for the
two probabilities. The resulting matrix can also be seen in table 9 under the
name MCB2.

6What I really wanted to do was to compare the probability of each row of H or worse,

but the cumulative distribution function for the multinomial distribution becomes very messy

even for only 8 dimensions. The method I use instead can be seen as an approximation of this

method.
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MML AAA AA A BBB BB B C D

AAA 97.22 2.78 0 0 0 0 0 0
AA 3.23 93.91 2.15 0 0.36 0.36 0 0
A 0 4.03 91.28 4.70 0 0 0 0

BBB 0 0 6.23 89.49 3.50 0.78 0 0
BB 0 0 0 6.33 87.03 4.75 1.27 0.63
B 0 0 0 0 7.85 87.37 3.07 1.71
C 0 0 0 0 0 31.82 31.82 36.36

MCB1 AAA AA A BBB BB B C D

AAA 96.44 2.80 0.13 0.13 0.13 0.13 0.13 0.13
AA 2.94 92.43 2.47 0.28 0.65 0.65 0.28 0.28
A 0 3.85 90.29 4.91 0.24 0.24 0.24 0.24

BBB 0 0 5.51 88.17 4.21 1.29 0.41 0.41
BB 0 0 0 5.02 85.12 6.21 2.22 1.43
B 0 0 0 0 6.12 86.06 4.74 3.07
C 0 0 0 0 0 19.40 19.40 61.20

MCB2 AAA AA A BBB BB B C D

AAA 96.24 2.78 0 0 0 0 0 0.98
AA 3.23 92.28 2.15 0 0.36 0.36 0 1.63
A 0 4.03 89.75 4.70 0 0 0 1.53

BBB 0 0 6.23 87.72 3.50 0.78 0 1.77
BB 0 0 0 6.33 85.03 4.75 1.27 2.63
B 0 0 0 0 7.85 84.68 3.07 4.40
C 0 0 0 0 0 31.82 12.24 55.94

Table 9: The �rst table shows the ML-estimation of the migration matrix. The
second shows a con�dence bound for the matrix using the method with the
multinomial distribution above. The last table shows another con�dence bound
that only focuses on the PD:s.

I calculated some risk measures based on the matrices in table 9, which
are presented in table 10. To be able to do this I �rst changed the ratings in
the portfolio to match S&P rating system. As can be seen , the risk measures
become very large when using the con�dence bound migration matrices. This
was expected, since the risk measures says something about what happens in
extreme cases, they basically say what happens when most of the obligors default
using the new PD:s. The reason why portfolio B's risk measures are lower is
probably because it is more diversi�ed than portfolio A.
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% of portfolio value A V aR0.999 A ES0.999 B V aR0.999 B ES0.999

MML 0.25 0.30 6.99 8.22
MCB1 23.53 24.428 12.00 14.31
MCB2 26.64 32.15 17.31 20.29

Table 10: Risk measures calculated for portfolio A and B using the di�erent
migration matrices in table 9.

To estimate how large the error from the conditional losses could be is very
hard because of lack of data. I did however do a short test to see how the
recovery rates a�ect the risk measures. I looked at recovery rates in the interval
of the recovery rate data in table 4. The table shows that for portfolio A, that
contains high quality credit, the recovery rates makes a very small di�erence,
but for portfolio B it is quite decisive.

% of portfolio value A ES0.999 hist B ES0.999 hist A ES0.999 tweaked B ES0.999 tweaked

RR = 30% 0.34 10.22 0.44 12.33
RR = 45% 0.34 8.29 0.42 10.02
RR = 60% 0.34 6.37 0.40 7.70
RR = 75% 0.34 4.51 0.38 5.42
RR = 90% 0.34 2.80 0.36 3.24

Table 11: Shows how ES0.999 varies for portfolio A and B for di�erent levels of
recovery rates and for the historical and tweaked migration matrix.

Finally, I did a test of how the risk measures are a�ected by the correlations.
I used a correlation matrix with the same value on every o�-diagonal position
and let it vary between 0 − 99%. The result is presented in �gure 5.4. It is
clear from the plots that the risk increases with correlation. The maximum
correlation suggested by Basel II, 24%, gives around twice the ES0.999 as the
uncorrelated case. If the correlations I estimated from CDS:s is correct the true
ES0.999 could be even higher.
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Figure 5.4: ES0.999 as a function of correlation, for portfolio A and B and for
the historical and tweaked migration matrix.

6 Optimization

Given the model and the possibility to calculate risk measures for di�erent
portfolios, it is natural to wonder what portfolio one should hold to minimize
the risk. This topic will be discussed in this section and will be based on
(Rockafellar and Uryasev, 2000). As we saw in example 2, V aR can lead to
absurdities as a risk measure. We will therefore focus on trying to �nd the
portfolio with the lowest ES. Since V aR < ES, optimizing with respect to ES
will give us a portfolio with a low V aR as well. We consider the case when there
are n obligors that it is possible to buy bonds from. De�ne the portfolio x as

x = [x1, x2, . . . , xn] .

The optimization problem that we want to solve can be formulated as

min
x

ESα(x) s.t.

n∑
i=1

xi = B

0 ≤ xi ≤ ci , ∀i,

for some �xed budget B and upper limits ci.

Since the random credit loss Li for each position i in the portfolio is directly
proportional to the market value of that position TVi, we now de�ne the ra-
tio between them to be Yi = Li

TVi
. The column vector containing all ratios is

denoted Y and we denote its density function fY (y). We can now de�ne the
portfolio credit loss as the function L(x, Y ) = xY , where x is the portfolio. The
probability of the loss being smaller than a certain value γ is de�ned by the
function

Ψ(x, γ) = P (L(x, Y ) < γ) =

ˆ

L(x,y)<γ

fY (y)dy.
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For a �xed x this can be seen as the distribution function of losses.
In (Rockafellar and Uryasev, 2000), they assume Ψ to be continuous every-
where with respect to γ. This is of course not always true in our case. Consider
for example a portfolio consisting of a single bond, then Ψ will have jumps in
the points where gamma equals the conditional credit losses for di�erent rating
changes. For larger, more well-diversi�ed portfolios however, the jumps will
be smaller and Ψ closer to continuous in some sense. The theory the authors
present is based on the assumption of Ψ being continuous, but they hint that
the theory is in fact valid even without this assumption, by saying that it is
only made for simplicity. It might be possible to change my model so that Φ
would be continuous, by for example replacing the migration matrix and the
conditional credit losses with some continuous equivalent, using curve-�tting.
For now, I will however just assume that the theory works anyway.

Now recall the expression for ESα given in (3.5). In (Rockafellar and Urya-
sev, 2000), they de�ne a similar function

Fα(x, γ) = γ +
1

(1− α)

ˆ

y∈Rn

max(L(x, y)− γ, 0)fY (y)dy

and then prove the following theorem.

Theorem 4. The expected shortfall ESα(x) for any �xed portfolio x ∈ Rn can
be obtained as

ESα(x) = min
γ
Fα(x, γ).

Similarly, V aRα(x) can be obtained as the smallest value γ that minimizes
Fα(x, γ).

This gives us a new way of estimating ESα without having to know V aRα
�rst. In the IS Monte Carlo setting the estimator would be

ÊSα(x) = min
γ

(
γ +

1

(1− α)N

N∑
i=1

max(xYi − γ, 0)ω(Yi)

)
,

where Yi is now the i:th simulated sample from an instrumental distribution
gY (y). The authors then go on proving another theorem that will be of great
use.

Theorem 5. Minimizing ESα(x) over x is equivalent to minimizing Fα(x, γ)
over all (x, γ), i.e.

min
x
ESα(x) = min

(x,γ)
Fα(x, γ).

Furthermore, Fα(x, γ) is convex with respect to (x, γ) and ESα(x) is convex
with respect to x when L(x,y) is convex with respect to x.

47



L(x, y) = xy is obviously convex with respect to x also with the constraints
0 ≤ xi ≤ ci, ∀i. Thus, we have convex optimization problem. This means
that if we can �nd a local minimum, we know that we have found a global
minimum. We will once again use Monte Carlo methods to approximate the
loss distribution. This could of course result in non-optimal results, because
the simulated sample may for example contain unexpected high losses for some
obligor, resulting in a lower investment in that position than optimal. Therefore
it is important to use IS and a large N . The optimization problem can now be
formulated as

min
(x,γ)

(
γ +

1

(1− α)N

N∑
i=1

max(xYi − γ, 0)ω(Yi)

)
, s.t. (6.1)

n∑
i=1

xi = B

0 ≤ xi ≤ ci , ∀i.

The authors suggest some further reading on methods on how to solve these
kind of optimization problems numerically, but for a project of this size it would
be too time consuming to understand and implement a new method, so I will
instead try to use a method that I am familiar with since before and which will
be described in the next section: a genetic algorithm. I also put some time on
trying to solve the problem using Matlab's built in optimization toolbox without
being able to reach convergence.

6.1 Genetic algorithm

A genetic algorithm is an optimization method that is inspired by the theory of
evolution. The idea is to treat solutions to the optimization problem as individ-
uals are being treated in nature: bad solutions are killed while good solutions
live on and new solutions are created by randomly mixing the old good ones.
Just like evolution has created well �tting species for this world the hope is that
this method will produce optimal solutions for the optimization problem. I will
now explain brie�y how I have implemented a genetic algorithm for this problem.

First of all I constructed a pool of M portfolios x1, . . . , xM that formed the
�rst generation of the population. These portfolios all ful�lled the constraints
of the problem and were constructed in two di�erent ways. Some portfolios were
created as extreme case, for example portfolios that have the whole budget in
a single position. The other portfolios were created randomly, using a uniform
distribution to randomize the sizes of the di�erent positions. γ was initiated as
the estimated V aRα of a random portfolio. Each portfolio was then evaluated
in the function that is being minimized in (6.1) and the results were saved in
the weight variables w1, . . . wM . I had generated the �rst generation. The plan
was then to construct a new, second generation out of the �rst one, then a third
generation and so on until the weights no longer improved. The construction of
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each new generation consisted of four steps: crossing, mutation, selection and
update of γ.

� In the crossing step the portfolios were randomly paired two and two.
Each pair constructed a new portfolio by randomly choosing one of the old
portfolios' investment in each position for the new portfolios' investment
in that position. The new portfolios were then normalized so that the
total investment equals the budget.

� In the mutation step all positions in all portfolios, except for a few of
the best ones, were increased or decreased randomly by a few percent. A
variable made sure that the mutations became smaller the longer the al-
gorithm ran. Afterwards it was ensured that the constraints were ful�lled.

� In the selection step the 50% of the old portfolios with the highest weights
were discarded and replaced by the new ones and new weights were cal-
culated. This became the next generation.

� A new γ was calculated as the estimate of V aRα for the best portfolio.

I implemented the algorithm in Matlab and tested it for some di�erent sets of
possible positions, migration matrices and constraints. The �rst thing I noticed
was that the algorithm was quite slow and it had to run for a long time to get
close to anything that could be considered convergence. Given the complexity of
the model, it was di�cult to test the algorithm on something that had a known
solution. One possibility was, however, to run it in the case when all obligors are
identical. The positive correlation among obligors should then make it optimal
to hold a diversi�ed portfolio with equally much invested in each position. I
therefore tested the algorithm with 10 identical �ctional AAA-rated obligors,
with the ECB-tweaked Fitch migration matrix, α = 0.95 and ci = ∞ for all
i. The result was interesting. About 7 of the obligors were being treated as
equally good by the algorithm and got the same investment, about one seventh
of the budget. The other three got close to zero. I tested the same setup a few
more times and got about the same result, except that di�erent obligors were
treated as bad every time. I compared the solution to the best theoretical solu-
tion, that each obligor gets the same. It turned out that the ES of the optimal
portfolio from the algorithm was lower than for the optimal theoretical solu-
tion. My best explanation to this result is that the Monte Carlo-approximation
of the loss distribution contained too many big losses for some of the positions,
resulting in that these positions were reduced by the algorithm. Hence, for the
Monte Carlo-approximation to be su�cient we would have raise the number of
simulations N or come up with a smarter instrumental distribution for the IS.
The �rst option is ruled out, since my computer runs out of memory for N ≈ 1
million.

I also tested the algorithm for some real obligors and the original Fitch ma-
trix (�g 4.2). The result was that the optimal portfolio was the one containing
only obligors with rating A-. Looking at the migration matrix one understands

49



why. Obligors of rating A- has historically only been downgraded by one step
maximally and the ES is therefore low. This result says more about the absur-
dity of using historical data only in the migration matrix.

Finally I did a test to check the convergence. I ran the algorithm twice for
n = 34, with the same Monte Carlo-approximation of the loss distribution both
times. Unfortunately, the result was not what I hoped for. The experiments
generated two portfolios that were pretty similar, they di�ered less than 20%
on each position. It seemed clear however that both portfolios represented some
di�erent local minima, because the optimum had been constant in both runs for
several generations. A plot of the convergence rate for one of the runs is shown
in �g 6.1.
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Figure 6.1: Shows the ES0.99 for the best and worst portfolios in the population
in a run of the genetic algorithm.

For a conclusion, it seems like the genetic algorithm is able to produce a
good portfolio with low risk, but it is not able to produce the optimal solution
generally. I am not sure if this is because of theoretical or practical reasons. The
algorithm seems to be performing better, the higher N andM one uses and one
could probably improve the performance of the crossings, mutations and the IS
as well. So, one cannot rule out that a genetic algorithm could work for this
problem, but with my implementation and computer capacity it has not.
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7 Discussion

7.1 Summary

After some initial background, I started out by explaining the model and how
the di�erent risk measures could be calculated. I then presented and discussed
some di�erent methods for estimating the parameters of the model: the mi-
gration matrix, the conditional losses and the correlation matrix. I continued
by showing some calculations done on the model and I did some tests showing
how sensitive the risk measures are to the parameters. Finally, I implemented
a genetic algorithm trying to optimize the portfolio with respect to ES.

7.2 Conclusions

As a statistician, I cannot say that I have much con�dence in this model. The
model is based on several assumptions which are not undoubtedly correct. How-
ever, these problems would be present for most other credit risk models as well.
I will now list some of the problems with the model.

� The �rst and biggest problem with the model is that it claims to say
something about what happens in extreme cases, but it can only be based
on a few years of data. Risk measures like V aR0.999 and ES0.999 are
supposed to state something about losses that would occur on average
just once in a thousand years and to base those statements on �fteen
years history only, will of course make the statements very uncertain.
Since the �nancial systems constantly changes, so will the credit rating
companies' view on di�erent types of obligors and therefore a much longer
relevant history will probably never be available. Testing the e�ect of
using the con�dence bounds of the migration matrix when calculating the
risk measures also showed how uncertain the measures are statistically.
Measures like EL and UL can probably be estimated with higher certainty,
but they are less interesting in terms of quantifying credit risk.

� Another problem with the model is the assumption of the underlying assets
and the asset correlation. For sovereign obligors there exist no real value
that corresponds to the underlying value which makes it impossible to
validate the assumption of normality. Neither is it possible to estimate
the correlations directly or to validate that the estimates are correct. Even
if the normality assumption was correct, the assumption that correlations
are constant in time seems wrong from �g 4.4. One could argue that
the correlation estimates could be updated frequently to get the current
correlation. However, it is not the correlation today that is interesting,
but the correlation in the coming year. What says that the correlation
cannot change rapidly and how could one in that case predict the change?
What ECB (and myself in the end) did was to use an upper limit for
the correlations to stay on the safe side. One can do this, but then one
does not estimate measures like �expected shortfall� but rather �an upper
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bound for expected shortfall�. The same goes for when using the tweaked
migration matrix.

� The credit rating agencies can be criticized in a number of ways. The
agencies are private companies and their incentives might not always be
to give ratings that best corresponds to the obligors' capabilities to live
up to their �nancial obligations. For example, before the Enron crash the
company had a high rating until just days before the bankruptcy, even
though the agencies had been aware of the company's problems (The New
York Times, 2002). It has often been noted that bond yields has risen for
obligors already prior to downgrades, which means that the market some-
times has better information about the credit quality than the agencies.
Therefore one should probably not trust the rating agencies blindly, but
look at other data as bond yields or CDS spreads as well.

The main bene�t of the model is that it is fairly simple and cheap. Not much
data is needed to make the model work and given the parameters, I have shown
that the risk measures can be calculated with high certainty using Monte Carlo
methods. For the Riksbank's purposes the model could probably be su�cient to
give an indication of how the credit risk in their portfolio develops over time. By
using the upper limit for correlation from Basel II and the tweaked migration
matrix they will get an upper limit for the risk measures, which will protect
them somewhat from estimation errors showing a credit risk that is too low.
However, they should not trust the �gures from the model as absolute truths,
but rather as numbers that can be used to compare the risk for di�erent port-
folios.

In the end, credit risk for sovereign bonds must be very hard to estimate for any
model. The combination of having a limited amount of data and at the same
time wanting to estime a non-probable but long tail in the loss distribution is a
problem that cannot be solved with certainty. The safest way to keep the credit
risk low will always be to have a portfolio of high rating and, as I showed in
table 10, a well diversi�ed portfolio.

7.3 Further Development

� The primary output from the model was the risk measures V aRα and
ESα for high levels of α. The problem with these was the uncertainty
of input data, which made the risk measures very uncertain as well. A
better risk measure might be one that instead of using a high α uses high
con�dence levels for the input data or maybe a combination of the two.
This would be somewhat similar to what I did with con�dence bounds
for the migration matrix in section 5. Perhaps this could be achieved
with some Bayesian approach, where prior distributions are put on the
input parameters of the model and then posteriors are calculated using
the input data. All this could be inserted into the Monte Carlo framework
to calculate a loss distribution that is more based on the likelihood of
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di�erent input parameters, rather than interpreting the input data as the
absolute truth. In (Gupton et al., 1997), they do something similar by
treating the recovery rates as beta distributed. Using this method would
probably be more computationally troublesome however.

� Using the underlying Gaussian variables and their correlations is very ad
hoc and it would be nice to use something else that is measurable to base
the joint distribution of rating changes on. Like I mentioned earlier, for
corporations one can use stock prices, but this does not work for countries.
I assume this problem is hard, but to make the model trustworthy one has
to come up with something else.

� In this paper, I have only looked at a risk horizon of one year. Other
risk horizons are of course interesting as well and to generalize the model
to make it work for di�erent horizons would not be too di�cult. A lot
of work has been done on this matter and in for example (Trueck and
Rachev, 2009), they discuss how a time-continuous migration matrix, with
migration intensities instead of migration probabilities, can be estimated
by assuming Markov properties. The method basically requires data of
the time points of all historical migrations, but given a one-year migration
matrix M the corresponding time-continuous matrix can be calculated as

Q =

∞∑
k=1

(−1)k+1 (P − I)k

k
,

if the sum converges. Given the time-continuous matrix, migration matri-
ces for any horizon can be calculated.

� It would be interesting to insert a parameter into the model that the
describes the current state of the world economy. If the world economy
is unstable more countries are likely to get economical problems and face
downgrades or defaults. This parameter could for example be multiplied
with the correlation matrix to increase the the total volatility of the model
in bad times. The current model is more time-stationary, which is a bit
unrealistic.

� The optimization part can de�nitely be improved. The biggest problem
seems to be that the Monte Carlo approximation of the loss distribution is
not good enough, since the algorithm gave di�erent solutions when using
di�erent random numbers. Maybe one could come up with some method
that �rst runs the algorithm a few times and then bases a new instrumental
distribution on the area of the loss distribution which is most important
for the portfolios near the optimums of the �rst runs. This way one would
get a higher resolution in the important part of the loss distribution, which
could produce a more accurate optimum. One could also consider using
some other algorithm than the genetic one.
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