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1 Introduction

1.1 Motivation

To understand and to be able to control thermoacoustic instabilities is necessary
in order to efficiently eliminate heavy pressure oscillations that disturb and, in
worst case, damage applications such as gas turbines, jet and rocket engines.

Instability in combustion processes also leads to increased pollutant emission
which definitely motivate the importance of this work. Another problem is the
noise that unstable combustion processes often create.

1.2 Objectives

The purpose of this work has been to set up and identify a flame heated Rijke
tube process in order to study and control thermoacoustic instability phenom-
ena by using an acoustic actuator such as an loudspeaker and microphones as
sensors.

1.3 Method

This thesis includes the developing of a Rijke tube connected with hardware
and software, system identification of the process and control theory. The work
was performed at Lund institute of Technology (LTH). The software was pro-
grammed using C and MATLAB for experiments and identification.

1.4 Rijke Tube

One of the most common ways to experience the phenomena and effects of ther-
moacoustic instability is by studying a classic Rijke tube. It typically consists
of a vertical pipe with a gauze, often located in the lower half of the tube (not
necessarily though), that is heated either electrically or with a flame. Due to
the combination of heated air leading to mean air flow and pressure oscilla-
tions the tube will generate a high-intensity tone when the gauze has reached
a sufficiently high temperature. Rijke [4] discovered that oscillations were most
intensive when the heating source was placed one quarter of the tube length
from the lower tube end.

Rayleigh proposed a criterion saying “If heat be periodically communicated to,
and abstracted from, a mass of air vibrating in a cylinder bounded by a piston,
the effect produced will depend upon the phase of the vibration at which the
transfer of heat takes place. If heat be given to the air at the moment of greatest
condensation or to be taken from it at the moment of greatest rarefaction, the
vibration is encouraged. On the other hand, if heat be given at the moment of
greatest rarefaction, or abstracted at the moment of greatest condensation, the
vibration is discouraged”.

A glass Rijke tube, as described above, has been used throughout the project.
The heating source has been a regular Bunzen burner with a metal net as a
flameholder. A problem with a conventional Rijke tube may be the difficulty
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to control system parameters, such as heating source location, air flow rates
and heat release, in an exact way. An electrically [3] heated Rijke tube with a
blower providing the air flow would overcome these problems easier but it does
not allow studies of the changes of the flame’s appearance, which has been one
of the goals throughout the project. Further, to prove that the thermoacoustic
instabilities could be controlled with, so far, very simple means in a very simple
environment.

1.5 Thermoacoustic Instability

Thermoacoustic instability is a phenomenon that appears in several technical
applications. A few examples are rocket and jet engines, gas turbines, waste
generators and industrial burners. Thermoacoustic instability can simplified be
described as the positive coupling between unsteady heat release and acoustics.
A diagram of this coupling can be viewed in Fig. 1.

Combustion processes often consist of a combustion chamber, a flame and a
fuel/air mixture. The flame, which is mounted in the combustion chamber ig-
nites the fuel/air mixture and energy from the gas is released and can be used
by application.

In most cases thermoacoustic instability disturbs the application. Heavy pres-
sure perturbations can damage the combustion chamber and the sound gener-
ated is also undesirable. Components or the whole chamber can be destroyed or
even melt if the heat released from the system is to high. A way to decrease the
temperature in a combustion chamber is to premix the fuel and air before it is
ignited. A lower temperature leads to less NOx emissions. However when the
fuel and air is premixed the heat release is more concentrated, which decreases
the stability margin and often triggers the thermoacoustic instability. There
are some applications were thermoacoustic instability is used to get a higher
efficiency. Examples of such applications are special types of pulse waste gen-
erators.

Disturbance p’

q’

Acoustics

Heat release

Figure 1: Thermal instability loop.

5



1.6 Active Control of Thermoacoustic Instability

The heat released from the flame in a combustion system can be actuated either
by changing the fuel/air mixture or by manipulating the structure of the flame.
Velocity and acceleration of air that is generated by the acoustic field can dis-
turb the appearance of the flame. In this way the heat released is disturbed.

There are several ways to active control a combustion instability. Two categories
of actuators that can be used are flow sources and heat sources. A loudspeaker
can be used as a flow source and some kind of fuel injector as heat source. In
a Rijke Tube it is also theoretically possible to control/change the flame loca-
tion. Controlling the process using the flame location as an actuator is not fast
enough. A flow source changes the velocity of the flow and impacts both the
heat release and the acoustics in a direct way. A heat source changes the heat
release. Indirect this increased/decreased heat release impacts the acoustics. As
can be seen neither of these alternatives only affects the acoustics. In this thesis
a loudspeaker was used as actuator.
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2 The Laboratory Equipment

The laboratory equipment consisted of a 750 mm glass pipe with an inner di-
ameter of 65 mm. A 5 W loudspeaker was used as actuator (App. H).

Figure 2: Drawing of the Rijke tube. L = 750 mm is the length of the glass
tube, Xf = L/4 location of the flameholder, Xm1 = L2/3 location of microphone
1, Xm2 = L5/6 location of microphone 2.

2.1 The Flameholder

What was discovered very early during the work with the Rijke tube was that
the flameholder plays a very important role if there is to be any sound at all in
the tube.

A flameholder, or flame controller, is often placed above regular burners. It’s
purpose is to prevent the flame from spreading into the burner and to shape the
flame. It is in the simplest case just a small metal net which is placed above
the flame .

At the first attempts with the Rijke tube the burner had a small net which
was placed directly, almost flat, on the burner. The result was a quiet tube.
After trying different set-ups mainly changing the position of the glass tube ac-
cording to the burner with no improvements regarding the sound (which was not
there) a new flameholder was given a try. In fact, it was the same flameholder
as before but it was a little reshaped in a way that allowed to it be placed a
little bit above the burner, like a balloon, instead of lying directly on the burner.
The glass pipe was merely put on before a loud and clear tone could be heard.

Successful attempts with a flameholder shaped like circular lid have also been
performed and this kind of flameholder has been used for the final version of
the Rijke tube.

Conclusions are that the flameholder must be shaped in such a way that the
position of the burner makes it possible to create a flame big enough (or actually
concentrating enough heat in one place) to heat enough air (flowing through the
pipe) fast enough which is essential for the unsteady heat release and pressure
oscillations that lead to thermoacoustic instability.
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Figure 3: The flameholder.

2.2 The Software

2.2.1 RTAI

The human ear can hear sound which approximately has a frequency in the range
20 Hz - 20 kHz. The frequency of the sound generated by the Rijke Tube was
determined. Microphones were used to sensor the pressure vibrations. Sam-
pling of such high frequencies requires a hard real time system, which is not
interrupted by tasks that are not used in the control system. Linux Real Time
Application Interface (from here on RTAI) was used to get a hard real time
system.

RTAI is a real time kernel, which runs besides the ordinary Linux kernel. The
real time kernel controls the interrupt handling. It decides whether an interrupt
should be passed to Linux or not. Linux is prevented from disable interrupts.
In this way Linux can not block interrupts or stop itself from being pre-empted.
Linux tasks are only allowed to run when there are no real time tasks that wants
to run. RTAI treats Linux as a task with the lowest priority.

RTAI also provides scheduling and gives access to real time services. Exam-
ples of such services are FIFOs, shared memory, POSIX thread compatibility
and the ability to use Real Time Linux (RTLX). RTAI applications must run in
Linux kernel memory space. Modules that are loaded into kernel space are used
to access the kernel in Linux. RTAI applications are implemented as modules
and can access the kernel memory. RTAI is implemented in the C programming
language and applications using it are often programmed in C. Using RTAI gives
the possibility to implement a hard real time system and also use the ordinary
Linux services e.g. the file and window systems.

2.2.2 COMEDI

The PC was equipped with an Adventech 1711 AD/DA card. It has 16 ana-
log inputs(12 bits), 2 analog outputs, 16 digital inputs and 2 digital outputs.
The card was connected to the microphones and to the loudspeaker via ana-
log inputs and outputs. To be able to communicate with the card from the
PC some kind of device driver is needed. For AD/DA cards (also called DAQ
- Data Acquisition Card) an API (Application Programming Interface) called
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COMEDI was available. COMEDI which is a Linux Control And Measurement
Device Interface is used to access DAQ cards. COMEDI contains a collection of
device drivers for DAQ cards. Using COMEDI gives the possibility to change
to another AD/DA card without rewriting the software. The API can also be
accessed from the Linux kernel, via a module, which makes it possible to com-
municate to the card from real-time applications. COMEDI can be used from
RTAI applications.

u(t)

y_k

u_k

q’ 

p’ 

d

y(t)

D - A

Computer

Actuator

A - D

Heat release

Acoustics

Figure 4: Scheme over the control system. The actuator affects the acoustics in
a direct way and an indirect way, via the increased/decreased heat release.

3 System Identification

A good way to get more knowledge about the process is to use some kind of
system identification methods. The combustion dynamics of the process are
highly nonlinear, which normally makes the identification harder. The system
parameters and especially the pressure end up in a stable limit cycle. One way
to use system identification on the combustion process is to linearize the system
in the neighbourhood of this limit cycle. The identification procedure includes
a choice of suitable input signal, data examination, model structure selection,
model estimation and validation.

3.1 Input Signal Selection

The end-mounted speaker is used to generate the input pressure to the pro-
cess. This pressure will affect the states of the process and the output pressure
generated by the process will be measured. Hence, both the input and output
signal of the process is considered as pressure. In the identification procedure
the amplifier, loudspeaker and microphones are included in the process. The
output current of the amplifier is proportional to the input current. The pres-
sure generated by the loudspeaker is proportional to the input current under
the constraint that the second derivative of the input current is not equal to
zero. This can be written as

u′′

l �= 0 ⇒ pl = klul (1)

where ul, pl and kl are the input current, output pressure and a constant of
the loudspeaker, respectively. Finally, the output current of the microphone is
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proportional to the output pressure of the process.

The identification gives a better model at the frequencies where the input signal
contains much energy, the input signal has good excitation at these frequencies.
A pseudo random binary sequence (PRBS) was used to create disturbances to
the input signal used for identification. The sampling interval was chosen to 10
kHz and the data where collected under 10 seconds. 5 seconds of the data was
used for identification and 5 seconds for validation.

It was possible to add the PRBS signal to the phase, amplitude or frequency of
the input current. Combinations of these PRBS signals were also tested. Dif-
ferent input signals were generated, see App. E. Finally the input signal named
i10−1.mat was used for the identification. This signal has good excitation in
the frequency range, this can be seen in Fig. 5.
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0

10
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10
2

Pxx − X Power Spectral Density

Frequency

Figure 5: Power spectral density of the input signal.

A coherence spectrum [7] is a test of linearity between the input and output of a
process. The spectrum shows for which frequencies there is a linear dependency
between the input and output signals. A value close to 1 indicates a perfect
linear dependency. The coherence spectrum for the input and output signals,
used for identification can be viewed in Fig. 6. The coherence spectrum shows
that there is a linear dependency between the input and output signal in the
frequency range 150 - 280 Hz. This indicates that it should be possible to get
an accurate linear model of the process in this range.

When performing system identification it is an advantage if the signal to noise
ratio S/N is high. One way to measure the signal to noise ratio is to use the
equation Eq. (2) below.

S/N =
std(ynoinput)

std(yPRBSinput)
(2)
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Figure 6: Coherence spectrum.

where std is the standard deviation of the signal, ynoinput is the output when
no input is used and yPRBSinput is the output when the PRBS signal is used
as input. When the i10−1.mat data was used as input the signal to noise ratio
was approximately 2.

3.2 Nonparametric Model

A nonparametric model of the process was identified using spectral analysis.
A great advantage of nonparametric models is that they need no specification
for model structure and model order. A bode diagram, displaying the gain
(Fig. 7) and phase (Fig. 8) of the process transfer function was generated
by spectral analysis, using the MATLAB function spectrum. The amplitude
diagram indicates that the process is a damped oscillator where the gain has a
maximum around 250 Hz, which was expected.

3.3 Model Structure

When deciding the model structure there is some structures that can be used.
The difference between these lie mainly in how the external noise influences
the system. An ARMAX model (autoregressive moving average with exogenous
input) was used to model the system. The ARMAX model has the following
structure

A(q)y(t) = B(q)u(t − nk) + C(q)e(t) (3)

where nk is the time delay and A, B and C are polynomials and where q is the
forward shift operator, y(t) is the output signal, u(t) input signal and e(t) white
noise.

There are two main parameters in the ARMAX model that has to be decided.
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Figure 7: Bode amplitude diagram of the process transfer function. Generated
by the MATLAB function spectrum.
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Figure 8: Bode phase diagram of the process transfer function. Generated by
the MATLAB function spectrum.
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First there is order of the system, i.e. the degree of the A, B and C polynomials.
Second there is the time delay of the system.

3.4 Parametric Model

Using some kind of validation criterion is one way to determine which ARMAX
model that best describes the combustion system. Correlation between simu-
lated and measured output is a good measure of how well the model manages
to imitate the combustion process. Data used for identification and verification
was not the same when correlation analysis was used. If the same data was used
it would be easy to find an accurate model. This kind of correlation analysis
was used to find an accurate model of the system.

The MATLAB function armax was used for the identification. Early tests
showed that a low order of the system is enough. A higher degree than three of
the A-polynomial was not necessary to test.

The distance d between the end-mounted loudspeaker and the microphone used
to sensor the output is a key parameter of the system. The microphone was
placed on the distance d = L2/3 from the loudspeaker. L = 0.75 ⇒ d = 0.75·2/3
= 0.5 m . The speed of sound v is approximately 341 m/s. Hence, the time t it
takes for the pressure generated by the loudspeaker to reach the microphone is t
= d/v = 0.5/341 = 0.0015s . This time, result in a time delay of the combustion
system that is equal or greater than 0.0015 s, this is the same as 15 samples. As
mentioned earlier the loudspeaker will impact the system in a direct way, via
the pressure. It will also impact the system in an indirect way, via increased or
decreased heat release. One way to determine the time delay of the system is
to examine the correlation function between the input and output signal. The
correlation function of the system was generated by the MATLAB function cra,
see Fig. 9. The picture shows that there is a linear dependency between the
input signal u and an output signal y that is delayed approximately 25 samples.

To determine the model order A MATLAB-script getParModel.m, App. D.2,
was implemented. The script tested the correlation for different ARMAX mod-
els. Two different time delays was used, 15 and 25 samples. The result was
plotted and can be viewed in the Fig. 10. The lowest order model that gives
high correlation was an [aDegree bDegree cDegree timeDelay] = [2 2 1 25] model,
where aDegree, bDegree and cDegree are the orders of the A, B and C polynomi-
als, respectively, and timeDelay is the time delay of the system. The correlation
coefficient for the [2 2 1 25] model is 0.9908 and the model has the following
polynomials

A(q) = 1 − 1.938q−1 + 0.9644q−2 (4)

B(q) = −0.03792q−25 − 0.01311q−26 (5)

C(q) = 1 − 0.6379q−1 (6)

Information that can be studied in the Fig. 10 is the difference between the two
time delays 15 and 25 samples. The same figure with higher resolution, Fig.11,
clearly shows that 25 samples time delay is to prefer against 15 samples.
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Figure 10: Correlation coefficient of different ARMAX models.
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Figure 11: Correlation coefficient of different ARMAX models. Even number
on the x axis represent a model using 25 samples time delay and odd number
15 samples time delay.

If the ARMAX model [2 2 1 timeDelay] was chosen it could be interesting
to see how different time delay describes the system. The MATLAB-script
getParModel.m, D.2, was also examining this idea. Fig. 12 shows the corre-
lation of the ARMAX model [2 2 1 timeDelay] as a function of the timeDelay
variable. A time delay greater than 15 gives an accurate model.
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Figure 12: Correlation as the function of time delay for an ARMAX [2 2 1
timeDelay] model.
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3.5 Validation

A parametric model can be validated in many different ways. The ARMAX
model, that was determined in the previous section was validated using simula-
tion and cross validation. The simulated and measured outputs can be viewed in
Fig. 13. By using the two MATLAB functions th2zp and zpplot it was possible
to plot Fig. 14 the zeros and poles of the discrete ARMAX [2 2 1 25] process.
14
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Figure 13: Simulated and measured output.
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Figure 14: Pole zero plot of the discrete [2 2 1 25] ARMAX model.

Another way to validate the model is to look at the power spectrum of the
residuals when comparing measured and simulated output. This spectrum can
be shown in the Fig. 15. An optimal power spectrum would be zero at all
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frequencies.
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Figure 15: Power spectrum of the residuals.

The last validation used was to compare the bode diagram (Fig. 16) of the
parametric model with the bode diagram received by the nonparametric model.
The amplitude diagram matches the amplitude diagram of the nonparametric
model.
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Figure 16: Bode diagram of the [2 2 1 25] ARMAX model.
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4 Control Design

4.1 Sample Rate Decision

When the sampling rate of the control system was to be decided it was an ad-
vantage if the unstable frequency of the tube could be determined. The tube
had the length 0.75 m. When instability occurs in the tube there is a standing
wave in the tube. The wave has the wavelength λ = 0.75 · 2 = 1.5m. The speed
of sound v is approximately 341 m/s. The frequency of the standing wave is:
f = v/λ = 341/1.5 ≈ 227Hz.

The speed of sound depends on the medium. A RTAI application used to mea-
sure the frequency of the sound was implemented to ensure that the calculation
over the unstable frequency was valid. (App. B.1, B.2, A.1). The application
read the inputs from the two microphones and wrote the samples to two files,
one file for each one of the microphones. The sampling rate used by the applica-
tion was 10 kHz. Frequencies of the sound that are below the Nyquist frequency
fN = fs/2 = 10000/2 = 5kHz could be measured by the application (see [1]).

The two files, containing 50000 samples collected during five seconds, generated
by the program was read into the MATLAB (App. D.1) memory space. A plot of
the samples can be viewed in Fig. 4.1. As can be seen in the plot the frequency of
the sound is approximately 250 Hz. Using the theory of aliasing and the Nyquist
frequency it is enough to use a sampling frequency fs = 2·250 = 500Hz to avoid
aliasing of the sound. To ensure that no frequencies were lost in the control loop
a higher frequency than 500 Hz was used.
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Figure 17: Samples from the two microphones.

4.2 Stability Analysis

An equation over the stability criterion for combustion process can be written
(see [2][5]) as:

δ

δt

∫ L

0

e′dx =
γ − 1

ρc2

∫ τ

0

∫ L

0

p′q′dxdt − ∆L(E′) − Φ, (7)

where e′ is the acoustic energy, E the acoustic energy flux and Φ energy dissi-
pation. p′ and q′ is the pressure and the heat release perturbation. γ, ρ and
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c are the specific heat ratio, density and the speed of sound. x and t stands
for distance and time. ∆L is the difference over the combustion length L. The
mean flow is neglected in the equation above. A combustion system is stable if
the value of the equation is less than or equal to zero. The system is unstable
when the heat release fluctuates in phase with the pressure perturbation and
the energy losses are smaller than the generated energy.

The acoustic energy field stores the internal energy of a combustion system.
The flame and an actuator will give or take energy from the acoustic energy
field. A loudspeaker used as actuator will affect the internal energy in a direct
and an indirect way. Direct by generating pressure via its acceleration and in-
direct by adding air flow to the flame, which affects the heat release. Using this
theory, Eq.(7) can be written as

δ

δt

∫ L

0

e′dx = Wf + Wd = Wq + Wi + Wd, (8)

where Wf is the work exchange between the acoustic field and the flame, Wd

between loudspeaker and acoustic field directly, Wi between the loudspeaker and
the flame and Wq between the flame and the acoustic field. When no actuator
is used to control the process Wd = Wi = 0. For an unstable system the energy
is increasing and Wf = Wq > 0. When an actuator is used the criterion for
stability is Wi + Wd < -Wq. The above equation 8 shows that a loudspeaker
can affect the stability criterion. In a similar way it is possible to show that
other actuators can be used.

4.3 Controller Design

Thermoacoustic instability is often modelled as the Rayleigh’s criterion, which
can be written as[5]:

∫ τ

0

∫ V

0

p′(x, t)q′(x, t)dvdt >

∫ τ

0

∫ V

0

Φ(x, t)dvdt, (9)

where p′ is pressure perturbations, q′ perturbations in the heat release rate,
Φ the wave energy dissipation, τ period of oscillation and V is the combustor
volume. The LHS of the criterion describes the mechanical energy added to the
oscillations by the heat release. Rayleighs criterium can be derived from Eq. (7)

If the inequality Eq. (9) is satisfied, instability will be encouraged. The wave
energy dissipation Φ is often very small and can be neglected. The criterion
shows that instability will occur if the pressure and heat release perturbations
oscillates in phase.

The limit cycle behaviour of the system indicates that the heat release and
pressure states oscillate at same frequency. The sign of the time integral Eq.
(9) will then depend on the phase between the heat release and pressure per-
turbations. It has been shown [5] that the integral has a maximum when τ0

τ
=

0, 1, 2, 3... , and a minimum when τ0

τ
= 1

2
, 3

2
, 5

2
...

Using the stability criterion stated above it was possible to implement a con-
troller (App. B.4) that stabilized the combustion process. The period τ =

19



0.0040s of the process limit cycle has previously (Ref. 4.1) been determined.
The controller reads the output value y(t) (pressure) from the process and cal-
culates a control signal u(t) using the Eq. (10).

y(t) + u(t) = y(t + ϕ) ⇔
sin(ωt) + u(t) = sin(ωt + ϕ) ⇔

u(t) = sin(ωt + ϕ) − sin(ωt) (10)

By assigning the phase shift variable ϕ the value ϕ = π the time delay τ0 gets
the value τ0 = 0.0020s. This gives the ratio τ0

τ
= 0.0020s

0.0040s
= 1

2
, which implies

stability. ϕ = π makes it possible to write Eq. (10) as Eq. (11).

u(t) = sin(ωt + π) − sin(ωt) ⇔
u(t) = −2 sin(ωt) ⇔
u(t) = −2y(t) (11)

where ω = 2 ·π ·250 ≈ 1571 rad/s. There is a transport delay d = 0.0015s, from
the actuator to the sensor. This delay needs to be considered when generating
the control signal. The period time τ = 0.0040s of the limit cycle makes it
possible to write the control law Eq. (11) as Eq. (12)

u(k) = −2y(k) ⇔
u(k) = −2y(k − (τ − d)) ⇔
u(k) = 2y(k − (τ − d) +

τ

2
) ⇔

u(k) = 2y(k − 25 + 20) = 2y(k − 5) (12)

where k represents discrete time samples.

4.4 Results

A controller (App. A.2) was implemented using RTAI and the result can be
viewed in Fig. 18. The result shows that the controller stabilizes the process
and reduces the amplitude of the pressure. When the controller was switched
on it was not longer possible to hear the sound from the Rijke tube.

4.5 Conclusions

The controller used passivity theory to reduce the energy in the system i.e. the
amplitude of the pressure. Even though the controller was simple it stabilized
the process. This fact indicates that a more advanced controller also will stabi-
lize the process and probably perform even better. A Linear Quadratic Gaussian
(LQG) controller that only punishes the output signal is an example of a more
advanced controller.
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Figure 18: The controller was switched on when t = 1s.
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A RTAI Structures

A.1 getFrequencyScheme

A scheme over the getFrequency RTAI application can be viewed in Fig. 19.

User spaceKernel space

logger.c
read()

FIFO
write()read()

COMEDI get_frequency.c

Figure 19: Scheme over the getFrequency RTAI application.

A.2 controllerScheme

A scheme over the controller RTAI application can be viewed in Fig. 20.

COMEDI
read() write()

FIFO
read()

Kernel space User space

p_shift_controller control_logger
write()

Figure 20: Scheme over the controller RTAI application.

B C-files

B.1 getfrequency.c

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/comedilib.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>
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#define SUBDEV0 0

#define ANALOGIN0 0

#define ANALOGIN1 1

#define RANGE 0

#define AREF 0

#define FIFO 0

#define H 100000 //period time (ns)

#define STACKSIZE 16536

#define PRIORITY 10

MODULE_LICENSE("GPL");

static RT_TASK sampler_task;

static comedi_t *iocard;

static void sampler(int arg)

{

lsampl_t sample_an_in0, sample_an_in1;

int counter = 0;

double volts, convert_to_krange = 1000000;

comedi_krange c_krange;

comedi_get_krange(iocard, SUBDEV0, ANALOGIN0, RANGE,

&c_krange);

double convert_ratio = (c_krange.max/convert_to_krange

- c_krange.min/convert_to_krange)/

comedi_get_maxdata(iocard, SUBDEV0, ANALOGIN0);

double min_tmp = c_krange.min/convert_to_krange;

while (1) {

comedi_data_read(iocard, SUBDEV0, ANALOGIN0, RANGE,

AREF, &sample_an_in0);

volts = min_tmp + convert_ratio*sample_an_in0;

rtf_put(FIFO, &volts, sizeof(volts));

comedi_data_read(iocard, SUBDEV0, ANALOGIN1, RANGE,

AREF, &sample_an_in1);

volts = min_tmp + convert_ratio*sample_an_in1;

rtf_put(FIFO, &volts, sizeof(volts));

counter += 1;

if(counter == 50000){

rt_printk("\n######## get_frequency.c is shutting

down... ########\n");

comedi_test_exit();

}

rt_task_wait_period();

}

}

static int comedi_test_init()

{
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iocard = comedi_open("/dev/comedi0");

if (iocard) {

RTIME t;

rtf_create(FIFO, 400000);

rt_set_periodic_mode();

rt_task_init(&sampler_task, sampler, 0, STACKSIZE,

PRIORITY, 0, 0);

t = start_rt_timer(nano2count(H));

rt_task_make_periodic(&sampler_task, rt_get_time() + t, t);

}

return 0;

}

static void comedi_test_exit()

{

stop_rt_timer();

rt_task_delete(&sampler_task);

rtf_destroy(FIFO);

comedi_close(iocard);

}

module_init(comedi_test_init);

module_exit(comedi_test_exit);

B.2 logger.c

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/fcntl.h>

#include <signal.h>

static int terminate;

static void terminate_process(int notUsed){ terminate = 1; }

int main(int argc, char **argv)

{

FILE *analogin0_fd, *analogin1_fd;

analogin0_fd = fopen("analogin0.dlm", "w");

analogin1_fd = fopen("analogin1.dlm", "w");

if(!analogin0_fd || !analogin1_fd){

fprintf(stderr, "Error opening output file:\n");

exit(1);

}

int fifo;

double analogin0 = 0, analogin1 = 0;

if((fifo = open("/dev/rtf0", O_RDONLY)) < 0){

fprintf(stderr, "Error opening /dev/rtf0\nError code:
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%d\n", fifo);

exit(1);

}

signal(SIGINT, terminate_process);

while(!terminate){

read(fifo, &analogin0, sizeof(analogin0));

fprintf(analogin0_fd, " %f", analogin0);

fprintf(analogin1_fd, " %f", analogin1);

}

fclose(analogin0_fd);

fclose(analogin1_fd);

printf("The logger terminates...\n");

return 0;

}

B.3 generate
−
sin.c

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/comedilib.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include <math.h>

#include "constants.h"

MODULE_LICENSE("GPL");

static RT_TASK sampler_task;

static comedi_t *iocard;

static void sampler(int arg)

{

lsampl_t out_sample;

int counter = 0;

double sin_value, amplitude = 1.0, freq;

comedi_krange c_krange;

comedi_get_krange(iocard, SUBDEV1,

ANALOGOUT0, RANGE, &c_krange);

double convert_from_phys_ratio =

comedi_get_maxdata(iocard, SUBDEV1,

ANALOGOUT0) /

(c_krange.max/CONVERTTOKRANGE -

c_krange.min/CONVERTTOKRANGE);

freq = 250; //Hz

freq *= 2*M_PI; //convert to radians

freq /= 1E9; //speedup
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double min_tmp = c_krange.min/CONVERTTOKRANGE;

printk("\n\n ######## CONSTANTS #############\n");

int tmp = min_tmp;

printk("min_tmp: %d\n", tmp);

tmp = c_krange.max/CONVERTTOKRANGE;

printk("c_krange.max/CONVERTTOKRANGE: %d\n", tmp);

tmp = c_krange.min/CONVERTTOKRANGE;

printk("c_krange.min/CONVERTTOKRANGE: %d\n", tmp);

tmp = comedi_get_maxdata(iocard, SUBDEV1, ANALOGOUT0);

printk("maxdata: %d\n", tmp);

tmp = convert_from_phys_ratio;

printk("convert_from_phys_ratio: %d\n", tmp);

printk("\n#####################\n\n");

while (1) {

sin_value = amplitude *

sin(freq*rt_get_time_ns()) + amplitude + min_tmp;

out_sample = (sin_value -

min_tmp)*convert_from_phys_ratio;

int result = 100;

int tm = sin_value*100;

printk("Volts*100: %d\n", tm);

comedi_data_write(iocard, SUBDEV1, ANALOGOUT0,

RANGE, AREF, out_sample);

counter += 1;

rt_task_wait_period();

//if(counter == 50000){

// comedi_test_exit();

//}

}

}

static int comedi_test_init()

{

iocard = comedi_open("/dev/comedi0");

if (iocard) {

RTIME t;

rtf_create(FIFO, 400000);

rt_set_periodic_mode();

rt_task_init(&sampler_task, sampler, 0,

STACKSIZE, PRIORITY, 0, 0);

t = start_rt_timer(nano2count(H));

rt_task_make_periodic(&sampler_task,

rt_get_time() + t, t);

}

return 0;

}

static void comedi_test_exit()
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{

stop_rt_timer();

rt_task_delete(&sampler_task);

rtf_destroy(FIFO);

comedi_close(iocard);

}

module_init(comedi_test_init);

module_exit(comedi_test_exit);

B.4 p
−
shift

−
controller.c

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/comedilib.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include <math.h>

#include "../constants.h"

MODULE_LICENSE("GPL");

static RT_TASK sampler_task;

static comedi_t *iocard;

static void sampler(int arg)

{

lsampl_t in_sample0, out_sample;

int counter = 0;

double sin_value, amplitude = 2.5, freq, volts;

comedi_krange out_c_krange;

comedi_get_krange(iocard, SUBDEV1,

ANALOGOUT0, RANGE, &out_c_krange);

double convert_from_phys_ratio = comedi_get_maxdata(iocard,

SUBDEV1,

ANALOGOUT0) /

(out_c_krange.max/CONVERTTOKRANGE -

out_c_krange.min/CONVERTTOKRANGE);

comedi_krange in_c_krange;

comedi_get_krange(iocard, SUBDEV0, ANALOGIN0, RANGE,

& in_c_krange);

double convert_to_phys_ratio =

(in_c_krange.max/CONVERTTOKRANGE

- in_c_krange.min/CONVERTTOKRANGE)/

comedi_get_maxdata(iocard, SUBDEV0, ANALOGIN0);

double out_min_tmp = out_c_krange.min/CONVERTTOKRANGE;
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double in_min_tmp = in_c_krange.min/CONVERTTOKRANGE;

printk("\n\n ######## CONSTANTS #############\n");

int tmp = out_min_tmp;

printk("min_tmp: %d\n", tmp);

tmp = out_c_krange.max/CONVERTTOKRANGE;

printk("out_c_krange.max/CONVERTTOKRANGE: %d\n", tmp);

tmp = out_c_krange.min/CONVERTTOKRANGE;

printk("out_c_krange.min/CONVERTTOKRANGE: %d\n", tmp);

tmp = comedi_get_maxdata(iocard, SUBDEV1, ANALOGOUT0);

printk("Analog_out maxdata: %d\n", tmp);

tmp = convert_from_phys_ratio;

printk("convert_from_phys_ratio: %d\n", tmp);

printk("\n#####################\n\n");

/* HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH */

unsigned data[25] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0}; //data collection

int current_val = 0;

unsigned u, y;

while (0) { //logging off/on

counter += 1;

u = data[current_val]; // * 1.0;

printk(" %d\n", u);

if(counter >= 10000){

comedi_data_write(iocard, SUBDEV1, ANALOGOUT0,

RANGE, AREF, u);

}

comedi_data_read(iocard, SUBDEV0, ANALOGIN0, RANGE,

AREF, &y);

data[current_val] = y;

current_val = (current_val + 1) % 25;

if(counter == 30000){ // three seconds...quit...

rt_printk("\n######## p_shift_controller is shutting

down... ########\n");

comedi_test_exit();

}

rtf_put(FIFO, &y, sizeof(y));

if(counter < 10000){

u = 0;

}

rtf_put(FIFO, &u, sizeof(u));

rt_task_wait_period();

}

//this loop is running when the logging is swithed off...

while (1) {
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u = data[current_val];

printk(" %d\n", u);

comedi_data_write(iocard, SUBDEV1, ANALOGOUT0,

RANGE, AREF, u);

comedi_data_read(iocard, SUBDEV0, ANALOGIN0,

RANGE, AREF, &y);

data[current_val] = y;

current_val = (current_val + 1) % 25;

rt_task_wait_period();

}

}

static int comedi_test_init()

{

iocard = comedi_open("/dev/comedi0");

if (iocard) {

RTIME t;

rtf_create(FIFO, 200000);

rt_set_periodic_mode();

rt_task_init(&sampler_task, sampler, 0,

STACKSIZE, PRIORITY, 0, 0);

t = start_rt_timer(nano2count(H));

rt_task_make_periodic(&sampler_task,

rt_get_time() + t, t);

}

return 0;

}

static void comedi_test_exit()

{

stop_rt_timer();

rt_task_delete(&sampler_task);

rtf_destroy(FIFO);

comedi_close(iocard);

}

module_init(comedi_test_init);

module_exit(comedi_test_exit);

B.5 control
−
logger.c

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/fcntl.h>

#include <signal.h>

static int terminate;
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static void terminate_process(int notUsed)

{ terminate = 1; }

int main(int argc, char **argv)

{

FILE *analogin0_fd, *analogin1_fd;

analogin0_fd = fopen("y_value.dlm", "w");

analogin1_fd = fopen("u_value.dlm", "w");

if(!analogin0_fd || !analogin1_fd){

fprintf(stderr, "Error opening output file:\n");

exit(1);

}

int fifo;

unsigned analogin0 = 0, analogin1 = 0;

if((fifo = open("/dev/rtf0", O_RDONLY)) < 0){

fprintf(stderr,

"Error opening /dev/rtf0\nError code:

%d\n", fifo);

exit(1);

}

signal(SIGINT, terminate_process);

while(!terminate){

read(fifo, &analogin0, sizeof(analogin0));

fprintf(analogin0_fd, " %d", analogin0);

read(fifo, &analogin1, sizeof(analogin1));

fprintf(analogin1_fd, " %d", analogin1);

}

fclose(analogin0_fd);

fclose(analogin1_fd);

printf("The control_logger terminates...\n");

return 0;

}

C Header Files

C.1 constants.h

#ifndef CONSTANTS_H

#define CONSTANTS_H

#define RANGE 0

#define AREF 0

#define FIFO 0

#define H 100000

#define STACKSIZE 16536

#define PRIORITY 10

#define CONVERTTOKRANGE 1000000

#define SUBDEV0 0

#define SUBDEV1 1
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#define ANALOGIN0 0

#define ANALOGIN1 1

#define ANALOGOUT0 0

#endif

D Matlab Files

D.1 getFrequency.m

analogin0 = dlmread(’analogin0_031119.dlm’);

analogin1 = dlmread(’analogin1_031119.dlm’);

ts = 0.0001;

t = 0:ts:5;

figure(1);

hold on;

plot(t, analogin0);

plot(t, analogin1);

figure(2);

hold on;

dat1 = iddata(analogin0’, t’, ts);

datf1 = fft(dat1);

plot(datf1);

figure(3);

hold on;

dat2 = iddata(analogin1’, t’, ts);

datf2 = fft(dat2);

plot(datf2);

D.2 getParModel.m

%this m-file fetches parametric models...

% ################# ARX ####################

if(0)

NN = struc([3], [3], [1 2 3 4 5 6 7 ...

8 9 10 15 20 25 50])

corrCoeffs = zeros(size(NN, 1));

for i = 1:size(NN, 1)

m = arx(id_dat, NN(i, :));

yh = idsim(uv, m);

c = corrcoef(yh, yv);

corrCoeffs(i) = c(1, 2);

i

end

V = arxstruc(zi, zv, NN)

newNN = selstruc(V)
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m = arx(id_dat, newNN)

end

% ################# ARMAX ###################

if(1)

aDegree = 3;

bDegree = 3;

cDegree = 3;

tDelays = 2;

corrCoeffs = zeros(aDegree*bDegree*cDegree*tDelays);

tmpDelay = 0;

index = 0;

structMatrix = zeros(aDegree*bDegree*cDegree*tDelays, 4)

for a = 1:aDegree

for b = 1:bDegree

for c = 1:cDegree

for d = 1:tDelays

index = index + 1

tmpDelay = 15;

if d == 2

tmpDelay = 25;

end

structMatrix(index, :) = [a b c tmpDelay];

m = armax(id_dat, structMatrix(index, :));

yh = idsim(uv, m);

co = corrcoef(yh, yv);

corrCoeffs(index) = co(1, 2);

end

end

end

end

end

if(1)

aDegree = 2;

bDegree = 2;

cDegree = 1;

maxTDelay = 30;

structMatrix2 = zeros(maxTDelay, 4);

corrCoeffs2 = zeros(maxTDelay);

for tDelay = 1:30

tDelay

structMatrix2(tDelay, :) = [aDegree bDegree cDegree tDelay];

m = armax(id_dat, structMatrix2(tDelay, :));

yh = idsim(uv, m);

co = corrcoef(yh, yv);

corrCoeffs2(tDelay) = co(1, 2);

end

end
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D.3 getNonParModel.m

figure

[IR, R, CL] = cra(id_dat, 100, 0, 0); % no prewhitening

plot(R(100:200, 4)); %plotting the correlation function

%between ui and y

title(’Correlation function of the input and output signals.’);

xlabel(’Time delay (sample)’);

ylabel(’Correlation coefficient’);

figure

[IR, R, CL] = cra(id_dat, 100, [], []); %default prewhitening

plot(R(100:200, 4));

figure

spectrum(ui, yi, [], [], [], fs);

std_output = std(yi)

D.4 validateModels.m

%script validateModels.m

figure(1)

yh = idsim(uv, m);

%t1 = 0:ts:0.9999;

t1 = 0:ts:4.9999;

%plot(t1, yh, ’r’, t1, yv, ’b’, t1, uv, ’g’);

plot(t1, yh, ’r’, t1, yv, ’b’);

correlationM = corrcoef(yh, yv)

figure(2)

residuals = yv - yh;

[P, F] = spectrum(residuals, 256, 100, [], fs);

plot(F, P(:, 1), ’b-’);

title(’Power spectrum of the residuals’);

xlabel(’Frequency’);

ylabel(’Power’);

figure(3)

zpDisc = th2zp(m)

zpplot(zpDisc);

figure(4)

modelC = thd2thc(m)

zpCont = th2zp(modelC)

zpplot(zpCont);

figure(5)

[H Snn] = th2ff(m);
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bodeplot(H);

figure(6)

bodeplot(Snn);

D.5 iScript.m

%this m-file initiates the necessary variables

%for system identification.

ts = 0.0001;

fs = 1/ts;

%full_size = 20000;

%half_size = 10000;

full_size = 100000;

half_size = 50000;

u = u/10;

z = [y’ u’];

zi = z(1:half_size, :);

zi = dtrend(zi);

yi = zi(:, 1);

ui = zi(:, 2);

id_dat = iddata(yi, ui, ts);

zv = z(half_size + 1 : full_size, :);

zv = dtrend(zv);

yv = zv(:, 1);

uv = zv(:, 2);

val_dat = iddata(yv, uv, ts);

E System Identification

File: i1.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 1 V
Phase = 0 degrees

File: i11.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 1 V
Phase = 0 degrees

File: i2.mat

Information:
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100 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 2.5 V
Phase = 0 degrees

File: i21.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 2.5 V
Phase = 0 degrees

File: i3.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 0.5 V
Phase = 0 degrees

File: i31.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 250 Hz and 260 Hz.
Amplitude = 0.5 V
Phase = 0 degrees

File: i4.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the amplitudes 1 V and 1.5 V.
Frequency = 250 Hz
Phase = 0 degrees

File: i41.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the amplitudes 1 V and 1.5 V.
Frequency = 250 Hz
Phase = 0 degrees

File: i5.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the amplitudes 1 V and 2.5 V.
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Frequency = 250 Hz
Phase = 0 degrees

File: i51.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the amplitudes 1 V and 2.5 V.
Frequency = 250 Hz
Phase = 0 degrees

File: i6.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the phases 0 and 100 degrees
Frequency = 250 Hz
Amplitude = 1 V

File: i61.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the phases 0 and 100 degrees
Frequency = 250 Hz
Amplitude = 1 V

File: i7.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the phases 0 and 100 degrees
Frequency = 250 Hz
Amplitude = 2.5 V

File: i71.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the phases 0 and 100 degrees
Frequency = 250 Hz
Amplitude = 2.5 V

File: i9.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 220 Hz and 225 Hz.
Amplitude = 2.5 V
Phase = 0 degrees
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File: i91.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 220 Hz and 225 Hz.
Amplitude = 2.5 V
Phase = 0 degrees

File: i10.mat

Information:
100 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 220 Hz and 225 Hz.
PRBS on the phases 0 and 10 degrees.
PRBS on the amplitudes 2 V and 2.5 V.

File: i101.mat

Information:
1000 sampling intervals between PRBS shift register updates.
PRBS on the frequencies 220 Hz and 225 Hz.
PRBS on the phases 0 and 10 degrees.
PRBS on the amplitudes 2 V and 2.5 V.

File: i11.mat

Information:
No PRBS signal. The input signal contains the frequencies 210, 220, 225, 230,
240, 300 Hz A = 2.5 V Phase = 0 degrees

F Makefile

F.1 Makefile

INCLUDE_RTAI=/usr/src/rtai.i386/include

INCLUDE_LINUX=/usr/src/linux-2.4.20-up/include

RTAI=/lib/modules/2.4.20-rthal5-up/rtai/

SYSMODULES=/lib/modules/2.4.20-rthal5-up/rtai

CC=gcc

CFLAGS= -I./include \

-Wall \

-O2 -g

MODULE_CFLAGS= -I./include \

-I$(INCLUDE_RTAI) \

-I$(INCLUDE_LINUX) \

-march=i586 \

-include /usr/src/linux-2.4.20-up/include/linux/modversions.h \
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-Wall \

-O2 \

-D__KERNEL__ -DMODULE -DMODVERSIONS

SFLAGS= -I./include \

-I$(INCLUDE_RTAI) \

-Wall \

-O2 -g

all: compiled/i386/logger \

compiled/i386/get_frequency.o \

compiled/i386/generate_sin.o \

compiled/i386/ex.o \

compiled/i386/collect_data.o \

compiled/i386/receive_data \

compiled/i386/logger_2 \

compiled/i386/flame_holder_test.o \

compiled/i386/p_shift_controller.o \

compiled/i386/control_logger

compiled/i386/%: %.c

$(CC) $(CFLAGS) -o $@ $*.c

compiled/i386/%.o: %.c

$(CC) $(MODULE_CFLAGS) -o $@ -c $*.c

compiled/i386/%.o: driver/%.c

$(CC) $(MODULE_CFLAGS) -o $@ -c driver/$*.c

compiled/i386/get_frequency.o: \

experiments/get_frequency.c constants.h

$(CC) $(MODULE_CFLAGS) -o $@ -c $<

compiled/i386/logger: experiments/logger.c

$(CC) $(SFLAGS) -o $@ $<

compiled/i386/generate_sin.o: generate_sin.c constants.h

$(CC) -nostdlib -Wl,-r $(MODULE_CFLAGS) -o $@ $< -lm

compiled/i386/ex.o: ex.c constants.h

$(CC) -nostdlib -Wl,-r $(MODULE_CFLAGS) -o $@ $< -lm

compiled/i386/collect_data.o: \

identification/collect_data.c constants.h

$(CC) -nostdlib -Wl,-r $(MODULE_CFLAGS) -o $@ $< -lm

compiled/i386/receive_data: identification/receive_data.c

$(CC) $(SFLAGS) -o $@ $<

compiled/i386/flame_holder_test.o: \
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experiments/flame_holder_test.c constants.h

$(CC) -nostdlib -Wl,-r $(MODULE_CFLAGS) -o $@ $< -lm

compiled/i386/logger_2: experiments/logger_2.c

$(CC) $(SFLAGS) -o $@ $<

compiled/i386/p_shift_controller.o: \

control/p_shift_controller.c constants.h

$(CC) -nostdlib -Wl,-r $(MODULE_CFLAGS) -o $@ $< -lm

compiled/i386/control_logger: control/control_logger.c

$(CC) $(SFLAGS) -o $@ $<

G Run Scripts

G.1 startup

This script mounts RTAI.

#!/bin/sh

insmod rtai

insmod rtai_sched_up

insmod rtai_fifos

insmod comedi

insmod amcc_s5933

insmod adv_pci1710

insmod kcomedilib

/usr/sbin/comedi_config /dev/comedi0 pci1711

G.2 removeM

This script unmounts RTAI.

rmmod kcomedilib

rmmod adv_pci1710

rmmod amcc_s5933

rmmod comedi

rmmod rtai_fifos

rmmod rtai_sched_up

rmmod rtai

G.3 run

This script mounts RTAI, starts an application and unmounts RTAI, when the
application quits.

#!/bin/sh

####### Default mounting... ########

insmod rtai

insmod rtai_sched_up
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insmod rtai_fifos

insmod comedi

insmod amcc_s5933

insmod adv_pci1710

insmod kcomedilib

/usr/sbin/comedi_config /dev/comedi0 pci1711

####################################

######## controller ################

insmod compiled/i386/p_shift_controller.o

./compiled/i386/control_logger

rmmod p_shift_controller

######## flame_holder_test #########

#insmod compiled/i386/flame_holder_test.o

#./compiled/i386/logger_2

#rmmod flame_holder_test

####################################

######## get_frequency #############

#insmod compiled/i386/get_frequency.o

#./compiled/i386/logger

#rmmod get_frequency

####################################

######## PRBS generating ###########

#insmod compiled/i386/collect_data.o

#./compiled/i386/receive_data

#rmmod collect_data

####################################

###### Default unmounting... #####

rmmod kcomedilib

rmmod adv_pci1710

rmmod amcc_s5933

rmmod comedi

rmmod rtai_fifos

rmmod rtai_sched_up

rmmod rtai

##################################

H Amplifier and Loudspeaker

The loudspeaker has the following characteristics:

Type: PC77DU60-02FP
Nominal impedans: 8 Ω
Maximum power: 5 W
Frequency range: 160-18000 Hz
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Resonant frequency: 160 Hz
Height: 39 mm
Width: 78 mm

To determine the maximum voltage that could be coupled to the loudspeaker
the following equation was used: û =

√
2 ·

√
P · R =

√
2 · √5 · 8 = 8.9443V ,

where û, P and R are the peak to peak value of the voltage, the power and the
impedans respectivily.

The AD/DA card can generate an analog output voltage of 0-5 V. The power
generated from the card is not enough to drive the loudspeaker. A KEMO
88032 12 W universal amplifier was coupled between the analog output and the
loudspeaker. In order to control the magnitude of the output signal generated
by the amplifier a 0.5 k potentiometer and a resistance was coupled between the
input signal and the amplifier (see H. A power main supply was coupled to the
amplifier.

Amplifier
Loudspeaker

- +

13.8 VPot 0.5k

Input

AD/DA

AnalogOutput Ground

Figure 21: The amplifier and loudspeaker.
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