S THESIS | LUND UNIVERSITY 2015

I

MASTER

O —
2
= .9
nt
o £
Oe
O <&
<
£ >
=i
.ln
ont
o & 9
ﬁ..%.u
=S
O 2 &
8N — O
£ 2 2
Su.l
DB >

, Hannes Johansson

Johan Andersson

Department of Computer Science

Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-45

afl

f |
B

i i
I 4 -——- H -—u —-a-——-—mﬂ—-—— -—m—._
it

_._L.__. s_..._._.______!

Uyt
il «_._ HTHET]

Using Clustering in a Cognitive Tutor to
Identify Mathematical Misconceptions

Johan Andersson Hannes Johansson
adalOjan@student.lu.se adilOhjo@student.lu.se
October 6, 2015

Master’s thesis work carried out at Knowit Mobile Syd AB.

Supervisors: Elin Anna Topp, elin_anna.topp@cs.lth.se
Magnus Haake, magnus.haake@lucs.lu.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ada10jan@student.lu.se
mailto:adi10hjo@student.lu.se
mailto:elin_anna.topp@cs.lth.se
mailto:magnus.haake@lucs.lu.se
mailto:jacek.malec@cs.lth.se

Abstract

We have implemented an Intelligent Tutoring System (ITS) prototype for
teaching multi-column addition and subtraction to children aged 5-10, using a
digitalized version of the Montessori bank game exercises. An Intelligent Tu-
toring System is a piece of software that teaches a certain subject to its users,
and that typically uses artificial intelligence related algorithms to personalize
the educational process.

Our Intelligent Tutoring System focuses on collecting erroneous input from
the user and analyzing it using an experimental clustering algorithm in order
to find common misconceptions. The system is based on the assumption that
if there is a lot of user errors that are similar, they might correspond to a mis-
conception. To find which errors are “similar”, we use clustering. An ITS like
this could support teaching by making the students become aware of their mis-
conceptions, so that they can overcome them. Normally, I'TS use bug libraries
to systematize misconception handling. A bug library is a collection contain-
ing information about possible errors, that can be used to help identify these
errors when encountered. Creating bug libraries takes a lot of effort, and if
they could be avoided, a typical ITS implementation would take considerably
less time.

While we found that we could identify some misconceptions of a computer
player, the clustering approach needs to be generalized further in order to en-
able effective application on humans. We conclude that if this approach were
to be explored more in detail, it could prove to be a viable alternative to the
bug library.

Keywords: Intelligent Tutoring System, Cognitive Tutor, Clustering, Educational
Software

Acknowledgements

We would like to thank our supervisors Elin Anna Topp and Magnus Haake at LTH for giv-
ing guidance and feedback throughout our project. We also wish to thank our supervisors
at Knowit: Axel Holtas, Johan Karlsson, and Niklas Nordgren, for helping us structure
the development process and providing technical support. Likewise, we are very grateful
to Susanne Holtés for providing valuable insights on pedagogy and education, and giving
feedback on our application. Finally, we want to thank the teachers and students at the
Hjérup School for helping us test our system.

Contents

(I__Introduction
MIGoallo
[L2 Contributions
C370ulinel . - - - o oo e e
2 Background and related work|
[2.1 Intelligent Tutoring Systems|
.11 Generalstructurel
2.1.2 Constraintbased tutorsl
[2.1.3 Cognitive Tutors|
2.1.4° Model Tracing|
215 ACT-RI
[2.1.6 Handling errors and misconceptions|
2.1.7 Studentmodels oo
2.2 Clustering| e
2.2.1 k-meansclustering|
2.2.2 DBSCANclustering)
2.2.3 Fuzzyclusteringl 0.
23 TheBank Gamel. o L.
2.4 Cognitive aspects| e e e
3 App h
(3.1 = Development platiorm|
BZProcesss oo
[3.3 Digitalizing the physical Bank Game exercise|
[3.3.1 Constraints / Eliminating interaction errors|
332 TheExercises
333 Additionl
3.3.4 Subtractionl oL oo oo

[3.4 System designl

10
10
11
11
12
12
12
13
15
16
16
18

CONTENTS

[3.4.1 Graphical interfacef 0.
B.42 DomainModel

[3.4.4 Analyticsmodulef 0 L
(3.5 Combining the modules|. 0L

4__Evaluation|

4.2 ‘Testing with DBSCAN and simulated misconceptions|
4.2.1 Clustering misconceptions|
@22 After20games|
@.2.3 After4d0games|o

4.3 Testing with simulated misconceptions and FN-DBSCAN|.
#4.3.1 The input parameters of EN-DBSCAN|.

35
35
35
36
36
38
39
40
41
42

45

47
47
48

49

Chapter 1

Introduction

Even since the earliest computers people have tried to use them for educational purposes.
The adaptivity and feedback possible on a digital device is far greater than that of printed
books and paper, and Intelligent Tutoring Systems (ITS) are a relatively old field of re-
search. This research has been going on since the 60’s, and since then computers have
transitioned from being huge expensive machines to portable and affordable media con-
sumption devices. Today, most schools have access to tablets and computers which enables
for a greater focus on educational software.

An ITS can help teachers in finding and keeping track of errors that students are mak-
ing. Some ITS have even larger capabilities than that, and are able to analyze the errors in
order to find out if they can be explained by a common misunderstanding.

One common way of keeping track of misconceptions in ITS is the use of Bug Li-
braries. Bug libraries contain information about certain misconceptions and how to iden-
tify them. However, creating a bug library normally takes a lot of time, as you need to
analyze a lot of real world data to create them. In this project we try to create a more
general way of finding possible misconceptions, using clustering instead of bug libraries.

To do this we implemented an ITS for teaching basic arithmetics to children aged 6-10.
The system uses a digitalized version of the so called Bank Game, which is a set of math
exercises used in Montessori education.

1.1 Goal

The goal is to develop an experimental ITS for identifying user errors and grouping them
together in order to find underlying misconceptions. A misconception is an understanding
about the domain that is incorrect. An error, or a mistake, is something the user does that
does not comply with the rules of the domain. The reasoning is that if a user makes many
mistakes that have a lot in common, they could possibly be caused by a certain miscon-
ception. Identifying a misconception is the first step to overcoming it, which is helpful to

1. INTRODUCTION

both student and teacher. If you know that a student has a certain misconception, then the
teacher can tell him that what he thinks is not correct, and how to do things the right way.
Is it possible to do this without using predefined information about misconceptions, such
as bug libraries, which are resource demanding to create, and instead use unsupervised
clustering? The actual educational software is supposed to be used by children, and and
we have to take that into account when designing the user interface of the system, as they
do not necessarily interact with things in the same way as adults do.

1.2 Contributions

This project has been carried out as a two-person master’s project. The software created
consists of several modules that have been designed, implemented and tested. The work
with the different modules has been done collectively, but there have been some different
key responsibilities when it comes to the design. Johan did the design work of the model
module, while Hannes focused on the design of the classification module. The graphical
and analytics modules were designed in an iterative manner with both parties contributing
at different stages. When it comes to the report the main contributions have been similar to
the design stage. All algorithms have been implemented without the use of any third-party
libraries.

1.3 Outline

This project is organized in the following manner. Chapter 2 introduces the background
theory behind the concepts used, together with some related work. Chapter 3 describes
how our system was implemented, and some of the challenges that were encountered.
Chapter 4 contains information about the evaluation of the performance of the system.
Chapter 5 discusses the results of the evaluation, and chapter 6 suggests some areas of
interests for future study.

Chapter 2

Background and related work

It is useful to get an overview of the related research that has been carried out previously.
We start off this chapter by introducing the Intelligent Tutoring System, which is the foun-
dation of the work carried out in this thesis. Then we explain clustering, that can be used
to group user errors together. Lastly we describe the Montessori Bank Game, which is the
actual game we use to apply our system on.

2.1 Intelligent Tutoring Systems

An Intelligent Tutoring System is an interactive educational software that in some way
uses artificial intelligence algorithms to adapt itself to its users. This adaptation can entail
changing the teaching style to match the user’s preferred learning style, or using the per-
formance of the user to determine an appropriate level of the taught material. One of the
main goals of Intelligent Tutoring Systems is to provide education to students, without the
need for additional human teachers. However, they can also give valuable insights on how
humans learn, and help related research, such as computer science, cognitive science, and
educational science [[13]] [[16].

2.1.1 General structure

Intelligent Tutoring Systems (ITS) have existed in various forms since the 1980’s, and over
the years a lot of different designs have been tested. Some of these designs have become
de facto standard, and a modern I'TS normally consists of four different parts: the Domain
model, the Student model, the Tutoring model, and the User interface model.

The domain model is a model of all that is taught by the system. It contains the concepts
and expertise needed to solve the related problems. It can also be called expert model, or
cognitive model, and can be constructed in several different ways. The two most common
ITS paradigms are the Constraint based tutor and the Cognitive tutor, which both have

2. BACKGROUND AND RELATED WORK

their own way of structuring the expert model. It is interesting to note that some domains
might be inherently independent from each other.

The student model is a model of the student who is using the system. It is normally a
subset of the domain model and is also called an overlay model. A student model changes
as the student uses the system and learns new concepts and skills.

The Tutoring model is the “teacher representation” of the ITS. It uses the domain and
student models to decide: (i) what should be taught next, (ii) in which way it should be
taught, and (iii) how to present this to the student.

The User interface model is a way for the system to get information about the student’s
actions. It can be direct input actions (writing a word, selecting an answer), or more subtle
like face recognition. The inputs can then be used either to measure performance (correct
or wrong answers) or to measure affection (the emotions of the user or how motivated they
are) [7] [9] [16] [17] .

2.1.2 Constraint based tutors

Constraint based tutors are answer-oriented ITS that focus on analyzing the student’s so-
lution to a problem, rather than the steps taken to get there. When the user gives an answer
to a problem, it is checked against a domain-specific set of constraints. If no constraints
are broken, the solution is valid and consequently, if one or more constraints are broken,
the answer is incorrect. It is possible to see from broken constraints what concepts are
not mastered by the user, as the constraints in general correspond to a concept that is to
be learned. This way, a lot of information can be gained by just looking at a solution to a
problem. Constraint based modeling was first implemented in an ITS teaching Structured
Query Language (SQL), the SQL-tutor, in 1992. Constraint based tutors perform best in
well-defined domains, so teaching SQL was a suitable choice [[14].

Constraint based tutors are thus better suited for domains in which answers contain a
lot of information, something that makes them unsuitable for our project. The exercise
that we decided to use has very simple numerical answers, but contains multiple different
steps where errors can be introduced, and a constraint based solution would have a hard
time finding out what is wrong. For example, in an exercise containing multiple steps two
errors could cancel each other out, which would lead to a correct answer computed in an
incorrect way. This would not trigger any error in a constraint based system, which renders
this approach unfit for our application.

2.1.3 Cognitive Tutors

A cognitive tutor is an intelligent tutor that uses a cognitive domain model, e.g., a domain
model that tries to mirror how the human brain works. A cognitive model differentiates be-
tween declarative and procedural knowledge. Declarative knowledge is knowledge about
something, while procedural knowledge is knowledge that tells us how to do something.
Typical examples of declarative knowledge are facts like “This leaf is green”, or “I'm 30
years old”. Procedural knowledge can tell us how to speak a certain language, or how
to play an instrument, among other things. The Carnegie Mellon Cognitive Tutor is one
example of a cognitive tutor [[10]. Cognitive tutors focus on the solution path of the user,
and not the answer as such (as constraint-based tutors). As our domain does not put a lot

10

2.1 INTELLIGENT TUTORING SYSTEMS

of information in the answer of an exercise (See Section 2.3), the Cognitive tutor was was
chosen as being better fitted to our project.

2.1.4 Model Tracing

Model tracing is a central concept used in cognitive tutors, that allows for following and
understanding a student’s solution step-by-step [17]. For every action performed by the
student, the input is compared to the current state of the domain model, i.e., the declarative
and procedural knowledge. If the input was valid, the student performed a correct step in
the solution chain. If not, we know that the student did some sort of mistake. As everything
done by the student is tracked, the student’s solution is traced over the domain model.
Hence the name model tracing. Model tracing gives the possibility of continuously giving
feedback as the student solves a problem, and also lets the Intelligent Tutoring System
know exactly how the student solves every problem. This differentiates the cognitive tutors
from the constraint-based tutors, as the constraint-based tutors look more closely at the
actual answer produced by the student, and not the solution path that resulted in that answer

[3].

2.1.5 ACT-R

ACT-R is a cognitive architecture that is based on the cognitive view of knowledge de-
scribed above. ACT-R stands for Adaptive Control of Thought - Rational, and is the base
for many Intelligent Tutoring Systems. It was developed by John Robert Anderson at
Carnegie Mellon University. The aim of ACT-R is to be a model of how the human mind
works, so it is not just used for Intelligent Tutoring Systems, but also many other things
[1]. Examples include natural language understanding and production [4], and predicting
patterns of brain activation during imaging experiments [2] [3]].

ACT-R stores declarative knowledge in so called chunks [18]]. Each chunk has a num-
ber of properties, or slots. For example, a car chunk might contain a slot to describe its
color, and another slot that contains weight. To define procedural knowledge, ACT-R has
production rules. A production has a set of preconditions (or left-hand side), and a set of
actions (or right-hand side). The left-hand side describes what conditions need to apply in
order for the production rule to be a valid production to fire. The right-hand side describes
what happens when the production rule is fired. For example: IF the goal is to stop the
car, THEN apply brakes. The precondition is that the goal is to stop the car, and the action
is to apply the brakes. The declarative and procedural memory are two memory modules
in ACT-R, which can be accessed via so called buffers. There is also a perceptual module,
that can be used to interact with the real world in various ways [L1].

We started out using the jJACT-R project (an ACT-R implenentation written in Java) for
tracing our model, but we soon realized that we only used a small part of the library. The
model definition was also very general, leading to our model being overly complicated.
This led us to creating a solution of our own, loosely based on the ACT-R architecture
but with only the necessary features included and a model with more complex operations
available.

11

2. BACKGROUND AND RELATED WORK

2.1.6 Handling errors and misconceptions

When a user makes a mistake, feedback can be given in many ways. For example, in a
model-tracing tutor, one could instantly tell the user when he has done something wrong.
It is also possible to delay help until it is explicitly asked for and depending on how the do-
main model is constructed, hints can be given to the user. Concerning feedback, however,
it is necessary to first identify what kind of error has been made, which can be a rather
difficult problem.

One way of representing errors in a model tracing tutor is to use buggy rules. These are
production rules, just like those that define how to solve problems, but instead of describing
what is valid to do, they describe ways of doing various mistakes. In a tutor for teaching
addition, a buggy rule could adhere the following expression: 1 + 1 = 11. If a user gives
input that matches a buggy rule, it is possible to know what kind of mistake that has been
made. A collection of buggy rules is called a bug library.

However, bug libraries are problematic as they take a lot of time and effort to create
[20]. The most common way of creating a bug library is to either have an expert create it,
or to use machine learning and learn common mistakes from a set of real world solutions.
It is, however, generally very hard to anticipate all the possible errors of a certain domain,
even as an expert, and it is even harder in ill-defined domains. Likewise, in order to learn
the buggy rules using machine learning, one needs a lot of real world data, which can take
a considerable effort to get hold of.

2.1.7 Student models

To keep track of what the student has learnt so far, a student model is needed, and there
are multiple types of student models that have been tested for ITS. More information can
be found in [[17]].

A knowledge tracing student model is a type of student model that can be used in
cognitive tutors. It keeps track of how the student performs in regard to the different
production rules of the domain model and traces the student’s knowledge over the different
exercises.

The corresponding student model solution for constraint-based tutors is to keep track
of what constraints are broken by the student in different exercises. A broken constraint
means that some sort of mistake has been made.

A knowledge space student model uses so called knowledge states. Every topic has
a number of knowledge states, and the student model keeps track of which of them are
mastered by the student. Bayesian networks can be used to estimate what knowledge states
the student currently is in, based on results from previous exercises [7].

Keeping track of student knowledge over time was out of scope for this project, so no
knowledge tracing model was created.

2.2 Clustering

Clustering is a way of taking data points and grouping them using certain metrics. There
are different variants of this. In this project, we use clustering to group user errors together,

12

2.2 CLUSTERING

to try to find any possible underlying cause. We think that clustering could be a simpler
alternative to bug libraries.

2.2.1 k-means clustering

The k-means clustering algorithm is an unsupervised clustering algorithm [11]]. It consists
of guessing a number of cluster centers (the k-value) that are distributed randomly over the
cluster-data. The algorithm figures out which cluster center that it is closest to each data-
point and makes them a part of their respective cluster. The next step is to recalculate the
cluster center by using the points that are included in the cluster. This process is repeated
until the cluster centers are stationary, which gives the correct clustering. As the initial
process involves a random starting point for the centres, the method is not deterministic;
different runs with the same data can yield different results. However, as the algorithm is
quick to process, it is often done multiple times (with different starting values) to get an
averaged result. As all points are assigned to the “closest” cluster there are, by definition,
no outliers. This means that a single extreme data point can skew the results of a clustering
[11]. A graphical representation of an example k-means result set can bee seen in Figure
2.1l

The k-means clustering is an algorithm that is simple to implement, and that gave
reasonably good results with the right parameters. The main problem with it for our project
is that we do not know how many clusters that will be present in our data. Thus, we need
to be able to have a cluster algorithm that also can find out how many clusters, if any, it
can find.

Determining the number of clusters

The k-means method does not tell us anything about the number of clusters that are present
in a data-set. It divides the data into the number of clusters given as input. As it is not
computationally intensive, we can compute clusters for a range of different numbers of
clusters, but that still does not tell us anything about how “good” the clustering is. To do
this we can look at how much information we gain for each additional cluster [[19]. How
good the information is can be measured by looking at the average square distance to the
center of the cluster for all data-points. When the second cluster is added the total distance
will be significantly smaller. For each added cluster the distance will decrease until we
reach the number of unique data-points. The decrease in distance will however pan out
and stop the steep curve at a specific point. This will create something called an elbow
[19] which is demonstrated in Figure That point can then be used as the appropriate
number of clusters, or k.

The elbow is primarily done by hand, which was a problem for our automatized solu-
tion. We wanted the system to find out the number of clusters using a formalized algorithm.

Gap Statistic

The Gap statistic is a way of formalizing the elbow process. It evaluates the cluster quality
and compares it with the quality of clustering of a uniform data set spread over the same
region [[19]]. The information gain in the original clustered data is compared to the average

13

2. BACKGROUND AND RELATED WORK

Figure 2.1: An example result of k-means cluster analysis. The
data points have been clustered into three different clusters. [6]

Elbow

Figure 2.2: Illustration of the elbow of a curve.

information gain of the reference clusterings to decide on which k-value that gives the
optimal information.

14

2.2 CLUSTERING

For our first implementation we used k-means clustering with Gap-statistic, but the
limitations were too many for it to be a suitable clustering algorithm. Regarding the Gap-
statistic as such, we got good results, but due to the number of reference clusterings that
were required it was scaling too poorly to be a feasible alternative.

2.2.2 DBSCAN clustering

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a cluster algo-
rithm that is based on density instead of proximity to the cluster center (like for example
k-means) [8]]. It is based around the idea that every node finds its neighbours, the points
that are within a defined distance away, and if there are enough points they will create a
cluster and drag their neighbours into the cluster recursively. If there are not enough of
nearby clusters the point will be classified as noise. This also means that the algorithm ac-
tually can find clusters of arbitrary shapes and not only circular ones. It also does not need
to know how many clusters that are present in the clustering as it finds all of the clusters
that fit the criterion. This makes DBSCAN a better choice than k-means for our project.
An example DBSCAN result set can be seen in Figure [2.3]

The DBSCAN still has some parameters that need to be supplied, such as the maximum
neighbour distance and number of points that are required to find a cluster. These values
depend on the data set that is supplied and what information one expects to get from the
clustering.

ak-]

-
- s ¥
-
I:Ia ‘- ..'.. .l.- .
. ':'..": I
" - L]
) *h.l""'h .
- -
T - Vs
™ -
" o I
. - t:":r.‘ .
-
ol ' & 5“ - R Tl
L J e '. ‘ -
-" :‘-lil| 1 ‘:‘:II=' :
L] L] -
s 1 - e "'Il' - LT
LRI I Foes’s
L
.“::.l'-r . LA
-
L] " ‘.. .:.. ". ..
as *a S el
.i - L) & " -
- L) "
- J
. $50E
L
oz
.:l_'g.'l
-
|.-' l"i‘..
oz "'"'*": :
-
"-:..': "'r' ., ". r
- -
*
-
-
al
*
L]
a
a 0l az oz o4 o o] aT s Lk} 1

Figure 2.3: An example result of DBSCAN cluster analysis. The
data points have been divided into two clusters. The grey points
are noise. [3]]

15

2. BACKGROUND AND RELATED WORK

2.2.3 Fuzzy clustering

The previous mentioned clustering techniques are all examples of hard clustering. This
means that every data point is selected to be a part of one single cluster, and that cluster
only. It is possible for a point to be noise, but it can not at the same time be a part of any
other clustering. Neither it is possible to tell how much it is part of the cluster, as a point
in the center and one that is close to the “edge” are equal members of the cluster. This
is something that is solved in fuzzy clustering. The fuzzy clustering introduces a concept
of membership between the data points and the clusters, allowing the data points to have
varying degrees of membership of different clusters. Because of these benefits, we decided
to use a fuzzy variant of DBSCAN, the so called Fuzzy Neighborhood DBSCAN.

Fuzzy Neighborhood DBSCAN

Fuzzy Neighborhood DBSCAN (FN-DBSCAN) is a fuzzy clustering algorithm based on
regular DBSCAN. It works almost in the same way as the regular DBSCAN, with the
difference that in FN-DBSCAN, a point in a cluster can be either a core point or a border
point. A core point is definitely a part of the cluster, while a border point is only a member
of the cluster to a certain degree. A core point is a data point that has a set cardinality
that is greater than the minimum cardinality (minCard), which is given as a parameter to
the clustering. The fuzzy set cardinality FSCard(x) of a point is defined in (2.1)). It is
calculated as the sum of the so called membership function of a point x and every other
point in the data set. The membership function M(x,y) is defined in (2.2)), where d(x, y)
is the distance between points x and y, and € is given as a parameter to the algorithm.

FSCard(x) =) M(x,y;) 2.1)
i=1
_J1=dx,y)/e ifd(x,y)<e
M(x.y) = {0, otherwise 22)

Each core point will only be a part of a single cluster, and by definition have the maxi-
mum membership degree of 1. A point that is not a core point, but is a neighbor to a core
point, will be considered a border point of the same cluster that the core point is a part
of. Its membership degree will be equal to the membership function of the point and its
closest core point neighbor of that cluster. Two points x and y are neighbors if M(x,y) > O.
Every point that is not either a core point or a border point will be considered noise.

2.3 The Bank Game

ITSs can be applied in many domains. They are often used for teaching different types
of math and other areas that can be described in well-defined models, e.g. the domains
of natural sciences and also language [22]. The Bank Game is a set of exercises used
to teach basic arithmetics to children. It is based on the Montessori school of thought,
which puts a lot of emphasis on using concrete physical objects in its education, to make
abstract concepts easier to understand [15]. The Bank Game was originally created 1917

16

2.3 THE Bank GAME

by Maria Montessori, an Italian Physician and educator that was the founder of the still
popular educational philosophy called "Montessori". The exercises are built around a set
of physical material that uses beads to represent numbers. Figure[2.4]shows a typical Bank
Game setup.

There are commonly four different types of objects that each represent a certain numer-
ical value. A single bead represents 1, and is called a one-bead. Ten beads held together as
a bar represent 10, and are called a ten-bead. One hundred beads configured with ten ten-
beads represents 100 (called a hundred-bead). One thousand beads configured as a cube
with ten hundred-beads stacked on each-other represents 1000 (called a thousand-bead).
This means that the size of the objects are proportionate to their value. If two collections
have the same size they have the same amount of beads and represent the same number.

The bead material is used in many different exercises. They can be used, in slightly dif-
ferent forms, for all of the basic arithmetic operations. One common step in these exercises
is that the students need to make an exchange. For example if they add 5 one-beads and 9
one-beads they end up with 14 one-beads, where ten one beads should be exchanged for
one ten-bead. This leads to the students constantly having to convert between the different
kinds of bead set representations.

Figure 2.4: A common Bank Game material setup.

17

2. BACKGROUND AND RELATED WORK

2.4 Cognitive aspects

When designing an educational game targeted to children, there are some things that need
to be considered. Children are in general very good at learning how to operate different
game mechanics and manipulating objects using touch screens [21]]. They are, for example,
good at learning what buttons to press and where to click on a screen in order to advance
in a game. This does not necessarily mean that they have learned the reasons or rationale
behind their actions. In these cases they are simply good at “mechanically” operating,
without understanding why.

How the interaction with the game is constructed can make a lot of difference in the
ability to transfer the skill of playing the game to actual knowledge about math. When
children are solving traditional math problems (either by paper or physical objects) the
only limiting factors are the numbers and the objects sizes and shapes. And that is often
something that is supposed to make the child recognize if an answer is unreasonable. They
are still free to answer what they come up with, and can finalize the exercise before getting
feedback from a teacher or a correct answer. In a digital learning material it is very easy to
give (not necessarily good) feedback, and difficult to grant freedom. The feedback comes
from the fact that the users actions is watched at all times and an action can be triggered as
something is wrong. This instant feedback means that they get a second chance to do the
current step and correct themselves. But this is quite different from the real life where you
need to be able to be confident in your solution and solve them without constant help.The
problem with lack of freedom origins from the fact that the digital material is software
that needs to be developed and created to fill the specific need. Every interaction that is
implemented rises the complexity and the time it takes to develop.

As the exercise that is used in this project is complex and contains multiple steps we
had to make sure that it was not too easy to proceed in the game without learning the
mathematical skill. To achieve this and preserve the pedagogical integrity the teaching
material was developed to be as close as possible to the physical exercise. If the interface
gives immediate feedback when input is given, it is easy to guess until the right answer is
found, i.e. apply a “trial-and-error” strategy. However, if the interface does not directly
tell the user when he is right until he has confirmed that the given input is final, the user
can not guess and has to reason.

18

Chapter 3
Approach

In this chapter we will go through the major implementation details of our ITS. Every
relevant aspect will be addressed in depth in its respective subchapter, but first it can be
useful to get a brief overview. The ITS was implemented as an Android application. A
digital version of the Bank Game was created for use as a graphical interface to provide
exercises to the users. Model tracing was implemented and used for error detection. The
FN-DBSCAN clustering algorithm was used to implement a two-step clustering algorithm
for placing the detected errors in groups representing possible misconceptions.

3.1 Development platform

The system was developed as an Android application. This meant we could develop the
prototype with touchscreen interaction in mind, and that made it easier to translate the
exercise to the digital form. Children generally have a lot of experience with touchscreen
devices making them more at home with the platform. On the negative side the Android de-
velopment environment set some limitations to what libraries we could use in our project.
Java is a widely used language with a lot of Al-libraries, but not all of these libraries, de-
pending on language level and performance requirements, are easily used in an Android
application.

As Android applications have limited storage space and connectivity and might be
used by multiple different people (especially in a school environment) we aimed to make
the application ready for utilizing cloud based storage. Saving errors when there is not
any connection and uploading them at a later date is something that we had to take into
account while designing the solution. This also makes it possible, in the future, to use the
device as a gathering device and do all of the computations on a central server (extending
the number of possibilities of languages and libraries that can be used).

19

3. APPROACH

3.2 Process

The application was developed in an iterative manner, where the different parts were tested
and evaluated by real users (both children in the target group and teachers) as a part of the
process.

3.3 Digitalizing the physical Bank Game ex-
ercise

A key part of the project was to convert the analog Bank Game exercise into a digital
version, that can be understood by a computer, without introducing the game too abstract.
A big part of this was to be able to translate the bank exchange action into something that
is easily understood, and works on the limited display area available. As the application
is targeting a younger audience, it is very important that it is usable and not confusing or
too abstract.

3.3.1 Constraints / Eliminating interaction errors

Most of the ITS that have been developed throughout the years (such as the SQL-tutor
and the LISP-tutor) were targeted towards university students and consequently quite ad-
vanced, but still operating well within defined topics [17]. The target audience for the ITS
in this covered work are younger children, typically ages 6-9, and the exercises are based
on the math skills of that age group. This comes with a lot of challenges that usually do not
need to be considered. One example is that the reading capabilities at that age are varying,
which means that textual feedback needs to be limited.

As the system is supposed to act as a teacher we needed to know how the teacher and the
children work with the Bank Game material today. To gather knowledge about the actual
interaction we visited a school and attended a few math classes. Our previous knowledge
was all based on instructions for assignments concerning addition and subtraction exer-
cises and an interview with a teacher. Seeing the interaction between the student and a
teacher gave us access to information that cannot be found in literature. We saw how the
teachers gradually introduced more complex steps for the children which gave them more
responsibility.

We also managed to identify a few different types of feedback from the teacher when
the children did something wrong. Most of them were in some way trying to make the
children find the problem by themselves. Asking the children if they were confident in
their answer was often enough.

3.3.2 The Exercises

The math application created in this project uses a few different exercises. They are
taken from a traditional Montessori material for preschool and first grade students and
use the golden bead material that was originally introduced by Maria Montessori in 1917
in France [15]].

20

3.3 DIGITALIZING THE PHYSICAL BANK GAME EXERCISE

3.3.3 Addition

The addition exercise gives the user (child) two numbers that are supposed to be added
together. The two numbers are both between 1000 and 9999. The first step for the user is
to represent the two numbers with the appropriate configuration of bead representations
(one-beads, ten-beads, and so on). The next step is to bring all the bead representations
together, i.e. the actual adding. If any of the piles contains ten or more of any of the
respective bead representations there there is need for an exchange. (We can not work
with, for example, 12 one-beads, but they need to be converted into 1 ten-bead and 2 one-
beads). Finally the user needs to count the beads and answer with the correct number.

Step 1

The user is asked to represent the number 2596 with the appropriate configuration of bead
representations on the board. The user then grabs different bead representations from the
bank until the board has 2 thousand-beads, 5 hundred-beads, 9 ten-beads, and 6 one-beads.
(The user can add and remove beads freely.)

Step 2

The user is asked to add 4367 beads to the board. The user adds 4 thousand-beads, 3
hundred-beads, 6 ten-beads and 7 one-beads. This means that there is a total of 6 thousand-
beads, 8 hundred-beads, 15 ten-beads, and 13 one-beads. (The user can add and remove
beads freely.)

Step 3

The user is asked to summarize the beads, i.e. perform the addition of the two numbers
from step 1 and step 2. If there are ten or more bead representations of a specific type the
user needs to do an exchange. The user then exchanges 10 of the one-beads with a single
ten-bead. Then the user is supposed to exchange 10 ten-beads with a single hundred-bead.
This means that there now are 6 thousand-beads, 9 hundred-beads, 6 ten-beads, and 3
one-beads. (The user can only do exchanges with the beads).

Step 4

The user is asked to give an answer. The user counts the bead representations and picks the
correct number in a pop-up menu for each type of bead. The user selects “6000”, “900”,
“60” and “3”. (The user can only select the number cards)

3.3.4 Subtraction

The subtraction exercise follows the same pattern as the addition, but instead of adding
the two piles together the second pile is removed from the first pile. This means that the
resulting beads will give the answer. If more bead representations should be removed from
a specific pile than the number of existing bead representations the student needs to do an
exchange by “breaking” a larger bead representations into smaller ones.

21

3. APPROACH

3.4 System design

The solution proposed in this project has four distinct parts. The graphical interface, the
model, the classification module, and the analyzing module. The user interacts with the
graphical interface while doing the exercises. Model tracing is used to detect erroneous
user actions due to misconceptions. When an erroneous action is detected, the state of the
model is saved for further analysis, and when an analysis of the data is started the stacked
errors are picked up by the classification module, which performs a set of clusterings that
assign every error to a set of classes/clusters. With this information the analyzing module
can find which classes that are most prevalent and how the different clusters relate to each
other.

3.4.1 Graphical interface

Figure [3.1] shows the graphical user interface (GUI), and Figure [3.2] shows an overview of
the GUI (exchange box, bank, assignment paper, finish button, taskbar, and game board).

The bank acts as a source of beads; it is possible to take beads from it as well as to
deposit beads in it. The assignment paper shows the current assignment (or exercise) that
is to be solved. The game board is the main game area where beads can be placed and
moved around. The exercises are step based, and the taskbar shows information about
what to do in the current step. The OK button is pressed to proceed to the next step of the
exercise.

Walkthrough of an addition exercise

At the start of an exercise, the user is told by the taskbar to place (or represent) a certain
number on the game board. This is done by dragging beads from the bank. For example, if
the number is 1234, the user must drag one thousand-bead, two hundred-beads, three ten-
beads and four one-beads to the game board. As seen in Figure[3.1] there is one column
per type of bead. This corresponds to the positional system of numbers. However, the user
is free to place beads anywhere on the game board, and is not restricted by the columns in
any way. After this, the user presses the OK button and proceeds to the next step.

The next step entails placing the next number on the board. After this, the user once
again presses the OK button. At this stage, it is time to add the two numbers, and then make
sure that there are less than 10 units of each type of bead representation. This is done by
exchanging bead representations with each other using the exchange box. For example, if
there are 13 one-beads on the game board, then ten of them should be exchanged for a ten-
bead. The exchange box is disabled in all steps except during the exchange step, rendering
it impossible to use.

To perform an exchange, the beads that are to be exchanged from are placed in the
Jfrom-section of the exchange box. Then, the beads that should come in return are dragged
from the bank to the to-part of the exchange box. Next, the perform exchange-button in
the middle of the exchange box is pressed. The beads in the from-part disappears, and
the beads in the fo-part automatically gets placed on the game board. The user repeats
this until there are nine or less units of each type on the game board. Each type of bead

22

3.4 SYSTEM DESIGN

representation corresponds to a position in the positional system, and it is only possible to
have nine or less in each position. When done with this step, the OK button is pressed.

After this, it is time to give a numerical answer. The user counts the amount of each
bead representation amount, and enters a numerical answer using a pop-up numerical an-
swer menu. To be able to provide a correct numerical answer, one must be able to under-
stand how the beads represent numbers according to the positional system, which is one
of the main pedagogical goals of the Montessori Bank Game.

When the user has entered a numerical answer and pressed the “OK button”, the correct
answer will appear, and the user’s answer will be moved next to it so that the user can
compare and see if it is correct or not.

v 01122

Figure 3.1: The graphical interface of the teaching software.

Evolution of the exchange box

The development of the exchange box required a lot of help and we went through several
iterations of design ideas, coding, implementation, and user testing. The part that was
most challenging was how the exchange mechanism was supposed to work. In the real
world, as we had observed in our field studies, the user usually grabbed all of the bead rep-
resentations to be exchanged in one hand (whilst carefully counting them), put them all in
the bank at the same time, and right after grabbed the appropriate amount of “exchanged”
bead representations from the bank. On the virtual game board it is not that easy. As we
decided to work in a 2d-world it was a difficult task, both from a visual and interaction
point of view, to work with multiple objects at the same time. Single object manipula-
tion (such as “drag-and-drop”) is a pattern that is well developed and understood by most
people (not the least children [21]]). The multi-object functionality is not that obvious,
however.

23

3. APPROACH

A B C D

E

Figure 3.2: the different parts of the GUI. A is the exchange box,
B is the bank, C is the assignment paper, D is the OK button, E is
the game board and F is the taskbar.

We found many ways to make the exchange easy, but that also proved to be a part of
the problem. It was important to keep the difficulty similar to the physical version, in
order to maintain the same learning efficiency. Furthermore, the children should learn
why they are doing something and not only how. We want them to learn how to solve the
exercise (i.e. the pedagogical intention), not how to play the game. The final version of
the exchange box has three different parts. A from-box, a fo-box and a button to execute
the exchange. This gives the child the task to drag what it wants to put into the exchange
box (bead representations from the play field) and specify what it wants to get back (from
the bank). When they are satisfied with the exchange situation, they can press the button
to confirm their decision. This also means that it is possible to keep track of the exact
exchange that the user intended to do.

This design enables us to know exactly what kind of exchange the user makes. In the
real world, a person can take bead representations from the exchange box, and also put
bead representations in it as many times as he wants, and in any order. If performed that
way, it can be hard for a computer to keep track of exactly what was exchanged for what.
While it is much easier to “describe” the exchange with the design described above. The
drawback is that the interaction of this design differs from the way exchanges are carried
out in the real world, and the users might not know directly or intuitively how to do an
exchange just from looking at the graphical interface.

24

3.4 SYSTEM DESIGN

3.4.2 Domain Model

In the beginning we wanted to build a strict ACT-R domain model using jACT-R, but we
later decided against this for several reasons. Recall that ACT-R is a very general archi-
tecture, with the goal of imitating how the human mind works. The jACT-R model files
are specified using a very low-level syntax, to adhere to the ACT-R standard. There are
no explicit arithmetic operations available, so everything that is needed has to be created
using chunks and production rules. This makes the addition of two numbers very cumber-
some to code. First it is necessary to add chunks that contain the relations of the different
numbers. For example, one chunk that says that after 1 comes 2, and another that says
that after 2 comes 3, etc. At first we implemented our domain model according to this,
which resulted in a high amount of duplicated code. The model specifications were also
somewhat difficult to read and comprehend, and furthermore, jACT-R is a relatively large
dependency, which decreased the performance of the application.

To get around these issues, we decided to implement our own simpler syntax for de-
scribing models (inspired by ACT-R but not adhering to the strict philosophy of repre-
senting the human mind). We allowed for arithmetic expressions and a much more liberal
chunk access. In ACT-R, chunks need to be explicitly loaded into buffers in order to ac-
cess their slots. This means that you have to construct your models in a very low-level
fashion, as you can only affect a small number of chunks (or facts) at a time. We allowed
for direct access of any chunk slot at any time. This way we could get rid of all the abstract
production rules, needed in the first ACT-R model, that didn’t correspond to user actions
in the real world. With our new system, every production rule corresponds to a concrete
user action, like the picking up of a bead representation, or the press of a button, etc.

Our models are defined using JSON syntax and to get a feel of its structure, a simple
example model is shown in Listing 3.1} The example defines a counter chunk type, that
has a position slot with the default value of 0. There are two chunks, and both are of the
counter type. They are called rarget and current, and the target chunk sets its position slot
to 10. The only production rule is called increment-current, which has one precondition
on the left-hand side and one statement on the right-hand side. To fire the production, the
position slot of the current chunk must be less than that of the target chunk. When fired,
the production rule will increment the position slot of the current chunk by one.

The models are built to reflect what happens on the game board as closely as possible.
When a user picks up a bead from the bank, the model fires a production rule to match
exactly this. When the user releases the bead somewhere, the model fires another cor-
responding rule. The different exercise steps are represented by state slots in the model.
What productions that are legal to fire depend on what state the user currently is in.

Listing 3.1: Example of model
{

"model ": {
"id": "Counter Example",
"declarative ": {
"chunkTypes": [
{
"name": "counter",
"slots ": [

25

3. APPROACH

{
"name": "position",
"value": "0"
}
]
}
I,
"chunks": [
{
"name": "target",
"type": "counter",
"slots ": [
{
"name": "position",
"value": "10"
}
]
}s
{
"name": "current",
"type": "counter",
}
|
b
"procedural ": {
"productions ": [
{
"name": "increment—-current",
"constraints ": |
"current —>position < target—->position"
I,
"actions ": |
"current —>position := current->position + 1"
]
}
]
}

Connecting to user input

We used an event-based approach to connect the domain model to the user input. Every
time the user does something of interest, like picks up a bead representation from the bank
or performs an exchange, an input event is created and sent to the model. Every input
event is coupled to a production rule in the model. The model checks if the preconditions

26

3.4 SYSTEM DESIGN

of the production rule are matched and then fires the production. If the preconditions are
not met, the production will also fire as we still want the game to continue. If a production
rule is erroneously executed, the state of the model will be saved in an error log for further
analysis.

Modularity

To add a new type of exercise, one has to create a new model. Depending on the type
of exercise, one might also need to make changes to the GUIL. The GUI is currently not
modular, which makes it hard to extend the system with new exercises. The input events
created in the GUI are tightly coupled to the production rules of the existing exercise.

When an error occurs

When the model fails to trace the user’s action, an error has been made. At that point in-
formation about the current state of the model is saved for analysis. What is saved depends
on the production rule that is broken and it is specified in the model file. The expert model
is able to know which rule the user attempts to fire as every user input event is coupled
to the firing of a certain production rule. An example of what can be saved could be the
number and type of bead representations currently on the board, or the correct numerical
answer for the specific exercise.

Figure [3.3] shows a symbolic view of a saved error. The production rule that was er-
roneously fired (and thus caused the error) decides which features to save. These features
are represented by A, D, E and F in the figure. Which features to save are defined for each
production rule in the model. The values of the features below the letters in the figure
represent the values of the features. Each error is assigned a unique ID.

Error ID
A[DIE]F

o] 131 2] I/

Figure 3.3: A schematic view over a saved user error. The error
saves the values (here 0, 3, 2 or 7) for the different features (in this
case A, D, E and F) that are defined in the model corresponding
to the current state.

Multiple errors

As an error occurs when the model cannot track the user anymore, everything done by the
user after an initial erroneous action is by definition also an error. Taking care of these
more complex chains of errors was out of scope for this thesis, so only the first error of each
game is saved. One way to tackle this issue could be to, after logging the error, consider

27

3. APPROACH

the erroneous action from the user as a correct one and then continue on with the game. If
the user does something wrong, it is still interesting to see if he acts correctly during the
remainder of the exercise.

3.4.3 Classification module

The errors that are detected are saved to the internal storage of the Android device for
future analysis. When the user initiates the analytic phase all of the collected errors are
first classified, to be able to know how they relate to each other. The point of this is to
group them together based on possible underlying logical structures, or misconceptions.

Making errors comparable

To be able to find which errors that belong to the same misconception there needed to be
some kind of comparison between them. Our first approach was therefore to cluster them.
To be able to do that we needed to compute the distance between two errors. A strength
of clustering is that it can be applied to multiple dimensions, putting a separate feature
in every dimension, which gives the possibility to compare a lot of different features. In
our case, it facilitated the input of numerical information such as the number of beads on
each side of an exchange. However, other kinds of information can be harder to put into
comparable numerical values, such as the current state of the exercise.

Features

There are a number of different errors that the user can make in the application. For
example having the incorrect amount of beads in the left or right exchange box, or putting
the wrong number of beads on the game board. Every error produced by the user has a
specific set of features. Some features exist in all errors, such as what the correct outcome
of the exercise was, while other features are only present in some errors. Which features
that are saved for a specific error are decided by the chunk that the player currently is in,
and is configurable in the model file (cf. Listing [3.1)).

The reason for not always saving the same features for all errors is that all parts of the
game are not always active, like the exchange box for example. As it is disabled until the
exchange step is reached, this should not be considered when saving errors in other steps.
Likewise, the content in the exchange box is not relevant when at the first step, in which
the user is supposed to place a number on the game board. Information about the current
step together with the chunk information is saved to local storage.

Grouping features

A single clustering instance is defined by a number of features needed for an error to be
considered in the instance. The system gathers all the errors that contain all of the included
features and clusters them, labeling the error with a specific class, or cluster id, for that
specific feature-set. Consequently, an error will not be present in all clusterings, but only
in the ones that it actually can contribute to. The result will be a number of different
feature-sets with a number of errors each (i.e. clusters).

28

3.4 SYSTEM DESIGN

Choosing a clustering algorithm

The first implementation of the classification module used the k-means clustering algo-
rithm (see Section 2.2.1). It is a simple algorithm and the only challenge was to find out
how many clusters that were actually present in the data (the k-value). This meant that the
clustering would have to be done for several different values of k, so that the best fitting
clustering could be selected.

We first tried to do a simple implementation of the elbow method by looking at the
derivative of the error distance for the different k-values. The results were not too con-
vincing and we decided that there was a need for a better approach. Instead we went for
the Gap statistic (see Section 2.2.1) to get a better and more formalized version of the
elbow method. The Gap statistic gave us more reasonable k-values, but was a lot slower
than our first implementation. The reason for this was that each k-value that was investi-
gated required a number of uniform reference clusterings computed before the algorithm
converged. As we had several different clusterings to do, one for each feature, the scala-
bility for this approach was very bad. Another problem was that because of the k-means
indeterministic nature we got some inconsistent results on consecutive runs.

This made us try a different clustering algorithm, the DBSCAN-algorithm. It only
required a single clustering computation, could figure out the number of clusters without
running additional computations (compare with the Gap statistic of the k-means algorithm)
and showed an overall better run time performance for our specific use case. First we
used the regular DBSCAN algorithm, but then changed to the fuzzy variant FN-DBSCAN
instead to enable for errors to have different degrees of cluster membership (See Section
2.2.3).

Making clustering work

Our first approach to clustering was to put all the information about each error-state into
an multi-dimensional vector and try to get information out of it. The basic tests that we ran
showed that it was hard to get valuable data out of the clustering due to large differences
in a few variables would be enough to counteract the potential proximity in the others.
Furthermore, it is known that the effectiveness of clustering diminishes with the number
of dimensions used, which is commonly referenced to as the curse of dimensionality [12].

To get around this problem we decided to divide the features of the error into specific
feature-groups and cluster each feature-group on its own. This was done by creating a
number of predefined cluster instances. With this we could classify the features with a
higher precision and each error would be classified into a number of clusters. The inter-
esting part is what can be extracted from this information. One can for example look at
the size of the different clusters and check if one cluster contains significantly more errors
than others. It is also possible to compare errors classified into the same clusters.

Clustering instances

The clustering algorithm is run several times using different features. Each such instantia-
tion is hereafter referred to as a cluster instance. The clustering is done by several different
instances that all create a different set to cluster from. Every clustering instance gets access

29

3. APPROACH

to the full list of errors and can extract all of the features (such as the number of thousand-
beads on the game-board or the number of one-beads in the right exchange box) that it
needs to do its clustering. If an error is missing any of the features that a specific instance
needs for the clustering it is omitted from that instance. The instances can also preprocess
the data if they need to cluster on something that is not directly stated in the error (such
as the total number of beads in an exchange box) or if the data needed to be normalized.
When the clustering is done, every error (or data point) is assigned a cluster, which can
also be referred to as its “class” of the error. This means that during the clustering process
each error will gain a list of the different classes that it is part of, one for each clustering
instance that is applicable. The instances make it easy to add, remove and modify what
features the system uses for clustering. An overview of the clustering instance system can
be seen in Figure[3.4]

Error ID

D F . .
3] 7] Iustermpg\; énstance

]
Al E Al E

Figure 3.4: Each instance goes through all of the saved errors and
picks out the ones that have the relevant features. For every such
error it selects the needed features and generates a data point in
the clustering for it.

What instances should be used?

The distributed clustering system (in contrast to cluster on everything) means that we have
to take an active role in deciding what the system should cluster on. Preferably this is
something that, in the future, can be evaluated using a machine learning algorithm to find
which features that actually belong together. For this project we did not have any data to
base or train the system on, and thus we relied on a couple of educated guesses. Some of
the things that we decided to cluster on was:

e Current board content (number of one, ten, hundred, and thousand-beads on the
game board).

* Current exchange box content (number of one, ten, hundred, and thousand beads in
both of the exchange boxes before an exchange).

¢ Answer to the current exercise.

* Number of beads in left and right exchange boxes respectively.

30

3.4 SYSTEM DESIGN

3.4.4 Analytics module

To analyze the errors, several different approaches were tried. Here we briefly discuss our
initial approaches, and then go through the final approach in more detail.

Initial approach

Our first approach to get some information out of the clustering was to look at similarities
between different errors, i.e. if they had been assigned the same clusters. How similarly
two different errors have been classified could possibly give some information about their
cause. If they are very similar it might indicate that the cause of the errors is related to the
approximate feature values of the clusters that the errors have in common.

Another approach was to use a Bayesian network, where every clustering was a node
and every cluster was a specific value of that node. However the only data that we could
train on was data that we had created ourselves (as we cannot tell for sure what miscon-
ceptions a real person might have), and that means that we could only detect the specific
misconceptions that we decided to train it on. A big challenge was that we had no real
world training data describing the actual misconceptions.

Final approach

After some consideration we turned to another solution. We decided to make a second
clustering, using the output of the first clustering step as input (See Figure Here
the clustering was done on the classes (clusters) that they belonged to. The distance be-
tween the different data points was now dependent on how large percentage of clusters
they shared. As the DBSCAN algorithm had proven to be effective we decided to try it
again. A threshold was set up for how large percentage the data points needed to share to
be considered to be neighbours.

Fuzzy clustering

After some testing with the standard DBSCAN algorithm, we decided to also evaluate a
fuzzy clustering approach, so we switched to FN-DBSCAN. Our idea was that the degree
of membership would give us more info in the classification module, which then could be
used in the analytics module to make it easier to find patterns.

To do that we needed a new way to measure the distance (See Section 2.2.3) between
the different classified data points. Each data point would now have a two-dimensional
array of class membership, i.e. for each clustering instance it would belong to multiple
classes with varying degrees of membership. To measure the distance we decided to com-
pare each clustering instance separately, and for each cluster in that instance we would sum
up the differences in distance each of the instances. This means that if both data points
have a membership of 0.6 of cluster A they would be considered identical. If one have a
membership of 1 and the other O they would be regarded as being the maximum distance
away from each other.

The score for each cluster is averaged and added up with the score from the other
instances which gives a value that can be seen as a distance. It is important to note that
the membership value being similar does not automatically mean that the points are close

31

3. APPROACH

together. The most obvious example of this is when the membership is O for both data
points, which only tells us that they are not related to that point in any way. The point
of this measurement, however, is to group points that have a similar membership profile.
If two points are very similar in their relation to all of the clusters in an instance, they
follow the same pattern and should therefore be considered to be close to each other. This
is illustrated in Figures [3.5]and [3.6]

- \ / N - \
Data Point A Clustering Instance Data Point B
h I I g h I I .
0.75 Cluster A 0.72
| | 1 |
0.5 Cluster B 0.4
I I I I
0 Cluster C 0.1
L L

Figure 3.5: Example of comparing two data points. The two
points are not identical, but have similar membership to the dif-
ferent clusters. Therefore the points will have a short distance be-
tween them (i.e. they will be “close” to each other).

p \ / \ - N
Data Point A Clustering Instance Data Point B
h I I g b I I g
0.2 Cluster A 0.9
1 1 | |
0.8 Cluster B 0.4
| | | 1
0 Cluster C 0.7
| I | I

Figure 3.6: Another example comparing two data points. Here
there are big differences in the membership values which leads to
the points having a long distance between them.

Determining parameters

Even FN-DBSCAN has its set of parameters that have to be provided for it to be able to do
a good clustering. The minimum cardinality (See Section 2.2.3) to determine core points
and the maximum neighbour distance are some of the things that need to be provided for
the algorithm to work. These values can be estimated based on different properties such as
the number of data points and the min/max value, but there is no correct answer. No set of
parameters will ever give a false result — they will just show the clustering from a specific

32

3.5 COMBINING THE MODULES

perspective, although some are more useful for extracting information than others. The
challenge is to find a perspective that gives us the information we are searching for, as we
want to see if our approach could be viable. No formal method to determine the values of
the parameters was available, so we had to do some educated guesses (See Section 4.3.2
for the chosen values).

3.5 Combining the modules

When the errors are analyzed, the modules work together as seen in Figures [3.7)and [3.§]
First, the user errors are retrieved from storage. Then, for each clustering instance, the
errors that have the required saved features (which depend on the production rule that was
broken at the time of the error) are clustered and assigned a cluster. This is done once for
each clustering instance. Then it is time for the second clustering pass, as seen in Figure
3.8 Here all the user errors are clustered based on what clusters they were assigned in
the first clustering step. This will create clusters of user errors, that relate to possible
misconceptions which might have caused the errors. Note that each can be assigned to
several clusters in the classification step; one for every clustering instance at the most.

1
| Game state

, features
1

i :
1
1 Required game X
! [
, state features .
i i
! 1
1 1

o
j=
58
@
@
@

Input errors
to clustering
instance

=

Run clustering on
errors with required
features

Clustering instance

Figure 3.7: The classification step. This is done once for every
clustering instance that is defined for the model.

33

3. APPROACH

ble misconceptions

]
[| Tt T e e e 1
e | ro _
[' !
(<IN ' !
= [1
2y Yo !
I3 b !
01 ' !
e, oy 1
2 1 1
o1 1
= oy 1
U] 1 1
] 1
e e __ |||||||||||| 1
o
2
59
- ®
2@
7]
s>
@
= 3
535
2
2
S04
=203
Oawo
L e e e
("
B
1 E
-
B
oW
D
1
[N . W . . N A |
fm———— A
]
]
i
]
]
I B
12
_.muﬁ
@33
)
i g

The analytic step. This is done once after the classi-

Figure 3.8

fication step.

34

Chapter 4

Evaluation

In this chapter we go through the results found when running the system in various ways.

4.1 User test

To get an indication of the usability of the digital Bank Game application and collect some
error-data for testing purposes we conducted a user test at a Montessori school in Hjarup,
Sweden. The test was conducted on a set of students with varying experience of the bead
materials. The interaction worked fine, with the only exception being the exchange step.
This was somewhat expected, as described in the Evolution of the exchange box section in
Chapter 4 (Approach). 1t did not lead to any further changes in the interface, as the ease
of use of the system was deemed acceptable. The error data collected gave us some kind
of insight to what the system might receive in the future.

The user interaction part of the application has been evaluated continuously throughout
the project by a set of small and quick user tests. The feedback has been used to improve
and completely rework certain parts of the system.

4.2 Testing with DBSCAN and simulated mis-
conceptions

To test the system, we wanted a user with a known misconception to play the game, so that
we could try to find the misconception after looking at the errors made. As it is hard to
know exactly what misconceptions a human has, we decided to create a computer player
for the game. This computer player plays directly into the model and thus circumvents the
graphical interactive user interface of the game. The computer player plays according to
pre-scripted strategies/rules which means that we can introduce known misunderstandings

35

4. EvALUATION

into the student model. The data collected therefore has a known cause that we could try
to recover using our implemented DBSCAN model, and thereby evaluate our solution.
The simulated player does three different kinds of mistakes:

* It sometimes exchanges five ones for one ten-bead, and five ten-beads for one hundred-
bead etc.

* It sometimes exchanges ten ones for ten ten-beads, etc.

* It sometimes presses the ready-button without putting the correct amount of beads
on the game-board.

These are all artificial misconceptions, that do not necessarily exist in the real world.
We assume that they do not have to be realistic, as we are not so much interested in the mis-
conceptions themselves, as we are in valuating our model by finding similarities between
their resulting errors.

4.2.1 Clustering misconceptions

The second clustering of the data points, using the classes as distance, gave some interest-
ing results when using errors from the computer player. For this specific error the player
was programmed to do two different mix-ups in the exchanges, sometimes it would: (i)
exchange 10 one-beads for 10 ten-beads, instead of 1 ten-bead, etc, and (ii) exchange 1
ten-bead for 5 one-beads (instead of 10 one-beads).

Table 4.1: Statistics for the first test of 20 game sessions

Number of game sessions: | 20
Collected errors: 107
Number of misconceptions: | 1

4.2.2 After 20 games

Table[. I|shows how many errors were found after running 20 game sessions with the com-
puter player, and that one possible misconception was found. Table#.2]shows the different
clusters after the classification step (first clustering step), with the different feature classes
of the data points listed. For example, “num(left exch) vs. num(right exch)” represent the
points that belong to cluster #0 of that specific feature. The different classes are structured
as follows:

* num(left exch) vs. num(right exch) contains two values, the amount of bead types in
the two exchange boxes. For example, if there are 10 ten-beads in the left exchange
box and one hundred-bead in the right, this feature will be [10,1].

* Board content has four values: the amount of beads of the different bead types that
are located on the game board. If there is one thousand-bead on the board and
nothing else, this feature will be [1,0,0,0].

36

4.2 TeESTING witH DBSCAN AND SIMULATED MISCONCEPTIONS

Table 4.2: Distribution of classes after the classification step with
20 game sessions played.

| Class | Points | Total percentage | Clustering percentage

num(left exch) vs. num(right exch) (67)
0 57 53.3% 85.1%
1 10 9.3% 14.9%
Noise 0 0.0% 0.0%
Exchange box contents left vs. right (67)
0 20 18.7% 29.9%
1 17 15.9% 25.3%
2 20 18.7% 29.9%
Noise 10 9.3% 14.9%
Board content (107)
0 84 78.5% 78.5%
Noise 23 21.9% 21.9%
ExerciseAnswer (107)
0 14 13.1% 13.1%
1 19 17.8% 17.8%
2 11 10.3% 10.3%
Noise 63 58.9% 58.9%

Table 4.3: Data for the only possible misconception found after
20 game sessions with the computer player.

Misconception #0

Points: 56
Percentage of points: 52.3%
Class percentage | of total | of clustering | relative
num(left exch) vs. num(right exch) : 0 100.0% 53.3% 85.1% 1.87
Board content : 0 92.9% 78.5% 78.5% 1.18
ExerciseAnswer : -1 57.1% 58.9% 58.9% 0.97
Exchange box contents left vs. right : 2 35.7% 18.7% 29.9% 1.91
Exchange box contents left vs. right : 0 33.9% 18.7% 29.9% 1.81
Exchange box contents left vs. right : 1 30.4% 15.9% 25.3% 1.91
ExerciseAnswer : 1 17.9% 17.8% 17.8% 1.01
ExerciseAnswer : 2 12.5% 10.3% 10.3% 1.21
ExerciseAnswer: 0 12.5% 13.1% 13.1% 0.95
Board content : -1 7.1% 21.9% 21.9% 0.32

» ExerciseAnswer has four values, the correct amount of each bead type to be given
as an answer. If the correct answer is 2432, this feature will be [2,4,3,2].

» Exchange box contents left vs. right contains eight values, the number of bead types
in the left and right exchange boxes, respectively. If there is one of each bead type

37

4. EvALUATION

in the left exchange box, and two of each bead type in the right, this feature will be
[1,1,1,1,2,2,2,2].

The “Points” column shows the number of points belonging to that cluster. “Total
percentage” is the value of the “Points” column divided by the total number of points (in
this case 107, see Table4.1)). The “Clustering percentage” column is the number of points
in this cluster divided by the sum of the points for this feature.

The one misconception cluster found after the final clustering step is shown in Table
4.3] The sample size is still small and that is probably why only one of the injected errors
are showing up as a misconception cluster. The percentage column shows how many
percent of the data points in the cluster that have the specific feature class. The “of total”
shows the percentage of the total data points that have that specific feature class. The
“of clustering” shows how big percentage of the total points with that actual feature that
have the specific feature class (as all the points do not have the same features, e.g., points
without exchange-box data). The “relative” data shows how the percentage of points with
the specific feature-class relates to the total, i.e., “percentage”/“of total”. 70% might be
a high number for a cluster, but not if the average for all the points is 80%. The feature-
clusters that have class “-1” are the noise-clusters. These are a bit special as they are not an
actual feature-cluster, but rather a collection of points that do not fit into any other class.

Table 4.4: Statistics for the first test of 40 game sessions

Number of games: 40
Collected errors: 206
Number of misconceptions: | 3

4.2.3 After 40 games

Analysis

After 40 test games, we found 206 errors and three possible misconceptions, as seen in
Table 4.4} Table [4.5] shows the classes after the classification step, structured the same
way as Table[d.2]

The found misconception clusters are shown in Table 4.6] Table and Table [4.§]
Misconception cluster #1 was relatively big with 46.1% of total points and two smaller
(12.6% and 7.3% of total points). Now both of the errors added by the simulation can be
seen. The “Misconception #1” contains “num(left exch) vs. num(right exch): 0” as well
as multiple “exchange box content” features. “Misconception #2” has a high presence
of the other “num(left exch) vs. num(right exch)” feature cluster and the “exchange box
content 1”. There are a set of different “ExerciseAnswer” features present in both of the
misconceptions, but the importance of these can be lowered as the distribution of them
is rather uniform, i.e., none of them are particular to this specific misconception. At the
same time we have gotten a third cluster that does not correspond with any of the input
errors (Table {.6). This means that the algorithm sometimes will create clusters out of
noisy points.

38

4.3 TESTING WITH SIMULATED MISCONCEPTIONS AND FN-DBSCAN

Table 4.5: Distribution of classes after classification step, after 40
test games run.

| Class | Points | Total percentage | Clustering percentage |

num(left exch) vs. num(right exch) (127)
0 96 46.6% 75.6%
1 31 15.0% 24.4%
Noise 0 0.0% 0.0%
Exchange box contents left vs. right (127)
0 32 15.5% 25.2%
1 17 8.3% 13.4%
2 31 15.0% 24.4%
3 33 16.0% 26.0%
Noise 14 6.8% 11.0%
Board content (206)
0 185 89.8% 89.8%
Noise 21 10.2% 10.2%
Exercise Answer (206)
0 38 18.4% 18.4%
1 24 11.7% 11.7%
2 11 5.3% 5.3%
3 16 7.8% 7.8%
4 13 6.3% 6.3%
5 17 8.3% 8.3%
Noise 87 42.2% 42.2%

Table 4.6: Data for the first misconception, with 40 test games

run.
Misconception #0
Points: 15
Percentage of points: 7.3%
Class percentage | of total | of clustering | relative
ExerciseAnswer : 0 100.0% 18.4% 18.4% 543
Board content : 0 100% 89.8% 89.8% 1.11

4.3 Testing with simulated misconceptions
and FN-DBSCAN

The data containing the simulated misconceptions was also used to test the fuzzy clustering
approach. These results are shown here.

39

4. EvALUATION

Table 4.7: Data for the second misconception, with 40 test games

run.
Misconception #1
Points: 95
Percentage of points: 46.1%
Class percentage | of total | of clustering | relative
num(left exch) vs. num(right exch) : 0 100.0% 46.6% 75.6% 2.15
Board content : 0 98.9% 89.8% 89.8% 1.10
ExerciseAnswer : -1 41.1% 42.2% 42.2% 0.97
Exchange box contents left vs. right : 3 34.7% 16.0% 26.0% 2.17
Exchange box contents left vs. right : 0 33.7% 15.5% 25.2% 2.17
Exchange box contents left vs. right : 2 31.6% 15.0% 24.4% 2.11
ExerciseAnswer : 0 15.8% 18.4% 18.4% 0.86
ExerciseAnswer : 5 11.6% 8.3% 8.3% 1.40
ExerciseAnswer : 1 10.5% 11.7% 11.7% 0.90
ExerciseAnswer : 3 7.4% 7.8% 7.8% 0.95
ExerciseAnswer : 2 7.4% 5.3% 5.3% 1.39
ExerciseAnswer : 4 6.3% 8.3% 8.3% 0.76
Board content : -1 1.1% 10.2% 10.2% 0.11
Table 4.8: Data for the third misconception, with 40 test games
run.
Misconception #2
Points: 26
Percentage of points: 12.6%
Class percentage | of total | of clustering | relative
Board content : 0 100.0% 89.8% 89.8% 11.1
num(left exch) vs. num(right exch) : 1 100.0% 46.6% 75.6% 2.15
Exchange box contents left vs. right : 1 57.7% 8.3% 13.4% 6.95
Exchange box contents left vs. right : -1 42.3% 6.8% 11.0% 6.22
ExerciseAnswer : 0 26.9% 18.4% 18.4% 1.46
ExerciseAnswer : 1 23.1% 11.7% 11.7% 1.97
ExerciseAnswer : -1 23.1% 42.2% 42.2% 0.55
ExerciseAnswer : 3 11.5% 7.8% 7.8% 1.47
ExerciseAnswer : 4 11.5% 6.3% 6.3% 1.83
ExerciseAnswer : 5 3.8% 8.3% 8.3% 0.48

4.3.1

The input parameters of FN-DBSCAN

The input parameters minCard and € (See Equation 2.2 in Section 2.2.3) of FN-DBSCAN
greatly affect the results of the clustering. The minCard parameter influences what points
are core points, and € decides whether two pointsa re neighbors or not. In table we
can see the results of the resulting clusters found. The clusters found vary in both size and

40

4.3 TESTING WITH SIMULATED MISCONCEPTIONS AND FN-DBSCAN

content depending on the input parameters.

e 05101512025
minCard
2.5 16 | 14 | 7 7 1
5.0 9 | 10] 6 6 1
7.5 5 5 4 4 1
10.0 5 5 4 4 1
12.5 2 3 3 3 1
15.0 1 1 1 1 1
17.5 1 1 1 1 1
20.0 1 1 1 1 1

Table 4.9: Number of clusters found usign FN-DBSCAN for vary-
ing values of minCard and € .

4.3.2 Results

To see how the results can look like, we take a closer look at the results of one particular in-
put parameter configuration, namely minCard = 12.5 and € = 0.5. The results are shown
in Tables [4.10, 4.11) and .12l We can see that two clusters containing“‘misconceptions”
were found, and that about 74% of the data points were considered noise. One of the clus-
ters consists of 33 core points and 4 border points, while the other cluster consists of 13
core points. Recall that core points have a membership degree of 1.

In Table d.TT we see that misconception 0 only consists of errors that have names that
include “increment-first-done-error” and “increment-second-done-error”. This means that
all the errors originated in a violation of the preconditions of the “increment-first-done”
and “increment-second-done” production rules. These rules are fired when the user presses
the OK button after placing the first and second addend on the game board, so this cluster
represents the artificial misconception in which our computer player does not understand
that it needs to place the correct addends on the game board before advancing to the next
state.

Misconception 1 consists of errors with names containing “perform-exchange”, as seen
in Table .12] The errors are named based on what production rule violation that caused
the error; in this case it is “perform-exchange”. It turns out that all of these errors originate
from the same simulated misconception, namely that 5 pieces of a certain bead type can
be exchanged for one bead of the next column, e.g., five one-beads for one ten-bead. This
means that this is a meaningful cluster.

The fact that the errors originated from the same misconception can be checked by
looking at the raw error data. It is worth noting that not all of the errors caused by this
misconception were clustered into this cluster, and that the other misconception regarding
exchange was not found (the one where 10 one-beads could be exchanged for 10 ten-beads).
However, he clusters look different given different values of minCard and €, as stated
above.

41

4. EvALUATION

Input size 189 data points
Noise found | 139 data points (73.5%)
Clusters found 2
Cluster id | Core points | Border points
0 33 4
1 13 0

Table 4.10: Results of FN-DBSCAN clustering with minCard =
12.5and € = 0.5

4.4 Analyzing the user data

We also tried to run the analysis on the data gathered from the real world test that we
carried out. Unfortunately, we were not able to distinguish any misconceptions from the
errors. There are probably several different reasons for this, such as the data set being too
small and also that it was made by several different test subjects that did not make any
consistent errors (and were not sharing the same misconceptions). The system is designed
to analyze a single user that uses it for a longer time (provides a lot of data), rather than
multiple short-time sessions by several users.

42

4.4 ANALYZING THE USER DATA

Misconception 0

Data point ID Membership
increment-second-done-error-4 | 0.33333333333333326
increment-second-done-error-68 0.611111111111111
increment-second-done-error-26 | 0.8333333333333333
increment-second-done-error-115 | 0.9444444444444442
increment-second-done-error-14 1

increment-first-done-error-152

increment-first-done-error-178

increment-second-done-error-120

increment-first-done-error-119

increment-first-done-error-88

increment-first-done-error-19

increment-second-done-error-61

increment-first-done-error-114

increment-first-done-error-97

increment-second-done-error-125

increment-first-done-error-124

increment-second-done-error-8

increment-first-done-error-25

increment-second-done-error-80

increment-first-done-error-13

increment-first-done-error-67

increment-first-done-error-75

increment-first-done-error-60

increment-second-done-error-153

increment-second-done-error-83

increment-first-done-error-82

increment-second-done-error-76

increment-second-done-error-31

increment-second-done-error-20

increment-second-done-error-56

increment-first-done-error-30

increment-first-done-error-79

increment-first-done-error-0

increment-first-done-error-162

increment-first-done-error-3

increment-first-done-error-55

increment-first-done-error-7

el e e e e s e e e e e e e e e e e e e e e e e e N e e e e e e N

Table 4.11: The first cluster of the FN-DBSCAN result.

43

4. EvALUATION

Misconception 1

Data point id Membership
perform-exchange-error-71
perform-exchange-error-17
perform-exchange-error-128
perform-exchange-error-65
perform-exchange-error-87
perform-exchange-error-12
perform-exchange-error-59
perform-exchange-error-18
perform-exchange-error-24
perform-exchange-error-129
perform-exchange-error-123
perform-exchange-error-23
perform-exchange-error-66

el e e e e e e e e e

Table 4.12: The second cluster of the FN-DBSCAN result.

44

Chapter 5

Discussion

As seen in the Evaluation chapter, we were able to use clustering to group the basic simu-
lated misconceptions. However, it is worth noting that even though errors can be grouped
together, we do not know anything about their possible underlying cause or misconcep-
tion. We only know that the errors are similar in nature, but we do not necessarily know
what caused the user to make these mistakes. The user might be working in a seemingly
structured way, using a system that is logical to him, but not formally correct as such.

Grouping errors together is still useful, as it is possible to show examples of errors to
a human expert or teacher, who might have an easier time seeing the underlying structure
of the errors. If a teacher knows that a group of errors belong together in a certain way,
he could probably figure out what they have in common, by looking at some of them. He
could also have access to the results of the clustering algorithm, but in a simplified format,
so he does not have to worry about the workings of clustering. The violated production
rule could be shown for each error example, telling the teacher what was done wrong in
that case. If the teacher is to correct a found misconception, he has to be able to understand
the output of the algorithm, and the misconception itself. Otherwise he would not be able
to teach his student how to correct it. This challenge exists in bug libraries too, as one
has to either make sense of the misconceptions found after doing real world surveys, or be
aware of what misconceptions exist if using a domain expert to create the bug library.

The misconceptions that we were able to find used very specific input parameters to
the clustering to be found. These parameters most definitely depends on the domain, user
data and how much data is collected. If the system is supposed to give automatic feed-
back, and not only data to be analyzed on a case to case basis, the determination of the
clustering parameters needs to be automated. We have shown in this report that is indeed
a possible strategy, but that requires that the parameters can be decided in a feasible way.
The algorithm needs to distinguish between cases with and without misconceptions, and
with what confidence that can be said with the current amount of data.

Regarding the user tests of the system, the primary goal of the tests were not to gather
usable error data. The focus was to try to find possible interaction problems in the user

45

5. Discussion

interface that were hard to understand. If many users had problems with a certain part of
the graphical interface, then we probably had to redesign it. We did, however, record user
input data while the users played the game even if they did not play more than around two
or three sessions per user. Unless there is some major arithmetic structural misunderstand-
ing taught to several of the students of that school, which is very unlikely, it is therefore
improbable that we were to find misconceptions of the users. We are also not sure if they
actually have have any misconceptions what so ever with regard to the arithmetical domain
used in the exercise.

The approach used in this thesis is relatively easy to implement, compared to creating
a huge bug library to cover all the faulty inputs possible. We did not need to create a bug
library at all, and we did not need to know anything about the possible misconceptions
beforehand. As implementation time can be a major bottleneck when creating Intelligent
Tutoring Systems, avoiding the creation of complicated bug libraries can be very valuable.
One could of course implement a less complete bug library, covering only some of the
most common user misconceptions, which would shorten the needed development time.
The main problem with this approach are the manually defined clustering instances and
parameters. Even though we do not explicitly specify what errors themselves should look
like, we still specify clustering instances and some parameters manually. That brings us
the problem of how the instances should look like, how many they should be, and so on.
If this could be solved, this approach could become an alternative to the bug library in the
future.

Another thing that is specified manually is what data to save for each error. Recall
that not all user actions and game states are necessarily saved for every error that is made.
The end result of the entire misconception finding system is dependent on these manual
configurations, which currently have no metric of how good they are. Until a way of
evaluating the clustering instances is found, this approach has no direct guarantee that
it will find a certain number or type of misconceptions. Also the manual configuration
requires domain expert knowledge which is what we have been trying to avoid all along
as far as it is possible.

46

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We implemented a simple Intelligent Tutoring System (ITS) for basic arithmetics, targeted
to children. The system used model tracing to keep track of user errors, and a clustering
approach to group errors together in order to find underlying misconceptions, which meant
that we did not need a bug library for the domain model. The system was tested using a
simulated user, and could identify two injected misconceptions. However, as the clustering
algorithm needs to be configured by a domain expert, there is no guarantee that all or most
misconceptions can be found. Further work on the clustering approach is needed before it
can be applied in practice.

Our solution, tracking errors without the use of a bug library, showed that using a
model tracing tutor and some special interaction with the model made it possible to get
information about the state when an error occurs. It requires a relatively complex model
that might not fit every use case, but in the realm of mathematics it works fine. The main
drawback with the bug library, that it created manually, is also addressed. After the domain
model is created, and reasonable clustering instances have been provided, our system could
find errors that is not previously know to experts. This is might not be a problem for
a simple domain, as in this case, but when scaling up the complexity finding all of the
possible errors might be a difficult task.

The analyzing module where the errors are classified and the misconceptions are cat-
egorized shows some promising results, but needs more work to be fully applicable. The
clustering also uses a lot of parameters that need to be estimated using evaluation of real
data, and fine tuning is required. If there was a way to calculate good enough values of
these parameters, this approach could probably become an alternative to the bug library.
We also designed the system so that it is possible to separate the analytics from the data
gathered in this context. With our ITS,new models and user interfaces can be created and
use the same classification and analytics modules, which gives the system some degree of

47

6. CONCLUSIONS

modularity.

6.2 Future Work

There are multiple areas of our solution that can be focused and improved upon. We have
listed some of our thoughts here.

Apply the system on a different domain

To improve testing of the system, it could be applied on a different domain that is more
complex. Using a new domain and other types of misconceptions could probably also give
valuable insights as to how the system could be improved.

Evaluation of cluster instances and parameters

The cluster instances are manually configured. The effectiveness of them is currently not
evaluated, but such an evaluation would help to develop a more generalized system. The
minCard and e parameters to the FN-DBSCAN algorithm also need evaluation for a better
overall performance. This is the most important future work to be done.

Better scripting language for model files, Lua?

To increase extensibility, an established language (i.e. Lua) should be used to configure
domain models. Using an established scripting language increases the modularity of the
system greatly, and will remove need for learning a domain specific syntax.

Specify clustering instances in configuration file

The clustering instances are currently defined using source code, but for quicker testing
and more modularity they could be specified using a configuration file. This is something
that should be defined together with the model, to make it easier to extend the system.

48

Bibliography

[1]

[2]
[3]

[4]

[5]

John R Anderson. Act: A simple theory of complex cognition. volume 51, page 355.
American Psychological Association, 1996.

John R Anderson. A central circuit of the mind. Cell Press, 2008.

John R Anderson and Kevin Gluck. What role do cognitive architectures play in
intelligent tutoring systems. pages 227-262. Mahwah, NJ: Erlbaum, 2001.

Raluca Budiu and John R Anderson. Interpretation-based processing: a unified the-
ory of semantic sentence comprehension. Hauppauge, N.Y., 2004.

Chire. Cluster analysis with DBSCAN on a density-based data set. 2011.
https://commons.wikimedia.org/wiki/File:DBSCAN-density-data.svg, Licensed un-
der the Creative Commons Attribution-Share Alike 3.0 Unported license:
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

Chire. Cluster analysis with k-means on a gaussian-distribution-based data set.
2011. https://commons.wikimedia.org/wiki/File:KMeans-Gaussian-data.svg, Li-
censed under the Creative Commons Attribution-Share Alike 3.0 Unported license:
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

U.S.A.R.L. Dr. Robert A. Sottilare, U.M. Dr. Arthur Graesser, U.M. Dr. Xiangen Hu,
and U.S.A.R.L. Dr. Heather Holden. Design recommendations for intelligent tutoring
systems: Volume 1 - learner modeling. Design Recommendations for Intelligent
Tutoring Systems. U.S. Army Research Laboratory, 2013.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol-
ume 96, pages 226-231. Association for Computing Machinery, 1996.

Reva Freedman. What is an intelligent tutor? Elsevier, 2000.

Kenneth R Koedinger and John R Anderson. Illustrating principled design: The early
evolution of a cognitive tutor for algebra symbolization. volume 5, pages 161-179.
Taylor & Francis, 1998.

49

BIBLIOGRAPHY

[11] J.B. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Fifth Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley, University of California Press, 1967.

[12] RB Marimont and MB Shapiro. Nearest neighbour searches and the curse of dimen-
sionality. volume 24, pages 59-70. IMA, 1979.

[13] George G. Mitchell and Colm P. Howlin. Intelligent learning systems where are they
now? Research and Development Laboratory CCKF Ltd., 2009.

[14] Antonija Mitrovic. Modeling domains and students with constraint-based modeling.
In Advances in intelligent tutoring systems, pages 63—80. Springer, 2010.

[15] Maria Montessori. The advanced montessori method. volume 1. Frederick A. Stokes
Company, 1917.

[16] Hyacinth S Nwana. Intelligent tutoring systems: an overview. volume 4, pages 251—
277. Springer, 1990.

[17] Valerie J Shute and Joseph Psotka. Intelligent tutoring systems: Past, present, and
future. Armstrong Lab Brooks AFB TX Human Resources Directorate, 1994.

[18] Nils Taatgen, Christian Lebiere, and John Anderson. Modeling paradigms in ACT-R.
Cambridge University Press, 2006.

[19] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of
clusters in a data set via the gap statistic. Wiley-Blackwell, 2000.

[20] Kurt VanLehn. Student modeling. In Foundations of Intelligent Tutoring Systems.
Erlbaum, 1988.

[21] Radu-Daniel Vatavu, Gabriel Cramariuc, and Doina Maria Schipor. Touch interac-
tion for children aged 3 to 6 years: Experimental findings and relationship to motor
skills. volume 74, pages 54-76. Elsevier, 2015.

[22] B.P. Woolf. Building intelligent interactive tutors: Student-centered strategies for
revolutionizing e-learning. Student-centered strategies for revolutionizing e-learning
Series. Elsevier Science, 2010.

50

INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTATIONSDAG 2015-08-28

EXAMENSARBETE Using Clustering in a Cognitive Tutor to Identify Mathematical Misconceptions

STUDENTER Johan Andersson, Hannes Johansson

HANDLEDARE Elin Anna Topp (LTH), Magnus Haake (LUCS), Axel Holtas (Knowit Mobile Syd)

EXAMINATOR Jacek Malec

Digitala lirare som f6rstar varfor det blir fel

POPULARVETENSKAPLIG SAMMANFATTNING Johan Andersson, Hannes Johansson

Idag ar det vanligare an nagonsin med digitala laromedel. Fragan ar om en
digital larare kan forsta varfor elever gor vissa fel? Och gar det att upptacka
fel som aldrig tidigare uppstatt? Losningen kanske finns i sa kallad klustring.

Att anvinda datorer for utbildning ir ingenting nytt,
och med dagens teknologi kan de fungera mer som en
lirare 4n ett liromedel. Idag sa finns det program som
haller reda pi vad eleven kan, vad denne behéver 6va
mer pa, och som baserat pa detta sedan kan planera vad
som bor ldras ut. Nir uppgifterna blir mer komplexa si
ricker det inte att bara kolla om svaret blir ritt for att se
vad eleven kan. Kanske ir det ett enda steg i 16sningen
som stiller till problem, eller sd dr det en specifik aspekt
av uppgiften som gor att personen har svirare for den.
For att kunna veta var eleven har svarigheter maste man
undersoka dennes sitt att 16sa problem nirmare.

Ett sitt att gora detta r att bygga upp en modell av
uppgiften och anvinda den som mall f6r vad anvindaren
far lov att gora. Modellen beskriver hur man lser de
relevanta uppgifterna pa ett korreke sitt. Om man
har en sddan modell kan man hilla reda pa vad eleven
faktiske gor nir denne ger sitt svar till olika uppgifter.
Man kan se det som att modellen innehaller vissa olika
“drag” som gar att utfora, och vad som krivs for att
utféra dem. Nir modellen uppticker att ett felaktige
drag gors (négot som ej ir definierat i modellen) si vet
man att eleven gjort nigot fel. Man vet diremot inte
exakt vad for fel det var.

Vi skapade en egen dynamisk 16sning for att for-
soka hitta missuppfattningar hos elever, utan att skapa
en hirdkodad samling regler som beskriver felaktiga

drag. Vi byggde en digital lirare som anvinder sig av en
Montessoridvning for forskole/ligstadiebarn. Ovningen
bygger pd nagot som kallas “gyllenepirlor’materialet,
vilket innehéller pirlor som representerar kolumner i
positionssystemet. En enkel pirla for ental, tio pirlor i
en stav representerar tiotal, och sa vidare. Detta gar ut
pa att eleverna ska ldra sig om hur man adderar och sub-
traherar tal, och hur positionssystemet fungerar. Varje
parltyp motsvarar en kolumn i positionssystemet.

For att hitta missuppfattningar hos elever sparar vi
undan de drag som inte matchar nigot korrekt drag
enligt modellen. Sedan kan systemet gora en analys
dir den tar fram vilka olika egenskaper hos uppgiften
som har varit inblandade i felen. Om det finns nigra
samband mellan en mingd fel kommer applikationen
att klumpa ihop dessa med hjilp av klustring. Man
kan da se att vissa av de drag som utférs hor ihop med
varandra och eventuellt beror pi en bakomliggande
missuppfattning hos eleven. For att rida bot pa sjilva
missuppfattningen hos eleven kan man sedan visa
nagra av de felaktiga dragen for elevens lirare, som kan
anvinda informationen for att se hur eleven tinke fel.

Digitala liromedel kommer nog bara bli en allt st6rre
del av véra utbildningar, och med bittre och bittre
verktyg sa kommer fler elever att kunna né upp till sin
fulla potential. Vem vet, kanske ir alla ldrare datorer i
framtiden?

	2015-45 Framsida
	Tom sida
	2015-45 Rapport
	2015-45 Rapport
	Introduction
	Goal
	Contributions
	Outline

	Background and related work
	Intelligent Tutoring Systems
	General structure
	Constraint based tutors
	Cognitive Tutors
	Model Tracing
	ACT-R
	Handling errors and misconceptions
	Student models

	Clustering
	k-means clustering
	DBSCAN clustering
	Fuzzy clustering

	The Bank Game
	Cognitive aspects

	Approach
	Development platform
	Process
	Digitalizing the physical Bank Game exercise
	Constraints / Eliminating interaction errors
	The Exercises
	Addition
	Subtraction

	System design
	Graphical interface
	Domain Model
	Classification module
	Analytics module

	Combining the modules

	Evaluation
	User test
	Testing with DBSCAN and simulated misconceptions
	Clustering misconceptions
	After 20 games
	After 40 games

	Testing with simulated misconceptions and FN-DBSCAN
	The input parameters of FN-DBSCAN
	Results

	Analyzing the user data

	Discussion
	Conclusions
	Conclusions
	Future Work

	Bibliography

	Tom sida
	2015-45 Popvet

