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Abstract

The problem to be solved in this project is to distinguish two signatures from
each other, with help of machine learning techniques. The main technique used
is the comparison between two signatures and classifying if they are written by
the same person (match) or not (no-match). The binary classification problem
is then tackled with a few alternatives to better understand it. First by a
simple engineered feature, then by the machine learning techniques as logistic
regression, multi-layer perceptron and finally a deep learning approach with a
convolutional neural network.

The evaluation method for the di↵erent algorithms was a plot of true positive
rate (sensitivity) versus false positive rate (fall-out). The results of the alterna-
tive algorithms gave a di↵erent understanding of the problem. The engineered
feature performed unexpectedly well. The logistic regression and multi-layer
perceptron performed similarly. The main results from the final model, which
was a max-pooling, convolutional neural network, were a true positive rate of
96.7 % and a false positive rate of 0.6 %.

The deep learning approach on the signature verification problem shows
promising results but there is still room for improvement.
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1 Introduction

Signatures have been used for centuries [2] to verify the identity of a person.
In today’s society signatures are used as a formal and important step in an
agreement, but the correctness of the signature is not questioned before any
legal issue arises.

This project will investigate if it is possible to connect a person to his/her
signature. This will be done with di↵erent approaches for signature verifica-
tion, using machine learning algorithms. The signatures in this project will be
recorded by an Anoto pen, which measures coordinates, angles, pressure and
time. The signatures will be written on ordinary paper compared to many
previous signature verification methods, where digital tablets have been used.

The focus in this project will be on a deep learning algorithm, which is built
on convolution. But even some simpler methods will be tried on the way. The
deep learning model in this project is built on di↵erent non-linear layers, that
will process the input data. The last layer will do a classification to decide if two
signatures belong to the same person or are written by two di↵erent persons.

Deep learning is a form of artificial neural network, which has been compared
with the human brain and it’s development [23]. Biological neural networks were
also a starting point in the research field of artificial neural networks in the 1960s
[30], [31].

”... the infant’s brain seems to organize itself under the influence of waves
of so-called trophic-factors ... di↵erent regions of the brain become connected
sequentially, with one layer of tissue maturing before another and so on until
the whole brain is mature” [12].

An artificial neural network seems to have a similar organization as the hu-
man brain. A distinctive characteristic property for the human brain is that it
remains relatively adaptable until late years, compared to many other animals.
This enables the human brain to get a longer training period of the biological
neural network on the changing features in the environment.

The idea of deep learning is to have layers of neurons, which will do a non-
linear transformation of the input signal. Those neurons will together build a
network and like the human brain the network will be trained to make specific
decisions. The algorithm in this project will be trained to make one decision,
distinguish if the two signatures are written by the same person or not.

1.1 The Signature Verification Problem

This section is intended to provide su�cient information about the general sig-
nature verification problem. It will discuss di↵erent approaches of signature
verification and in Section 1.3 the approaches used in this project will be pre-
sented.
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1.1.1 On-line and O↵-line Signature Verification

There are two kinds of signature verification, on-line and o↵-line verification.
O↵-line verification is when the information from a picture of the signature is
the only information that is available. This means that there is no information
about how the strokes were drawn, in which order and at what velocity. In on-
line signature verification the information about how the signature were drawn
is available.

The on-line and o↵-line techniques di↵er a lot regarding the information
belonging to the object, take for example an artist painting a painting. An
on-line approach could be to place a video camera and look at each individual
stroke from the paint brush and in the end see the entire painting, compared to
the o↵-line approach, which could be to just look at the final picture.

In this project on-line signature verification is used. The information that
is available in this project about how the signature was written are the pen tip
coordinates, pressure, velocity and angles.

1.1.2 Di↵erent Classes of Forgeries

The forgeries can be separated into di↵erent classes, depending on how it was
made. The classes can be 1 :

• 1: Forger has no previous knowledge.

• 2: Forger knows the name of the original writer.

• 3: Forger can observe the written signature on a piece of paper.

• 4: Forger has got access to the signature on a piece of paper and traces
the signature.

• 5: Forger has got access to the on-line information of the signature.

The first form of a forgery is where the forger has no knowledge what so
ever. An example of this would be to just give a pen and a paper and say forge
a signature. In an authentication system this can be considered to occur when
a user enters the wrong user-name and tries to authenticate it with their own
signature. This is the class of forgery tried out in this project.

The second class of forgery is when the forger has access to the name of the
person they are trying to forge. Then some assumptions can be made on how
the signature looks, for example, which letters it might contains.

But it is not as easy as in the third class where the forger has access to
the o↵-line version of the signature. In this case the forger knows how the
picture of the signature looks and can copy the signature. But the forger has
no information about how the signature was written.

In the fourth class the forger can trace the signature, this means the image
of the forged signature probably will look very similar to the original signature.

1 This is the extended definition that was used by Mattisson [42].
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The final class of forgeries is when the forger has some access to the on-line
information of the signature. This class could probably be divided into di↵erent
sub-classes, dependent on which on-line information the forger has access to.

Another aspect to remember is that the quality of the forged signature can
vary depending on how artistic the forger is or how much the forger has practiced
on writing the signature in advance. This will probably a↵ect how easy it is to
detect that a signature is a forgery.

Depending on which type of forgery is used, the signature verification process
can take di↵erent forms.

1.1.3 Feature Extraction of the Signature

In the signature verification problem the features can be extracted in di↵erent
ways. An engineered feature is some measurement conceived and made by
a human. For example, the first approach to solve the signature verification
problem in this project was made by an engineered feature, see Section 7.4.
The engineered feature was to compere the di↵erence between the coordinates
of two signatures. This is in contrast to the other models, which used ma-
chine learning features, where the features not were made by the human
hand. Instead learning algorithms were developed and the machine found the
appropriate features on its own.

1.2 Related Work

This section discusses related work and the di↵erences between the related work
and the project presented in this report. This is an interesting section, because
it can give valuable information about how to analyze the approach carried out
in this project and also give hints of future improvements that can be made.

1.2.1 Master Thesis - On-line Signature Verification using a Multi-
judge Strategy

The work in On-line Signature Verification using a Multi-judge Strategy [42] is
also about on-line signature verification, but the approach di↵ers from the the
techniques used in this project. The equipment used in [42] was a digital tablet
(a Wacom pad), compared to ordinary paper which is used in this project.
The measured information about the signatures, where only the coordinates
and their time stamp, and not as in this project where also information about
angles and pressure are available.

In [42], the verification was made by multiple engineered features and not
by machine learning techniques.

There is also a di↵erence in how the features were applied to the signatures.
In [42] each feature was used as a gate, and if the signature was accepted as
genuine by the first feature-gate, the next feature-gate was check, and so on.
For a signature to be accepted as genuine it should be accepted as genuine by
all the engineered feature-gates. In other words, the features were applied to

3



the signature in sequential order, rather than in parallel. Logically this looks
like this,

System judgement = feature

1

&feature

2

& · · · & feature

n

, (1)

where system judgment is the finally decision, and feature 1 to n are all the
engineered features that were checked and together with a threshold (as in
Equation 2 later in Section 2.1) formed a gate. In this project, di↵erent features
will be applied to the signature in parallel, and each feature will be assigned a
weight, compared to the method in [42].

The collected database in [42], contained individual engineered templates
for each genuine signature and some e↵ort was made to calculate individual
thresholds for all the feature gates belonging to each signature and this process
was not automatic. In the project presented in this report, a real signature
can be compared with an arbitrary signature, that is, the signature that should
be checked. In this way there are no individual, engineered thresholds for the
di↵erent persons’ signatures.

The engineered features that were used in [42] were, for example:

• The number of strokes, if the number of strokes exactly matches the num-
ber of strokes in the template in the database (in this project it has been
seen that the number of strokes often are constant, but there are excep-
tions).

• The time. A forgery had usually a very di↵erent time profile.

• Stretching. In [42] it was observed that if the signature was scaled in only
one dimension, it often was a sign of being a forgery.

In [42] it was discussed that there are two kind of variations, namely inter-
class and intra-class variation. Where inter-class variation is the di↵erences
between di↵erent classes of genuine signatures and intra-class variation is the
variance within a persons signature, it can for example be described with scaling,
rotation and shearing. In [42] stability was discussed, which is when the intra-
class variation is small, and it has been observed that the stability varies a lot
between di↵erent writers. This means that some writers are more suited for
signature verification than others.

In the project presented in this report the features will be found during
training, by the artificial neural network and all the features are handled as a
black box. In this project the di↵erent features are not investigated or analyzed
further. In general it is di�cult for a human to understand the reason for the
output of a neural network, a machine learning technique that is easier for a
human to understand the reason of its outputs, is decision trees, which is another
common machine learning technique.

There are di↵erent classes of forgeries, see Section 1.1. In this project the
forgeries could be said to be in class 1, because here is only genuine signatures
distinguished from each other. However, in [42] forgeries of class 3 and 4 were
used.
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To summarize, some of the positive and negative aspects of the two di↵erent
methods can be:

• The final machine learning technique used in this project will find more
features than in [42]. It will also find features on di↵erent global levels,
see Section 3.4.4.

• The features in this project are applied in parallel and weighted, which
may be better, due to the structure of the problem.

• The verification process is more automated in this project compared to
the method used in [42], where each personal template were engineered.

• One advantage in [42] is that the outcome from the algorithm is easier for
a human to understand, compared to the output from a neural network.
This can give an insight of further development of the final algorithm in
this project.

• The equipment used in this project gives the writer of the signature, a
more genuine signature signing experience. Since the signature is written
on an ordinary piece of paper and not on a digital tablet. Additionally
there is more information (pressure and pen-orientation) recorded about
the signature.

• It is not possible to compare the result of those two methods, because the
database was based on di↵erent classes of forgeries.

1.2.2 Other Master Theses

There has also been some more work done on on-line handwriting recognition
(HWR) by [44], [24], [19], [49] and [8]. But HWR has a completely di↵erent goal
than signature verification has. In HWR the goal is to recognize the di↵erent
characters of the handwritten words and not to verify who has written it. In
[44] the work was focused on recognizing cursive handwriting. Where the whole
word was written in one stroke, and the challenge was to separate the characters
from each other. In [19] Cyrillic handwriting recognition was carried out with
the help of support vector machines. The Cyrillic alphabet includes the Russian,
Serbian, Ukrainian and Bulgarian alphabets. In [49] edit distance and linguistic
knowledge were used to improve the HWR and in [8] a database for the Arabic
language was created.

1.2.3 International Signature Verification Competition - SVC2004

In 2004 the first international Signature Verification Competition (SVC2004)
was organized, and is described in the report SVC2004: First International Sig-
nature Verification Competition [58]. The objective was to allow researchers to
compare the performance of di↵erent signature verification systems systemati-
cally based on common benchmarks. In this case two di↵erent databases and
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bench-marking rules were used. The organizer made it clear from the begin-
ning that the event should not be considered as an o�cial certification exercise,
since the databases used in the competition were only acquired in a laboratory
rather than in a real environment. The performance of the system can vary
significantly, dependent on how the forgeries are provided and dependent on
the language. For example if the signature is written in an Arabic language it
is written from right to left compared to the western approach left to right, this
can results in di↵erent features [58].

The competition in [58] contained two tasks. The two tasks used di↵erent
databases and the information available in the databases were a bit di↵erent.

• Task 1: only information about the coordinates and the time stamp of
each data point were available.

• Task 2: the coordinates, the pen orientation, the pressure and the time
stamp of each data point were available.

It is interesting for this project to compare the data collecting procedure
with the procedure used in this competition, to be able to analyze and improve
this in future work.

In the competition, each task had a database with 100 sets of signature data.
Each set contained 20 genuine signatures from one signature contributor and 20
skilled forgeries from at least four other contributors. Of the 100 sets of signature
data, the first 40 sets were released (25 October 2003) to the participants for
developing and evaluating their systems before submission (31 December 2003).
So the development set, consisted of 40 sets. The remaining 60 sets, were
released on the competition day, and the algorithms were tested on those data
sets. This is called secret test set, and means that the participants do not
have access to the test set before the contest. The set will then consist of unseen
samples to the algorithm.

For privacy reasons the contributor was advised not to use their real signa-
ture which they use in daily life. Instead they designed a new signature and
practiced writing it su�ciently, so that it remained relatively consistent over
di↵erent signature instances, just like a real signature. The contributors were
asked to do the signatures in a way so it should be consistent both in spatial
and in dynamic features. This approach to collect ”toy” signatures, solved some
problem that arises due to ethical and social implications, see Section 2.2. The
signature contributor gave first 10 signatures, and controlled that they were
satisfied with it. One week later they gave 10 more. For the skilled forgeries,
each data contributor got a software, where the viewer could see the genuine
signature and even replay the writing sequence of the signature on the screen,
the forgeries were in other words of class five, see Section 1.1.2. They were also
told to practice writing the signature before they did the forgeries. The sig-
nature were collected with a digital tablet (Wacom Intuos tablet). There were
15 teams for Task 1 and 12 teams for Task 2 (from Australia, China, France,
Germany, Korea, Singapore, Spain, Turkey and United States). For both the
tasks, it was team 6 from Sabanci University of Turkey that got the lowest error
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rate, for task 1 they got 2.84% and for task 2, they got 2.89% [58]. Those results
are of interest for future work of the project presented in this report.

It is interesting that they got better results on task 1, where there were less
information about the signature available.

As implied in the report SVC2004: First International Signature Verifica-
tion Competition [58], the reason for this can be, that the additional dynamic
information may not be useful and can instead lead to impaired performance.
But the author of this project think there is a possibility that this can depend on
the quality of the measured parameters, or the the quality of the database. But
this is an interesting subject to analyze further in future work of this project,
and in case of impaired performance, optimize the classifier to work better on
the additional information.

To see the complete result, see [45].

1.3 Goal of the Project

The main goal in this project is to implementation some form of a deep learn-
ing algorithm and investigate how well it perform on the signature verification
problem.

This can be divided into sub goals.

• This involves investigation into the subject of the signature verification
problem and applying di↵erent solutions to the problem.

• To apply di↵erent solutions a code framework will be developed

• Neural networks with deep architecture, will be analyzed and a practical
solution will be developed.

1.4 Overview of Thesis

Firstly the background surrounding the signature verification problem is given.
The handwritten signature is explained as a biometric parameter and a discus-
sion about what this means is provided.

Later machine learning will be explained and important concepts that later
systematically leads to the explanation of the models and algorithms used in
this report. Thereafter as the complexity increases, artificial neural networks
theory will also be explained.

The MINIST Classification problem is used to exemplify machine learning. It
was the tutorials for this data set that was the starting point for the development
of the models used in this project.

Later on, neural networks are explained further with examples, history about
deep learning and results from contests on the subject.

After the theoretical part has been described the practical part begins by
defining the software and hardware used in the project. Continuing with the
methods, results and discussion.

Finally the report ends with suggestions of future work and a conclusion.
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2 The Signature as a Biometric Parameter

The ability to recognize a person plays a crucial rule in a number of appli-
cations. Some examples are, regulating internal border crossings, restricting
physical access to important facilities like nuclear plants or airports, controlling
logical access to shared resources and information, performing remote financial
transactions or distributing social welfare benefits [33].

A person can be recognized based on three basic methods:

• What he/she knows. The person has exclusive knowledge of some se-
cret information, for example password, personal identification number,
or cryptographic key [33], [34].

• What he/she possesses extrinsically. The person has exclusive posses-
sion of an extrinsic token, for example identification card, driver’s license,
passport, physical key or personal device such as a mobile phone [33], [34].

• Who he/she is intrinsically. This is based on the person’s identity and
his/her inherent physical or behavioral traits. This is known as biometric
recognition [33], [34].

Formally, biometric recognition can be defined as the science of establishing
the identity of an individual based on the physical and/or behavioral character-
istics of the person either in a fully automated manner or in a semi-automated
manner [33], [34].

Biometric recognition o↵er a natural and more reliable solution for identity
recognition, compared to what knowledge-based and token-based person recog-
nition does. For example a password can be guessed, shared or forgotten by the
user and a token can be forged, stolen or lost. But at the same time biometric
recognition open up for new questions and problems, that are discussed further
in Section 2.2.

To achieve a secure system, it is important not only to use mechanisms
like passwords and tokens, but also use biometric recognition and the di↵erent
methods can form multiple layers of security.

The biometric parameters are categorized as physical biometrics and be-
havioral biometrics [34], [33].

The physical biometric parameters are related to the shape of the body, for
example DNA, ear, face, fingerprint, hand geometry, hand vein, iris, palm print,
retina and odour [34].

The behavioral characteristics are related to the pattern of behavior of a
person, for example typing rhythm, gait, handwriting and signature. Then there
is voice, which is a combination of both physical and behavioral biometrics [34].

The primary advantages signature verification has over other types of bio-
metric technologies is that the handwritten signature is already the most widely
accepted biometric for identity verification in daily use. It is the most common
used in connection with contracts and agreements. If it was possible to get a
good signature verification system, with a low error rate, this should open up
new possibilities to verify the correctness of the daily use verification procedure.
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2.1 Biometric Recognition Systems in General

A biometric recognition system is essentially a pattern recognition system that
operates by acquiring biometric data from an individual, extracting a feature set
from the acquired data and comparing this feature set against a set of templates
in the database. The biometric system can operate in either verification mode
or identificarion mode [34].

• Verification: the system validates a person’s identity by comparing the
captured biometric data with a template (or templates), that has earlier
been stored for this person. The template usually is found in the database
by a PIN (Personal Identification Number). Verification typically answer
the question ”Does this biometric data belong to the person that this person
claims he/she is? [34].

• Identification: the system recognize a person by searching through the
database of templates. Identification typically answer the question Whose
biometric data is this? [34].

The generic term recognition will in this context stand for both verification
and identification [34], and is useful to use when it is not necessary to separate
the two concepts apart.

A biometric recognition system consist of both an enrollment phase
and a recognition phase [34], see Figure 1.
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N
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User's identity or
“user not identified”

Figure 1: Block diagrams over how an usual biometric recognition system works.
The system consist of tree phases and they are enrollment, verification and
identification. The picture is based on [34].

10



The enrollment phase is used when collecting data to the database. The
biometric data is collected and checked by a quality measure, to ensure that
the data is good enough. Then features are extracted from the data and stored
in the database.

In the project presented in this report, the raw-data were saved without first
performing the feature extraction. The raw-data is the data that are collected
before any pre-processing or feature extraction are done, see more of those steps
in Section 7. In the project presented in this report, the pre-procession and
feature extraction are a step in the development of the models, so it was more
practical to save the original raw-data in the data base. The reason to why the
feature extraction usually is performed in the enrolment phase, is to minimize
the storage requirements. But in the development phase it is more convenient
to save the original raw-data.

The verification function f takes an input feature vector, X

Q

, and the
claimed identity I, and determines if f(I,X

Q

) belongs to class c

1

or c

2

, where
c

1

indicates true and c

2

indicates false. Typically, X
Q

is matched against X

I

,
which is the biometric template corresponding to user I. This can be written
as

f(I,X
Q

) =

(
c

1

if S(X
Q

, X

I

) � t,

c

2

otherwise,
(2)

where S is a function that measure the similarity between X

Q

and X

I

, and
t is a predefined threshold. The value of S(X

Q

, X

I

) is called a similarity
or matching score between the biometric measurements of the user and the
claimed identity. Later in Section 3.3.4 will a soft threshold be discussed, which
is dependent on the similarity score.

The identification function g instead takes the maximum of the templates
that is true under the condition if S(X

Q

, X

I

) � t. This can be written as

g(I,X
Q

) =

(
I

k

if max
k

{S(X
Q

, X

Ik)} � t, k 2 {1, . . . , N},
user not identified otherwise,

(3)
whereX

Ik is the biometric template corresponding to identity I

k

in the database
and t is the predefined threshold.

Especially for the behavior based biometric parameters, the data in the
database has to be collected in intervals, because the parameters can change
over time. [7]

2.2 Ethical and Social Implications

This section will discuss the ethical and social implications that arises when the
signature verification problem is handled.

When it comes to capturing and storing signatures as a biometric param-
eter, this will of course raise some questions regarding the ethical and social
implications. Since a biometric parameter is a personal quality, in this case
a behavioral biometric, the questions that arises are concerning personal and
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individual rights. The signature can be considered as personal data that only
the person in question should have access to. Looking back at Figure 1 there is
a system database which contain all the signatures. In this case the signature
can be considered as a sophisticated password and something you would like to
protect. In general the principle ”the less you know, the harder it gets” applies.

When looking at an article published by the Data Protection Working Party
of the European Union an interesting argument arises. The article refers to a
directive which states that ”... personal data must be collected for specified,
explicit and legitimate purposes and not further processed in a way incompatible
with those purposes.”, [20]. There are two main fears expressed in this directive.

Firstly that personal data might be collected for unspecific, implicit and non-
legitimate reasons. An example of this would be to collect a lot of signatures
without a specific motive. Then after the data was collected decide what to do
with it. An example of a non-legitimate reason would be to collect signatures in
the objective of committing crimes. Some examples of possible legal violations
would be forging of signatures in the intent of identity theft and financial or
insurance fraud.

Secondly the data might be collected in a way that is compatible to the
purpose but later on be used in a completely di↵erent way. This second fear is
known as function creep where the continued development of the technology
stretches beyond its original intent. [22] Especially when the technology starts
to invade the privacy of individuals.

2.2.1 Important Security Measures for Biometric Systems

The European Data Protection Working Party has identified some important
factors that acquires consideration [20] regarding security measures. Whenever
biometric data is processed (i.e stored, transferred, features are extracted or
compared) there is a risk that the personal privacy is breached. This could be
done by the data being destroyed, viewed by a third party or altered.

In a social point of view it is important to understand where the security
weaknesses of a biometric system lies. First of all, during the enrollment phase
when the biometric data is collected. The data should be saved with su�-
cient encryption in a database. If somehow a signature which was unauthorized
was associated with a person who is authorized then the unauthorized person
was just able to steal the authorized identity. So during the enrollment phase
checking the identity of the person is highly important.

When considering that errors can occur in the algorithm (i.e. someone is
falsely rejected or falsely accepted) this can be of real problems for the individual
at hand. For example if the system falsely reject a person based on his/her
signature the trust in the technology could be so high that the rejection is
counted as ”indisputable” evidence. Since all biometrical systems are designed
to reduce the risk of errors this creates the illusion that the system is always
correct.
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3 Theoretical Background and Introduction Re-
garding Methods used in this Thesis

In this section the theoretical background to the techniques that are used in
this project will be described. It will start with an introduction to the field of
machine learning and then systematically lead to the techniques that are used
in the developed models of this project.

3.1 Introduction to Machine Learning

A computer program is considered to be learning if it improve its performance
on future tasks after making observations about the world. Why would we want
our program to learn? There are di↵erent reasons, for example,

• The programmer can not anticipate all possible situations the program
(agent) might find itself in [48].

• The programmer can not anticipate all changes over time [48].

• Sometimes the programmer has no idea of how to program a solution by
themselves [48]. For example a human is great at recognizing faces of fam-
ily members, but it is considered highly di�cult to construct a computer
program to do the equivalent, without using learning algorithms.2

Machine learning can be categorized into three broad classes, depending on
the type of feedback the system has.

• Supervised Learning:
The program is given example input-output pairs and learn a function
that maps input to output [48]. This is the technique used in this project,
see more on this in Section 3.2.

• Unsupervised Learning:
The program has to find a structure in the input on its own. The most
common unsupervised learning task is clustering [48].

• Reinforcement Learning:
The computer interacts with a dynamic environment in which it must
perform a certain goal, and a teacher telling it, if it has come close to the
goal or not. An example is learning to play a game by playing against an
opponent. The program learns from a series of reinforcements, rewards or
punishments [48].

Between supervised and unsupervised learning is semi-supervised learning,
which uses a combination of the two methods [48].

2 The work in this project is based on algorithms used in image recognition. Then trans-
lated and modified for the signature verification problem.
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3.2 Learning From Input-output Pairs - Supervised Learn-
ing

Supervised learning is about learning a function from a collection of input-
output pairs, this is also called inductive learning [48].

Mathematically the input-output pairs can be described as

D = (x
1

, y

1

), (x
2

, y

2

), · · · , (x
N

, y

N

), (4)

where x
i

, i 2 (1, N), is some data belonging to each example and y

i

, i 2 (1, N)
is generated by some unknown function y

i

= f(x
i

). The supervised learning is
about discovering a function h(x) = ŷ that approximates f(x) = y.

To measure the accuracy of the function h(x), a test set is used, which is
separated from the training set. The function h(x) is said to generalizes well
if it correctly predict the output, that is if ŷ = y is true, for the new examples
in the test set. If the output y is a finite set of values, the learning problem is
called classification (see Section 3.3) and if the output only has two classes it
is a boolean or binary classification problem. If the output is a continuous
number the learning problem is called regression.

The error rate is then calculated as,

error rate =

P
N

i=1

g(y
i

, ŷ

i

)

N

, (5)

where,

g(y
i

, ŷ

i

) =

(
1 if y

i

6= ŷ

i

0 otherwise.

To have two separate sets, a training set and a test set, is the simplest way to
measure the error rate in an accurate way. However, in some cases this method
can give an inaccurate measurement. This may happen if there is not enough
samples available in the database or if there is not a good distribution and spread
of the samples when it was partitioned into the two separate sets. But there are
other ways to predict the performance, for example k-fold cross-validation,
where the whole data set of examples is divided into k complementary subsets.
The error rate is then measured as in Algorithm 1, where in each round the
model is trained on all but one of the sets. Then the trained model is tested
on the subset that was left out during training. The error rate is then given
by taking the root mean squared error rate on all the separate measurements.
The problem described with the conventional method there only two separate
sets are used, can be avoided with cross validation, due to that the error rate is
measured as a mean value.

In this project is the conventional method used and not cross-validation.
This is because the final model in this project took very long time to train. But
to avoid the problems described above the samples in the total database were
shu✏ed randomly before the set was divided into the separate sets, see more on
this in Section 7.3.
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Algorithm 1 Calculate error rate with help of k-fold cross-validation

for each subset

i

2 subsets do
h

i

 train model on set, (subsetC
i

\ subsets)
error

i

 measure error rate on subset

i

with model, h
i

end for
error rate  

PN
i=1 errori

N

The reason to keep the test and training set separated is that it is not
desirable to let the test set influence the training. If it happen anyway, it is
called peeking and it can invalidate the model, because it is not certain the
model then will generalize well to unseen examples.

But it is possible to let the performance on unseen data guide the training,
and help to select a good model, but in this case a third separate set has to be
used, a validation set.

The validation set can be used to ensure that the model does not overfit or
is over trained. A model is over trained if it has been trained to even detect
patterns in the noise of the training data.

(a) Data set A, model C. (b) Data set A, model D.

(c) Data set B, model C. (d) Data set B, model D.

Figure 2: Data set A is the training set, which model C and D are trained on.
Data set B is a test set with unseen examples. As can be seen in the figures is
that model C generalizes better to the unseen examples in data set B. Model D
has higher complexity than moden C, because the model is based on a higher
degree polynomial than model C. In this case is the model D over-fit.

For example, assume some input data, which output are linearly dependent
on the input, but due to the noise it does not fit a straight line exactly, see
Figure 2a. Then there probably is a high degree polynomial that fit just this
input data much better, see Figure 2b. But this high degree polynomial will
probably not generalize well to unseen examples, this is shown in Figure 2d,
compared to the linear model, shown in Figure 2c.

To get a good model is both about model selection also called hyper-
parameter optimization and optimization. In the example with the poly-
nomial, the model selection is about which degree of the polynomial to choose
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and the optimization is about minimize the error from the polynomial to the
input data, that is, choose the coe�cients of the polynomial.

In machine learning problems one often talks about loss function and not
error function. This is because there are di↵erent types of errors. For example,
a classifier that classifies email as spam or non-spam, it is considered worse to
classify a non-spam as spam. Because this could result in a user missing an
important email. In the signature verification problem it could be worse to
classify a forged signature as a genuine, because this might imply that a forger
has succeeded. So in machine learning, the utility of the output is often used
instead. The empirical loss is then the average over all examples.

In many cases it is the cost function that are minimized instead (see Equa-
tion 15), this function measure both the empirical loss and the complexity of
the model. In the example with the polynomial above, which was shown in
Figure 2, the complexity is the degree of the polynomial. Model C in Figure 2,
has low complexity, compared to model D in the same Figure, which has higher
complexity.

3.3 Classification

In this section the theoretical background behind the classifier used in this
project is given. The section starts with some easier case in lower dimensions
which are easier to understand, this will serve as a motivation to the reader and
will then be generalized to the more advanced techniques used in this project.

3.3.1 Linear Regression in One Dimension

The linear function that is dependent on one variable, a straight line, with input
x and output y, has the form y = b+w

1

· x. The value of y will depend on the
value of b and w

1

, and they will be called weights of the function. The vector
⇥ = [b, w

1

] is then the parameter-vector or weight-vector to the model.
If some input data x is given, one can form a hypothesis that this data

follow a linear function. The hypothesis can be defined as, h
⇥

(x) = b+w

1

·x =
ŷ (where ŷ is the prediction of y). The hypothesis can also be viewed as a
hypothesis space, when di↵erent values of the parameters will give a space of
di↵erent hypothesizes.

The task to find the values of the parameter-vector, when h

⇥

(x) is the linear
function, that fits the input data x best is called linear regression. This can
be done by finding the weights that minimize the empirical loss function. In
this problem it is traditional to use the squared loss function, L

2

. The function
to be minimized will then be

Loss(h
⇥

) =
NX

j=1

(y
j

� (b+ w

1

· x
j

))2, (6)

where a summation over all training examples N are done. The optimal weight
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vector is then found by

⇥⇤ = argmin

⇥

Loss(h
⇥

) (7)

In this example the weight space, is defined by b and w

1

, that span a plane
in two dimension. The loss function can then be graphically shown in a space,
where Loss(⇥), b and w

1

span a room in three dimensions. This function is
convex, which means that there is only one minimum and that is the global
minimum. This applies for all linear regression problem with a L

2

loss function.
It is easy to find the solution of Equation 7, it is just to set the partial derivatives
of Loss(mathbf⇥) to zero and solve the equation, that is,

(
@

@b

P
N

j=1

(y
j

� (b+ w

1

· x
j

))2 = 0
@

@w1

P
N

j=1

(y
j

� (b+ w

1

· x
j

))2 = 0.
(8)

However, for the general problem the loss function will be minimized by
gradient decent (where the loss function not necessarily is convex). This
procedure is described by Algorithm 2, where ↵ in the algorithm is the learning
rate. The learning rate can be a fixed number or decay over time. In the later

Algorithm 2 Update rule for gradient decent

⇥ any point in the weight space
loop until convergence:

for each ✓

i

2 ⇥ do
update rule of ⇥ // for example the one in Equation 9

end for
end loop

case convergence is guaranteed, compared to the first case where the solution
can oscillate around the minimum. If ↵ is a fix, small value, the algorithm will
come closer to the minimum, but it will take longer time.

The procedure in Algorithm 2, that cover one training example has the
update rule,

✓

i

 ✓

i

� ↵

@

@✓

i

Loss(⇥). (9)

The simple update rule in Equation 9, will be reused in several more complicated
models in later sections and is worth to remember.

With the linear function dependent on one variable and the loss function,
L

2

, the partial derivatives in Equation 9 can be written as

@

@✓

i

Loss(⇥) = 2(y � h

⇥

(x))
@

@✓

i

(y � h

⇥

(x)),

and with h

⇥

(x) = b+ w

1

x this gives
(

@

@b

Loss(⇥) = �2(y � h

⇥

(x))
@

@w1
Loss(⇥) = �2x(y � h

⇥

(x)).
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The update rule in this case is then given by
(
b b+ ↵(y � h

⇥

(x))

w

1

 w

1

+ ↵x(y � h

⇥

(x)),
(10)

where the constant ”2” has been included in ↵.
For N training examples it is the sum of each individual loss that should be

minimized. The update rule for N training examples is given by,

✓

i

 ✓

i

� ↵

X

all examples

@

@✓

i

Loss(⇥). (11)

With loss function, L
2

, and h

⇥

(x) = b+ w

1

x gives,

(
b b+ ↵

P
N

j=1

(y
j

� h

⇥

(x
j

))

w

1

 w

1

+ ↵

P
N

j=1

x

j

(y
j

� h

⇥

(x
j

)).
(12)

This update rule uses a summation over all training examples and is called
batch gradient descent. This may be very slow, because for each training
step (i.e. each weight update), it has to loop through all training examples and
it may be many steps until convergence.

But there is an alternative method called stochastic gradient decent,
where one training example is chosen randomly in each step. The update rule
for stochastic gradient decent in Algorithm 2 is then identical to Equation 9.
With loss function L

2

and h

⇥

(x) = b+ w

1

x, this gives

(
b b+ ↵(y

s

� h

⇥

(x
s

))

w

1

 w

1

+ ↵x

s

(y
s

� h

⇥

(x
s

)),
(13)

where s = index of one randomly chosen training example.
A combination of batch gradient descent and stochastic gradient decent, is

mini-batch stochastic gradient descent (MSGD), which is like stochastic
gradient decent, but instead of taking just one example, it take some more, a
batch of examples.

3.3.2 Linear Regression in Higher Dimensions

The theory behind linear regression in one dimension can quite easy be extended
to linear regression in higher dimensions. The hypothesis space will now look
like,

h

⇥

(x) = b+
X

i

w

i

x

i

= b+wT · x. (14)

For the linear regression in one dimension over-fitting was no problem, but
in high dimensional space there is a possibility that some dimensions appear
to be useful, when they actually are not. This will result in over-fitting. So in
higher dimensions it is common to use regularization, which mean that it is
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the cost function that should be minimized and not the loss function. The cost
function measures both the loss and the complexity of the model, and it can be
written as

cost(h
⇥

) = Empirical Loss(h
⇥

) + � Complexity(h
⇥

). (15)

For linear functions the complexity can be specified as a function of the weights
and it is often defined by the norm of the weights. The complexity function is
then given by

Complexity(h
⇥

) = L

q

(⇥) =
X

i

|✓
i

|q. (16)

Which regularization to use is up to the problem. In this project the L

1

norm
is used for the multi-layer perceptron model and for the convolutional neural
network, see more of those models in the Sections 7.6 and 3.4.4.

3.3.3 Linear Classifiers with a Hard Threshold

Recall from Section 3.2, the di↵erence between regression and classification. The
theory that was explained in Section 3.3.1 and 3.3.2 about regression, will now
be modified to fit a binary classification problem.

In the classification problem, the linear function instead will be used as
a decision boundary. In one dimension it is simply a line, and in higher
dimensions it is a hyper plane. A linear decision boundary is called linear
separator and if the input data can be separated by a linear separator, the
data is called linearly separable. Figure 3 shows this.
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(a) Example of linearly separable data, where the red and blue dots are data in two
separate classes.

(b) Example of non-linearly separable data, where the red and blue dots are data in
two separate classes.

Figure 3: The red and blue dots in the figures are data belonging to di↵er-
ent classes. Picture (a) shows an example then the two data sets are linerly
separable, compared to in picture (b).
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In the binary classification problem one separator will be used to separate
the two classes apart. The hypothesis space for the classification will then be,

h

⇥

(x) =

(
1 if b+wT · x � 0,

0 otherwise.
(17)

The hypothesis space can also be written as a threshold function, that is,

h

⇥

(x) = Threshold(b+wT · x),

where Threshold(z) =

(
1 if z � 0,

0 otherwise.

(18)

The update rule (with loss function L

2

) for one training example j, that converge
to a linear classifier is given by,

(
b b+ ↵(y

j

� h

⇥

(x)),

w

i

 w

i

+ ↵x

i,j

(y
j

� h

⇥

(x)).
(19)

The update rule is exactly the same as for linear regression, but the behavior is
somewhat di↵erent.

The interpretation of Equation 19 is seen below.
Both y and h

⇥

are either 1 or 0, this gives three possibilities:

• The output is correct, that is y = h

⇥

=) the weights are not changed.

• Prediction not correct, with y = 1 and h

⇥

= 0 =) the weights are
changed according to,

if x

i

> 0 then
increase ✓

i

else
decrease ✓

i

end if

• Prediction not correct, with y = 0 and h

⇥

= 1 =) the weights are
changed according to,

if x

i

> 0 then
decrease ✓

i

else
increase ✓

i

end if

3.3.4 Linear Classifiers with a Soft Threshold

There are some problems with a hard threshold. First thing is that the hy-
pothesis function is discontinuous, and thereby not di↵erentiable. The second
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thing is that it does not say anything about how far away the input is from the
boundary.

A solution to this is to instead use a soft threshold, that approximate the
hard threshold with a continuous, di↵erentiable function. A good function for
this is the logistic function, also called the sigmoid function, which looks
like this,

Sigmoid(z) =
1

1 + e

�z

. (20)

The hypothesis will now look like

h

⇥

(x) = Sigmoid(b+wT · x) = 1

1 + e

�(b+w

T ·x) . (21)

The logistic function gives an output value between 0 and 1, and can be inter-
preted as a probability.

The hypothesis will then form a soft boundary in the input space, see Figure
4. For input space at the center of the boundary region, the hypothesis function

Figure 4: The sigmoid function, sigmoid(x) = 1/(1 + e

x), is plotted on the
interval (-10,10) and with argument f(⇥) = x

1

� x

2

, that is b = 0, w
1

= 1 and
w

2

= �1.

will give a value of 0.5, and far away from the boundary it approaches 0 or 1.
The process of fitting the weights to a binary classification problem with

help of the logistic/sigmoid function is called logistic regression. Stochastic
gradient decent can be used to find the weights and the update rule in Equation
9 can be used in Algorithm 2. The L

2

-function can be used as the loss function.
However, the derivative of the loss function in Equation 9, looks a little bit
di↵erent and the chain rule has to be used more than once.
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The derivation of the update rule is as follows:

@

@✓

i

Loss(⇥) =
@

@✓

i

(y � h

⇥

(x))2

= 2(y � h

⇥

(x)) · @

@✓

i

(y � h

⇥

(x)),

with h

⇥

(x)) = sigmoid(b+wT · x), this gives,

@

@✓

i

Loss(⇥) = �2(y � h

⇥

(x)) · sigmoid

0(b+wT · x) · @

@✓

i

(b+wT · x),

and sigmoid

0(x) = sigmoid(x)(1� sigmoid(x)), this gives,

@

@✓

i

Loss(⇥) = �2(y � h

⇥

(x)) · h
⇥

(x)(1� h

⇥

(x))| {z }
derivate of sigmoid

· @

@✓

i

(b+wT · x)
| {z }

inner derivate

, (22)

The update rules for b and w

i

are then given by,
(
b b+ ↵(y � h

⇥

(x)) · h
⇥

(x)(1� h

⇥

(x)),

w

i

 w

i

+ ↵(y � h

⇥

(x)) · h
⇥

(x)(1� h

⇥

(x)) · x
i

.

(23)

3.3.5 Classifiers for Multiclass Classification Problems

Above in Section 3.3.4, a binary classification with a soft threshold was de-
scribed. Logistic regression for binary problems can be generalized into multi-
class classification problems, that is when the output has K possible outcomes
rather than just two. In this case the softmax (also called normalized exponen-
tial) function will serve as an equivalent to the logistic function in the binary
logistic regression.

The softmax function is a generalization of the logistic function, which op-
erates on a K -dimensional vector x of arbitrary real values to a K -dimensional
vector softmax(x) of real values in the range (0, 1). This is called multi-class
linear regression 3. The function is given by

softmax(x
j

) =
e

xj

P
K

k=1

e

xk

, (24)

where j = 1, · · · ,K.
The parameters in the multiclass classification problem will now look a little

bit di↵erent from the parameters in Sections 3.3.1 - 3.3.4, where the weights
were a vector, w, and the o↵set, b, was a scalar. In this case will the weights be
a matrix, W, where the kth column represents the separation hyper plane for
class k and the the o↵set is now a vector, b, where element k represent the o↵set

3 Multi-class linear regression is also known by other names as softmax regression, multino-
mial logistic regression, polytomous logistic regression, multinomial logit, maximum entropy
(MaxEnt) classifier and conditional maximum entropy model [11].
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parameter of hyper-plane k. The input, x, is a matrix where row j represent
input training example j.

The probability of the ith class is given by

P (y = i|x,W,b) = softmax(b+W · x)

=
e

bi+Wi·x
P

K

k=1

e

bk+Wk·x
,

(25)

where W
k

is the kth column in W.
The output of the model or prediction is given by taking the argmax of the

vector whose j th element is P (Y = j|x). This takes the class with the highest
probability.

ŷ = argmax

j

P (Y = j|x,W,b). (26)

In multi-class logistic regression, it is common to use the negative log-
likelihood (see Section 3.3.6) as the loss function, compared to the L

2

function
that was used in the earlier sections.

3.3.6 Maximum-likelihood Estimation (MLE)

Maximum-likelihood estimation (MLE) is a method of estimating the parame-
ters, ⇥, of a statistical model. Given a data set and a model, for example a data
set D and a model M, then assume the data set is normally distributed, but
the the mean, µ, and variance, �, is unknown. Maximum likelihood estimation
will then give an estimation of µ and �, which make the observation on the data
set D the most probable, given the model M. In this case ⇥ = [µ,�] are the
parameters of the model.

In general, for a fixed data set and an underlying model, the method of
maximum likelihood is based on selections of the parameters that maximizes
the likelihood function. The likelihood function is given by

L(⇥|D) = P (D|⇥), (27)

where ⇥ is the set of parameter values of the model and D is the observed values
of the data set. The likelihood gives the probability of the observed values given
those parameter values.

Often in practice the logarithm of the likelihood function is used instead, the
function is then called the log-likelihood. The logarithm is a strictly mono-
tonically increasing function, which mean that the logarithm of a function has
the same maximum as the original function and thereby can the log-likelihood
be maximized instead of the likelihood. It is often more convenient to work with
the log-likelihood function, because the likelihood function often consists of a
product, the log-likelihood will then be a sum, which is easier to derivative.

In this project a loss function will be minimized and not maximized as
the (log-)likelihood function. The negative log-likelihood will then be used
instead, which is the negated log-likelihood function and is then given by

Negative log-likelihood(⇥|D) = �log(L(⇥|D)). (28)
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3.4 Artificial Neural Networks

Artificial neural networks have been inspired by findings in neuroscience, espe-
cially from the hypothesis that mental activity primarily consist of electrochem-
ical signals in a network, called neurons.

The neurons in the biological network are ”fired” when a linear combination
of its inputs exceeds a certain hard or soft threshold.

The neurons are connected by synapses and the synapses are the ones
transporting the electrochemical signals. In the artificial neural network the
synapses can be considered as weights and the neurons as activation functions.

An interesting thing about this, is that this structure can be implemented
with help of the theory described in the Sections 3.3.3 and 3.3.4. The neural
network consist of a collection of nodes that are connected together into a net-
work and the properties of the network are determined by its topology and the
properties of each node in the network.

3.4.1 The Structure of The Neural Network

The neural network consist of nodes or units (like neurons), connected by
directed links (like synapses). A link from node i to node j serves to propagate
the activation a

i

from i to j. There is also a weight, w
i,j

, associated with
each link. The weight determines the strength and sign of the connection. Each
node j computes a weighted sum of its inputs by

input

j

= b

j

+
X

i2I

w

i,j

a

i

, (29)

where I contains all the links directed into node j. Inside the node is an acti-
vation function, g, applied and the output from the node is then given by

a

j

= g(input
j

) = g(b
j

+
X

i2I

w

i,j

a

i

). (30)

Either a non-linear function or a hard threshold can be used as an activation
function. An important property when a non-linear function is used, is that the
entire network is represented as a non-linear function. Actually any non-linear
function can be used as an activation function, but usually it is the sigmoid or
the hyperbolic tangent used.

The nodes inside a network can be connected in two fundamentally di↵erent
ways.

• Feed-forward networks, have connections only in one direction and
they form a directed, acyclic graph. Each node receive its input from
upstream nodes and delivers output to downstream nodes, and there are
no loops. A feed-forward network is a function of its current input, and
there is no internal state other than its weights. [48]

• Recurrent networks, feeds its output back into its own input. The
network form a dynamic system that may reach a stable state, oscillate
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or exhibit chaotic behavior. This form of network can support short-term
memory. This has made them more interesting as models of the brain,
but the behavior of the network is also more di�cult to understand. [48]

Input
Output

Figure 5: Schematic picture over an example of a feed-forward neural network.
The oval nodes will symbolize the parametrisized nodes, compared to the input
nodes that are not parametrisized.

Input

Output

Recycled 
variables

Figure 6: Schematic picture over an example of a recurrent neural network.
The oval nodes will symbolize the parametrisized nodes, compared to the input
nodes that are not parametrisized.

In this project a feed-forward neural network has been developed. Feed-
forward networks are usually arranged in layers, where each node receives its
input from the nodes in the neighboring preceding layer.

As descried previously in this paper the output from the classifier has been
a scalar variable. But to generalize this to fit other neural networks the out-
put is represented as a vector ŷ. This generalization will simplify the further
explanation when the classification includes more than two classes.

In the rest of this report only feed-forward networks will be described, if not
something else is written.
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3.4.2 Single-layer Neural Networks

In a single-layer network the output is directly connected to the input, see Figure
7. This network can only represent functions that are linearly separable (both
the input and the output should be in a space that are linearly separable). For
example, the AND-function is linearly separable and can then be represented by
a single-layer network, but the XOR-function is not, so it can not be represented
by a single-layer network.

Input Output

Figure 7: Schematic picture over an example of a small single-layer network.
The output is directly connected to the input. The oval nodes will symbolize the
parametrisized nodes, compared to the input nodes that are not parametrisized.

3.4.3 Multi-layer Neural Networks

In a multi-layer network there is one or more hidden nodes. The hidden nodes
are characterized as be between the input and output layer. So all nodes that
are not included in the input or output layer is considered hidden, see Figure 8.

Hidden 
LayerInput Output

1

2 4

3 5

6

Figure 8: Schematic picture over an example of multi-layer perceptron. It
consists of a input layer, a output layer and one hidden layer, with two nodes in
each layer. The arrow will symbolize the links between the nodes. Each arrow
has a weight, which is not shown in the picture. The weight between node 1
and 4 is for example represented by w

1,4

. The oval nodes will symbolize the
parametrisized nodes, compared to the input nodes that are not parametrisized.

The network can be represented as a function, h
⇥

(x) = ŷ, parameterized
by its weights, w and bias, b. In a multi-layer network it is easier to think of
the hypothesis as a vector function, h

⇥

, rather than a scalar function, h
⇥

. The
output of the hypothesis, will be an expression of its input and its weights. The
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gradient decent for loss-minimization can be used to train the network, as long
as the expression is di↵erentiable. So, a soft, di↵erentiable threshold, g, has to
be used in each node and not a hard, discontinuous threshold.

Lets look at Figure 8, it has two input nodes, two hidden nodes and two
output nodes. Let x = (x

1

, x

2

) represent the input and the output from each
nodes are called activations and will be represented by a

i

. For the input nodes
the activation functions (a

1

, a

2

) are equal to the input values (x
1

, x

2

), that is
((a

1

, a

2

) = (x
1

, x

2

)). The expression for output node 5 is then given by
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(31)

where g is the non-linear activation function, w
i,j

the weight of the link between
node i and node j, b

j

is the o↵set for node j and a

i

the activation for node i.
The output for node 6 is given by a similar expression.

As can be seen in Equation 31, the expression for the output has many
nestled non-linear functions. A consequence of this is that the entire network
will behave as a non-linear function and this will enable non-linear regression.

Lets look at the final step in Equation 31 again,

a

5

= g(b
5

+w

3,5

g(b
3
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1,3

x
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2,3

x
2

)+w
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x
1

+w

2,4

x
2

)), (32)

where the input is written in green, the first non-linear transformation is marked
with magenta and the second non-linear transformation is marked with blue.
The chain of transformations from input to output is called a credit assign-
ment path (CAP), and in this example is CAP = 2, due to the two non-linear
transformations of the input. The credit assignment path is a measure of the
depth of the network, and describes potentially causal connections between in-
puts and outputs. In general for a feed-forward network the credit assignment
path is equal to the number of hidden layers plus one, because the output layer
also is parametrized. For a recurrent neural network, where the input may
propagate through a layer more than once, the credit assignment path is po-
tentially unlimited. In the Figures, in this report, the parametrisized nodes are
drawn with ovals compared to the input nodes, which are not parametrisized
and drawn with a rectangles.

It has been shown that, with a single su�ciently large hidden layer, it is pos-
sible to represent any continuous function of its input, with arbitrary accuracy.
And with two layers, even discontinuous functions can be represented [48].

To train a multi-layer network is not so di↵erent from the classifiers in Section
3.3 and the update rule in Equation 9, can be used even in this case. To be able
to use this update rule a method called back-propagation is applied, and a
motivation of how it works will now be given.

The error at the output nodes can be calculated by the true values, y, given
by the training examples, and by the activations from the output nodes (in
Figure 8 the activations of the output nodes were given by a

5

and a

6

). The
error vector is then given by Err = y � h

⇥

.
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It is interesting to see how this errors will be represented when dealing with
the loss function. Equation 9, says that the partial of the loss function has to
be calculated.

If L
2

is used as the loss function, the partial derivative of the loss will be
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(33)
where k spans over all nodes in the output layer. In Equation 33 it is shown that
the loss can be decomposed into a separate loss for each output node. This loss
function is additive across the components of the error vector. In general if the
loss function has this property the learning problem can be handled as separate
learning problems for each output node, if they in the end are summarized.

At the output nodes the the update rule is identical to Equation 23. But
at the hidden nodes the error will be back-propagated from the output nodes.
Let the error at each output node, k, be Err

k

. It will be convenient to define
�

k

= Err

k

· g0(input
k

), where g

0(input
k

) is defined as in Equation 30. If this is
compared to the Equation 22,
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it can be seen that �
k

will represent the partial derivative of the loss function.
The update rule for the output layer is then given by

w

j,k

 w

j,k

+ ↵ · a
j

·�
k

(34)

The idea of back-propagation is then that hidden node j is responsible for a
fraction of the �

k

of the output nodes which it connects to. The �
k

values are
then divided according to the strength of the connection between the hidden
node and the output node, and are then back-propagated back to provide the
�

j

values for the hidden layers. The propagation rule for the � values is
given by

�
j

= g

0(input
j

)
X

k2out

✓

j,k

�
k

, (35)

where k spans over all nodes which node j connects to. The update rule for the
weights between the input layer and hidden layer is then

w

i,j

 w

i,j

+ ↵ · a
i

·�
j

, (36)

which now is identical to the one in Equation 34.
The back-propagation process is summarized in Algorithm 3. 4

4For the complete derivation of the back-propagation algorithm, consult reference [48].
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Algorithm 3 Back-propagation

� Compute the � values for all the output nodes,
using the observed error.

Start with the output layer, then:
repeat

Propagate the � values back to previous layer.
Update the weights between the two layers.

until the first hidden layer is reached.

3.4.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specialized neural networks for pro-
cessing data that has a known grid-like topology. Examples can be time-series
data (voice recognition or signature verification as in this project), which can be
thought of as a one dimensional grid taking samples at regular time intervals,
or image data, which can be thought of as a two dimensional grid of pixels.

Convolutional neural networks are distinguished from ordinary neural net-
works by using a mathematical operation called convolution, which is a special
kind of linear operation. Convolution is an operation of two functions of real
valued arguments.

For example let x(t) be a function which gives a measurement of the x-
coordinate of an object as a function of time. Then let w(a) be a weight function,
which does a some kind of weighted average over time and a is the age of the
measurement. If w(a) is applied on x(t) at every moment of time, that gives a
new function s(t), which is given by

s(t) = x(t) · w(a) =
Z

inf

a=� inf

x(a) · w(t� a)da. (37)

This is the definition of convolution for a continuous one-dimensional signal.
When the time is discrete as in numerical applications, convolution is instead
given by

s(t) = x[t] · w[a] =
infX

a=� inf

x[a] · w[t� a]. (38)

The convolutional operation is often denoted as

s(t) = (x ⇤ w)(t), (39)

both for the continuous and the discrete case. A neural network that uses
convolution in at least one layer is called convolutional neural network (CNN).

In convolutional neural network terminology, the first argument (in the ex-
ample, x(t)) is referred to as the input and the second argument (in the exam-
ple, w(a)) as the kernel. The output is often called feature map. In machine
learning applications is the input often a multidimensional array of data and the
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kernel often a multidimensional array of learn-able parameters, usually called
weights.

Discrete convolution can be implemented with matrix multiplication. For
convolution in one dimension this is done with the toeplitz matrix, which is
given by

Toeplitz =

0
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where t

i

is a scalar element in the matrix. Two dimensions convolution can be
implemented with a doubly block circulant matrix, which is given by

Doubly block circulant matrix =
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where C

i

is a circulant matrix, which is defined by

Circulant matrix =
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where c

i

is a scalar element in the matrix.
For example to numerically calculate the derivative of a vector x, this can

be done by multiply x with a matrix, A, and then add boundary conditions.
The matrix A is a tridiagonal matrix and is given by

A =
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where h is some small value. This can be compared with convolution in one
dimension, by convolve the one-dimensional input vector, x, with the kernel,
W = 1

h

2 [1,�2, 1], which is of size [1x3]. As seen in Equation 43, the matrix
contains many zeros, the matrix is then called sparse. A common property
of convolution is sparse matrices, because the kernel usually is much smaller
than the input. This is called sparse connectivity (also referred to as sparse
interactions or sparse weights). Figure 9a shows a sparse connected layer. In
a fully connected layer every output node is connected to every input node,
this could be compared by multiplying the input nodes with a dense matrix (the
most elements in the matrix are non-zero). Figure 9b shows a fully connected
layer.
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Layer m Layer m+1

(a) Sparse connected.
Layer m Layer m+1

(b) Fully connected.

Figure 9: In picture (a) and (b) the di↵erence between a sparse connected and
a fully connected network is shown. One node in each picture, in layer m, is
marked with gray, and the nodes it a↵ect in layer m+1, are also marked with
gray. The directed links are marked in di↵erent color depending on which node
it starts from. In picture (a) is a kernel of width 3 used, which lead to that
each node in layer m will a↵ect three nodes in layer m+1 (except maybe in the
boundary of the layer). In picture (b) on the other hand, a node in layer m will
a↵ect all of the nodes in layer m+1.

32



A benefit of sparse connectivity is that it needs to store fewer parameters,
which reduce the memory requirements of the model and it will require fewer
operation to compute its output. It can also improve its statistical e�ciency,
because it reduce the complexity of the model and the probability to over-train
the model is less.

The receptive field of a node is the field within stimuli will a↵ect the node.
Even if a network has sparse interactions, and the receptive field of a node is
small in the direct preceding layer, the node may indirectly interact with a
larger part of the input in the earlier layers, as can be seen in Figure 10. This

Layer m Layer m+1 Layer m+2

Figure 10: The picture shows the receptive field of a node in layer m+2, when
a kernel of width 3 is used. The receptive field in deeper layers of a sparse
connected neural network, is larger than in more shallow layers. The node in
layer m+2 that is marked with gray, gets information from three nodes in layer
m+1, and it get information from all the nodes in layer m. This shows that
even if the direct connections are very sparse, deeper layers can be indirectly
connected to most of or all of the nodes in the input layer.

results in that the network will operate on di↵erent global levels. In the earlier
layers, the convolution will find features on a local level, those feature maps
are then input to the deeper layers, which then will find features from those
feature maps. The result is that the deeper layers will find features on a more
global level on the input data. This allows the network to e�ciently describe
complicated interactions between many variables.

Convolutional layers also use parameter sharing (also known as the net-
work has tied weights), which means that the model uses the same parameter for
more than one function in the model. In a fully connected layer each element in
the weight matrix is used exactly once when computing the output of the layer.
Each element in the kernel is used at every element in the input (except perhaps
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the boundary elements, depending on the design of the convolution, see Figure
13). Parameter sharing means that instead of learning di↵erent set of parame-
ters for every element in the input, its learn just one set. Figure 11 shows this
principle. This will also reduce the storage requirements of the model. Another

Layer m Layer m+1

Figure 11: The picture shows the principle of parameter sharing. The links of
same color represent weights of the same value. Here a kernel of width 3 is used.

property of convolution is that it is equivariant to translation. If the input
changes, and then the output changes in the same way, the function is said to
be equivariant, mathematically it can be written as f(g(x)) = g(f(x)). In the
case of processing time series data, convolution produce a sort of time-line that
shows when di↵erent features appears in the input. So if an event moves later
in time, the same representation of it will appear later in time in the output.

Convolution is not equivariant to some other transformations, such as
changes in the scale and rotation of the input.

A typical convolutional layer consists of three stages. In the first stage it
performs several convolutions in parallel, this is because each convolution
produce one feature map which can detect one type of feature at di↵erent loca-
tions of the input. If many convolutions are applied in parallel, the model will
be able to detect many features at this global level.

In the second stage, each feature map is run through a non-linear activation
function. This stage is sometimes called detector stage.

In the third stage a pooling function is used, to modify the output of each
layer. A pooling function replaces the output of the layer at a certain region
by a summery of the nearby outputs. Max-pooling takes for example the
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maximum value of a rectangular region. 5

The three stages are shown in Figure 12.

Convolution stage

(affine transform)

Detector stage

(non-linearity)

Pooling stage

Input to
layer

Output of
layer

Convolutional Layer

Figure 12: The picture shows the typical components of a convolutional layer.

The pooling function makes the representation become invariant to small
translations of the input. Invariance to small local translations is useful if it
is more important that a feature is present than exactly where it is present.

Pooling over spatial regions produces invariance to translation, but if the
pooling is applied over the output of separately parametrized convolutions, the
features can learn which transformations to become invariant. However, in this
project is a fix pooling factor used.

The pooling function also reduce the size of the layer, which improve com-
putational e�ciency of the network, because the next layer will operate on a
smaller input size. It will also reduce memory requirements of storing the pa-
rameters.

The pooling function can also be used to handle inputs of varying size. This
can be done by varying the size of o↵set between pooling regions, so the classi-
fication layer always receive the same number of summary statistics regardless
of the input size. This is not used in this project, but could perhaps be used in
future development of the model.

Convolution and pooling can cause under-fitting, when pooling is used on
all features. A solution could be to use di↵erent pooling for di↵erent features.

The convolution can be designed in di↵erent ways, depending on how the
kernel should be used in the boundary of the input data. The alternatives are
to add a number of zeros at the boundary of the data, called zero padding. The
two main methods are:

• Valid convolution: no zero padding is used. In this case the width of
the representation will shrink by the kernel width minus one in each layer,
see Figure 13b. This causes some limitations on how to design the model,
because the width of the data shrinks after each convolutional layers and
a trade-o↵ between kernel size and number of layers has to be made. This
can limit the expressive power of the networks. But a positive aspect is
that the output nodes are functions of the same number of input nodes.
This makes the behavior more regular, compared to when zero padding is
used. [10] This is the design used in this project.

• Same convolution: zeros are added at the boundary in order to keep
the size of the input equal to the size of the output of the layer, see

5A convolutional neural network which uses max-pooling is often denoted MPCNN.
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Figure 13a. In this case input nodes close to the boundary will influence
fewer output nodes, compared to input nodes in the center. However, the
positive aspect is that the model can be design to contain an arbitrary
number of convolutional layers, with arbitrary size of the kernel. [10]
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(a) With zero padding.
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(b) Without zero padding.

Figure 13: In picture (a) and (b) the e↵ect of using zero padding is shown. In
this example a kernel of width 5 is used and pooling is not used. In picture (a)
four zeros is added in each layer at the boundary (shown in gray), this prevent
the layers to shrink in size in deeper layers, compared to in picture (b), where
no zero padding is used. In picture (b) each layer will shrink by 4 due to the
convolutional operator.

3.4.5 Ensemble Learning

The learning methods described in Sections 3.4.1 - 3.4.3 selected a single hy-
pothesis in a space of hypotheses. The idea of ensemble learning is to select
a collection, or ensemble, of hypotheses from the hypothesis space. For example
if 5 hypotheses are chosen from the hypothesis space, then their predictions
can be combined. This can be made by the simple majority voting. So if a
new example should be miss-classified, at least 3 of the hypotheses should give
this prediction. The ensemble of hypotheses will then form a new hypothesis.
Ensemble learning have showed to be very useful and can reduce the error rate
further, compared to when a single hypothesis is used.
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3.4.6 Neural Networks in Practical Applications

So far in this report the theoretical description about the network and how
to train it has been presented. But in a practical application there are more
considerations to be made.

The dimension of the input layer (i.e. the number of nods in the first layer)
is given by the dimension of the input data. But the dimension of the hidden
layers (how many hidden nodes in the hidden layer), and how many hidden
layer to use is still not determined. Unfortunately there is no good theory to
answer those questions. The standard approach is to use cross-validation and
try di↵erent structures. A certain amount of work is needed to get the structure
right and also to achieve convergence to something close to the global optimum
in the weight space.

Another decision concerning the practical application is to choose appropri-
ate input data. The collected input data set is often large, multi-dimensional
and may consist of redundant data, and it is an engineering problem to decide
what data is necessary for the task at hand.

Another thing to keep in mind is that the size of the collected data set will
also a↵ect the performance of the algorithm. In general when it comes to neural
networks, a small data set will not provide the su�cient amount of information
required for a accurate result.

4 The MNIST Classification Problem

The MNIST digit classification problem is one of the most famous benchmarks
in machine learning. This problem is of a certain importance for this project,
because tutorials for the MNIST digit classification problem were a starting
point in the development of the models for the signature verification problem
treated in this project.

4.1 The MNIST Dataset

The MNIST dataset consists of handwritten digits of the numbers zero to nine.
All images have been normalized and centered to a fixed size image of 28 x 28
pixels. In the original dataset each pixel of the image is represented by a value
between 0 and 255, where 0 is black and 255 is white and anything between is
di↵erent shades of grey. Some examples can be seen in Figure 14.

Figure 14: Examples of images from the MNIST dataset of handwritten digits.

The set consists of 70 000 examples, and are divided so that 50 000 are in
the training set and 10 000 each are in the test and validation set.

The MNIST digit classification problem is a multi-class classification prob-
lem, because it is about classify pictures into 10 classes, depending on which
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number the picture represents. This can be compared with the signature ver-
ification problem in this project, which is a binary classification problem with
two output classes (match and non-match).

5 Neural Networks with Deep Architecture

The word deep learning refers a to multi-layer network, where many hidden
layers are used. Common for the deep learning models are that they attempt
to model high-level abstraction in the input data by using a deep structure of
composed, non-linear transformations.

What distinguish shallow learning from deep learning is their credit assign-
ment path (CAP) [50]. Most researchers in the field agrees on that deep learning
has multiple non-linear layers with CAP > 2. Schmidhuber [50], considers CAP
> 10 to be very deep learning.

Deep learning has become a part of many state-of-the-art systems in di↵erent
disciplines, particular in computer vision and automatic speech recognition [50].
Currently, it has been shown that deep learning architectures in the form of
convolutional neural networks (CNNs) have been nearly best performing [36],
[54].

5.1 Hardware and Deep Learning Networks

Deep learning systems often requires a lot of computing power, memory and time
for training. Often it is needed to pass a certain amount of those ingredients, to
achieve good results. In today’s society computing power and computer memory
are relatively cheap, but this was not the case ten years ago. This may be one
of the reasons to why the field is so new.

In the 2000s deep learning had a breakthrough in form of cheap, multipro-
cessor graphics card (graphic processing units, GPUs). GPUs excel at the fast
matrix and vector multiplications, which can speed up neural network train-
ing by a factor of 50 and more. This is one thing that has contributed to the
success in contests for pattern recognition, image segmentation and object de-
tection [50]. The final model developed in this project used a convolutional
neural network, trained on GPU.

5.2 The History of Deep Neural Networks

Shallow neural network-like methods have been around for many decades, if
not centuries. However, the early neural network architectures, 1943 [43], did
not learn. The first ideas about unsupervised learning were published a few
years later, 1949. But in a sense neural network ideas have been around even
longer, because early neural networks were essentially variants of linear regres-
sion methods going back at least to the early 1800s [28], [29], [41]. Those early
neural networks had a CAP depth of 1.
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The inspiration of deep neural networks came in the 1960s when simple cells
and complex cells were found in the cat’s visual cortex [30], [31]. These cells fire
in response to certain properties of visual sensory inputs, such as the orientation
of edges (compere with the theory described in Section 3.4.1). This inspired the
later development of deep neural network architectures.

In 1979, Professor Fukushima proposed the Neocognitron model, [26], [25],
[27], which introduced the convolutional neural networks, see Section 3.4.4,
which were perhaps the first deep network. The Neocognitron model is very
similar to today’s contest-winning methods. However, Fukushima did not set
the weights by supervised back-propagation, but instead by an unsupervised
learning method, and he used spatial averaging instead of max-pooling for the
sub-sampling.

Back-propagation was developed in the 1960s and 1970s, and applied to
neural networks in 1981. But back-propagation-based training of deep neural
networks with many layers, was found to be di�cult in practice in the late 1980s,
so it become an explicit research subject only, in the early 1990s [50].

In 1989 back-propagation was applied to the Neocognition-like model [38],
[37], [39]. The same year the MINST data set of handwritten digits was intro-
duced [38], see Section 4.1. Convolutional neural networks with a depth of 5
achieved good performance on MNIST [37]. They also performed well on fin-
gerprint recognition [9]. Similar networks were also used commercially in the
1990s.

In 1992 came a method called Dresception model [57], which uses max-
pooling as down-sampling between the convolutional layers.

But it was not until 2006 the expression Deep Learning was coined, even if
learning networks with many non-linear layers date back to 1965.

5.3 E↵ects and Results from Contests-winning Methods

Already in the 1990s, certain neural networks had won some controlled pattern
recognition contests with secret test sets [50] (secret test sets were explained in
Section 1.2.3).

In the decade around 2000, many commercial pattern recognition applica-
tions were dominated by non-neural machine learning methods such as Support
Vector Machines (SVMs) [56].

Important for many present competition-winning pattern recognizers were
developments in the convolutional neural network department. In 2003, a back-
propagation-trained convolutional neural network set a new MNIST record of
0,4 % error rate [51]. It used a method called training pattern deformations, but
no unsupervised pre-training, compared to many earlier methods. A standard
back-propagation network achieved 0,7 % error rate. Those methods had a low
CAP.

Then in 2006 a back-propagated convolutional neural network set a new
MNIST record again, of 0.39 % error rate [46]. It used pattern deformation,
but no unsupervised pre-training, as before. In 2006 came also the first GPU-
based, convolutional neural network implementation [13], which was up to 4
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times faster than the CPU-based implementation.
In 2007 back-propagation was first applied to a max-pooling, convolutional

neural network and the network was topped with a fully connected layer (ex-
plained in Section 3.4.4), this is the structure in the final method developed in
this project.

Then in 2009 came a new MNIST record of 0.35 % error rate [18]. It used
back-propagation and pattern deformation. It did not use unsupervised learning
or convolution. But it used GPU which made it up to 50 times faster than stan-
dard CPU-versions. This result seemed to suggest that advances in exploiting
modern computing hardware were more important than advances in algorithms
[50].

In 2011 came a GPU based, ensemble, max-pooling, convolutional
neural network, see Section 3.4.5. This kind of system was the first system to
achieve superhuman visual pattern recognition [14], [15]. The competition was
about tra�c sign recognition [52], [53], with images of size 48x48 pixels. This
is of interest for fully autonomous, self-driving cars in tra�c [21]. The GPU
based, ensemble, max-pooling, convolutional neural network obtained 0.54 %
error rate, which was twice as good as the human test subjects.

Computers are in general not good at visual pattern recognition. For exam-
ple in 1997 the human chess world champion was beaten by an IBM computer,
but at that time computers could not compete with little kids in visual pattern
recognition. So it was a big step when a deep neural network was better than
human at recognizing tra�c signs in 2011.

In 2012, a GPU based, ensemble, max-pooling, convolutional neural network
was developed that also performed human-competitive on MNIST with around
0.2 % error rate [16].

In the same year, another GPU based, ensemble, max-pooling, convolutional
neural network emerged that achieved the best result on the ImageNet classifi-
cation benchmark [35], which is very popular in computer vision, and has larger
images with a size of 256x256 pixels.

Around 2011/2012 deep learning achieved excellent result in image recogni-
tion and classification. Another area that is of interest is object detection, for
application as image-based search engines, or for biological diagnosis, where the
goal can be to automatically detect tumors etc in images of human tissue [50].

In 2012 came the first deep learning system to win a contest on visual object
detection [17]. It used a GPU based, ensemble, max-pooling, convolutional
neural network. The contest was on large images with several million pixels
[32], [47].

5.4 Today’s Successful Techniques

Most of today’s contest-winning or benchmark record-setting deep learning sys-
tem uses one of two supervised techniques: recurrent long short-term memory
(LSTM) trained by connection temporal classification (CTC) (not discussed
further in this report), or feed-forward, GPU based, max-pooling, con-
volutional neural network (as the final model in this project) [50].
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6 Hardware and Software Used in this Project

This section describes the hardware and software used in this project.

6.1 Software

• The entire project is mainly developed in Python 2.7 and for the Linux
platform.

• The open source Python library Theano [55] has been used. Theano has
support for GPU-based computation and has libraries for mathematical
functions. Theano has also a ready-to-use implementation of a function
for convolution, theano.tensor.signal.conv2d(), which is implemented in C,
and is optimized for fast evaluation.

• A tool chain called CUDA was used. Theano has support for GPU based
computation, and can be configured to use CUDA. To be able to do this
is a NVIDA graphic card needed (at the moment).

• The open source Python library numpy was used.

• In the development of the algorithm in this project, tutorials from deeplearn-
ing.net [1] has been a starting point, which deals with the MNIST clas-
sification problem.

• To be able to read the hid-events from the pen, the open-source program,
hid-recorder.c was used [6].

• The entire project was stored and version controlled in Git.

• The pictures in this report were made with the open-source tools Libre
O�ce Draw and Inkscape. The report were written in LaTeX.

6.2 Hardware

• The pen used in this project is Anoto’s ED prototype-pen. This
pen enables Bluetooth connection to a computer. The pen need special
Anoto-paper.

The computers that were used are,

• Byron: this is Beatrice Drott’s (one of the author’s) computer. During
the development of the logistic regression model, see Section 7.5, and of
the multi-layer perceptron model, see Section 7.6, was partly of the testing
done on this computer.

The models were run during day time, thought ssh and with help of the
program screen, the terminals could be accessed both from the o�ce and
from home.
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During development of those models, mainly the multi-layer perceptron
model, see Section 7.6, there were many hyper-parameters that could be
varied. Byron have four cores, but can simulate eight, which means that
up to eight models could be run in parallel.

The computer specification is,

– Graphic card: NVIDIA GeForce GTX 760, with 2 GB RAM.

– Size of RAM: 16 GB.

– Processor: Intel Core i7 4770K.

• Spaceship: this is Thomas Hassan-Reza’s (one of the author’s) computer,
that he brought to work to be able to train the final model. The final
model, the max-pooling, convolutional neural network, was trained during
some weeks on this computer.

Thomas’ computer also has multi-cores, but due to the model was run on
the GPU, only one model could be trained at a time.

The computer specification is,

– Graphic card: NVIDIA GeForce GTX 760, with 2 GB RAM.

– Size of RAM: 8 GB.

– Processor: Intel Core i5 3570K.

• Laptop for collecting signatures: It was practical to have a movable
computer to this task. In this way could the signature collectors get to the
signature donors, rather than the other way around. The authors of this
project urged the employees at Anoto to come and visit their o�ce room,
but very few did. However, it turned out to be much more successful
to take the signature-collecting-tools to events, like meetings and co↵ee
breaks, especially events were good company and a piece of cake were
included.

A problem that occurred when the models were run on many di↵erent com-
puters were that the format of the weights were di↵erent, for example float32
and float64. And also that Theano had some special format on their weights.
This was solved with development of a conversion program.

6.3 Data

• The digital signature is the recorded signature with the Anoto pen.
The signatures were written on paper with an ink tip, and the recorded
information was sent to a computer via Bluetooth, there it then was saved.
The pen has a sample rate of 75 Hz and collects the x- and y-coordinates,
pressure, x- and y-tilt and twist.
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7 Methods

In the following sections the entire practical part of the project is described. A
series of classification algorithms have been developed, where the final one
is built on a GPU, max-pooling, convolutional neural network. No matter how
complex the classification algorithm is, the four steps in Figure 15 are needed.

Database

Pre-

processing

of raw data

Classification

algorithm

Predicted

answer

Figure 15: Schematic picture over the code for a signature verification process.

A code frame work for those four steps was developed, and then four di↵erent
classification algorithms were developed.

First a simple algorithm was developed, which just compared the coordinates
of the two signatures, see Section 7.4. This model needed no training since it only
used one engineered feature. Then the first model that used machine learning
was developed, which was built on logistic regression, see Section 7.5. The next
model, the multi-perception model was an extension of the logistic regression
model, see Section 7.6. In this model a fully-connected, hidden layer was added
before the last, classifying, logistic regression layer. Both the logistic regression
and the multi-perception model needed training, but not for so long time as the
final model needed. The final model was then based on a convolutional neural
network, see Section 7.7, it was also an extension of the earlier multi-perception
model. In this model convolutional layers were added before the final two layers,
which were a fully connected layer and lastly a classifying, logistic regression
layer, as in the multi-perception model. A schematic figure of the last three
algorithms, can be seen in Figure 16.
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Figure 16: Schematic picture over the code for a signature verification process,
where machine learning is used to train the classification algorithm.
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7.1 Data Collection

This section will describe the enrollment phase, see Section 2.1, used in this
project.

The data collection was done in a standardized way so all signatures were
collected under the same conditions. Signatures were gathered from one person
at time using equipment from Anoto. The person was given a standard A4-
paper to sign 7 authentic samples of their own signature, an example can be
seen in Figure 17. The box, in which the signature was written, had the size of

Figure 17: An image of the A4-paper the signature donors were asked to sign.
In this case Thomas Hassan-Reza has given 7 samples of his signature.

130⇥ 40 mm.

7.1.1 Quality Measure

Before saving the biometric data a quality measure of the data is needed, see
Section 2.1. The quality check that was made in this project is described in the
following section.

After each signature was written, the recorded coordinates were plotted and
shown both to the writer and the data collector. In Figure 18 an example of a
plotted signature is shown.
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Figure 18: The coordinates, over the recorded signature, were shown in a plot
during the data collecting process. The plot was controlled both by the writer,
in this case Beatrice Bondesson and by the data collector. The blue dots are
the recorded coordinates and the red line combines them in the order they were
written. Note that from the red line some information about the order of the
strokes are given. In this case it can be seen that the dot over the i in Beatrice
is written after the first name is written and not at the end, after the surname.

The quality check that was done on each signature was then:

• The data collector checked that the coordinates were recorded correctly
(sometimes some problem occurred and the signature was not recorded
correctly).

• Then the writer was asked if he/she was satisfied with the signature, that
is, if the writer considered the sample to be representative of his/her sig-
nature.

The raw data from the signatures were then saved in a file structure, in a
database.

7.2 Pre-processing of Data

To be able to use the saved data from the signatures, some pre-processing was
required. The signatures were of di↵erent length, and thereby consisted of
di↵erent number of points. So in order to compare two signatures with each
other the first approach was to add zeros on the shorter signature until they
were the same length. This approach was abandoned when it was discovered
that the models needed a standardized signature length to handle the input
data. One way of continuing the adding zeros approach would be to find the
longest signature in the database and set it’s size as the standard length. But
this would result in that all signatures, except the longest one, would receive
redundant data to fit a model. So the approach of re-sampling the data to a
specific length was proposed. This was a trade-o↵ between losing information
of the sample and adding redundant data to the sample.

7.2.1 Re-sampling of the Input Data

The first decision that had to be made was the standard length of a signature.
This was chosen to be 300 points because that was the average of all of the
signatures collected at that time. Now all the signatures should be re-sampled
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to that standard length. How this re-sampling should be made was not entirely
clear from the start.

Some di↵erent approaches were tried but it ended up being linear inter-
polation that was implemented. Linear interpolation is when a straight line is
drawn between two known points (x1, y1) and (x2, y2), see Figure 19.

(x,y) 

(x2,y2) 

(x1,y1) 

Figure 19: In this figure two points (x1, y1) and (x2, y2) are connected with a
straight line and a new point is added (x, y) between them.

This means that all points which are added on a straight line between the
two closest original sample points. In order to clarify, all the original points
build up a series of connected straight lines which are described by Equation
44.
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where all variables are described in Figure 19.
Then a new one dimensional grid is calculated from the original number of

sample points and the standard length of a the signature. With this new one
dimensional grid, x, it is easy with the help of Equation 44 to calculate the new
values, y. The implemented algorithm which is responsible for the re-sampling
task was developed so it was easy to change the standard length of a signature.

When it comes to signatures which are shorter than the standard length the
added points are considered to be redundant data as well as when adding zeros.
But this was the way signatures of di↵erent length were handled in this project.

7.2.2 Normalization of the Input Data

The data was also normalized in a way, so the first point was sat to be the origin
for the signature. The normalization was only done on the x- and y-coordinates.
The other parameters (pressure and angles) were just keep to be the same. This
results in that all signature are invariant to where the first contact of the paper
occurred (for the x- and y-parameters). The angles and pressure whoever are
measured in absolute numbers and not to their relative origin.
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7.3 Train, Test and Validation Sets

The total data set was divided into three separate sets, the training set with
a part of 5

7

of the total data set and test and validation set with a part of 1

7

each. These three sets were strictly separated at sample-level, but not at person
level. That is, the same parson could have given signatures in all three sets, but
the signatures in each set were di↵erent samples. For example if a person had
given 7 signatures, then 5 were in the training set, 1 in the test set and 1 in the
validation set. The samples in the total set were randomized and then divided
into the three sets, so the distribution were not strictly as described above, but
the principle was like that.

The signatures were then paired, with two signatures in a pair. The number
of pairs of signatures that were written by the same persons, true examples, was
much less then the number of pairs written by di↵erent persons, false examples.
The sets were then balanced in each training round (Algorithm 5, explains
training round) in that way that each set consisted of 1

2

of true examples and 1

2

of false examples. The false examples were chosen randomly from the sets total
set of non-equal pairs and the new balanced set were then shu✏ed before a new
training round began. Figure 20 shows this process.
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Figure 20: This schematic picture shows how the training, test and validation
sets were selected. The total database of signatures was divided into three sets,
were 5

7

of the signatures was in the training set and a part of 1

7

was in each of
the test and validation set. After the division was made, the signatures were
paired into pairs, where the number of equal pairs (match) were much less than
the number of non-equal pairs (non-match). Therefor, a part of the non-equal
pairs was chosen randomly from each set, in each training round, so the number
of non-equal pairs were equal to the number of equal pairs. In this way balanced
sets were used in each training round. The reason why the non-equal pairs were
chosen randomly within the set was that in this way was the original, total set
maximally utilized. Before the training in each round started, were all the pairs
in the set shu✏ed, in order to variate the shape of the cost function.
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7.4 First Attempt of an Easy Compare Algorithm

The first attempt to compare two signature was made by the Easy Compare
algorithm. This was done by just simply engineer a feature called di↵,

diff =
X

i=x,y

NX

j

|SignatureA
i,j

� SignatureB

i,j

|, (45)

where SignatureA and SignatureB are the data collected from signature A and
B (two signatures in a pair). The index i is at first the parameter x then y and
the index j is the specified value for that parameter at sample point j.

To summarize, the feature di↵ is the sum of absolute di↵erences between
each sample point from two signatures over the x- and y-coordinates.

The reason why the absolute value di↵erence was chosen is that it is easy
to generalize if more parameters (for example the pressure) should be added to
the di↵erence (i = x,y,p). This engineered feature was the first naive approach
in solving the signature verification problem.

This was also a quick way of developing a code framework of collecting
signature data, processing the data and evaluating results. The results from this
easy method is also used as a benchmark for the more advanced methods. The
interesting part of this model is that it is easy to construct and understand. The
question that is asked is if increased complexity in more advanced algorithms
will result in improved performance and will be answered later in this report.

7.5 Second Attempt with Logistic Regression

The second attempt was made with logistic regression, which is a linear classi-
fier, see Section 3.3.4. This was the first machine learning algorithm, that was
developed.

7.5.1 Implementation

The development of this model started from a tutorial [4], which is about clas-
sifying the MNIST database, see Section 4.1. The MNIST digit classification
problem is a multi-class classification problem, so the tutorial used the theory
described in Section 3.3.5.

The linear classifier is parametrized by a weight matrix W and a bias vector
b, as in Section 3.3.5. Recall Equation 25 in Section 3.3.5, the probability an
input matrix x is a member of class i is given by,

P (y = j|x,W,b) = softmax(b+W · x)

=
e

bi+Wi·x
P

K

k=1

e

bk+Wk·x
,

(46)

The prediction is then given by (recall Equation 26),

ŷ = argmax

i

P (y = i|x,W,b). (47)
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For the MNIST problem there are 10 classes, but in the signature verification
problem there are just 2, which means that the signature verification problem
could be implemented with the theory described in Section 3.3.4 and the logis-
tic (sigmoid) function for binary classification problems. But since the MINST
tutorial was followed, the classification was implemented with the softmax func-
tion instead, but using two output classes.

The dimension of W is [W] = [16 · 300, 2], where 16 · 300 is the number
of data points in one training example, 8 parameters 6 from each signature in
the pair, each parameter was re-sampled to 300 points, see Section 7.2.1. The
2 in the shape of W, stands for the two output classes. The dimension of b is
[b] = [2, 1], and are the free parameters for the two classes. The weights W and
b were initialized with zeros, before the training started and were then changed
during training.

The loss function that was used was the negative log-likelihood function, as
described in Section 3.3.5. The cost function was sat to be equal to the loss
function, that is, no regularization (Section 3.3.2) was used in this model. The
loss/cost function was then minimized by mini-batch stochastic gradient decent
(MSGD) (Section 3.3.1).

The loss function is given by

Loss(W,b,D) = � 1

|D|L(⇥ = {W,b},D)

= � 1

|D|

|D|X

i=0

log(P (Y = y

(i)|x(i)

,W,b)),

(48)

where D = (x,y) are the training examples in the mini-batch, and x

(i) is the
ith training example in the mini-batch, and y

(i) is the key corresponding to
this example, ⇥ = {W,b} is the parametrization of the model and L is the
log-likelihood function. 7

The model was then trained according to the theory described in Section
3.3, and the weights were updated according to Algorithm 2 and the update
rule in Equation 9.

The gradients of the loss function in Equation 9, @Loss

@W

and @Loss

@b

, can be
fairly complex, especially when taking problems of numerical stability into ac-
count. But with the Python library Theano, this is quite simple, because Theano
performs automatic di↵erentiation and applies certain maths transformations to
improve numerical stability.

The entire data set was divided into tree sets, for training, validation and
testing, see Section 7.3 and Figure 20.

6In the other sections of this report only 6 parameters are mentioned exclusive time. In
this phase of the development, another parameter also was used, pen up/down. This was later
removed, due to the pressure also gave the same information.

7 Formally the negative log-likelihood is defined as the sum, see Section 3.3.5, and not the
mean of the data set. But in practice, to take the mean instead of the sum, will result in that
the choice of the learning rate is less dependent of the size of the mini-batch.

51



The entire learning algorithm was made by looping over all batches in the
training set, compute the minibatch cost, taking one step of MSGD. The training
was validated with the validation set. If the improvement of the validation error
rate was smaller then a certain threshold (called patience) then the training was
interrupted.

Algorithm 4 Learning algorithm for logistic regression

function Learning(epoch max, minibatches train set)
W 0 or earlier saved W
b 0 or earlier saved b
⇥ [W, b]
⇥ = Training round(epoch max, minibatches train set, ⇥)
return ⇥

end function

Algorithm 5 One training round

function Training round(epoch max, minibatches train set, ⇥)
done false
loop epoch < epoch max and not done

epoch epoch+ 1
for each minibatch 2 minibatches train set do

Calculate the cost for this minibatch
for each ✓ 2 ⇥ do

✓  ✓ � ↵

@

@✓

cost(✓)
end for
if time to check validation set then

Calculate error rate over validation set
if performance improvement < patience then

done  true
end if
Calculate error rate over test set,
// just for evaluation

end if
end for

end loop
return ⇥

end function

In Algorithm 4, epoch max is the maximum number of epochs the algorithm
will run (user defined) and minibatches train set is a list of all minibatches in
the training set. The test set has no algorithmic meaning accept inform about
the models performance. In this project one training round is defined as when
Algorithm 5 returns, i.e. after the loop stops, due to epoch max is reached or if
the validation error has not improved enough. Because the cost function for the
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logistic regression is convex, the Algorithm 4, converged nicely in one training
round. Later in Section 7.6 and 7.7, the algorithms did run for more than one
training round.

7.5.2 Problems Encountered on The Way

In this section the problems encountered during the development phase are
described and the process that lead to the final choice of this model.

Some problems that were encountered on the way are:

• When the model finally compiled, the error rate was suspectly low, below
3 %. But it was soon realized that this low error rate was due to that
the sets were not balanced. It was just a small fraction, some percent of
the sets that had true samples. This was fixed, and the sets were then
balanced, see Section 7.3.

• Then an error rate of 15% was reached, which was also beyond expectation.
But the bug was now that the three sets, the training, test and validation
sets, were not strictly separated. That means, that the algorithm was
trained on the same samples as it was tested and validated on, which leads
to peeking, see Section 3.2, and invalidated the model. This was fixed, and
the sets were then strictly separated on samples level, see Section 7.3.

• Another bug that was found when developing this model was that the
samples were not randomly distributed in the batch, and this a↵ected the
shape of the cost function and then the optimization. When the samples
were randomized another bug was found, the python’s random.shu✏e()
function did not worked as expected on numpy.array-objects, as first were
used, but the function worked fine on ordinary list-objects. Both those
problems were solved.

After the problems were solved the error rate reached around 30%.

7.6 Third Attempt with a Multi-layer Perceptron

The third attempt was made with a small multi-layer model, which is an ex-
tended version of the logistic regression model. This model i called Multi-Layer
Perceptron (MLP). In this model the input is first transformed by a learned
non-linear, fully-connected hidden layer. Fully connected means that the out-
put from the hidden layer is a linear-combination of it’s input, see Section 3.4.4.
The linear regression model will only succeed on linearly separable input data,
but the hidden layer in this model will project the input data into a space
where it becomes linearly separable. But compared to the linear regression
model, which had a convex cost function, the cost function in this model is not
convex. This makes the training harder, because the optimization method can
not guarantee to find the global minimum, it may get stuck in local minima on
the way.
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This model also had many hyper-parameters that could be varied and it is
not trivial to find a good choice of those parameters, because there is no opti-
mization procedure for such work. The only option is trial, error and experience,
see more about this in Sections 7.6.3 and 7.6.2.

7.6.1 Implementation

The development of this model started from a tutorial [5]. The tutorial is about
classifying the MNIST database, see Section 4.1.

The expression for the output from the model is given by

f(x) = softmax(b
2

+W
2

· h(x)), (49)

this is quite close to Equation 25, but here is the input given by h(x) instead of
x. h(x) is the hidden layer, and is given by

h(x) = tanh(b
1

+W
1

· x), (50)

where hyperbolic tangent is used as activation function. The dimension of W
1

,
b
1

, W
2

and b
2

are
[W

1

] = [16 · 300, number of hidden nodes],
[b

1

] = [number of hidden nodes, 1],
[W

2

] = [number of hidden nodes, 2] and
[b

2

] = [2, 1].
In Algorithm 6, the weights in the hidden layer are initialized with random

Algorithm 6 Learning algorithm for the multi-layer perceptron model

function Learning(epoch max, minibatches train set)
W

1

 rand or earlier saved W
1

b
1

 0 or earlier saved b
1

W
2

 0 or earlier saved W
2

b
2

 0 or earlier saved b
2

⇥ [W
1

, b
1

,W
2

, b
2

]
loop until user stops training

minibatches train set = shu✏e examples and replace
non-matching pairs, see Figure 20.

⇥ = Training round(epoch max, minibatches train set, ⇥)
end loop
return ⇥

end function

numbers from the uniform distribution, on the interval

[�
r

6

nodes

in

+ nodes

out

,

r
6

nodes

in

+ nodes

out

]. (51)

This interval is dependent on the activation function, and should be taken in the
linear interval of the activation function and Equation 51, is the linear regime
of the hyperbolic tangent.
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In Algorithm 6, epoch max is the maximal number of epochs the algorithm
will run (user defined) and minibatches train set is a list of all minibatches in
the training set. Compared to the logistic regression, this model improved if it
was run during several training rounds. The reason is that the cost function is
not convex for this model, in contrast to the logistic regression model, which
means that the function can reach a local minimum. When a new round then
starts, the cost function has another shape, because the examples has been
shu✏ed and the non-equal pairs are replaced to other pairs in the set. So if the
function was stuck in a local minimum, there is a possibility it is not a local
minimum in the new cost function and the training can continue to improve.
The training took some days for the multi-layer perceptron model.

In this model a regularization (see Section 3.3.2) was used, compared to the
logistic regression model.

7.6.2 Problems Encountered on The Way

In this section the process, which result in the final model and final choice
of hyper-parameters for this model will be described. The hyper-parameter
optimization part, played a mayor rule in the development of the multi-layer
perceptron model.

A model was built, which was an extended version of the logistic regression
model, but now with an extra fully-connected layer before the classifying layer.
With di↵erent options to the program di↵erent hyper-parameters and the ac-
tivation functions could easily be varied. Both the hyperbolic tangent and the
sigmoid function were tried.

Some problems that were encountered on the way are:

• The development was first carried out on the computers at the o�ce. First
there was a problem with the memory capacity, when the model was tried
to run. The program got out of memory when it read a lot of data into
the RAM. But this was solved with optimizing the code framework, see
Figure 16, and the code was rewritten to used less RAM during run-time.
After this it was possible to run the program.

• During the development of the program, the computers at the o�ce were
used. But during run-time, the program exceeded the capacity of the
CPUs. This result longer run-time, but also that it was not possible to
continue the development of the project, at the same time the model was
training. This was solved by partly of the training was carried out at the
Byron computer, see Section 6.2, and the programs were run through ssh.

• Then when the model was tried for the first time, it did not perform very
well. The error rate was around 50%. Sometimes the error rate started
around 47 %, and increased to 50 %. At this time the learning rate was
around 0.1-0.8. With some consultancy from theory 8, the learning rate

8 If the step size is too large, larger than twice the largest eigenvalue of the second derivative
matrix (Hessian) of the cost function, then gradient steps will go upward instead of downward
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was then varied in log space, {· · · , 10�3

, 10�2

, 10�1}. It was then found
the bad performance was due to the big learning rate. When the model
was run with a learning rate of 10�7, improvements were seen. After this
an error rate around 30% was reached when hyperbolic tangent was used
as activation function.

• The sigmoid function was also tried as the activation function, but without
any promising results.

• The number of hidden nodes were also varied. It was a little bit hard to
see if it gave good result to increase the number of hidden nodes, because
the time for the training increased significantly. With a big number of
hidden nodes one training round could take over 13 hours, compared to
some seconds for a low number of hidden nodes. But the error rate seems
to reach around 30% for all the models, where the hidden nodes were
varied.

• If a to small batch size were used, like 5 samples, bad performance was
also noticed. With this small batch size, the error rate was increased to
50%. For the other models a batch size of 100 samples were used.

The best result for this model was around 30% error rate.

7.6.3 Model Selection

After all testing described in Section 7.6.2, a good choice of parameters seems
to be:

• A batch size of about 100.

• Learning rate around 10�6.

• Hyperbolic tangent as activation function.

• A number of hidden nodes of 1000.

The other parameters that were used but not varied and tested further were:

• Regularization with the L

1

-norm, L
1

= 0.01.

7.7 Final Model with Convolution and Deep Architecture

This model was an extended version of the multi-layer perceptron model. The
two last layers were as in the multi-layer perceptron model, a fully-connected
layer and a classifying, logistic regression layer. But before those layers, con-
volutional layers were added. The convolutional layers had the structure de-
scribed in Section 3.4.4 and in Figure 12. The training was carried out on the
computer Spaceship, where the model was run on the GPU rather than on the
CPU as in the earlier models. The training also took longer time, about some
weeks/month, compared to some days for and the multi-layer perceptron model.

[40].
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7.7.1 Implementation

The development of this model started from a tutorial [3], which was based on
the LeNet-5 architecture [39] and is designed to classifying the MNIST database,
see Section 4.1.

The model is build on the theory presented in Section 3.4.4. Recall the
structure of the convolutional layer that was described in Section 3.4.4 and
shown in Figure 12.

• Convolutional stage: a set of sub kernels, W k, were applied in parallel,
which gives a set of di↵erent feature maps.

• Pooling stage: max-pooling was used on the rectangular interval [1x2]
on the output from the convolutional stage. This reduced the size by a
factor 2. The pooling was kept small in order to avoid under-fitting.

• Detector stage: each feature map from the pooling stage were then run
through the activation function, which was the hyperbolic tangent. 9

The output from the layer is given by

Output of convulotional layer = tanh(Max-pooling((W ⇤ x)) + b), (52)

where tanh is the hyperbolic tangent function, which is applied element-wise on
its input matrix. The max-pooling function is described in Section 3.4.4 and x is
the input to the layer andW and b are the parameters to the layer. The convolu-
tion (W⇤x) was made by Theano’s library function theano.tensor.signal.conv2d(),
Figure 21 shows this function applied on an image.

In this section W will also be refereed to as the kernel, and is a 4D matrix.
The dimension of W is [W] = [dim1, dim2, dim3, dim4], where dim3 and dim4
gives the dimension of each sub kernel, which will be convolved over each chan-
nel, dim2 gives the channel. The dimension of the vector b is [b] = [dim1, 1].
In the first layer of the model the channel represents which parameter to be
convolved. In image recognition this typically is the color (red, yellow and blue)
channels. The dimension, dim1, gives the set of sub kernels, recall Section 3.4.4,
that in each convolutional layer many convolutions are made in parallel, in order
to be able to detect more than one feature at each global level.

The input is also a 4D matrix, where the first index gives the batch index,
the second the channel index and the third and fourth gives the dimension of
the input data for each channel.

The model consists of three convolutional layers, where each layer has 20,
40, respective 60 di↵erent feature maps. The dimension of the input and the
kernel, will change between each convolutinal layer, because no zero padding
was used, see Section 3.4.4. The dimensions of the input to each layer and the
kernel in each layer are given below:

9 As can be seen here, the order of stages is a little bit di↵erent form the general structure,
presented in Section 3.4.4. The detector stage is here used as the last step, this is due to the
LeNet architecture.
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(a) Original picture.
(b) Transformed with kernel of size
[15x15] and one feature map.

Figure 21: The figure represents a transformation with the operator
theano.tensor.nnet.conv2d(). The sub kernel is chosen to be of size [3x3] and
only one feature maps are used. The original image is of size [726, 492] and
consists of the channels (red, yellow and blue). In those pictures are only the
gray-scale of the input image and the output image shown, in order to show
the behavior of the convolution better. The weights are initialized by a uni-
form random distribution, on the linear interval of the hyperbolic tangent. The
transformation is given by f(x) = tanh(b+ theano.tensor.nnet.conv2d(x,W)),
where x is the picture in (a) and f(x) is the picture in (b). In picture (b), it
can be seen that a randomly chosen filter will act as a edge detector.

• First convolutional layer: The dimension of the input to the first layer
was given by [x

1

] = [100, 7, 1, 600], where the first is due to the batch
size, the second is how many channels there are, which is one for each
parameter, the third is the first dimension of the input data, which is 1
and the fourth is the second dimension of the input data, which is 600.
All signatures were re-sampled to 300 points, see Section 7.2.1. Then the
input consists of data from two signatures, which gives 600 points.

The dimension of the kernel was then [W
1

] = [20, 7, 1, 10], where the first
gives how many feature maps used in the layer, the second is how many
channels there are, which is one for each parameter, the two last are the
shape of the sub kernel, which was convolved over each channel.

This layer had 20 · 7 · 1 · 10 + 20 = 1 420 parameters.

• Second convolutional layer: The dimension of the input to the second
layer (and output from the first layer) was [x

2

] = [100, 20, 1, 295]. The
number of channels is now 20, because 20 feature maps were used in
the first layer. The number of data points in each channel is given by
b(600� 10 + 1)/2c, where 600 was the number of data points in the first
layer and 10 was the width of the sub kernel in the first layer. The division
by two is due to max-pooling.

The dimension of the kernel was then [W
2

] = [40, 20, 1, 10]. The first
dimension gives the number of feature maps in this layer. The second
dimension is the number of channels, which are 20, of the same reason as
for the input, x

2

. The other dimensions are the same as in the first layer.
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This layer had 40 · 20 · 1 · 10 + 40 = 8 040 parameters.

• Third convolutional layer: The dimension of the input to the third
layer (and output from the second layer) was [x

3

] = [100, 40, 1, 143] and
the dimension of the kernel was [W

3

] = [60, 40, 1, 10]. Those dimensions
are given in a similar way as for the second layer.

This layer had 60 · 40 · 1 · 10 + 60 = 24 060 parameters.

The output from the last convolutional layer had the shape of [100, 60, 1, 67].
The fourth fully connected layer operates on a two dimensional input, so
before passing the output from the third layer it is reshaped, and the dimension
of the input to the fourth layer was then [x

4

] = [100, 60 · 1 · 67] = [100, 4020].
The number of hidden nodes was sat to 1000 in this model, which gives an input
size of 1000 to the last classifying layer. The size of the weight matrix, W

4

, for
the fully connected layer was [W

4

] = [4020, 1000] and for the last classifying
layer [W

5

] = [1000, 2].
The fully connected layer had 4020 ·1000+1000 = 4 021 000 parameters and

the last classifying layer had 1000 · 2 + 2 = 2002 parameters. As can be seen,
the fully connected layer is the heaviest layer, with 99.1 % of all the parameters
in the model. The total model had 4 0560 522 parameters.

Before the model described above was made, another design was carried out,
which had four convolutional layers, with ten feature maps in each layer and
only one channel for all the parameters. This model perform as well as the
one earlier in this section. But the number of parameters in the convolutional
layers was smaller, only 440 (compared to 33 520 in the other model). The
fully-connected layer had 291 000 parameters, and the last classifying layer had
as before 2002 parameters. The total number of parameters was then 293 442.
Even for this model was the fully connected layer the heaviest layer with 99.1
% of all the parameters.

The training was then done by the procedure shown in Algorithm 7, which
is similar to the one for the multi-perception model. The weights are initialized
with random values, initialized from the uniform distribution, on the interval
shown in Equation 51.
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Algorithm 7 Learning algorithm for the convolutional neural network

function Learning(epoch max, minibatches train set)
W

1

 rand or earlier saved W
1

b
1

 0 or earlier saved b
1

W
2

 rand or earlier saved W
2

b
2

 0 or earlier saved b
2

W
3

 rand or earlier saved W
3

b
3

 0 or earlier saved b
3

W
4

 rand or earlier saved W
4

b
4

 0 or earlier saved b
4

W
5

 0 or earlier saved W
5

b
5

 0 or earlier saved b
5

⇥ [W
1

, b
1

,W
2

, b
2

,W
3

, b
3

,W
4

, b
4

,W
5

, b
5

]
loop until user stops training

minibatches train set = shu✏e examples and replace
non-matching pairs, see Figure 20.

⇥ = Training round(epoch max, minibatches train set, ⇥)
end loop
return ⇥

end function
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7.7.2 Problems Encountered on The Way

The main problem was the long running time, which limit the possibility to try
a di↵erent number of designs of the network.

7.7.3 Model Selection

Since the size of the input to deeper layers is smaller than the input to earlier
layers, fewer feature maps are chosen in the earlier layers, in order to keep
the product of the number of features and the number of data points roughly
constant across layers. Earlier work on the subject, [40], has shown that this in
general is a good strategy. This was the reason why this choice was made.

When choosing number of layers and shape of sub kernels, a trade o↵ was
made between running time and performance. But worth mention is that there
was not enough time to do any deeper investigation of this, and this values were
more or less picked randomly.

Many of the other hyper-parameters were chosen in the same way as for the
multi-perceptron model.

8 Results

This section will describe the results form the di↵erent models and how the
performance was evaluated.

8.1 Performance Evaluation of Di↵erent Methods

To be able to compare the di↵erent results from each other a standardized
evaluation method is required. The evaluation should also be independent on the
size of the database especially since the data collection was a continuous process
throughout the project. One way of doing this is to look at the percentage of
correct predictions.

For the binary classification problem there are two di↵erent ways of both
doing a correct and an incorrect prediction. This results in four di↵erent types
of predictions.

Recall from Section 3.2 that the true value, y, is given by the training exam-
ple and the prediction, ŷ, is given by the algorithm. In this report a match will
be denoted as the number one, for being true and a non-match as the number
zero, for being false. The four di↵erent types of the prediction are then:

• True Positive (TP) is when the prediction of the algorithm is a match
and the true value also is a match, i.e. ŷ = y = 1.

• False Positive (FP) is when the prediction of the algorithm is a match
but the true value is a non-match, i.e. ŷ = 1 and y = 0.

• True Negative (TN) is when the prediction of the algorithm is a non-
match and the true value also is a non-match, i.e. ŷ = y = 0.
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• False Negative (FN) is when the prediction of the algorithm is a non-
match but the true value is a match, i.e. ŷ = 0 and y = 1.

These di↵erent scenarios are summarized in Table 1.

Type of scenario ŷ y

True Positive (TP) 1 1
True Negative (TN) 0 0
False Positive (FP) 1 0
False Negative (FN) 0 1

Table 1: The prediction from the algorithm is denoted by ŷ, and the true value
from the training pair is denoted by y. If the two signatures in the pair are
matching, this is denoted as true, and by the number one in the table, else the
pair is non-matching, which is denoted as false, and by zero in the table.

When these outcomes are summarized the entire test set would result in a
number of TPs, TNs, FPs or FNs. Ideally it would only be TPs and TNs,
but since the classifier can do miss-classifications, FPs and FNs sometimes are
bound to happen. For example, a balanced test set of 200 samples (100 matches
and 100 non-matches) could result in 85 TPs, 15 FNs, 79 TNs and 21 FPs. If
only the error rate was measured, it would be given by

Error rate =
TPs+ TNs

TPs+ FPs+ TNs+ FNs

, (53)

which gives the result, 85+79

200

= 0.82.
Now in order to take consideration to the four di↵erent scenarios of miss-

classifications, the Sensitivity or also called True Positive Rate (TPR) is
given by

TPR =
TPs

TPs+ FNs

. (54)

This value gives the percentage of the positive examples (matches, y = 1) the
algorithm succeed to predict. With the numbers from the above example the
TPR would be 85

85+15

= 0.85.
The other measure is the Fall-Out or also called False Positive Rate

(FPR). False positive rate is given by

FPR =
FPs

FPs+ TNs

. (55)

This value measure the percentage of the negative examples (non-matches, y =
0) the algorithm fail to predict. In the example above the FPR would be

21

21+71

= 0.21.
Instead of measure the performance by the error rate, it is now measured by

the TPR and the FPR. In this report the TPR versus FPR are plotted for the
di↵erent models, which are shown in the Figures 24, 25, 26 and 27. The plots
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are given by sweeping a threshold on where to separate the predicted matching
samples from the predicted non-matching samples. Typically this threshold is
varied from accepting all samples to rejecting all samples.

The Optimal Threshold for the di↵erent algorithms was chosen to be the
point (x = FPR, y = TPR), closest to the ideal point (0 = FPR, 1 = TPR),
where FPR is shown on the x-axes and TPR is the y-axes. The ideal point is
given when all predictions are correct (no FP or FN are found).

This is made under the assumption that a FP is equally as incorrect as a FN.
If this relation is not desired the optimal threshold could be picked to emphasize
that a FP is worse than a FN or vice versa.

If a completely random classifier is used, it would make predictions only
based on taking a random number between zero and one. Then the performance
plot with TPR versus FPR, would look like a straight line going from point [0,0]
to [1,1]. This hypothetical plot is shown in Figure 22.

Figure 22: This figure displays the result of a random classifier. In this example
a straight line is seen between the points [0,0] and [1,1]. The optimal threshold
point is shown in red (0.502, 0.486).
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Note that when the algorithm improves the line would constantly move closer
to the upper left corner of the plot. This means that a perfect classifier would
be following the y-axis up until the optimal threshold point (1,0), and then
continue parallel with the x-axis to point (1,1) as seen in Figure 23.

Figure 23: A hypothetical results plots with a theoretical perrfect classifier.

8.2 First Attempt of an Easy Compare Algorithm

The result from the first model, which was the Easy Compare Algorithm, is
shown in Figure 24.

64



Figure 24: True/false-positive rate for Easy Compare-algorithm. The optimal
value of the threshold, t, is denoted with a red dot (0.127,0.823).

Recall Equation 45 in Section 7.4, where the di↵erence between the coordi-
nates of signature A and B were measured. Then recall Equation 2 in Section
2.1. For the Easy Compare Algorithm, the matching score or simularity is
measured as matching score = �diff . If those equations are combined, it gives

f(SignatureA, SignatureB) =

(
0 if diff � t

1 otherwise.
(56)

This means that the two signatures are predicted as a match or non-match
depending on if their di↵ is smaller or greater than a certain threshold, t. Then
the plot in Figure 24 was given by sweeping the threshold, t, over the interval
[0, di↵ max].

If a false positive is regarded as more incorrect than a false negative, the
threshold, t, could be picked so the false positive rate is close to zero. In Figure
24 is the point ⇡ [0, 0.4], on the curve, which means that a threshold could be
chosen so the model never failed to predict a non-matching sample, but on the
other hand it should fail to predict around 60 % of the matching samples.

65



8.3 Second Attempt with Logistic Regression

The second attempt with Logistic Regression can be seen in Figure 25. When
this algorithm was run the amount of people in the database was 46. These
people had contributed with 324 di↵erent signatures. A balanced set of pairs
were then made, by the process described in Section 7.3 and in Figure 20.

Figure 25: True/false-positive rate for classifier with logistic regression. The
optimal value of the threshold, t, is displayed with a red dot (0.268,0.748).

For the multi-class classification problem the argmax is usually taken, see
Equation 26. But for the signature verification problem, there is only two
classes, and then just one class can be picked. If for example class 0 is chosen,
Equation 25 gives the probability of the sample belongs to class 0. The same
applies for class 1. Because the probabilities in the binary case is given by
probability(class 0) = 1� probability(class 1), it is su�cient to just look at one
of the classes.

The threshold was then varied for class 1, and the classification was then
given by

f(x) = f(SignatureA, SignatureB) =

(
1 if P (y = 1|x,W,b) � t

0 otherwise,
(57)

where the trained weights are [W,b], and the input x consists of the two signa-
tures, A and B, and the threshold, t, which can be varied on the interval [0, 1].
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The matching score is here given by P (y = 1|x,W,b).
The Figure 25, belonging to the Logistic Regression, is actually worse then

the curve in Figure 24, belonging to the Easy Compare Algorithm (ECA). In the
beginning, the curve does not follow the y-axes as well as the curve for the ECA
and the optimal point is also worse in comparison. One positive thing to be
said is that the classifier is at least better than a completely random algorithm
(which would be a straight line from the point (0,0) to (1,1)), which can be seen
in Figure 22.

8.4 Third Attempt with Multi-layer Perceptron

The results from the third attempt with the Multi-Layer Perceptron (MLP) is
displayed in Figure 26.

Figure 26: True/false-positive rate for the multi-layer perceptron. The optimal
value of the threshold, t, is displayed in a red dot (0.336, 0.602).

This classification is done in the same way as the for the Logistic Regression,
and is given by,

f(x) = f(SignatureA, SignatureB) =

(
1 if P (y = 1|x,W

1

,b
1

,W
2

,b
2

) � t

0 otherwise.

(58)
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The only di↵erence is that the matching score, P (y = 1|x,W
1

,b
1

,W
2

,b
2

), now
depends on more learn-able parameters.

The plot in Figure 26 was made in a similar way as the one for Logistic
Regression.

This model had a best error rate of 32 %.
An interesting thing to note form Figure 26, is that the result is worse than

the results for the logistic regression and the easy compare algorithms.

8.5 Final Model with Convolution and Deep Architecture

The result from the final model with Convolution and a Deep Architecture can
be seen in Figure 27. This algorithm was run with balanced sets, see Section
7.3 and Figure 20 on how the sets were build.

The same procedure of evaluating the trained model was made for this model,
as for the logistic regression and the multi-layer perceptron, see Sections 8.4 and
8.3. The only di↵erence here was that the matching score contained even more
learn-able parameters. Sweep the threshold, t, over the interval [0,1]. Calculate
the TPR and FPR values for each threshold and plot these values.

Figure 27: True/false-positive rate for convolutional neural network. The opti-
mal value of the threshold, t, is displayed in a red dot (0.006,0.967)

Observing the results now in Figure 27, it is evident that this result is of
much higher standard compared to the previous plots. The optimal value had
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4 FNs, 162 TPs, 1 FP and 165 TN from the test set of size 322. This might
suggest that the algorithm is better at distinguishing non-matches than it is at
recognizing matching samples. In order to predict all matching samples, TPs,
correctly with no FNs a high error rate must be accepted i.e. a total error rate
of around 25 %. Compared to predicting all TNs correctly (with no FPs) it
would result in a TPR of 0.97 which means a total error rate of around 3 %.

8.5.1 Time Comparison CPU vs GPU

A comparison between how long time the training took on the computer Space-
ship, when training on CPU versus GPU were made, and the result can be seen
in Table 2.

times slower on CPU
CNN model 1 11.17
CNN model 2 6.9

Table 2: Model 1 was a convolutional neural network with 3 convolutional
layers and with [20, 40, 60] feature maps in each layer and one channel for each
parameter, while model 2 had 4 convolutional layers with [10, 10, 10, 10] feature
maps in each layer and one channel for all the parameters.

8.6 Summary of All Models

In Figure 28 all the di↵erent results are shown in one picture. This is displayed
to give an overview on how well the di↵erent algorithms performed compared
to each other.
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Figure 28: True/false-positive rate for all the di↵erent models.
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9 Discussion

This section is used to discuss the results and other concepts regarding this
project.

9.1 Data Collecting

An important subject to discuss is the data collecting process since it may have
an impact on the results. When it comes to behavioural biometric parameters,
they can of course be dependent on many di↵erent things. Some circumstances
that can a↵ect the intra-class variations of the signature sample are,

• the position of the signature contributor, whether he/she is standing up
or sitting down,

• the mood of the signature contributor, for example if he/she is stressed,
calm or nervous,

• the focus from the signature contributor on the task, whether he/she is
focused or unfocused on writing his/her signature.

Not only how, but when the signatures are collected can a↵ect the result.
For example, in this project the seven genuine signatures were collected at the
same time. In Section 1.2.3, the international Signature Verification Compe-
tition (SVC2004) was described. In this competition the genuine signatures
were collected at two di↵erent occasions, first ten genuine signatures from one
contributor were given, and one week later, ten more genuine signatures were
collected. To collect signatures at di↵erent occasions can have some advan-
tages, compared to when they are collected at the same occasion. The reason
is that the circumstances described above may be a little bit di↵erent at the
di↵erent occasions and it will probably increase the intra-class variations. If the
algorithms are trained on this data set instead, it may lead to that the algo-
rithms will be more invariant to the intra-class variations, which is an desirable
property.

Another problem that occurred during the data collection phase was that
some people was doubtful about giving away their signature, because of the
ethical and social implications described in Section 2.2. In the SVC2004, this
problem was solved by using ”toy” signatures, i.e. the contributor design a new
signature which they did not used in their daily use.

The quality of the data is also dependent on the equipment used during the
enrollment phase. Some circumstances that can a↵ect the quality of the data
are,

• The type of pen, it could be ink, pencil or a quill pen.

• The type of substrate, it could be soft, hard or a digital tablet.

• The space that is available to write the signature on.
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• The accuracy of the measurements.

In this project ordinary paper was used compared to digital tablets in previous
work. The signature contributors often thought this gave a more authentic
feeling when writing the signature, and may impact the quality of the signature
in a good way. The pen also used an ink tip, which made the feeling even more
authentic. The substrate under the paper was not standardized, and could vary
between being directly on the table or on a heap of paper. This will probably
also a↵ect the features of the signature a little bit. In this project the signatures
were given in a standardized box. The orientation and size of the signatures were
never normalized and were a part of the features of the signature. Depending
on the application this can be both good or bad. If the application has not got a
standardized space for the signature, it could be a good idea to normalize those
properties.

9.2 Pre-processing

As mentioned in Section 7.2, there were a few ways of standardizing the size of
the input data so it could be processed by the learning algorithms. The method
chosen was to linearly interpolate all data points in the signature to a standard
length of the mean signature length. The problem is that all signatures that
are longer than the mean length, will lose information. Similarly for shorter
signatures, redundant data will be added.

One way to never lose data would be to re-sample all the signature to the max
length instead. But this would mean that all (expect one) signatures receives
redundant data that has to be processed and computed by the GPU/CPU. Con-
sidering that the training time is dependent on the number of float operations,
this should increase the time for training which is not favorable. Redundant
data can also impair the performance of the algorithms. The best solution of
this problem would be to never add redundant data or remove any data. A
more advanced method that was mentioned in [10] was to use the structure of
the network and use di↵erent pooling-factors in the convolutional layers, so the
network could handle input of di↵erent sizes. In this way no redundant data
would be added and no information would be lost to the sample (except for the
deduction of data during training, due to pooling).

The normalization of the x- and y-coordinates were made as described in
Section 7.2. This could have been made in other ways, as described by [40], and
may a↵ect the performance of the training. But this was the first approach to
solve the problem.

The normalization could have included normalization of the size and orien-
tation of the hole signature, but if this is desirably is up to the application at
hand.

How the training set was chosen for the final model, could have been done in
a slightly di↵erent way. Instead of taking all equal pairs, a subset of those could
have been taken randomly. Because the training was run over several training
rounds, all equal pairs should eventually be used. If a smaller set was used, it
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had probably decreased the training time.

9.3 Easy Compare Algorithm

First of all an important point to be made about the Easy Compare Algorithm
(ECA) is that it was only intended to build a code framework which could
later be adjusted for learning algorithms. ECA is not a learning algorithm so it
might not be fair to compare this result to the other algorithms. Mostly because
this algorithm considers the entire database as a test set since the prediction is
made by an engineered feature di↵ (recall Equation 45). Putting this aside it is
interesting to see that the first approach of a naive examination of the di↵erences
(defined by di↵ ) between two signatures gave considerably satisfying results. It
was not until the final model these results were surpassed.

9.4 Logistic Regression

When looking at the results from the logistic regression it is presumably possible
that the input data is not linearly separable. Looking back at Figure 3, it can
be explained that the linear separator only separated the output data with
an accuracy of 70 %. The complexity of the problem and the way the input
parameters are presented to the logistic regression results in an non-favorable
algorithm.

9.5 Multi-layer Perceptron

There were some problems when trying to get the multi-layer perceptron work-
ing. Recalling the problems during training (see Section 7.6.2), it was all about
varying the hyper-parameters to achieve a satisfying result. This resulted in the
parameters listed in Section 7.6.3.

There could most likely be another set of hyper-parameters that would give
a better result than the one attained. Another thing that was never tested
was to let the algorithm train for more than a couple of days. This could have
been made, but more emphasize was to develop the deep learning architecture
which had proven great results on similar problems. So when the multi-layer
perceptron gave an error rate that decreased during training, the development
of the final, convolutional model started.

To summarize, when taking the complexity of the model and its performance
into consideration, this model was not favorable for this application. But it was
an important step on the way to develop the final model.

The increased complexity for both the logistic regression and the multi-layer
perceptron has shown impaired performance, compared to both each other and
the easy compare algorithm. So increased complexity is not always a good thing,
and this is an important thing to keep in mind to future work.
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9.6 Convolution Neural Network with Deep Architecture

As can be seen in Figure 27, this model performed very well on this database.
An interesting aspect of the result shown in Figure 27, is that the algorithm

seems to be better at recognizing a non-match than it was at recognize a match,
i.e. the model with the optimal threshold had one False Positive and four False
Negatives. This means that the algorithm fail to predict four samples that in
reality were a match, but only fail to predict one sample that in reality was a
non-match. A potential reason could be that the non-matching samples contain
a bigger variation of samples, see Section 7.3 and Figure 20, due to the samples
were replaced in each training round. But the behavior could also be a part of
the structure of the signature verification problem.

When looking back at the result for the logistic regression and the multi-
layer perceptron, it is shown that the structure of the convolutional layers were
very successful for this application. An interesting thing to think about is that
the convolutinal layers only contained less than one percentage of the total set
of parameters. This may suggest that it is worth to keep down the complexity
of the model, and exploring the structure of the network instead.

Another question that arise is if the heavy, fully-connected layer (which
contained 99.1 % of all the parameters in the convolutional neural network)
really is needed. But the structure of using a fully-connected layer before the
classifying layer is the common structure of convolutional neural networks. This
has historically shown good results and was the reason this was used also in the
project.

One important discussion to be made about the convolution neural network
is that it is equivariant to translation as mentioned in Section 3.4.4, but is
not equivariant to scaling and rotation, as described in Section 3.4.4. This
results in that rotating the paper or writing the same signature but with a
di↵erent size would result in di↵erent features for the network i.e. not the same
representation of the signature. Considering that the enrollment phase was
standardized, asking people to sign seven signatures in a box of the same size
and in a row, could potentially lead to that the scaling and rotation of the
signature was a valuable feature for the signature. For example some people
often write their signature a bit skew, and in that case it can be an advantage if
the network can detect this feature. But if this is not desirable, the signatures
should probably be normalized regarding rotation and scaling before passing
into the network, as discussed in Section 9.2.

The main problem when developing this model was the time of the training.
This limited the possibility to try di↵erent selections of hyper-parameters and
di↵erent structures of the layers. To make the training faster, a faster GPU
could have been used or a reduction of the number of trainable parameters
could have been made.

To summarize, this model showed a great result. However, when putting
the good result aside, some weaknesses of this model is the long training time
and the complication in understanding the output from the model, compared
to the engineered features as the easy compare algorithm and the methods in
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Mattisson’s work, [42].

9.7 Performance Evaluation

As mentioned several times earlier in this report the evaluation of which thresh-
old to chose for the di↵erent algorithms has been non-biased when it comes to
whether a False Positive or False Negative is worse. This results in that those
two types of errors have been treated the same, but it can be discussed if this
property is desired. If the systems main objective is to detect fraud then it
might be considered better to reject a true signature (False Negative) then ac-
cept a fraud (False Positive). Another example is used in the justice system
where it is better to let one hundred guilty men go free then to sentence one
innocent man to life in prison.

9.8 Comparison between the Di↵erent Algorithms

The first thing to be said is that the easy compare algorithm provides the best
results up until the deep learning algorithm, which has been trained on a GPU
for one and a half week. This is really interesting since it means that the naive
approach in how to compare two signatures with an engineered feature was
strikingly good. Showing that the human mind is capable of constructing an
acceptable guess of what is important to look at for a solution.

When it comes to the logistic regression (LR) and the multi-layer perceptron
(MLP) algorithms they were mainly used to understand the signature verifica-
tion problem and gather an understanding of learning algorithms. The focus
on these algorithms (LR and MLP) was never to achieve top performance but
rather to obtain the knowledge required for a deep learning algorithm.

When it comes to understanding how the prediction of the di↵erent algo-
rithms works, it is much easier to understand the engineered features, compared
to the weights of the trained model, which becomes increasingly more complex
as the model increases in size.

10 Future Work

This section is intended to provide some suggestions of further work and studies,
which could be a continuation of this project.

10.1 Data Collecting

The very first step on the signature verification problem is to be able to separate
genuine signatures form each other. The next step will be to move on to other
types of forgeries and see how well the final model in this project perform on
those data sets.

If it is possible to get an algorithm which will work on all the other types of
forgeries and if the accuracy of the algorithm is good enough (i.e. close to ideal),
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the data collection could be linked to general identification procedures such as
for passport controls and the data could be saved on a chip in the passport.
Because the signature is a behavioral biometric parameter, the samples should
be replaced after X number of years, which is the general procedure for passports
and other identification cards.

In future work it would also be interesting to study how the signatures
changes over time, for example a couple of weeks or even years.

In the future development of the algorithm it is then important to mimic
the real world as much as possible and collect samples at di↵erent occasions.

10.2 Pre-processing

The normalization could be made in di↵erent ways. If the input data is normal-
ized to be symmetric around zero, the gradient in the training step will variate
less and this will probably lead to improved training [40]. In this project one
type of normalization was used, but other types of normalization are also worth
trying in future development.

10.3 Convolution Neural Network with Deep Architec-
ture

It is an engineering task to find out which model selection that gives the best
results. In this project there was not enough time to variate the structure of
the final model, and analyze this further.

To improve the developed model further, the structure of the network could
be utilized better, where a trade o↵ between needed complexity is considered, i.e.
the minimum number of parameters that can be used without losing accuracy.
The network could perhaps be implemented to work on an adaptable input
length and/or be implemented on sub problems.

In Section 1.2.3, the results from the competition showed that the models
performed better on the data set, that only contain the coordinates and not
the pen orientation and pressure. It would be interesting to customize the final
model developed in this project to only work on the coordinates and see how
well it performed.

The GPU based, max-pooling, convolutional neural networks has shown
great results on image recognition through history, but even better results has
been shown by GPU based, ensemble, max-pooling, convolutional neural net-
works. To improve this model even more, the model could also use ensemble
learning in future development.
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11 Conclusion

In this report a deep learning algorithm has been developed to deal with the
signature verification problem. In order to solve the problem a code framework
was built with a database of signatures, a classifier and an evaluation method.
Several di↵erent classifying algorithms were tested before the final convolutional
neural network was developed. The result from this final model was a true
positive rate (sensitivity) of 96.7 % and a false positive rate (fall-out) of 0.6 %.
The suggested solution for the problem shows promise, but future studies are
recommended.
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säkerhetsniv̊an p̊a svenska sjukhus? Master’s thesis, Blekinge Tekniska
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[20] Stefano Rodoà Data Protection Working Party of the European commis-
sion. Working document on biometrics. WP80, 2003.

[21] E. D. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,
F. Thomanek, and J. Schiehlen. The seeing passenger car ’VaMoRs-P’. In
Proc. Int. Symp. on Intelligent Vehicles ’94, Paris, pages 68–73, 1994.

[22] C. Petrinin E. Mordini. Ethical and social implications of biometric iden-
tification technology. Annali Dell’Instituto Superiore di Sanita, 43(1):5-11,
2007.

[23] J.L. Elman. Rethinking Innateness: A Connectionist Perspective on De-
velopment. A Bradford book. Kluwer, 1998.

[24] Jimmy Engström. On-line handwriting recognition. Master’s thesis, Lund
Institute of Technology, Centre for Mathematical Sciences, 2003.

[25] K. Fukushima. Neural network model for a mechanism of pattern recog-
nition una↵ected by shift in position - Neocognitron. Trans. IECE, J62-
A(10):658–665, 1979.

[26] K. Fukushima. Neocognitron: A self-organizing neural network for a mech-
anism of pattern recognition una↵ected by shift in position. Biological
Cybernetics, 36(4):193–202, 1980.

[27] Kunihiko Fukushima. Artificial vision by multi-layered neural networks:
Neocognitron and its advances. Neural Networks, 37:103–119, 2013.

79



[28] C. F. Gauss. Theoria combinationis observationum erroribus minimis ob-
noxiae (theory of the combination of observations least subject to error),
1821.

[29] Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus
conicis solem ambientium, 1809.

[30] D. H. Hubel and T.N. Wiesel. Receptive fields, binocular interaction, and
functional architecture in the cat’s visual cortex. 160, 1962.

[31] David H Hubel and Torsten N Wiesel. Receptive fields and functional
architecture of monkey striate cortex. 195, 1968.

[32] ICPR 2012 Contest on Mitosis Detection in Breast Cancer Histological
Images. IPAL Laboratory and TRIBVN Company and Pitie-Salpetriere
Hospital and CIALAB of Ohio State Univ., http://ipal.cnrs.fr/ICPR2012/,
2012.

[33] A.K. Jain, A.A. Ross, and K. Nandakumar. Introduction to Biometrics.
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