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Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and
molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these
studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world
data sets, not much is currently known concerning the performance and computational issues of these methods when
fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches
have not yet seen widespread application in the field, due to the lack of implementations of these computationally de-
manding techniques in commonly-used phylogenetic packages. We here investigate the performance of some of these
new marginal likelihood estimators, specifically, path sampling and stepping-stone sampling for comparing models of
demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected
inferences were made using the HME. Given the drastically increased computational demands of path sampling and
stepping-stone sampling, we also investigate a posterior simulation-based analogue of Akaike’s information criterion
(AICM) through Markov chain Monte Carlo (MCMC), a model comparison approach which shares with the HME the
appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME
systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the
AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreli-
able. We show that path sampling and stepping-stone sampling substantially outperform these estimators and adjust the
conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used
in this paper are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary
analyses.

Introduction

Bayesian inference has become increasingly popular
in molecular phylogenetics over the past decades, with
Markov chain Monte Carlo (MCMC) integration revolu-
tionizing the field (Yang and Rannala 1997). While MCMC
has provided the opportunity to infer posterior distributions
under complex phylogenetic models, the computational de-
mands associated with increasing model complexity and
the amount of data available has considerably hampered
assessing the performance of such models. Comparing al-
ternative models according to objective criteria in a for-
mal model selection procedure is becoming an essential ap-
proach to phylogenetic hypothesis testing (Suchard, Weiss
and Sinsheimer 2001; Huelsenbeck et al. 2001). Here, the
aim of model selection is not necessarily to find the true
model that generated the data, but to select a model that
best balances simplicity with flexibility and biological re-
alism in capturing the key features of the data (Steel 2005).

A standard approach to perform model selection in
a Bayesian phylogenetic framework operates through the
evaluation of Bayes factors (Sinsheimer, Lake and Little
1996; Suchard, Weiss and Sinsheimer 2001). The Bayes
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factor is a ratio of two marginal likelihoods (i.e. two nor-
malizing constants of the form p(Y | M), with Y the ob-
served data and M an evolutionary model under evaluation)
obtained for the two models, M0 and M1, under comparison
(Jeffreys 1935):

B10 =
p(Y |M1)

p(Y |M0)
. (1)

In order to evaluate model fit and calculate Bayes factors,
the normalization constant or marginal likelihood p(Y |M),
which measures the average fit of a model to the data, is
of primary importance. Calculation of the marginal like-
lihood of model M requires integration of its likelihood
across parameter values, weighted by the model’s prior dis-
tribution

p(Y |M) =
∫

θ∈Θ

p(Y | θ ,M) p(θ |M) dθ . (2)

Among several models, one is led to choose the one
of greatest marginal likelihood. The Bayes factor offers
advantages over likelihood-ratio-tests comparing nested
models in which one garners evidence only in favor of re-
jecting less complex models. Instead, the Bayes factor eval-
uates the relative merits of both competing models. Con-
sequentially, models need not be nested and the marginal
likelihood naturally penalizes for model complexity. Val-
ues of the Bayes factor greater than 1 are considered as
evidence in favor of M1. Given that modeling assumptions
may have orders-of-magnitude effects on model fit, the log
Bayes factor is often calculated. Kass and Raftery (1995)
introduce different gradations to assess the log Bayes fac-
tor as evidence against M0. A value between 0 and 1 is not
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2 Baele et al.

worth more than a bare mention, whereas a value between
1 and 3 is considered to give positive evidence against M0.
Values larger than 3 and 5 are considered to respectively
give strong and very strong evidence against M0.

Although researchers have proposed several useful
methods to evaluate Bayes factors in phylogenetics, they
are often limited to specific model selection situations (Lar-
tillot and Philippe 2006). For example, Suchard, Weiss
and Sinsheimer (2001) develop the Savage-Dickey ratio
(Verdinelli and Wasserman 1995) as a Bayes factor estima-
tor for nested evolutionary models in phylogenetics. Addi-
tional approaches include reversible jump MCMC to eval-
uate the relative merits of tree topologies (Suchard, Weiss
and Sinsheimer 2005) and nesting alternative models to-
gether into a single mixture model via model averaging
in phylogenetics (Lemey et al. 2009; Li and Drummond
2011). Outside of phylogenetics, one often employs ap-
proximations to the Bayes factor, such as Bayesian infor-
mation criterion (Schwartz 1978) and Laplace estimators
(Kass and Raftery 1995). However, these approximations
often make large sample assumptions that are rarely valid
in phylogenetics and break down when considering the dis-
crete nature of tree topologies.

Among the few methods of potentially general ap-
plicability, phylogenetics has readily adopted (i) impor-
tance sampling (IS) estimators (Newton and Raftery 1994)
and (ii) path sampling (PS) estimators (Ogata 1989; Gel-
man and Meng 1998) to compute marginal likelihoods of
competing models. Occasionally, phylogeneticists refer to
PS as ‘thermodynamic integration’ (Lartillot and Philippe
2006) in deference to the physics over statistics literature.
PS methods represent very general estimators; they can be
applied to any model for which MCMC samples can be
obtained. These approaches allow for an overall ranking of
competing models to be constructed, from which the top-
performing model can easily be determined.

Lartillot and Philippe (2006) discuss and evaluate
several approaches to calculate marginal likelihoods and
Bayes factors in the context of phylogenetics. They ex-
amine three variants of IS, the prior arithmetic mean esti-
mator, the posterior harmonic mean estimator (HME), the
stabilized HME, and PS. Of these approaches, the HME
(Newton and Raftery 1994) is by far the simplest method,
only requiring samples from the posterior distribution, and
has been used extensively in the field of phylogenetics
(see e.g. Nylander et al. (2004)). The HME is often sev-
erly biased, overestimating the true marginal likelihood
(Xie et al. 2011). Because HME estimator variance may
be infinite, a modified, stabilized version has been pro-
posed (Newton and Raftery 1994) with extensions to quan-
tify its Monte Carlo error in phylogenetics (Redelings and
Suchard 2005). Lartillot and Philippe (2006) compare the
various approaches using a Gaussian model with different
dimensions and an evolutionary model on a fixed tree for
which exact calculation of the marginal likelihood is avail-
able. Results indicate that PS outperforms the IS variants
across all scenarios, remaining well-behaved in cases with
high dimensions where all three IS methods fail, even when
using a huge numbers of costly posterior samples.

Recently, Xie et al. (2011) introduced a new method,
called stepping-stone sampling (SS) that employs ideas

from both IS and PS to estimate the marginal likelihood
in a series (the stepping stones) that bridges the posterior
and prior distribution of a model. Again using a Gaussian
model example, the authors show that SS yields a sub-
stantially less biased estimator than PS. Further, for re-
alistic phylogenetic models, SS importantly requires sig-
nificantly fewer path steps than PS to accurately estimate
the marginal likelihood with acceptably small discretiza-
tion bias.

Because PS and SS offer increased model selection
accuracy, in particular relative to the HME, Bayesian in-
ference software that incorporates an array of evolution-
ary models would greatly benefit from the implementa-
tion of these methods. BEAST (Drummond et al. 2012)
is a cross-platform program for Bayesian MCMC analy-
sis of molecular sequences that offers a multitude of dif-
ferent models, such as autocorrelated and uncorrelated re-
laxed clock models, substitution models including hetero-
geneity across sites, coalescent models of population size
and growth and phylogeographic models, with support for
a flexible choice of prior specifications on model param-
eters. BEAST presents a flexible framework for testing
evolutionary hypotheses without conditioning on a single
tree topology. However, the rich choice in models has not
been matched by state-of-the-art methods for calculating
marginal likelihoods; only the HME is readily available
when integrating over the uncertainty in the phylogenetic
tree.

Here, we implement PS and SS approaches to test
models while accommodating phylogenetic uncertainty
in BEAST. We also implement a posterior simulation-
based analogue of Akaike’s information criterion through
MCMC (AICM) (Raftery et al. 2007), which is computa-
tionally efficient as it only requires samples from the pos-
terior, and compare the performance of PS, SS and AICM
to that of the HME. Using a simulation study, we show that
PS and SS consistently outperform the AICM and HME,
and that the AICM outperforms the HME in four out of
five simulation scenarios, when performing demographic
model selection. Our results for demographic and molecu-
lar clock selection on empirical data sets indicate that PS
and SS yield the most consistent results across two runs
with different starting values and systematically yield more
realistic model classifications. Further, the AICM yields
more consistent results across runs than the HME, but like
the HME, fails to consistently select the appropriate model.

Methods
Path sampling and stepping-stone sampling in BEAST

Most implementations of PS rely on drawing MCMC
samples from a series of distributions, each of which is a
power posterior differing only in its power, along the path
going from the prior to the unnormalized posterior defined
by the model M. Both Lartillot and Philippe (2006) and Xie
et al. (2011) define this path to be:

qβ (θ) = p(Y | θ ,M)β p(θ |M), (3)
where p(Y | θ ,M) is the likelihood function and p(θ |M)
the prior). Hence, the power posterior is equivalent to the
posterior distribution when β = 1.0 and is equivalent to the
prior distribution when β = 0.0.
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Accurate demographic and clock model comparison 3

Lartillot and Philippe (2006) propose to evenly spread
the different values of that power β between 0.0 to 1.0 and
use Simpson’s triangulation method to derive an expression
for the marginal likelihood. The authors propose to collect
one sample from each power posterior, before β is updated.
Assuming K+1 path steps, this yields a collection of sam-
ples (βk,θk)k=0...K , with β0 = 0 and βK = 1, which are used
to calculate the estimate for the marginal likelihood:

ln p(Y |M) =
1

2K

K−1

∑
k=0

(ln p(Y | θk,M)+ ln p(Y | θk+1,M)).

(4)
In our implementation of path sampling in BEAST (Drum-
mond et al. 2012), we have however chosen to use multiple
samples per β , requiring a small adaptation of equation 4
in that each loglikelihood is replaced by the mean loglike-
lihood of the samples taken at each β .

Lepage et al. (2007) advocate for the use of a sig-
moidal function that places most power values near the ex-
tremes of the unit interval in their model-switch PS anal-
ysis and Friel and Petitt (2008) use equally spaced points
in the interval [0,1] elevated to the fourth or fifth power.
Hence, the approaches of Lepage et al. (2007) and Friel
and Petitt (2008) both place most of the power values at
points where the power posterior is changing rapidly. Xie
et al. (2011) find that the efficiency of PS could dramat-
ically improve by choosing β values according to evenly
spaced quantiles of a Beta(α,1.0) distribution rather than
spacing β values evenly from 0.0 to 1.0; this is a general-
ization of the approach by Friel and Petitt (2008).

Xie et al. (2011) propose to calculate the marginal
likelihood using n samples from a series of K + 1 power
posteriors as follows

p(Y |M) =
K

∏
k=1

1
n

n

∑
i=1

p(Y | θi,M)βk−βk−1 . (5)

The authors show that numerical stability can be improved
by factoring out the largest sampled likelihood for each
power posterior. While the estimator for the marginal like-
lihood shown in equation 5 is unbiased, a bias is introduced
by transforming to the log scale, which can be alleviated by
increasing K.

Xie et al. (2011) show that a value of α = 0.3 is
close to optimal for their Gaussian model example, sug-
gesting that values close to 0.3 are perhaps generally opti-
mal. The choice α = 0.3 results in half of the β values eval-
uated being less than 0.1. The authors state that the posi-
tive skewness of this distribution is useful because (with
sufficient and informative data) the likelihood only begins
losing control over the power posterior for β values near
0, and at that point the target distribution changes rapidly
from something resembling the posterior to something re-
sembling the prior. Conditioning on the total number of
β values evaluated, placing most of the computational ef-
fort on β values near zero results in increased accuracy. In
BEAST, we provide these different possibilities for spread-
ing the power values. However, in the results of this paper,
we follow the Xie et al. (2011) recommendation.

Estimation of HME and AICM

The harmonic mean estimate of the marginal like-
lihood only requires samples from the posterior, i.e. for
β = 1 in equation 3, and can hence be calculated from
an MCMC sample that is obtained by a standard Bayesian
phylogenetic analyses under a particular model. If one col-
lects n samples from the posterior, the HME is estimated
as follows

p(Y |M) =
n

∑
n
i=1

1
p(Y |θi,M)

. (6)

Raftery et al. (2007) introduce the AICM as a
posterior-simulation based analog of the AIC model selec-
tion criterion. AICM has the advantage that, like the har-
monic mean estimator of marginal likelihood, one may es-
timate the AICM directly from posterior samples generated
by MCMC with little additional work. Raftery et al. (2007)
show that asymptotically with large amounts of data, the
posterior distribution of a model’s log likelihood ` follows

`max− `∼ Gamma(γ,1), (7)

where `max represents the maximum possible log like-
lihood, γ = k/2 and k represents the effective number
of parameters in the model. The density function of a
Gamma(γ,1) distribution is

f (x) =
xγ−1 e−x

Γ(γ)
,

and thus the density function of the log likelihood becomes

f (`) =
e`−`max (`max− `)γ−1

Γ(γ)
. (8)

Alternatively, the posterior distribution of log likelihoods
may be described in terms of a deviance D = −2`, such
that the posterior deviance is distributed according to a
shifted chi-squared distribution

D−Dmin ∼ χ
2(2γ),

with density function

f (D) =
2−γ e(Dmin−D)/2 (D−Dmin)

γ−1

Γ(γ)
. (9)

Equation 7 suggests a method-of-moments estimate
of γ as γ̂ = s2

` and ˆ̀max = ¯̀+ s2
` , where ¯̀ and s2

` are the
sample mean and variance of the posterior log likelihoods
(Raftery et al. 2007). Thus, an estimate of the effective
number of parameters k equals 2s2

` .
AIC (Akaike 1973) is commonly used for model com-

parison in a maximum-likelihood context, and is defined as

AIC = 2k−2`max.

Models with lower values of AIC are preferred over models
with higher values. An increase in the number of parame-
ters k penalizes more complex models. Here, we follow
Raftery et al. (2007) in estimating AICM as

AICM = 2k̂−2 ˆ̀max

= 2(2s2
`)−2( ¯̀+ s2

`)

= 2s2
` −2 ¯̀, (10)
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4 Baele et al.

a function of just the posterior sample mean and variance
of the log likelihood. The AICM is similar in spirit to the
deviance information criterion (Gelman et al. 2004).

In addition to the simple method-of-moments estima-
tor of AICM (10), we consider estimating AICM by fitting
the sampled log likelihood values to the their asymptotic
density function (8) via maximum likelihood to estimate
to ˆ̀max and γ̂ . However, this procedure does not result in
a marked improvement over the moment estimator, while
suffering from a much higher computational burden. Con-
sequently, throughout the manuscript, we use (10) as our
estimate of AICM.

Performance analysis through simulation

To assess the performance of the HME, AICM, PS
and SS in population genetics model comparison in which
it becomes necessary to integrate over all possible trees,
we perform a simulation study inspired by the coalescent
analysis of Worobey et al. (2008), see below for details.
We consider the sampling dates of 60 sequences that rep-
resent the diversity in the original HIV-1 group M data
set and simulate dated-tip genealogies under two simple
demographic models: a constant population size and an
exponentially growing population size through time. The
simulations under the exponential growth model include
increasing growth rates: 0.01, 0.025, 0.05 and 0.10 per
year, respectively. We simulate 100 genealogies under each
scenario. Because variance in coalescent simulations yields
much wider TMRCA distributions than the empirically ob-
served TMRCA posterior distribution for HIV-1 group M
(Worobey et al. 2008), we rescale the resulting trees by
drawing the TMRCA from a normal distribution with mean
1910 and standard deviation 10.

Along each genealogy, we simulate sequences encom-
passing 1000 sites using GTR parameter values and a sub-
stitution rate that reflects the estimates for the real data. For
each simulated data set under each demographic model, we
estimate marginal likelihoods using the HME, AICM, PS
and SS of both the constant population and exponential
population model. For all marginal likelihood estimators,
108 MCMC iterations were run in BEAST, with each esti-
mator taking no more than 3 days to complete.

Results
HIV epidemic history

We revisit a Bayesian evolutionary reconstruction of
the HIV-1 group M epidemic history originally performed
by Worobey et al. (2008). This study examines sequence
data from a 1960 specimen from the Belgian Congo (now
Kinshasa, Democratic Republic of the Congo) that show
considerable divergence from the 1959 (ZR59) sequence
(Zhu et al. 1998), the oldest and only known sequence
sampled before 1976 at that time. Because sequences pre-
dating the recognition of AIDS are critical to defining the
time of origin and the timescale of virus evolution, the au-
thors include these in a relaxed molecular clock analysis
and estimated an origin of group M near the beginning of
the twentieth century (Worobey et al. 2008).

[FIG. 1 about here.]

Worobey et al. (2008) consider several different coa-
lescent models that serve to provide a prior distribution for
time-measured trees and offer a glimpse into the popula-
tion dynamics of the epidemic. These models include the
constant population size, exponential growth (assuming a
constant growth rate through time), expansion growth (as-
suming an increasing growth rate through time), logistic
growth (assuming a decreasing growth rate through time)
and the Bayesian skyline plot demographic model (a gen-
eral, non-parametric prior that enforces no particular de-
mographic history; Drummond et al. (2006a)). The authors
show that the inclusion of the 1959 and 1960 sequences
seemed to improve estimation of the TMRCA of the M
group, limiting the influence of the coalescent tree prior on
the posterior TMRCA distributions compared with the data
set that excluded these earliest cases of HIV-1. However,
scientific interest also lies in characterizing through model
comparison changes in the population dynamics captured
by the different coalescent models rather than the direct an-
cestors of the sampled sequences. From the Worobey et al.
(2008) paper, the HME suggests that a constant population
size model provided the best fit to the data. This appears to
be at odds with a model for population expansion and the
Bayesian skyline plot reconstruction that suggest a more
complex (and biologically plausible) demographic history
of increasing HIV population size through time. The au-
thors state that the inability to reject the constant popula-
tion size model is counterintuitive because it is clear that
the HIV-1 population size has increased notably and spec-
ulate that this finding might be due to the simplest model
providing a good fit to a relatively short, information-poor
alignment, in comparison to more parameter-rich models.

We reanalyze this HIV-1 dataset by performing two
independent fittings to each possible prior model and ap-
ply the HME, AICM, PS and SS to perform model se-
lection. Figure 1 shows the log marginal likelihoods for
each model using each estimator (see Table S1 in the Sup-
plementary Material for the actual values). Depending on
which independent fitting we examine, the constant popu-
lation model is either the best or the worst model accord-
ing to the HME, highlighting the poor reliability of this
approach. Indeed, the poor repeatability of the HME rela-
tive to PS and SS has been demonstrated before (Fan et al.
2011). Moreover, the marginal likelihoods of all five de-
mographic models lie within a 6 and 9 log unit range, for
the first and second fitting respectively. This indicates that
the overall difference between the five models according to
the HME is quite small, making it difficult to reliably select
an appropriate demographic model. This range increases to
respectively 51 and 25 log units for the AICM, indicating
that this approach too suffers from poor repeatability for
this data set, even though the overall ranking of the models
stays the same. The AICM prefers a constant population
size in both runs, which has been stated to be counterintu-
itive (Worobey et al. 2008). Using PS and SS, however, a
drastically different situation emerges. For both fittings, the
Bayesian skyline model outperforms all other models con-
sidered, whereas the constant population model performs
considerably worse compared to the other demographic
models. We refer to the original publication (Worobey et al.
2008) for a graphical representation of the Bayesian sky-
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Accurate demographic and clock model comparison 5

line model for the HIV-1 group M. This suggests that the
constant population model was not originally preferred be-
cause of an information-poor alignment (Worobey et al.
2008), but because the HME fails to provide an adequate
classification of the demographic models.

Marginal likelihood estimator performance

Although PS and SS arrive at a biologically more
plausible outcome for HIV population size change through
time, it remains difficult to ascertain that these estimators
select a model closer to the truth for real-life data sets com-
pared to the HME and the AICM. To address performance
more formally, we next present a series of simulations to
test the ability of marginal likelihood estimators and the
AICM to correctly identify the underlying demographic
model in cases where the true model is known. The sim-
ulations include constant population size and exponential
growth dynamics with increasing growth rates and were
modeled after the real data set (see Methods).

[Table 1 about here.]

When we simulate data under a constant population
size coalescent process (Table 1), the HME is unable to
distinguish between a constant population model and an
exponential growth rate model, performing no better than a
fair coin toss. This is also reflected in the average log Bayes
factor across all 100 replicates (roughly centered around 0),
indicating that on average the HME considers these two
models to perform equally well. Here, the AICM outper-
forms the HME, correctly classifying 60 simulation repli-
cates and yielding a positive overall difference in AICM of
0.57, in favor of the constant population model. PS and SS
outperform both the HME and AICM, correctly classify-
ing 72 out of 100 simulation replicates, yielding an average
log Bayes factor of 1.76 in favor of the constant population
model. This average log Bayes factor can be interpreted as
the average penalty that the exponential growth rate model
receives for including one additional parameter.

A simulation scenario close to the constant population
size model is that of an exponentially increasing popula-
tion size with a very low growth rate, 0.01 in our simula-
tion study. In this scenario, the HME fails again to outper-
form a fair coin toss, again yielding an average log Bayes
factor close to 0. The AICM performs slightly worse in
this case and only correctly selects the exponential growth
model in 45 cases, as reflected in an average AICM differ-
ence that is slightly positive. The difficulty to distinguish
between an exponential population growth model with a
very small growth rate and the constant population model
is also shared by PS and SS, although they classify 57 out
of 100 simulation replicates correctly and yield a relatively
low average log Bayes factor of 0.81 in favor of the ex-
ponential growth rate model. Increasing the growth rate
to 0.025 reveals that, while the performance of the HME
only increases slightly (a correct classification for 59 out
of 100 simulation replicate), the performance of PS and SS
increases drastically to a proportion of 0.92 correct deci-
sions. The performance of the AICM lies in between that of
the HME and PS/SS, with the average difference in AICM
returning a negative value for this growth rate.

Further increasing the growth rate in the simulations
yields perfect performance for both PS and SS, while the
AICM performs almost equally well. Although the HME
performance also improves for growth rates of 0.05 and
higher, it only attains a proportion of 0.80 correct classi-
fications and the average log Bayes factor increases only
slightly. With an increasing growth rate, the AICM fur-
nishes significantly better performance than the HME and
achieves perfect performance at a growth rate of 0.10. We
can therefore conclude that both PS and SS significantly
outperform the HME. While the AICM’s performance lies
in between that of the HME and PS/SS in cases where it
remains difficult to distinguish between the models, AICM
performs well in the face of modest to strong evidence.

In the simulation results above we use log Bayes Fac-
tor of 0 as cut off for binary classification of models. To
assess the discriminatory power of the HME, AICM and
PS/SS across a range of cut-offs, we plot the true posi-
tive rate as a function of the false positive rate in Figure 2.
These receiver operating characteristic (ROC) curves eval-
uate BF distributions that compare the fit of both coales-
cent models on data simulated under constant population
size and a particular growth rate. In every comparison, PS
(and SS) exhibits a stronger discriminatory behaviour than
the AICM and the HME. Hence, no matter the cutoff used
when performing model comparison, PS (and SS) consis-
tently outperforms AICM and HME. The AICM outper-
forms the HME in most cases and presents therefore a bet-
ter alternative for the HME to get a first glimpse of the
outcome of a model selection approach while maintain-
ing computational efficiency. However, the best perform-
ing methods are clearly PS and SS, justifying the increased
computational demands of these methods.

[FIG. 2 about here.]

DNA virus evolutionary rates

Firth et al. (2010) explore the use of temporally struc-
tured sequence data within a Bayesian framework to es-
timate the evolutionary rates for seven human double-
stranded DNA (dsDNA) viruses. The authors set out to
examine the ability of current inference tools to estimate
relatively low evolutionary rates such as those thought to
commonly characterize dsDNA viruses (Duffy, Shackleton
and Holmes 2008). Of the data sets the authors analyze, we
here focus on the herpes simplex virus-1 data set. Herpes
viruses are large dsDNA viruses, with genomes that range
from 125 to 240 kbp, that infect both vertebrates and inver-
tebrates. Firth et al. (2010) report that the Bayesian skyline
plot model outperforms the constant population size model
for this data set, irrespective of whether a strict clock or
an uncorrelated relaxed clock is assumed, a plausible re-
sult that we will not further discuss here. The analyses of
Firth et al. (2010) also show that the performance of the
strict clock (SC) is virtually identical to that of the uncor-
related relaxed clock lognormal distribution (UCLD), with
both being outperformed by the uncorrelated relaxed clock
exponential distribution (UCED). It remains however un-
clear why a more restrictive exponential function would

 at T
he U

niversity of E
dinburgh on July 17, 2012

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


6 Baele et al.

provide a better underlying distribution to model rate varia-
tion among lineages compared to a lognormal distribution.

Aside from using a strict molecular clock (SC), which
is often deemed unrealistic due to rate variation among lin-
eages, we have used uncorrelated relaxed clocks, for which
we assume two underlying distributions: the exponential
rate distribution (UCED) and lognormal rate distribution
(UCLD) (Drummond et al. 2006b). Offering an alterna-
tive to the autocorrelated relaxed-clock models, these clock
models assume a priori no correlation of the rates on adja-
cent branches of the tree. Instead, the rate on each branch of
the tree is drawn independently and identically from an un-
derlying rate distribution. We reanalyze the HSV-1 dataset
to compare these models using different marginal likeli-
hood estimators as well as using AICM. We also compare
the strict and relaxed clock models in the presence and ab-
sence of the sampling dates to test for ‘temporal signal’.
This provides the Bayesian alternative to the likelihood
ratio test that conditions on a single tree topology to test
whether including the sampling dates in a dated-tip model
significantly improves the fit of the clock models (Rambaut
2000; Suchard, Weiss and Sinsheimer 2003). For consis-
tency, we perform the same number of MCMC iterations
as in the original study.

[FIG. 3 about here.]

Figure 3 demonstrates that the HME, once again, re-
turns inconsistent model rankings across independent fit-
tings (see Table S2 in the Supplementary Material for the
actual values). In the first fitting, a UCLD clock with sam-
pling dates is the top-performer via the HME, while this
model combination is the worst-performer in the second
fitting. The AICM estimates are very consistent across both
runs for all the models compared and seem to show that the
UCED is clearly the worst-performing model, both with
and without sampling dates used. PS and SS also yield con-
sistent results across both fittings, significantly preferring
the SC and UCLD over the UCED when sampling dates
are used. The difference between SC and UCLD in this
case is too small to conclude significance, which may not
be surprising as the temporal signal might be insufficient to
inform a relaxed clock model in this case. However, when
the sampling dates are not used, PS and SS indicate that the
SC is by far the worst-performing model which is picked
up by neither the HME nor the AICM. The temporal sig-
nal appears to be significant however, because - except for
the UCLD HME fit in one run - incorporating the sampling
dates consistently provides a better clock fit to the HSV
data.

Spread of methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is a common cause of infec-
tions that has undergone rapid global spread over recent
decades. Gray et al. (2011) are the first to apply formal phy-
logeographic methods to study the molecular epidemiol-
ogy of bacterial pathogens, which has long been hampered
by the limited genetic diversity of data sets based on indi-
vidual genes. The authors investigate a whole-genome sin-
gle nucleotide polymorphism (SNP) data set of health care-
associated methicillin-resistant S. aureus sequence type

239 (HA-MRSA ST239) strains using Markov models that
consider discrete diffusion among the geographical loca-
tions of sampling. Gray et al. (2011) employ the HME to
perform model selection, which generally prefers complex
evolutionary and population dynamic models: an uncorre-
lated relaxed clock and the Bayesian skyline plot model
provide a better fit than a strict clock and a constant popu-
lation size assumption respectively.

[Table 2 about here.]

Here, we revisit the subset of analyses that use an as-
certainment bias correction (ABC) model to take into ac-
count that only variable sites are being used. Indeed, in
many alignments of closely related sequences, a large num-
ber of sites are invariant and are often excluded because
they are phylogenetically uninformative. However, when
these sites are excluded, a correction is needed to renor-
malize the site probabilities to account for the difference
between unobserved and excluded site patterns. Following
the original analysis we consider data sets with full, inter-
genic and synonymous SNP inclusion (Gray et al. 2011).

Gray et al. (2011) note that for the analyses assuming
a relaxed clock, three independent fittings were combined
to obtain sufficient independent samples from the poste-
rior. Since exploratory analyses using PS and SS also indi-
cated inconsistent results in some cases, we reran the orig-
inal analyses to diagnose potential issues. For the full and
synonymous data sets, we encountered inadequate mixing
for the parameters of the general time-reversible (GTR)
nucleotide substitution model, equilibrium nucleotide fre-
quencies and the parameters of the UCLD clock model. To
ameliorate these issues, we simplified the GTR model to
an HKY model, fixed the base frequencies to the empiri-
cal base frequencies and most importantly replaced the im-
proper uniform prior on the mean rate in the UCLD model
with a diffuse gamma prior. For matters of consistency, we
apply the same models and priors to the intergenic data set.
This resolved the apparent mixing issues, yielding proper
posterior and prior distributions and consistent model or-
dering according to PS and SS (Table 2). It therefore re-
mains a crucial part of any MCMC analysis to check the
MCMC chain for adequate mixing and provide proper pri-
ors for all the model parameters if one wishes to estimate
marginal likelihoods. Given these changes, we have also
recalculated the HME estimates reported in the original pa-
per using the new settings.

Only after providing proper priors and using PS and
SS, we arrive at consistent conclusions across all three data
partitions. For each data partition, an uncorrelated relaxed
clock outperforms a strict clock and a Bayesian skyline plot
model outperforms a constant population size assumption
(Table 2).

Discussion

Recent developments in marginal likelihood estima-
tion demonstrate the potential for more accurate Bayesian
model selection based on simple Gaussian model exam-
ples and small real-world phylogenetic data sets. Here,
we implement such estimators, including PS and SS, as
well as the AICM, in a Bayesian inference framework for
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evolutionary hypotheses testing when uncertainty remains
about the underlying time-measured genealogy. Such ge-
nealogies require molecular clock assumptions and dedi-
cated tree priors, such as coalescent models (Drummond
et al. 2002), that frequently need to be scrutinized. Our
simulations and analyses of empirical data sets indicate
that PS and SS remain feasible without conditioning on a
known phylogeny and, although computationally more de-
manding, consistently outperform the AICM and the HME.
These latter approaches are less computationally demand-
ing because they only require samples from the posterior
distribution to perform model selection and can be calcu-
lated from a standard MCMC run. PS and SS, on the other
hand, require MCMC sampling from a series of power pos-
teriors in order to be able to calculate the marginal likeli-
hood. Given that the accuracy of the estimator depends on
the number of power posteriors that are traversed, a large
number of iterations may be required to yield reliable re-
sults for large data sets and complex evolutionary models.

All of the methods mentioned are now available in
BEAST (Drummond et al. 2012) through XML specifica-
tion, with the HME and the AICM accessible directly in
the graphical interface driven Tracer program. We provide
two BEAST XML files as Supplementary Material to this
paper, one illustrating the usage of the HME and AICM
estimators and one illustrating the usage of the PS and SS
estimators. In these two examples, the intergenic data set
of Gray et al. (2011) is analyzed using a Bayesian skyline
plot model and an uncorrelated relaxed clock with a log-
normal distribution (UCLD). The implementations allow
for an easy comparison between different models while in-
corporating phylogenetic uncertainty. In the current study,
we focus on comparing demographic and clock models, but
the general implementation allows to calculate marginal
likelihoods for any model that can be fitted in BEAST,
such as sequence evolution, trait evolution and phylogeo-
graphic models (see e.g. (Lemey et al. 2009, 2010)). We
refer to Drummond et al. (2012) for an overview of avail-
able models. Further, our implementations allow marginal
likelihoods of a series of models to be calculated indepen-
dently, after which these can be compared through their
Bayes factors to decide which model yields the best fit to
the data and should therefore be used for parameter estima-
tion.

As mentioned earlier, Worobey et al. (2008) show that
the inclusion of the 1959 and 1960 sequences seemed to
improve estimation of the TMRCA of the M group. We
have shown, using path sampling and stepping-stone sam-
pling, that the Bayesian skyline plot model is the optimal
choice among the demographic models that we tested for
this data set. With respect to the conclusions put forward
in the work of Worobey et al. (2008), this means that the
time of the most recent common ancestor obtained under
the Bayesian skyline plot (TMRCA 1908, 95% HPD 1884-
1924) can be selected over that of the constant population
model (TMRCA 1921, 95% HPD 1908-1933), when the
1959 and 1960 sequences are included. Hence, in this sce-
nario, the estimate of the TMRCA of the M group is rel-
atively insensitive to the coalescent tree prior. However,
should our conclusions still hold when the 1959 and 1960
sequences are excluded, the difference between the TM-

RCA estimates would drastically increase, with a TMRCA
under the Bayesian skyline plot of 1882 (95% HPD 1831-
1916) and a TMRCA under the constant population model
of 1933 (95% HPD 1919-1945).

Lartillot and Philippe (2006) note that the difference
between the logarithm of the marginal likelihoods of two
phylogenetic models can be small compared to the two log
marginal likelihoods themselves; this can lead to a poor
estimate of the Bayes factor, unless the precision on each
marginal likelihood estimate is very high. To counter this
effect, researchers suggest constructing a single path con-
necting the two competing models in the space of unnor-
malized densities and then calculating the Bayes factor
directly along this single path (Gelman and Meng 1998).
By construction, this approach often results in lower esti-
mate error for the Bayes factor in phylogenetics (Rodrigue,
Philippe and Lartillot 2006). However, estimator efficiency
depends on the path construction and hence, other paths
between two arbitrary models may be devised. For highly
structured models, such as those we find in phylogenet-
ics, finding an efficient path between two arbitrary models
is not a generic exercise and requires expert knowledge,
e.g. when the models have mismatching or extra param-
eters. In up-coming work, we aim to provide the ability
to construct such Bayes factor estimators in BEAST. The
main challenge in accomplishing this is to develop a user-
friendly interface for users to link common parameters be-
tween the competing models to construct effective paths.
Indeed, while marginal likelihood estimation for a particu-
lar models already requires various adaptations in software,
Bayes factor estimation between two arbitrary models re-
quires much more drastic changes.

One way to circumvent the path construction diffi-
culty is to shorten the path from posterior to prior whilst
still calculating the marginal likelihood for each model sep-
arately. Recently, Fan et al. (2011) propose a more gen-
eral version of SS that introduces an arbitrary “working”
prior distribution that, in practice, one selects as a product
of independent probability densities parameterized using
MCMC samples from the posterior distribution. The au-
thors show that if this reference distribution exactly equals
the posterior distribution, the marginal likelihood can be
estimated exactly. The generalized SS is considerably more
efficient and does not require sampling from distributions
close to the true prior that is problematic for vague choices.
However, at the moment this method is restricted to eval-
uations on a fixed phylogenetic tree topology. Integrating
over plausible tree topologies complicates generalized SS
because of the need to define a reference distribution for
topologies that provides a good approximation to the pos-
terior. Future work will focus on tackling these technical
hurdles and further improving marginal likelihood estima-
tion for model selection.

Bayesian phylogenetics requires a sensible balance
between parameter-richness and biological realism. A
good model captures the essential features of the hypothe-
sis being tested without introducing unnecessary error, bias
and over-fitting. Accurate model comparisons are therefore
a crucial part of any phylogenetic study, even though in this
field of research the model will always be misspecified in
the sense that all evolutionary models are severe simplifi-
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cations of reality. Based on the results we presented in this
paper, we advocate against the use of the HME and provide
an alternative measure, the AICM, as an initial posterior-
based investigation to be used with caution. While PS/SS
both come with increased computational demands, they
clearly provide the most accurate and consistent results and
we recommend them for performing model selection.
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FIG. 1.—Differences in log marginal likelihood estimates and AICM for two independent fittings (first fitting shown in white, second in gray)
of the HIV dataset using the harmonic mean estimator (HME), posterior-simulation Akaike information content (AICM), path sampling (PS) and
stepping-stone sampling (SS). For each estimator, the constant population size model (Con) was used as the reference model and the top performing
model for each fitting is indicated with a star (*). For all estimators, we employ equal amounts of computational work (MCMC iterations), as well
as an equal numbers of samples from which to estimate the marginal likelihood. The HME shows drastic differences in the overall ranking of the
demographic models and, depending on the fitting, may very well select a constant population size as the preferred coalescent prior. The AICM is
consistent across both fittings but selects a constant population size above all other coalescent priors. PS and SS consistently select the Bayesian
skyline plot (BSP) coalescent prior as the optimal choice and put the constant population size far behind the other coalescent priors. PS and SS indicate
that the expansion growth model (Expan) yields the second highest fit, while the exponential (Expo) and logistic (Log) growth models yield similar
performance.
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FIG. 2.—Evaluation of log Bayes factor estimates using PS (SS yields an undistinguishable plot), AICM and the HME to compare model fit, with
four pairwise comparisons being shown: a constant population size versus an exponential population size with growth rates of 0.01, 0.025, 0.05 and
0.10. An increasingly strong discriminatory behaviour (low false positive rates and high true positive rates) can be seen for PS (and SS) up to a growth
rate of 0.10, whereas the HME retains questionable performance. AICM performance lies in between that of the HME and PS/SS. Color-coded area
under the curve (AUC) values are given at the bottom right of each plot.
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FIG. 3.—Differences in log marginal likelihood estimates for two independent fittings (first fitting shown in white, second in gray) for the HSV
dataset (Firth et al. 2010) using HME, AICM, PS and SS using a strict clock (SC), an uncorrelated relaxed clock with an exponential distribution
(UCED) and an uncorrelated relaxed clock with a lognormal distribution (UCLD). The data was analyzed excluding the sampling dates (No) and
including the sampling dates (Yes). We used the strict clock model excluding the sampling dates as the reference model and the top performing model
for each fitting is indicated with a star (*). Equal amounts of computational work (MCMC iterations) were run for all estimators, as well as an equal
number of posterior samples being used to estimate the marginal likelihood. While the HME shows drastic differences in the overall ranking of the
(clock) models, the AICM as well as PS and SS exhibit consistent behaviour, although disagreeing on the performance of a strict clock when the
sampling dates are omitted.
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TABLES 13

Table 1 Marginal likelihood estimator performance for 100 simulated datasets under various coalescent priors using the HME, AICM, PS and SS.
We employed equal amounts of computational work (MCMC iterations) for all estimators, as well as an equal number of posterior samples being used
to estimate the marginal likelihood. The HME, PS and SS columns report the number of correct classifications obtained out of 100 simulations. The log
BF HME, log BF PS and log BF SS report the mean log Bayes factor over all replicates between the constant population size and exponential growth
coalescent priors (a positive number indicates a preference for the constant population size), while ∆AICM reports the mean difference of the AICM
values across all replicates.

Coalescent prior Growth rate HME AICM PS SS log BF HME ∆AICM log BF PS log BF SS
Constant - 48 59 72 72 0.61 0.57 1.76 1.76
Exponential 0.010 50 45 57 57 0.28 0.20 -0.81 -0.80
Exponential 0.025 59 73 92 92 -1.33 -1.36 -6.81 -6.81
Exponential 0.050 80 99 100 100 -4.43 -4.34 -12.54 -12.54
Exponential 0.100 78 100 100 100 -7.75 -7.66 -18.24 -18.24
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14 TABLES

Table 2 Marginal likelihood estimates for two independent fittings for the HA-MRSA ST239 dataset using the HME, AICM, PS and SS (with
the overall ranking of the models shown in parentheses for each estimator) after specifying proper priors. As in the original publication of Gray
et al. (2011), we compare the constant population size and Bayesian skyline plot (BSP) demographic models under both a strict clock (SC) and an
uncorrelated relaxed clock with a lognormal distribution (UCLD) for three data sets: a full, intergenic and synonymous data set (we refer to Gray
et al. (2011) for more details on these data sets). Equal amounts of computational work (MCMC iterations) were run for all estimators, as well as
equal numbers of posterior samples being used to estimate the marginal likelihood. Only PS and SS are able to yield a consistent model classification
across both fittings, thereby generating the same overall ranking as in the original publication (Gray et al. 2011). The HME and AICM are only able to
generate a consistent and correct classification in one out of three data sets.

Fitting 1 Fitting 2
Data Clock Coalescent HME AICM PS SS HME AICM PS SS
Full SC Constant -28420.5 (4) 56865.6 (4) -28738.2 (4) -28735.9 (4) -28418.2 (3) 56865.2 (4) -28735.5 (4) -28734.2 (4)
Full SC BSP -28419.4 (3) 56860.7 (3) -28724.9 (3) -28723.2 (3) -28420.8 (4) 56860.2 (3) -28723.8 (3) -28722.3 (3)
Full UCLD Constant -28304.2 (2) 56681.8 (2) -28641.1 (2) -28638.3 (2) -28308.2 (2) 56682.4 (2) -28647.5 (2) -28644.2 (2)
Full UCLD BSP -28304.1 (1) 56679.6 (1) -28635.6 (1) -28631.9 (1) -28304.4 (1) 56680.1 (1) -28631.8 (1) -28628.2 (1)
Intergenic SC Constant -6493.7 (4) 13016.8 (2) -6749.5 (4) -6749.3 (4) -6495.9 (4) 13016.7 (2) -6750.0 (4) -6749.6 (4)
Intergenic SC BSP -6489.4 (3) 13001.4 (1) -6740.0 (3) -6739.7 (3) -6488.9 (3) 13001.4 (1) -6742.3 (3) -6742.0 (3)
Intergenic UCLD Constant -6479.9 (1) 13037.7 (3) -6730.1 (2) -6729.4 (2) -6481.9 (1) 13038.3 (3) -6725.2 (2) -6724.8 (2)
Intergenic UCLD BSP -6480.6 (2) 13048.2 (4) -6716.7 (1) -6716.1 (1) -6482.0 (2) 13043.7 (4) -6717.1 (1) -6716.5 (1)
Synonymous SC Constant -6563.9 (4) 13149.7 (4) -6816.3 (4) -6815.8 (4) -6561.9 (4) 13149.2 (4) -6816.8 (4) -6816.3 (4)
Synonymous SC BSP -6556.1 (3) 13133.1 (2) -6806.4 (3) -6806.0 (3) -6558.5 (3) 13133.8 (2) -6806.6 (3) -6806.1 (3)
Synonymous UCLD Constant -6541.7 (2) 13138.7 (3) -6787.4 (2) -6786.7 (2) -6538.6 (2) 13138.5 (3) -6786.8 (2) -6786.1 (2)
Synonymous UCLD BSP -6533.6 (1) 13122.8 (1) -6780.8 (1) -6780.3 (1) -6536.1 (1) 13123.9 (1) -6780.9 (1) -6780.0 (1)
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