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“La filosofia e’ scritta in questo grandissimo libro che continu-

amente ci sta aperto innanzi agli occhi (io dico l’universo), ma
non si puo’ intendere se prima non si impara a intender la lin-

gua, e conoscer i caratteri, ne’ quali e’ scritto. Egli e’ scritto in

lingua matematica, e i caratteri son triangoli, cerchi, ed altre

figure geometriche, senza i quali mezzi e’ impossibile a inten-

derne umanamente parola; senza questi e’ un aggirarsi vana-

mente per un oscuro laberinto” Galileo Galilei, Il Saggiatore
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1. Introduction

This chapter gives a brief introduction to the subject and summarizes

previous work. Later the contributions and the outline of the thesis are

presented.

1.1 Background

Industrial robots are nowadays widely used by the manifacturing enter-

prises in order to accomplish highly repetitive tasks saving costs, augment-

ing productivity and eliminating dangerous works. The increasing demands

on extreme accuracy, high speed and modularity is leading to the growth

of a new trend in robotics, Parallel Kinematics Manipulator (PKM). More-
over, cost reduction, reduced power consumption and safety issues come up

with a lighter mechanical structure.

This thesis deals with the identification of the dynamics of a parallel

robot, namely the Gantry-Tau, where measurements from the robot motion

are used to estimate unknown parameters in the model. Identifying robot

models is a challenging task since industrial robot are multivariable, non-

linear and resonant systems. Furthermore, in the case examined in this

work, elastic effects of the material in the link structure have to be taken

into account in addition to joint flexibilities.

A mathematical model that can cope with the above problems is, thus,

of interest for the purpose of simulation and control of future, i.e. not yet

observed, data.

1.2 Previous work

In [Johannesson et al., 2005] the solution of the inverse kinematics and
direct kinematics problems for a 3-degrees-of-freedom (DOF) Gantry-Tau
parallel kinematic robot patented by ABB were obtained. The article [Dressler
et al., 2007] presents a newer kinematic and a dynamic model for the
Gantry-Tau, the new kinematic model cosidering rotations of actuator axes

which do not affect the end-effector orientation and the dynamic model

being based on the assumption of parallel actuator axes and constant end-

effector orientation. Elasticities or friction, however, are not included in the

previous analysis. The thesis [Lyzell, 2007] presents an early attempt for
identification of the dynamic model of the 3-DOF prototype located at the

University of Queensland (Australia) using the least-squares method. As
a result the estimation was not successful, since the estimated parameters

did not have physical values. Furthermore the paper [Murray et al., 2006]
presents the inverse kinematics for the 5-axis variant of the Gantry-Tau

parallel manipulator, achieved by extending the 3-axis machine with two

linear prismatic actuators.
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Chapter 1. Introduction

1.3 Motivation

System identification is needed for the determination of transfer func-

tions from actuators to end-effector; transfer function in structural me-

chanics from end-effector loads to position and other force-to-displacement

responses.

The approach considered for modelling is the subspace-based identifi-

cation of linear models.

1.4 Outline

The report is organized as follows. Chapter 2 serves as background to the

field of robotic manipulation. Chapter 3 presents the Gantry-Tau machine

located in the Robotics Lab at Lunds Tekniska Högskola (LTH), Lund, the
experimental set-up with particular attention to the vision system imple-

mented and the software tools used throughout the work. In Chapter 4, a

brief review of subspace-based identification is provided, later the experi-

ments carried out are presented, the data obtained are examined and the

models are estimated. Chapter 5 shows the result of the identification and

gives estimation of the stiffness. Chapter 6 deals with the discussion of

the achievements. Chapter 7 concludes the report and provides insights for

future work. Finally, in the Appendix matemathical details are provided,

numerical values for the parameters estimated are given, as well as code

examples.
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2. Robotics

This chapter deals with an overview of robotic manipulation. A concise

description of the different type of manipulators is given pointing out

benefits and drawbacks.

2.1 Introduction

Robot manipulators consist of a sequence of rigid bodies (links) connected
by articulations (joints) actuated by motors. In the structure it is possible
to identify an arm, which ensures mobility, a wrist that confers dexterity,

and an end-effector that accomplishes the desired task. The section of the

environment that can be reached by the end-effector is called workspace.

2.2 Serial structure

Serial manipulators are open-loop kinematic chain mechanisms consisting

of a sequence of links, coupled one with another by a one-DOF joint. The

end-effector is not constrained to the base. The high generality offered by

this structure makes it the most used in the existing manipulators. It suf-

fers, though, of low transportable load and poor accuracy, because of the

mechanical architecture. Each of the segments, indeed, has to deal with

the weight of the following link plus the load. The links must be stiff-

ened and thus become heavier in order to cope with large flexure torques.

Moreover, accuracy is affected by the error magnifications throughout the

chain ([Merlet, 2000]). Serial disposition of the links is, thus, not suitable
requiring manipulation of heavy loads and good position accuracy.

Figure 2.1 IRB 2400 robot
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Chapter 2. Robotics

2.3 Parallel structure

Parallel robots are closed-loop kinematic chain mechanisms consisting of a

mobile end-effector and a fixed base linked together by multiple kinematic

chains. The number of degrees of freedom corresponds to the number of

actuators that move the kinematic chains. Mechanical architectures are

various according to their different applications. In this work, the atten-

tion is focused on a 3-DOF in translation manipulator. The advantages

offered by the close-chain structure over its open-chain counterpart are

several, as stated in [Merlet, 2000]. First of all, it ensures higher stiffness
and consequently larger bandwidth for its control. Secondly, it provides

better accuracy, skipping errors that propagate from one joint to the next

in a serial manner. Thirdly, the higher payload is due to that the load is

distributed over the chains and generally located close to the base. In ad-

dition to these the inverse kinematic problem is less difficult than in the

open chain case, being solved independently for each chain. On the other

hand, however, the drawbacks are noticeable. Namely, the forward kine-

matic problem is more complicated and the workspace volume is generally

lower, leading to more restrictive motions. In the light of the previous com-

parison one can conclude that the parallel structure is preferable for those

tasks that require high performances in terms of speed, acceleration, accu-

racy and stiffness and not a too large workspace. The research on parallel

robotics, however, is a relatively new field in robotics and lots of issues need

to be solved.

Figure 2.2 IRB 340 FlexPicker robot
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3. The Gantry-Tau at LTH

In this chapter the robot system used in the work is outlined. A quick

presentation of the Gantry-Tau is given, as well as a short description of

the experimental set-up and the software tools adopted. Particular

attention is, then, retained to the vision system.

3.1 Introduction

The Gantry-Tau robot is a parallel kinematic manipulator first presented

in [Brogårdh, 2002], [Brogårdh et al., 2005], [Johannesson et al., 2005].
The structure located at LTH (see Fig.3.1) is based on an ABB patent and
provides 3-DOF translational motion. The robot, thus, possesses three inde-

pendent kinematic chains, each of these attached on one side to the ground

and on the other side on the mobile tool-center-point (TCP) platform, ac-
tuated by three actuators. Its configuration overcomes the limitation of

the workspace common to the parallel stucture. Constant end-effector ori-

entation is guarateed by the tau-configuration, so that links belonging to

the same cluster form parallelograms [Dressler et al., 2007]. It is straight
forward, then, that the benefits of the Gantry-Tau robot are many. First,

the tool forces and moments are translated into pure axial forces in the

manipulation links, which allows for a stiff and lightweight mechanical de-

sign. The lightweight and stiff design allows for high speeds, accelerations

and tool forces. No redundancy in the structure brings to simple assembly

and disassembly. Third, the Gantry-Tau has a workspace-to-footprint ratio

larger or comparable to serial-type Gantry robots in contrast to other par-

allel kinematic machines ([Murray et al., 2006]). The above characteristics
made the Gantry-Tau structure particularly suitable for application with

demands on high accelerations, accuracy, structural stiffness and modular-

ity.

3.2 Experimental set-up

Each of the three clusters is actuated by an AC motor through a gearbox.

The linear actuators are controlled via an ATMEL interface, which also

takes care of the sensor interface, with measurement from resolvers on

the arm-side, by a standard ABB IRC5 industrial robot controller (further
details in [ABB, 2004]). The robot can be run directly from Matlab with the
real-time extension developed at the Department of Automatic Control at

LTH. A more detailed description of the structure of the ABB IRC5 control

system is given in [Olsson, 2007]. Using the interface it is possible to access
input-output signal of the controller and data from sensors mounted on

the structure. Logging signals from the Simulink model can be done by an

external program (further information in [Dressler et al., 2007]).

15



Chapter 3. The Gantry-Tau at LTH

Figure 3.1 The prototype of a Gantry-Tau PKM in the Robotics Lab at LTH,

Lund University

3.3 Software tools

The Matlab environment together with SMI toolbox by Haverkamp (see
[Haverkamp and Verhaegen, 1997]), LQG toolbox by Gustafsson and ID
toolbox by Chiuso, have been used extensively throughtout this work for

data analysis, model estimation and all the simulations. The vision system

running on the camera, instead, exploits the Open Source Computer Vision

(OpenCV) written in C++.
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3.4 The vision system

xk

x̂k+1

xk+1

Figure 3.2 Given the position xk of the cornerpoint in the current frame (blue)
the search for the position xk+1 in the next frame (red) is done in a circle centered
in the predicted x̂k+1 new position

3.4 The vision system

In order to record the motion of the robot a camera is used. It is a single

isochronous Basler A602fc camera, running in FORMAT7 with MONO8

color mode, frame rate 250 Hz, and resolution 512 $ 240 pixel. It makes
use of libraw1394/libdc1394 and the OpenCV library [Intel Corporation,
2008]. A simple paper-made square is attached to the object to keep track
of (see e.g. Fig. 4.1) and it’s traced by the camera during the motion with
a sampling time of 4 ms. The corner tracker application written in C++
requires, during the initialization step, to choose the significant corners

to be followed manually with the mouse and quit once the desired motion

has been obtained. The feature position data are, then, logged in a Mat-

lab m-file. Experiments undertaken at an early stage moving cart 3 back

and forth along the x-axis keeping the y- and z-coordinates constant re-

vealed the inaccuracy of the tracking in case of fast motion, relevant to

the thesis purposes (see Fig. 3.4). Consequently, the algorithm needed to
be improved. The core of the problem encountered stands in the OpenCV

function FindCornerSubPix. That iterates to find the sub-pixel accurate

location of each of the marked corners from the previous sequence of pic-

tures. The search is performed for each point in a circle of radius 7 pixels

centered in the corner’s position on the previous picture. The process of

corner position refinement stops either after a certain number of itera-

tions or when a required accuracy specified by the user is achieved. As a

result, in case of high speed, the routine worked poorly, missing the point’s

location and, hence, becoming useless. So, instead of looking for the new

cornerpoint position in a neighbourhood of the cornerpoint position in the

previous frame, a prediction of where the corner will be in the next frame

based on the data available up to that point seems to be promising. Hence,

the “search window” was centered in the predicted corner location (see Fig.
3.2). A standard one-step-ahead predictor for the estimation of the position
was, thus, derived (full details are given in A.1) and implemented in C++
(code example can be found in C.2).
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Chapter 3. The Gantry-Tau at LTH
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Figure 3.3 cart position from camera (solid line), reference to controller (dashed
line) before the improvement
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Figure 3.4 cart position from camera (solid line), reference to controller (solid
line) before the improvement
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4. Subspace-based model

identification

This chapter deals with the subspace-based identification of the robot

dynamics model. An early overview of system identification, in particular

in the presence of input signals, is given. Experiments are, then, presented

and different techniques are applied for identification.

4.1 Introduction

In general terms, system identification is a way of estimating mathematical

models of dynamic systems from experimental data. The observable vari-

ables, namely inputs and outputs, are obtained performing experiments

on the system and are measured at discrete instants of time. The pro-

cedure consists in finding a model that describes the measurement data

sufficiently well. Two main attitudes exist towards the problem of fitting a

model to the data:

♦ the optimization approach, i.e. parameters of a given model structure

are obtained by minimization of a suitable cost function. These methods

have been widely used and shown reasonably successful in modeling single-

input single-output systems. A description of the above can be found in

[Söderström and Stoica, 1989], [Johansson, 1993], [Picci, 2006].
♦ the geometric, or “subspace” or realization-based approach, in which

the basic objects constructed in the algorithms are subspaces generated

by the data, and geometric operations such as orthogonal and oblique

projections are all what is needed to compute estimates of the parame-

ters. For further information see e.g. [van Overschee and De Moor, 1994],
[Haverkamp, 2000], [Chiuso and Picci, 2004c], [Picci, 2005].
This thesis considers the second class of methods, the main advantages

being that the problem of finding local minima solving iterative nonlinear

optimization and selecting the model structure and model order inherent

in the classical parameter optimization approach are not required, all the

operations are performed numerically in a reliable way using QR, SVD,

QSVD from linear algebra, making these tecniques able to handle multi-

variate and complex systems.

An interesting approach to the identification of dynamic robot model

mainly in the frequency domain is introduced in [Wernholt, 2007].

4.2 Preliminaries

This and the following section are meant to recall briefly some useful nota-

tions and important results to be used in the further analysis. Henceforth,

boldface symbols will denote stochastic processes.

Given { u0,u1, ⋅ ⋅ ⋅ ,uN }, ut ∈ R
p and { y0, y1, ⋅ ⋅ ⋅ , yN }, yt ∈ R

m ob-

servable input-output variables it will be assumed that they are sample

paths generated by discrete-time zero-mean random signals in t ∈ [t0,+∞),

19



Chapter 4. Subspace-based model identification

namely u = {u(t,ω )} p−dimensional and y = {y(t,ω )} m−dimensional. A
stochastic state-space realization of y with input u in absence of feedback

from y to u can be given either in the form:
{
x(t+ 1) = Ax(t) + Bu(t) + Gw(t)
y(t) = Cx(t) + Du(t) + Jw(t),

x(t0) = x0, t ≥ t0 (4.1)

where A, B,C,D, J are constant matrices, {x(t)} is the state process of
dimension n, and {w(t)} is a normalized white noise process, such linear
representations are infinite so it seems more convenient considering the so-

called “innovation representation” which is unique up to change of basis:
{
x(t+ 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t),

(4.2)

where the white noise {e(t)} has the meaning of one step prediction error
of {y(t)}, given the infinite past history of {y(t)} and {u(t)} up to time
t− 1; or combining in parallel a stochastic model for the noise component

{
xs(t+ 1) = Axs(t) + Gw(t)
ys(t) = Cxs(t) + Jw(t),

(4.3)

and a deterministic model for the dynamic part
{
xd(t+ 1) = Axd(t) + Bu(t)
yd(t) = Cxd(t) + Du(t),

(4.4)

so that y(t) = ys(t) + yd(t) = C[xs + xd] + Du(t) + Jw(t), as proposed in
[Picci and Katayama, 1996], [Katayama and Picci, 1999].

4.3 Identification in the presence of exogenous

inputs

In the light of the above considerations it emerges clearly that identification

in the presence of exogenous inputs can be done, in principle, following two

different approaches, which essentially correspond to different choices of

“model structures”. On one hand, one could use stochastic realizations of y

driven by u of the general form
{
x(t+ 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

(4.5)

Identification procedures based on this model will be referred to as “joint

identification” and have been widely studied in the literature. Milestones

in this area are the so-called N4SID ([van Overschee and De Moor, 1994])
and PO-MOESP ([Haverkamp, 2000]) families of algorithms. On the other
hand one could, instead, consider models in block diagonal form such as







[
xd(t+ 1)
xs(t+ 1)

]

=
[
Ad 0

0 As

] [
xd(t)
xs(t)

]

+
[
Bd 0

0 Ks

] [
u(t)
e(t)

]

y(t) = [ Cd Cs ]
[
xd(t)
xs(t)

]

+ Ddu(t) + e(t)
(4.6)

20



4.4 Experiments

gearbox

cluster

AC motor

rail

tracked square

Figure 4.1 Cart 3

which is based on the preliminary decomposition of the state and output

processes into the component lying in the input space (the “deterministic
component”) and its orthogonal complement (the “stochastic component”).
For full details see [Picci and Katayama, 1996], [Katayama and Picci, 1999],
[Chiuso and Picci, 2004c]). Identification based on models of this structure
will be referred to as “orthogonal decomposition” approach.

In this thesis both of the approaches have been considered and evaluated.

4.4 Experiments

All the results in this thesis are based on experimental data. In order to

obtain the best model as possible of the unknown system, the estimation

problem needs to be well-conditioned, meaning that the signals in play

have to contain “enough” information. In particular, substantial importance

have the input signals, not only because they affect the consistence of the

estimation but also because they determine which parts and modes of the

system will be excited, thus identified.

The goal of an experiment during the whole work was having a set of

measured positions (the output signals) covered by the square during the
motion of the robot and the series of the references (the input signals) that
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Chapter 4. Subspace-based model identification

generated the motion. Hence, keeping in mind the above considerations,

two different kinds of experiments were conducted: on the arm-side, having

the markers on cart 3 as shown in Fig. 4.1, and on the TCP, recording the

position of the end-effector (the generated input-output time series are
shown in Appendix C).
From now on, the analysis will be conducted separately.

On the arm-side

Every measurement was carried out accomplishing the following consecu-

tive steps:

• connect the simulink model of the controller (see Fig.4.2) to the PKM

• trajectory planning using the teach pendant

• submit (“listening”, parameters values can be read but nothing is sent
back)

• enable the vision system

• move the robot

• data logging in Matlab format

The trajectory was known beforehand and both cart position reference to

the controller and cart position measured from the resolver on the arm

were available. The schematic of the value reference path from main to axis

computer used is presented in Fig. 4.3. One experiment has been selected

for the identification procedures presented in Section 4.6 and named Arm1.

It amounts to 2480 samples of the four marked cornerpoints x-positions, of

the reference to the controller and of the measurement from the sensor.

On the TCP

The main intent of the second type of experiments was investigating the

behavior of vibrations and resonances of the structure. In order to achieve

that goal, markers were put on the end-effector and traced by the camera.

Firstly, a motion was generated with the teach pendant for cart 3 in exper-

iment Arm2 making the end-effector move in both the y- and z-direction

(in world coordinate frame). The experiment was the longest carried out
throughout this work, providing 9920 samples of data, namely the cart po-

sition reference to the controller, the cart position measured by the sensor

on the actuator and the x- and y- TCP coordinates in the TCP coordinate

frame tracked by the camera. Secondly, with steady motors, sequences of

impulses have been generated beating the end-effector. Two batches of data

have been chosen for the estimation: Pulse1, which consists of a [2480$ 8]
matrix, where the columns contain the x- and y-positions of the TCP, and

Pulse2 that contains in addition to the afore-mentioned positions also 2

columns of data representing the impulses applied along the z- and y- axis

in world coordinate frame measured by the force sensor attached to the

end-effector.
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Figure 4.2 Simulink model (GTvision) of the robot system used for the experi-
ments

4.5 Data Examination

As mentioned above, in system identification, a crucial role is performed

by the input signal. A way to measure the excitation properties of a signal,

is represented by its second-order statistical properties. A general but nec-

essary requirement is the condition of persistent excitation of the input, so

that, roughly speaking, all the modes of the system are excited during the

identification experiment (for the definition see e.g. [Söderström and Sto-
ica, 1989]). Depending on the methods applied to the data batch, several
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Figure 4.3 Sketch of reference value path from main to axis computer used in

the experiments

terms measuring how “good” the experimental conditions are, have been

derived, see the literature. In addition to this, as far as subspace-based

identification is concerned, the geometric nature of the problem has to be

taken into account. Indeed, it has been shown in [Jansson and Wahlberg,
1997] and [Jansson and Wahlberg, 1998] that the critical relation for con-
sistency of 4SID methods involves the extended observability matrix so

that for systems with process noise a persistence of excitation even of any

order is not sufficient. Recently, it has been argued that the bottleneck for

the performances of the standard subspace methods is how “parallel” are

the rowspaces of the past signals (past input and output) and future input
( [Chiuso and Picci, 2004b], [Chiuso and Picci, 2004a]). According to this,
large errors on the computation of the parameters of the model occur when

some (canonical) angles are nearly zero. These facts are to be considered
in Chapter 6.

In this section the attention will be focused on the second-order statisti-

cal properties of the generated time-series, namely power spectral density

to investigate the "richness” of the signals and coherence spectrum, to test

the signal-to-noise ratio and linearity between input-output.

On the arm-side

Concerning Arm1, it was decided to use as input the cart position reference

signal from the ABB controller and as outputs the cart position from the

vision system represented by one of the corners x-coordinate and the motor

position measured by the encoder on the arm. Spectral analysis was done on

detrended input-output data and gave promise of a successful identification

at low frequency. Indeed, the analysis of the coherence function suggested

that a noise source affected the measurements at high frequency, thus the

parameter estimation might be poor (see Fig. 4.4). However, regardless the
lack of optimal experimental condition, an attempt of identification will be

done.

On the TCP

Dealing with Arm2 data batch, the input signal chosen, namely the refer-

ence value from IRC5, and the output signals, namely cart position refer-

ence from the sensor on the arm, x- and y-coordinates of the first corner

marked on the end-effector, might not be properly described by a linear

model, as can be noticed from the coherence spectra in Fig 4.5.

As for Pulse1 only one over the four tracked cornerpoints was chosen for

24



4.6 Model determination

10
0

10
1

10
2

10
3

0

0.5

1

1.5

frequency

a
m

p
lit

u
d

e

Power Spectral Density

 

 

Suu

10
0

10
1

10
2

10
3

0

0.5

1

frequency

a
m

p
lit

u
d

e

coherence function

 

 

gammauy1

10
0

10
1

10
2

10
3

0

0.5

1

frequency

a
m

p
lit

u
d

e

coherence function

 

 

gammauy2

Figure 4.4 Arm1: spectral analysis on data

the further analysis. There are no available techniques that could have

handled more than one output for the identification, therefore it was de-

cided to continue only with the TCP x-position, and specifically with the

samples 1569 : 2010. The mean value and all the other linear trends were

removed from raw data obtained from the vision system. Besides, as can

be noticed in Fig. C.3, the first 230 samples might be regarded as a noise

term to be considered later on in the analysis. The spectrum highlighted

a strong component in a neighborhood of 90 Hz (see Fig.4.7). A method of
spectrum estimation based on the Fourier transform will have to be used,

hence problems of spectral leakage might arise from the finite observation

interval. In order to prevent a possible spectral distortion a window func-

tion, namely the Hamming window, was applied to the already detrended

data. Referring, instead, to experiment Pulse2, it was possible to study the

spectral properties of the forces applied to the TCP thanks to the force sen-

sor. As can be seen in Fig. 4.10 and Fig. 4.11 the input signals generated

seem to be sufficiently exciting.

4.6 Model determination

On the arm-side

A first attempt of model determination was done applying the N4SID al-

gorithm, using the canonical variable algorithm by Larimore for the deter-

mination of the weighting matrices in the singular value decomposition. A

fourth-order model was obtained. However, although it has been argued in

[Jansson and Wahlberg, 1997] that in certain conditions resembling those
encountered herein the estimated parameters cannot be considered reli-
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Figure 4.5 Arm2: coherence spectra: between refence and x-position (gamma1),
reference and y-position (gamma2), reference and value from sensor (gamma3)

able, this effort could give an insight of the state variable order. Next, a

second model with the same order but different properties (see Chapter
5.1) has been derived with PO-MOESP. Concluding, due to the observa-
tion on the coherence function of input-output made in Section 4.5 it was

considered relevant providing a description of the noise component. Thus,

the orthogonal decomposition approach was followed, and a seventh-order

model for the disturbance was determined.

On the TCP

Concerning experiment Arm2 the best realization obtained was a 5-th order

model achieved with PO-MOESP algorithm. However, even if the orthog-

onal decomposition approach was not successful, the investigation of the

stochastic submodel gave valuable intuition on the disturbance character-

istics (see for instance Fig.5.4).
As already pointed out in Section 4.5, in case of experiment Pulse1 a non-

parametric method was applied leading to a first crude model obtained in

the form of a Bode plot (see Fig. 4.8). Making use of the discrete Fourier
transforms of input and output data, the following formula brought to the

estimate:

Ĥ(ejωh) = YN( jω )
UN( jω )

(4.7)

The second attempt was done with the Ho and Kalman realization algo-

rithm, in its modified version by Juang and Pappa. This is a special case of

a subspace technique, namely one in which the input is an impulse. A 9-th

order system was estimated. Afterwards, a reduction to order 6 was done

with balanced truncation. When the force sensor was mounted and cali-

brated in Pulse2 it was possible to apply subspace algorithms, namely or-
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Figure 4.7 Pulse1: spectrum of the first 230 x-position samples. Notice the spec-
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thogonal decomposition approach and joint approach, considering the forces

applied to the end-effector along the y- and z-direction as input, and the

selected TCP cornerpoint’s x- and y-positions as output.
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Figure 4.10 Pulse2: spectra of input signals
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5. Results

The purpose of this chapter is to present the models obtained in

Section 4.6. The numerical values of the parameters are shown in

Appendix B. In addition, an attempt of physical parametrization will be

made.

5.1 Models obtained

On the arm-side

Regarding the joint model identification of Arm1, clearly visible flexibilities

of the link emerge from the analysis of the poles of both systems derived

in Section 4.6. Moreover, pleasing properties are shown by the stochastic

model of the noise component: poles appear at the frequency of nearly 100

Hz (626 rad/sec) and 60 Hz (383 rad/sec). It will be shown in Section 5.1
that the first disturbance contribution is recurring.

On the TCP

Referring to the model estimated for Pulse2 this may provide some infor-

mation on the natural frequencies of the beam’s oscillations during the

motion. The rather poor experimental conditions, however, will affect the

estimation, so that the results of the identification have to be considered

with caution. As for experiment Pulse1, looking at the Bode plot of the

transfer function (4.7) obtained via spectral analysis (Fig. 4.8) it might
be inferred that the system has some dynamics at 15 Hz. The behavior at

higher frequencies is not clear, in particular the phase plot is meaningless.

This is not surprising, if related to the noise observation made in Section

4.5. Furthermore, it can be recalled that such a way of proceeding might be

affected considerably by the disturbance contribution to YN( jω ) and thus
Ĥ(ejωh).
As for the Ho-Kalman realization a 6-th order system can be considered

reasonable from a mechanical point of view, as each of the three clusters

may be described by two states. The same dynamics guessed before emerge

from the analysis of the Bode diagram (see Fig. 4.9). Moreover, the result-
ing system is stable.

As far as experiment Pulse2 is concerned, the orthogonal decomposition

approach gives a second order system for the deterministic part, with com-

ponents at 155 Hz, and a fourth-order system for the stochastic one, with

the disturbance acting at 14 Hz (86 rad/sec) and at 100 Hz (633 rad/sec).
The total order of the system is 6. It can be noticed quite clearly, that this

constitutes a double-check of what has been argued previously. Dealing

with joint model estimation, instead, different results have been obtained.

The most reasonable one seems to be a fourth-order system, obtained by

means of the joint approach applying subspace id, PO-MOESP and N4SID

algorithms. Although the dynamics present another frequency range, the

noise is captured.
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5.2 Validation

5.2 Validation

The models presented in Section 5.1 were validated according to the fol-

lowing criterions:

Pole-zero plot A pole-zero plot indicates if the model order is adequate.

There may be poles and zeros located close together, suggesting that model

reduction should be performed. Furthermore, if the disturbance seems to

affect the process at certain frequencies, there should appear resonant poles

in the noise model with corresponding frequencies.

Validation by test on the residuals Residual tests can be done to find

remaining correlations which point out whether the model is appropriate or

not. Ideally the residuals should look like white noise of sufficiently small

magnitude.

Validation by simulation Purpose of the validation by simulation is

testing whether a model can reproduce the observed output when fed by

the actual measured input.

On the arm-side

Pole-zero plot Each of the joint models estimated is characterized by a

pair of complex poles within the unit circle, corresponding to a frequency

of, respectively, 13 Hz and 14 Hz. These can be considered the frequencies

of the beam’s oscillations during the motion. The low-frequency range can

be explained by the rather low velocity planned for the experiment.

Validation by test on the residuals Residuals can be calculated from

(A.10) using the innovations model (A.9) of the systems obtained with
N4SID and PO-MOESP methods. The covariance function of the estimate

ê(k) of the innovation e(k) i.e. the one-step-ahead prediction error, occured
to be good enough in case of the PO-MOESP model (see Fig. 5.1). As for
the N4SID, instead, it suggested that measured position data need to be

better exploited.

Validation by simulation Cross validation, where the validation data

are used for simulation, was used to compare real and estimated data ob-

tained from the joint models. Results are shown in Fig. 5.2 and Fig. 5.3.

The behavior was slightly different and apparently unexplained. For the

simulation of the model obtained with the orthogonal decomposition, the

state-space realization given in (A.17) was considered for the implementa-
tion. Simulation on validation data was comparable to the one depicted in

Fig. 5.3.

On the TCP

Pole-zero plot The system describing the data from Arm2 presented

a pole placed close to the unit circle and a pair of complex poles with

frequency 20 Hz. As already noticed in 5.2 these poles might be related to

flexibilities and oscillations of the beams. The disturbance system shows

poles at the frequency of 102 Hz (see Fig. 5.4).
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Figure 5.1 Arm1: covariance function of innovation’s estimate, of the x-position

on top and on the feedback from sensor on bottom

As for Pulse1, the pole-zero map of the 9-th order system (Fig. 5.5) showed
possible cancellations. This suggested it might be appropriate performing

a model reduction. Thus, a reduced-order approximation was computed.

Simulations were carried out with order 6 revealing an acceptable behavior

(see Fig. 5.2).
As for the model of the noise component of Pulse2 poles were located

at the frequencies 100 Hz, 14 Hz, as expected. Furthermore, dealing with

joint system identification, the choice of a fourth-order model seemed to be

suitable for the description of both the dynamic and the disturbance (see
Fig. 5.7).

Validation by test on the residuals As far as Arm2 is concerned, a

residual sequence has been computed from (A.10) using the innovations
model (A.9) of the system obtained with the joint system identification.
Whereas it seems that the evolution of the signal corresponding to the x-

position is well explained, the same can not be said for the one describing

y. Indeed, the end-effector was oscillating along the y-axis rather indepen-

dently from the reference signal (Fig. 5.8).
The covariance function of the one-step-ahead prediction error of the

model obtained with PO-MOESP method in Pulse2 turned out to be ac-

ceptable (see Fig. 5.9).
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Figure 5.2 Arm1: simulation on validation data N4SID 4th order
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Figure 5.3 Arm1: simulation on validation data MOESP 4th order

Validation by simulation The cross validation made for the 5-th order

model that describes Arm2 is shown in Fig. 5.10. As for the model of data,

the set Pulse1 estimated with the Ho-Kalman technique the behavior is

satisfactory (see Fig. 5.11). However, as already mentioned, a reduced-
order model with good performance was obtained, see Fig. 5.12. Concerning,

instead, the simulation of the decoupled model of Pulse2 it is clearly noticed

that the dominating dynamics of the true system were well captured (see
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Figure 5.4 Arm2: pole-zero map of the stochastic submodel
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Figure 5.5 Pulse1: pole-zero map of the system obtained with the Ho-Kalman

realization tecnique

Fig. 5.13), except for samples 2500 : 2600, where the identified system has
opposite behavior compared to the true one with respect of the x-position.

Regarding this, joint identification seems to perform better, see Fig.5.14.
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Figure 5.6 Pulse2: pole-zero map of the system obtained with the orthogonal

decomposition
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Figure 5.7 Pulse2: pole-zero map of the system obtained with the joint identifi-

cation, namely subspace id
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Figure 5.8 Arm2: covariance function of the one-step-ahead prediction error: for

TCP x-position (top), y- position (center), and cart position from resolver (bottom)
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Figure 5.9 Pulse2: covariance function of the one-step-ahead prediction error

obtained with PO-MOESP: for TCP x-position (top), and y-position (bottom)
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Figure 5.10 Simulation for Arm2
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Figure 5.11 Pulse1: simulation of the system obtained via Ho-Kalman realization

technique
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Figure 5.12 Pulse1: simulation of the reduced approximation of the system ob-

tained via Ho-Kalman realization technique
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Figure 5.13 Pulse2: simulation of the system obtained with the orthogonal de-

composition
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Figure 5.14 Pulse2: simulation of the system obtained with subspace id
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Figure 5.15 The spring-damper flexible joint model

5.3 Stiffness estimation

As already pointed out in Chapter 1 and Chapter 3 the lightweight me-

chanical structure of the Gantry-Tau introduces significant flexibilities and

elasticities in the links. Considering the two spring-damper pairs as in Fig.

5.15, the afore-mentioned effects can be modeled. It is straightforward,

then, to provide a description in a quantitative way of the spring stiffness

and damping.

Herein a first attempt of stiffness estimation was done following the

procedure presented in A.4. Raw measurements, i.e., not detrended data,

from experiments Pulse2 were taken into account and a linear regression

problem of the type

Y = Φθ , θ =K T (5.1)

was solved by means of least-squares identification (see e.g. [Söderström
and Stoica, 1989]), where the observed variables were the forces applied
to the end-effector and the regressors were the deformations along the x-

and the y-axis (in the end-effector coordinate frame). The numerical value
obtained was:

K = 103
[−3.7326 −1.5671
6.9209 0.5560

]

(5.2)

It can be noticed that the matrix is positive definite with eigenvalues

103 ⋅ (−1.5883 ± 2.4996i) lying on the left-half plane thus it is in perfect
alignement with its physical meaning.

5.4 Physical parametrization

The overall structure of the Gantry-Tau can be seen as a network with

spring-damper pairs at the edges (the clusters) and masses at the nodes
(the carts and the end-effector). An external force acting on a node (in
the case examined acting on the end-effector) will result in deformations
and elongations on springs and dampers. Thus, it is of interest detecting
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Figure 5.16 Experiment Pulse2: spectra of x− and y− TCP position measured
by the camera. Two frequency intervals can be noticed: at low-frequency interval

centered approximately in 15 Hz, and a high-frequency interval, centered close to

103 Hz

the resonance modes of the afore-mentioned type of network. For this rea-

son, the fourth-order model of data Pulse2 with parameters values given

by (B.30), (B.31), (B.32) presented in section 5.1 was considered. Comput-
ing the transformation of the afore-mentioned model to linear mechanical

model as suggested in A.5 and considering the stiffness matrix derived in

the previous section, it was possible obtaining a numerical expression for

the inertia matrix and the damping matrix, specifically

M =
[
0.0278 −0.0331
−0.1759 0.3086

]

, D =
[
3.7432 −4.7826
−9.7408 −3.4976

]

(5.3)

Surprisingly, whereas M is positive definite with positive trace thus per-

fectly reliable from a physical point of view,D despite its positive trace has

negative determinant and it seems difficult to find a mechanical meaning.

Further, the generalized eigenvalue problem

det(Mλ +K ) = 0 (5.4)

determined the resonance modes ±
√

λ at the frequencies 14 Hz and 103 Hz

matching those found with spectral analysis on the model (B.30), (B.31),
(B.32) (see Fig. 5.16).
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6. Discussion of the results

In this section all the results achieved throughout all the thesis will be

commented.

6.1 Consistency condition and ill-conditioning of

the estimates

As mentioned in Section 4.5 the dynamics of the input signal is crucial

for the outcome of an identification experiment. As shown so far, the ex-

perimental data treated in this work fulfill the necessary requirements of

excitation. Moreover, the consistency conditions claimed in [Jansson and
Wahlberg, 1997] and in [Chiuso and Picci, 2004b] are satisfied: the prin-
cipal angles between the rowspaces of the state and future input are not

zero. Thus the computation of the parameters (A,C) of the regression can
be considered not ill-conditioned.

6.2 On the models obtained

Although all the routines applied for the identification have provided an es-

timation for the D matrix, the physical nature of the problem has required

to force the afore-mentioned parameter to a null matrix.

From what has been pointed out in Sections 5.1 and 5.2 it seems reason-

able to assume that the system exhibits resonances at 15 Hz. Since many

tools can be mounted on the TCP in order to accomplish tasks of various

nature it is worthwhile knowing where resonant poles can be located, when

designing a controller. Moreover, the disturbance component guessed from

the early model given in Fig. 4.8 turned out to be not only by chance. Look-

ing into the controllability gramians of the estimated models it emerges

that the noise does not affect the measurements only, but instead it affects

the structure.

6.3 Software tool in subspace-based identification

Throughout the work three tools were used: N4SID, SMI toolbox and ID-

toolbox. Whereas the first suffers from instability in case of poor experi-

mental conditions, the second seems to be robust, providing good models.

Last, the toolbox based on the orthogonal decomposition approach turned

out to give interesting insights in the disturbance components. Clearly, one

may conclude that the quest for an efficient subspace procedure (if any) is
still open.
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7. Conclusions

This thesis has dealt with the identification of a Parallel Kinematic Ma-

nipulator dynamics. The identification procedures applied have treated the

robot system as a MIMO system, being an important contribution since

coupling effects in a modern industrial robot cannot be ignored.

The resonances in the structure appeared at a frequency of 15 Hz and

can be explained as beam oscillations during the motion as well as the

component found at 100 Hz.

As far as the first attempt on the physical parametrization is concerned,

the results obtained are satisfactory, even though a deeper analysis can be

carried out taking into account the specification of the material and the

geometric properties of the links. Moreover, new experiments performed

with a load on the end-effector may clear up what was discussed so far.

43



8. Bibliography

ABB Automation Technologies AB, Västerås, SE (2004): Product
Specification-Controller IRC5 with FlexPendant, revision 2 edition.

Brogårdh, T. (2002): “PKM Research-Important Issues, as seen from a
Product Development Perspective at ABB Robotics.” In Proc. of the
Workshop on Fundamental Issues and Future Research Directions for

Parallel Mechanisms and Manipulators.

Brogårdh, T., S. Hanssen, and G. Hovland (2005): “Application-oriented
development of parallel kinematic manipulators with large workspace.”

In Proc. 2nd International Colloquium of the Collaborative Research

Center 562: Robotic Systems for Handling and Assembly, Braunschweig,

Germany, May 2005, pp.153-170., pp. 153–170. Braunschweig, Germany.

Chiuso, A. and G. Picci (2004a): “Asymptotic variance of subspace methods
by data orthogonalization and model decoupling: a comparative analy-

sis.” Automatica, No 40, pp. 1705–1717.

Chiuso, A. and G. Picci (2004b): “On the ill-conditioning of subspace
identification with input.” Automatica, No 40, pp. 575–589.

Chiuso, A. and G. Picci (2004c): “Subspace identification by data orthogo-
nalization and model decoupling.” Automatica, No 40, pp. 1689–1703.

Dressler, I., A. Robertsson, and R. Johansson (2007): “Accuracy of kine-
matic and dynamic models of a gantry-tau parallel kinematic robot.”

In International Conference on Robotics and Automation (ICRA ’07).

Rome.

Haverkamp, B. (2000): Subspace Method Identification, theory and prac-
tice. PhD thesis, TU Delft, Delft, The Netherlands.

Haverkamp, B. and M. Verhaegen (1997): SMI Toolbox: State space Model
Identification software for multivariable dynamical systems. TU Delft,

Delft, The Netherlands, 1.0 edition.

Intel Corporation (2008): “Open source computer vision library.”

http://www.intel.com/technology/computing/opencv/, visited 2008-

02-29.

Jansson, M. and B. Wahlberg (1997): “Counterexample to general con-
sistency of subspace system identification methods.” In SYSID97,

pp. 1667–1682. Fukuoka, Japan.

Jansson, M. and B. Wahlberg (1998): “On consistency of subspace methods
for system identification.” Automatica, 34:12, pp. 1507–1519.

Johannesson, L., V. Berbyuk, and T. Brogårdh (2005): “Gantry-tau-a
new three degrees of freedom parallel kinematic robot.” In Proc. 4th

Chemnitz Parallel Kinematics Seminar, pp. 731–734. Germany.

Johansson, R. (1993): System Modeling and Identification. Prentice Hall,
Englewood Cliffs, NJ.

44



Chapter 8. Bibliography

Katayama, T. and G. Picci (1999): “Realization of stochastic systems with
exogenous inputs and subspace identification methods.” Automatica, No

35, pp. 1635–1652.

Lyzell, C. (2007): “Modeling and identification of the gantry-tau par-
allel kinematic machine.”. Master’s thesis, Linköpings Universitet—

Tekniska Högskolan.

Merlet, J.-P. (2000): Parallel Robots. Kluwer Academic Publishers, Dor-
drecht, The Netherlands.

Murray, M., G. Hovland, and T. Brogårdh (2006): “Collision-free workspace
design of the 5-axis gantry-tau parallel kinematic machine.” In Proc. of

the 2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Beijing, China.

Olsson, T. (2007): High-Speed Vision and Force Feedback for Motion-
Controlled Industrial Manipulators. PhD thesis, Lunds Tekniska

Högskola, Lunds Universitet.

Picci, G. (2005): “Geometric methods for state space identification.”.
Picci, G. (2006): “Metodi statistici per l’identificazione di modelli lineari.”.
Picci, G. and T. Katayama (1996): “Stochastic realization with exogenous
inputs and ’subspace-methods’ identification.” Signal Processing, No 52,
pp. 145–160.

Söderström, T. and P. Stoica (1989): System Identification. Prentice Hall
International (UK) Ltd.

van Overschee, P. and B. De Moor (1994): “N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic systems.”

Automatica, 30, pp. 75–93.

Wernholt, E. (2007): Multivariable Frequency-Domain Identification
of Industrial Robots. PhD thesis, Linköpings Universitet—Tekniska

Högskolan.

45



A. Implementation Details

A.1 On the predictor used in the corner tracker

application

Considering constant velocity, let the system be described by the following

continous-time state-space model:

ẋ(t) =
[
0 1

0 0

]

︸ ︷︷ ︸

G

x(t)

y(t) = [ 1 0 ]
︸ ︷︷ ︸

H

x(t)
(A.1)

with state vector x(t) =
[
x1(t)
x2(t)

]

, where x1(t) is the position and x2(t) is
the velocity.

The discretization with Ts = 4 ms gives:
[
x1k+1
x2k+1

]

=
[
1 Ts

0 1

]

︸ ︷︷ ︸

Φ

[
x1k

x2k

]

yk = [ 1 0 ]
[
x1k

x2k

]
(A.2)

A one-step-ahead predictor for the velocity can be formulated as:

x̂k+1pk = Φ x̂kpk−1 + K (yk − ŷkpk−1)
ŷk+1pk = Hx̂k+1pk

(A.3)

Computing the estimation error x̃ one obtaines:

x̃k+1 = xk+1 − x̂k+1 = (Φ − HK )x̃k (A.4)

Thus, x̃k+1 → 0 if (Φ − HK ) is Hurwitz-polynomial. In order to fulfill
the above requirement the unknown parameter K have been determined

according to pole-placement techniques. Of course, the choice of pole as-

signment is not unique. In this project poles in 0.6 and 0.8 turned out

leading to a sufficiently well performance of the predictor. The gain matrix

K further obtained is:

K =
[
k1

k2

]

=
[
0.6

20

]

(A.5)

Rewriting the equation:

x̂k+1pk =
[
x̂1
k+1pk

x̂2
k+1pk

]

=
[
1 Ts

0 1

][
x̂1
kpk−1

x̂2
kpk−1

]

+
[
k1

k2

]

(yk − ŷkpk−1)

ŷk+1pk = [1 0 ]
[
x̂1
k+1pk

x̂2
k+1pk

] (A.6)
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A.2 On the computation of the residuals

Thus, explicitly, in a more handable way for code implementation in C++:

x̂1k+1pk = (1− k1)x̂1kpk−1 + k1x1k + Ts x̂2kpk−1
x̂2k+1pk = x̂2kpk−1 + k2x1k − k2 x̂1kpk−1

(A.7)

Note that x̂1
k+1pk represents the predicted position, whereas x̂

2
k+1pk repre-

sents the predicted velocity.

A.2 On the computation of the residuals

Consider a discrete-time-invariant system Σ(A, B,C,D) with the state-
space equation {

x(k+ 1) = Ax(k) + Bu(k) +w(t)
y(k) = Cx(k) + Du(k) + v(k),

(A.8)

with input u(k) ∈ R
m, output y(k) ∈ R

p, state vector x(k) ∈ R
n and

noise sequences w(k) ∈ R
n, v(k) ∈ R

p. This can be manipulated (see the
literature for details) in order to get an innovation representation (A.9)
with the same statistics but with more interesting noise properties.

[
x(k+ 1)
y(k)

]

=
[
A B

C D

] [
x(k)
u(k)

]

+
[
K

I

]

e(k) (A.9)

Indeed, the innovation process {e(k)}, which is a sequence of zero-mean
independent identically distributed (i.i.d) stochastic variables, may be re-
constructed by the output sequence {y(k)}. Moreover, a residual sequence
computed as the estimate {ê(k)} of the innovation is obtained by means of
the following:

[
x̂(k+ 1)
ê(k)

]

=
[
A− KC B − KD
−C −D

] [
x̂(k)
u(k)

]

+
[
K

I

]

y(k) (A.10)

A.3 On the decoupled state-space model

Let’s consider the deterministic component’s submodel:

{
xd(k+ 1) = Adxd(k) + Bdu(k)
yd(k) = Cdxd(t)

(A.11)

corresponding to the input-output transfer function:

Yd(z) = Cd(zI − Ad)−1B
︸ ︷︷ ︸

G(z)

U(z) (A.12)

Similarly, let the stochastic submodel be:

{

xs(k+ 1) = Asxs(k) + Ksw(k)
ys(k) = Csxs(k) +w(k)

(A.13)

47



Appendix A. Implementation Details

with input-output transfer function:

Ys(z) = [Cs(zI − As)−1Ks + I]
︸ ︷︷ ︸

H(z)

W(z) (A.14)

Thus, the following state-space realization is achieved:
{

x̂d(k+ 1) = Adx̂d(k) + Bdu(k)
ŷd(k) = Cdx̂d(k)

(A.15)

{

x̂s(k+ 1) = (As − KsCs)x̂s(k) + Ks(y(k) − ŷ(k))
ŵ(k) = y(k) − ŷd(k) − Csx̂s(k)

(A.16)

For

x̂(k) =
[
x̂d(k)
x̂s(k)

]

, ŷ(k) =
[
ŷd(k)
ys(k)

]







x̂(k+ 1) =
[
Ad 0

0 As

]

x̂(k) +
[
B

0

]

u(k) +
[
0

K

]

(y(k) − ŷ(k))

ŷ(k) =
[
Cd 0

0 Cs

]

x̂(k)

ŵ(k) = y(k) − ŷ(k)

(A.17)

A.4 On the linear regression problem for stiffness

estimation

Let’s recall Hooke’s law:

F =K∆q, ∆q = [ ∆x ∆y ]′ (A.18)

Thus, given

F =K (q− q0) + F0
=Kq+ (F0 −Kq0)

(A.19)

multiplying from the right by qT one obtaines:

FqT =KqqT + (F0 −Kq0)qT (A.20)

Now, considering a sequence of N samples:

[
fx1 ⋅ ⋅ ⋅ fxN

fy1 ⋅ ⋅ ⋅ fyN

]






x1 y1
...

...

xN yN




 =K

[
x1 ⋅ ⋅ ⋅xN

y1 ⋅ ⋅ ⋅yN

]






x1 y1
...

...

xN yN




 (A.21)

which clearly is the formulation of a linear regression problem of the type

Y = Φθ , θ =K T (A.22)

θ̂ = (ΦTΦ)−1ΦTY (A.23)
θ̂
T = Y TΦ(ΦTΦ)−T (A.24)

one can estimate the matrix stiffness as follows:

K̂ = FqT(qqT)−1 (A.25)
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A.5 On the transformation to linear mechanical model

A.5 On the transformation to linear mechanical

model

Let’s assume to prefer the estimated state-space model given in the follow-

ing equation {
x(t+ 1) = Ax(t) + Bu(t)
y(t) = Cx(t), t ∈ R

(A.26)

on the format:







x(t+ 1) =
[

0 I

−M−1K −M−1D

]

x(t) +
[

0

M−1B0

]

u(t)

y(t) = Cx(t)
(A.27)

where M , K , D are matrices representing the inertia of the system, the

stiffness and the damping respectively, the state x ∈ R
2n and the input

u ∈ R
n.

The corresponding transfer function relationship between U(s) and X (s)
is:

X (s) = (Ms2 +D s+K )−1B0U(s) (A.28)
which provides important information on vibration and resonances of the

mechanical system as shown in [Johansson, 1993]). In the light of the above
consideration, it’s necessary to find a similarity transformation matrix

T =
[
T11 T12

T21 T22

]

for A =
[
A11 A12

A21 A22

]

, B = [ B1 B2 ] (A.29)

such that

TAT−1 =
[

0 I

−M−1K −M−1D

]

, TB =
[

0

M−1B0

]

(A.30)

Collecting the equation as follows

[T11 T12 T21 T22 ]








A11 A12 B1

A21 A22 B2

−I 0 0

0 −I 0







= 0 (A.31)

and computing the singular value decomposition

[U U ⊥]
[

Σ 0

0 0

]

VT =








A11 A12 B1

A21 A22 B2

−I 0 0

0 −I 0







∈ R

4n$3n (A.32)

it is possible to choose

[T11 T12 T21 T22 ] = τUT⊥ ∈ R
n$4n (A.33)

with τ any arbitrary invertible matrix.
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B. Models

B.1 On the arm-side

♦ experiment Arm1:

State-space system on the form:

{
x(k+ 1) = Ax(k) + Bu(k) +w(t)
y(k) = Cx(k) + Du(k) + v(k),

(B.1)

with u(k) ∈ R, y(k) ∈ R
2, state x(k) ∈ R

4 and noise sequences w(k) ∈ R
4,

v(k) ∈ R,

A =








0.9867 −0.1178 0.0087 0.0092

−0.0030 0.9718 0.0178 −0.0346
0.0004 0.0031 0.9747 −0.1042
−0.0002 −0.0020 0.0097 0.9860








(B.2)

B =








0.1796

0.0445

−0.0130
0.0046








(B.3)

C =
[
0.1645 0.2616 0.1254 0.2054

0.1498 0.2258 −0.2088 −0.1990

]

(B.4)

D =
[
0

0

]

(B.5)

and Kalman gain:

K =








1.2409 8.5429

0.3824 −4.8429
1.2609 −1.4762
0.1044 0.0969








(B.6)

State-space system representation as in (4.3), with u(k) ∈ R, y(k) ∈ R
2,

state xd(k) ∈ R
2, xs(k) ∈ R

7 and noise sequences e(k) ∈ R
7,

Ad =
[
0.9557 0.0124

−0.0077 0.8819

]

(B.7)

Bd =
[−0.3741
−3.4790

]

(B.8)

Cd =
[−0.0738 0.0075

−0.0671 0.0038

]

(B.9)

Dd =
[
0.0026

0.0052

]

(B.10)
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B.2 On the TCP

As =















0.9995 −0.0027 −0.0028 −0.0084 0.0069 0.0016 −0.0058
0.0028 0.9801 −0.0537 −0.0002 −0.0297 0.0068 0.0122

−0.0021 0.0520 −0.6459 0.5496 0.2880 0.0369 −0.1889
0.0103 −0.0321 −0.4850 −0.1910 −0.5018 −0.3383 0.4228

−0.0053 0.0027 −0.3040 −0.3997 −0.4807 0.3669 −0.4941
−0.0002 −0.0071 0.2543 0.5787 −0.5571 0.1729 −0.1749
0.0091 −0.0092 −0.0898 −0.0496 0.0866 0.8172 0.5738















(B.11)

Ks =















−1.9005 0.1211

256.8094 −16.3693
−455.4175 29.0289

−67.4569 4.2998

−94.8816 6.0479

258.5190 −16.4783
−88.8556 5.6638















(B.12)

Cs =
[
0.0076 0.0020 0.0003 −0.0001 −0.0001 −0.0000 0.0001

0.0071 −0.0001 −0.0000 −0.0000 0.0000 0.0000 −0.0000

]

(B.13)

B.2 On the TCP

♦ experiment Arm2:

State-space system obtained with PO-MOESP on the form given in B.1,

with u(k) ∈ R, y(k) ∈ R
3, state x(k) ∈ R

5 and noise sequences w(k) ∈ R
5,

v(k) ∈ R
3,

A =










0.9862 −0.0313 −0.1235 0.0746 −0.0860
−0.0134 0.9796 0.0599 −0.0698 −0.1379
0.0021 −0.0014 0.9931 0.0172 0.0450

−0.0014 −0.0005 −0.0065 0.9937 0.0056

−0.0006 −0.0005 −0.0036 −0.0069 0.9934










(B.14)

B =










0.1480

0.1527

−0.0085
0.0053

0.0041










(B.15)

C =





0.0211 −0.2067 0.2440 −0.0966 −0.2716
0.2348 0.0598 0.1883 −0.2149 0.1800

0.0972 0.1719 0.1172 0.1639 0.1452



 (B.16)

D =





0

0

0



 (B.17)
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and Kalman gain:

K =










2.9959 4.0019 −0.5202
−4.3098 −1.1080 1.8186

−0.0392 −1.6194 1.0140

1.9259 0.0059 0.3605

0.5520 −0.2397 −0.4375










(B.18)

♦ experiment Pulse1:

State-space system achieved with the Ho-Kalman realization technique

on the form given in B.1, with u(k) ∈ R, y(k) ∈ R, state x(k) ∈ R
6 and

noise sequences w(k) ∈ R
6, v(k) ∈ R,

A =













0.9396 −0.1076 −0.1926 0.2289 0.1112 0.0143

0.0843 0.9275 −0.3058 −0.1376 −0.0802 −0.0012
0.1851 0.2925 0.9122 0.1300 0.0510 −0.0126
−0.2200 0.1624 −0.0791 0.8958 −0.0134 0.0404

−0.1099 0.0774 −0.0342 −0.0570 0.9740 0.0615

−0.2038 −0.2027 −0.1052 0.4774 −0.2319 0.5055













(B.19)

B =













0.0795

0.2898

0.5659

−0.7335
−0.1450
2.8114













(B.20)

C = [ 0.0982 0.0359 0.5388 −0.6955 −0.3720 0.4386 ] (B.21)
D = 0 (B.22)

♦ experiment Pulse2:

State-space system representation as in (4.3), with u(k) ∈ R
2, y(k) ∈

R
6, state xd(k) ∈ R

2, xs(k) ∈ R
4 and noise sequences e(k) ∈ R

4,

Ad =
[
0.8824 −0.3342
0.3314 0.8567

]

(B.23)

Bd =
[−0.0079 −0.0104
−0.0051 −0.0133

]

(B.24)

Cd =
[−0.0694 −0.0493
0.1128 0.0873

]

(B.25)

Dd =
[
0.0001 0.0046

−0.0047 −0.0041

]

(B.26)

As =








0.8913 −0.3321 0.0214 −0.0100
0.3304 0.9344 0.0745 0.0196

−0.0034 0.0594 −0.8177 −0.5704
−0.0108 −0.0174 0.5658 −0.8004








(B.27)
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B.2 On the TCP

Ks =








18.9614 −1.0025
−3.6725 −0.2541
4.5104 0.4918

−0.6334 1.8764








(B.28)

Cs =
[
0.0133 −0.0014 −0.0016 −0.0019
−0.0134 −0.0007 0.0094 −0.0200

]

(B.29)

Using subspace id the state-space realization is given as (4.3), with u(k) ∈
R
2, y(k) ∈ R

2, state x(k) ∈ R
4 and noise e(k) ∈ R

2:

A =








0.8901 −0.3311 0.0492 −0.0103
0.3194 0.8757 0.1085 −0.0304
0.0098 0.0224 −0.8014 −0.6038
−0.0186 −0.0348 0.5335 −0.7991








(B.30)

B =








0.0030 −0.0033
0.0081 −0.0020
−0.0479 −0.0480
0.2838 0.2258








(B.31)

C =
[−0.0748 −0.0537 −0.0038 0.0109

0.1193 0.0776 −0.0614 0.0408

]

(B.32)

D =
[−0.0015 0.0032

−0.0184 −0.0149

]

(B.33)

K =








−2.0626 0.2273

−1.5904 0.1394

−2.3304 0.2305

−0.3247 −0.6778








(B.34)

Using PO-MOESP the state-space realization is given as (B.1) with u(k) ∈
R
2, y(k) ∈ R

2, state x(k) ∈ R
4 and noises w(k) ∈ R

2, v(k) ∈ R
2:

A =








0.8893 −0.3881 0.0508 −0.0416
0.2684 0.8784 0.1271 −0.1199
−0.0005 0.0018 −0.8032 −0.5896
−0.0180 −0.0434 0.5510 −0.7925








(B.35)

B =








−0.0033 −0.0052
−0.0046 −0.0070
0.0174 0.1724

−0.0282 0.0635








(B.36)

C =
[−0.1965 −0.1682 0.0036 0.0498

0.3129 0.2485 −0.2151 0.2007

]

(B.37)

D =
[
0 0

0 0

]

(B.38)
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and Kalman gain

K =








−0.7170 0.0872

−0.5728 0.0426

−0.5323 0.0432

−0.0812 −0.1566








(B.39)
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C. Plot of input-output

signals used for

identification

On the Arm side
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Figure C.1 Experiment Arm1. Input signals: cart position reference to controller.

Output signals: cart position measured by sensor and by the camera
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Appendix C. Plot of input-output signals used for identification

C.1 On the TCP

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−100

0

100

200

300

400

500

time

x

 

 

camx0

camy0

posRef

feedback

Figure C.2 Experiment Arm2. Input signals:cart position reference to controller.

Output signals: cart position measured by the resolover, TCP x- and y-coordinate

in TCP coordinate frame
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Figure C.3 Experiment Pulse1. Output signal: TCP position from camera
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C.1 On the TCP
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Figure C.4 Experiment Pulse2. Input signals: forces applied to the end-effector

in world coordinate frame
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Figure C.5 Experiment Pulse2. Output signals: TCP x- and y-position from cam-

era in world coordinate frame
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Appendix C. Plot of input-output signals used for identification

C.2 C++ code for one-step ahead predictor

/*--------------------------------------------------------------

*

* discrete-time Kalman filter for the prediction

* of the next cornerpoint’s position in the form:

*

* X_hat(k+1) = [1 Ts;0 1]*X_hat(k)+[K11;K22]*(Y(k)-Y_hat(k))

* Y_hat(k+1) = [1 0]*Y_hat(k+1)

*

*

* The motion has been decoupled along the x-axis and the y-axis,so:

*

* X_hat(k) = [x_hat;vx_hat] state vector for motion along x

* Y_hat(k) = [y_hat;vy_hat] state vector for motion along y

*

*-------------------------------------------------------------*/

CvPoint2D32f pc[nr_feat];

CvPoint2D32f cornerpoint;

int nr_trackpoints=0;

float K11 = 0.6;

float K22 = 20;

float Ts = 0.004;//sampling time

float x_hat_old[nr_feat];// x_hat(k)

float vx_hat_old[nr_feat];// vx_hat(k)

float x_hat[nr_feat];// x_hat(k+1)

float vx_hat[nr_feat];// vx_hat(k+1)

float y_hat_old[nr_feat];// y_hat(k)

float vy_hat_old[nr_feat];// vy_hat(k)

float y_hat[nr_feat];// y_hat(k+1)

float vy_hat[nr_feat];// vy_hat(k+1)

camcomm_camx cx;

camcomm_camy cy;

bool done=false;

int ii;

for (ii=0;ii<nr_feat;ii++) {

vx_hat_old[ii] = 0.0;

x_hat_old[ii] = 0.0;

vy_hat_old[ii] = 0.0;

y_hat_old[ii] = 0.0;

pc[ii].x = 0.0;

pc[ii].y = 0.0;

}

/*-----------------------------------
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C.2 C++ code for one-step ahead predictor

* find next cornerpoint

*-----------------------------------*/

for (ii=0;ii<nr_trackpoints;ii++) {

x_hat[ii] = (1-K11)*x_hat_old[ii] + K11*(float)pc[ii].x

+ Ts*vx_hat_old[ii];

vx_hat[ii] = vx_hat_old[ii] + K22*(float)pc[ii].x

- K22*x_hat_old[ii];

y_hat[ii] = (1-K11)*y_hat_old[ii] + K11*(float)pc[ii].y

+ Ts*vy_hat_old[ii];

vy_hat[ii] = vy_hat_old[ii] + K22*(float)pc[ii].y

- K22*y_hat_old[ii];

cornerpoint.x = x_hat[ii];

cornerpoint.y = y_hat[ii];

cvFindCornerSubPix(cvimage,&cornerpoint,1,cvSize(7,7),cvSize(-1,-1),

cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,10,1.0));

/*--------------labcomm--------------*/

cx.a[ii]=(float)pc[ii].x;

cy.a[ii]=(float)pc[ii].y;

/*-----------------------------------*/

data_buffer[2*(nr_feat*log_ptr+ii)]=(double)cornerpoint.x;

data_buffer[2*(nr_feat*log_ptr+ii)+1]=(double)cornerpoint.y;

cvCircleAA(cvimage,cvPoint((int)(32.0*cornerpoint.x),...

(int)(32.0*cornerpoint.y)),32*5,255,5);

pc[ii].x = cornerpoint.x;// update of the current x position

pc[ii].y = cornerpoint.y;// update of the current y position

x_hat_old[ii] = x_hat[ii];

vx_hat_old[ii] = vx_hat[ii];

y_hat_old[ii] = y_hat[ii];

vy_hat_old[ii] = vy_hat[ii];

}

for (ii=nr_trackpoints;ii<nr_feat;ii++) {

data_buffer[2*(nr_feat*log_ptr+ii)]=0.0;

data_buffer[2*(nr_feat*log_ptr+ii)+1]=0.0;

}

if ((it_counter(int)(FRAME_RATE/display_freq))==0) {

display_frames(buff_ptr);

}

XFlush(display);

it_counter++;
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Appendix C. Plot of input-output signals used for identification

buff_ptr++;

if (buff_ptr>=n_frame_buffers) buff_ptr=0;

log_ptr++;

if (log_ptr>=data_buffer_size) log_ptr=0;

while(XPending(display)>0){

XNextEvent(display,&xev);

switch(xev.type){

case ConfigureNotify:

width=xev.xconfigure.width;

height=xev.xconfigure.height;

break;

case ButtonPress:

if (nr_trackpoints<nr_feat) {

pc[nr_trackpoints].x = (float)xev.xbutton.x;

pc[nr_trackpoints].y = (float)xev.xbutton.y;

x_hat_old[nr_trackpoints] = pc[nr_trackpoints].x;// initialization

y_hat_old[nr_trackpoints] = pc[nr_trackpoints].y;

nr_trackpoints++;

}

else

fprintf(stderr,"all features already defined - ignored\n");

break;

case KeyPress:

done=true;

break;

}

C.3 Matlab code

function [A,B,C,D] = HoKalman(h);% where h is the impulse response

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HoKalman realization algorithm %

% modified version by Juang and Pappa %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = floor(max(size(h))/2)-1;

H0 = zeros(N,N);% Hankel matrix

H1 = zeros(N,N);% Hankel matrix

for ii = 1:N,

for jj = 1:N,

H0(ii,jj) = h(ii+jj);%forming the matrix from Markov coefficients

H1(ii,jj) = h(ii+jj+1);

end;

end
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C.3 Matlab code

r = input(’insert system order:’)

H0;

H1;

size(H0)

size(H1)

D = h(1);

Ey = [1 zeros(1,N-1)]’;

Eu = Ey;

[U,S,V] = svd(H0);%singular value decomposition of H0

figure;

semilogy(diag(S),’o’);

% matrix definition

S1 = sqrt(S(1:r,1:r));

Un = U(:,1:r);

Vn = V(:,1:r);

A = inv(S1)*Un’*H1*Vn*inv(S1);

B = S1*Vn’*Eu;

C = Ey’*Un*S1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% estimation with spectral analysis %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r1 = data(:,1)-mean(data(:,1));% tracked x-pos cornerpoint

rn1 = r1/max(r1);

x_pos = detrend(rn1(1573:2010));

Ts = 0.004; %sampling time

F = 1/Ts; %sampling frequence

% with windowed data:

N = max(size(x_pos));

w = hamming(2*N);%hamming window

w1 = w((N+1):(2*N))’;

figure;

plot(w1);

pause;

x_pos_w = x_pos’.*w1;

figure;

plot(x_pos_w);

title(’windowed measured position’);

%pause;

G = fft(x_pos_w)./0.45;

W = [0:length(G)-1]*(F)*2*pi/(length(G)-1);

figure(1000);

subplot(2,1,1);

semilogx(W, 20*log10(abs(G)));

ylabel(’|G(jw)| [dB]’,’FontSize’,12);

61



Appendix C. Plot of input-output signals used for identification

grid on;

subplot(2,1,2);

semilogx(W, phase(conj(G’)));

ylabel(’phase(G(jw)) [grad]’,’FontSize’,12);

grid on;

xlabel(’Frequency [rad/s]’,’FontSize’,12);

% experiment to get transformation matrix

ForceZY_world = [-1 0;0 +1;+1 0;0 -1];

FxFy_jr3 = [-46 31;-26 -35;35 -22;+21 35];

%normalize

FxFy_jr3_n(1,:) = FxFy_jr3(1,:)/norm(FxFy_jr3(1,:));

FxFy_jr3_n(2,:) = FxFy_jr3(2,:)/norm(FxFy_jr3(2,:));

FxFy_jr3_n(3,:) = FxFy_jr3(3,:)/norm(FxFy_jr3(3,:));

FxFy_jr3_n(4,:) = FxFy_jr3(4,:)/norm(FxFy_jr3(4,:));

% Find T such that ForceZY_world= T*FxFy_jr3_n

T = ForceZY_world’ / FxFy_jr3_n’;

T = [0.8293 -0.5548 -0.5462 -0.8389];

forceZY_w = T*[Fx_jr3 Fy_jr3]’;
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