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Rank Awareness in Joint Sparse Recovery
Mike E. Davies, Member IEEE and Yonina C. Eldar, Senior Member, IEEE

Abstract

This paper revisits the sparse multiple measurement vector (MMV) problem, where the aim is to recover a set of

jointly sparse multichannel vectors from incomplete measurements. This problem is an extension of single channel

sparse recovery, which lies at the heart of compressed sensing. Inspired by the links to array signal processing, a new

family of MMV algorithms is considered that highlight the role of rank in determining the difficulty of the MMV

recovery problem. The simplest such method is a discrete version of MUSIC which is guaranteed to recover the

sparse vectors in the full rank MMV setting, under mild conditions. This idea is extended to a rank aware pursuit

algorithm that naturally reduces to Order Recursive Matching Pursuit (ORMP) in the single measurement case while

also providing guaranteed recovery in the full rank setting. In contrast, popular MMV methods such as Simultaneous

Orthogonal Matching Pursuit (SOMP) and mixed norm minimization techniques are shown to be rank blind in terms

of worst case analysis. Numerical simulations demonstrate that the rank aware techniques are significantly better than

existing methods in dealing with multiple measurements.

Index Terms

Compressed sensing, multiple measurement vectors, rank, sparse representations

I. INTRODUCTION

Sparse signal representations provide a general signal model that represents or approximates a signal using a

linear combination of a small number of elementary waveforms (called atoms) selected from a large collection (the

dictionary). Such models make it possible to solve many ill-posed problems such as source separation, denoising

and most recently compressed sensing [1], [2] by exploiting the additional sparsity constraint. The key point is

that when the signal, x, is sufficiently sparse it can still be uniquely determined from an underdetermined set of

measurements y = Φx, where Φ ∈ Rm×n and m < n.

The problem of finding the sparsest x consistent with a given observation vector y is known to be NP-hard in

general [3], [4] and therefore is presumed to not be solvable in polynomial time. Instead, various suboptimal
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strategies have been proposed and have been demonstrated, both empirically and theoretically, to have good

reconstruction performance in a range of settings. Commonly used strategies are typically based on convex relaxation

[5], non-convex local optimisation [6] or greedy search strategies [3], [4], [7], [8], [9].

Encouraged by the potential power of sparse representations, researchers have begun to consider a number of

extensions to the basic sparse representation model. These include the multiple measurement vector (MMV) problem

[10], [11], [12], [13], [14], as well as other union of subspace models [15], [16], [17] such as block sparsity or

tree structured sparsity [17], [18], [19] and blind compressed sensing [20]. These ideas have also been recently

expanded to include sub-Nyquist sampling of structured analog signals [21]. As with the single measurement vector

problem (SMV) several suboptimal methods for finding a sparse matrix solution to the MMV problem have been

proposed, that have polynomial complexity [11], [22], [23], [24], [10], [12], [13], [14]. These approaches are

generally straightforward extensions of existing SMV solutions and can be roughly divided into greedy methods,

and algorithms based on mixed norm optimization. We will discuss these two classes in Section V. One exception to

this is the approach in [13] which reduces the MMV problem to a single channel recovery via a random projection

that preserves the sparsity pattern.

A variety of different equivalence results between finding the sparsest solution, the so-called `0-problem, and the

output of the proposed efficient algorithms have also been derived. In [12] an equivalence result was obtained for

a mixed `p,1 program in which the objective is to minimize the sum of the `p-norms of the rows of the estimated

matrix whose columns are the unknown vectors. The condition is based on mutual coherence, and turns out to

be the same as that obtained from a single measurement problem, so that the joint sparsity pattern does not lead

to improved recovery capabilities as judged by this condition. Recovery results for the more general problem of

block-sparsity were developed in [19], [17] based on the RIP, and in [18] based on mutual coherence. However

reducing these results to the MMV setting leads again to conditions that are the same as in the single measurement

case. An exception is the work in [25], [26], [14] which considers average case performance assuming that X is

generated at random from an appropriate distribution. Under a mild condition on the sparsity and on the matrix

Φ, the probability of reconstruction failure decays exponentially with the number of channels l. However, to date,

all worst case recovery results have not shown any advantage to the MMV setting over the SMV case. The reason

is that in the worst case, the matrix X may be comprised of a single repeated vector x, in which case effectively

the MMV and SMV problems becomes identical, hence the worst case results are not capable of improving the

recovery guarantees.

As noted above, one approach to demonstrate the advantage of the MMV formulation is to use an average case

analysis where X is generated at random. Since repeated columns are not likely to occur, this strategy allows for

improved recovery guarantees. In this paper, we concentrate on worst-case performance, as in the bulk of prior work

on SMV problems. We show that we can break the worst-case analysis bottleneck by exploiting the rank of the

matrix X. Although in the case of a rank-one matrix we cannot do better than in SMV recovery, this is no longer

true when X has higher rank. In particular, when the rank of X is equal to k, we highlight the fact that it can be
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recovered exactly from the measurements Y under a mild condition1 on Φ using polynomial time algorithms from

only m = k + 1 measurements per signal [27] based on the MUSIC algorithm popular in array signal processing

[28]. Clearly this is a big advantage over the SMV problem which cannot guarantee perfect recovery for general

Φ and all x with such few measurements. Even using combinatorial algorithms, recovery of all x is possible only

if the number of measurements is at least 2k.

Interestingly, the links between sparse representations and array signal processing were brought forward early

on in the sparse reconstruction literature [6] and the MMV problem in particular has origins in the field of array

signal processing. However, the algorithmic connections and particularly the role of the rank of X, appear to have

been missed.

The main contribution of this paper is to demonstrate how the rank of X can be exploited in order to improve

MMV recovery results in the worst-case setting. We begin by examining the conditions for which the equation

Y = ΦX has a single sparse solution. In Section III, we derive a necessary and sufficient condition for uniqueness

and show that it depends directly on the rank of X: the larger the rank the less sparse X needs to be to still

ensure uniqueness. Similarly, in Section IV, we show that the computational effort required to find the unique

sparse solution through a combinatorial search is also dependent on the rank of X, and is reduced when the rank

increases. In Sections V and VI we turn to discuss polynomial time recovery algorithms. We begin by showing

that common MMV methods are not rank aware, namely, they do not efficiently exploit the rank of X to improve

recovery results. In particular, in the full rank case in which the rank of X is equal to k (which is the largest it can

be) we show that most prevalent MMV algorithms do not provide recovery for the worst-case choice of X from

k + 1 measurements. Moreover, independent of the rank of X, one can find examples that perform almost as badly

as worst case SMV problems. We proceed to propose some rank aware (RA) algorithms inspired by the popular

MUSIC technique, whose behavior improves with increasing rank of X, and are proven to provide exact recovery

for all choices of X when the rank is equal to k, and the number of measurements is k+1 (under mild conditions on

Φ). Finally, in Section VII, we present several simulations demonstrating the behavior of these different methods.

Connection with other works

Upon completion of this paper (preprint available on ArXiv [29]) we became aware of recent and independent

work by other researchers who, in a similar spirit to this work, have noticed and sought to exploit the link between

array signal processing and the MMV sparse problem [30], [31], [32].

In [30], [31] the authors also noted that there is a gap between classical MMV solvers and the guarantees provided

by the MUSIC algorithm. Furthermore both papers point out that the MUSIC algorithm could still be applied even

when rank(X) < k if a partial support set is known. This idea is similar to the reduced combinatorial search that

is presented in Section IV. However, the ingenious step noted in [30] and [31] is that the partial support can be

estimated using a standard greedy algorithm.

1The condition is mild in that it is satistied for almost all Φ. However verifying such a condition is in practice impossible.
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The greedy search proposed in [30], called subspace simultaneous orthogonal matching pursuit (SM-OMP), is

similar to Rank Aware OMP (RA-OMP) presented in Section VI. A subtle difference is that SM-OMP invokes a

single orthogonalization at the initialization of the algorithm while RA-OMP orthogonalizes the residual matrix at

each step. In [30] the authors also propose an additional iterative correction to the augmented MUSIC algorithm

based loosely on the ideas of the SMV Subspace Pursuit algorithm. However, the augmented MUSIC requires an

estimate for the joint sparsity level of X in order to know how much of the support set to select in a greedy manner

before applying MUSIC. This difficulty is avoided in our proposed RA-ORMP.

In [31] it is noted that any greedy algorithm can in principle be used to select the partial support. The authors

then concentrate on the standard simultaneous OMP (SOMP) and a simple thresholding algorithm. We show in

Section V that such algorithms are rank blind and therefore expect that they will not perform as well as the

RA-ORMP proposed in Section VI or the augmented MUSIC algorithm proposed in [30].

Both [30] and [31] provide performance analysis with a compressed sensing flavour. This is particularly appro-

priate for when the matrix Φ is random. In [30] the performance of SM-OMP is quantified in terms of the restricted

isometry property (RIP) of Φ and it is shown that the performance bound improves with increasing rank, although

it does not reach the performance of MUSIC in the full rank case. This is broadly in line with our own analysis

for RA-OMP via a different route. In [31] the authors present performance results for the augmented MUSIC in

terms of RIP that also considers noise. They adopt a large scale system model, assuming that Φ is Gaussian and

that n and m tend to infinity.2 In [32] Fannjiang explores the performance of MUSIC in the inverse scattering

problem with sparse objects. Here again the RIP is applied to a simplified discretization of the original problem.

Although no direct reference to the sparse MMV problem is made the derived sensitivity analysis is of interest for

compressed sensing matrices Φ in the noisy setting.

In contrast to the compressed sensing analsysis in [30], [31], [32], our algorithm analysis in Sections V and VI

focusses directly on the worst case scenario with no restriction on the nature of the measurement matrix Φ. The

price for this generality is that our results are more qualitative in nature. In this sense the different analyses are

very complementary.

Finally we mention that there has been significant recent work on rank minimization, e.g. [34]. While on the

surface, there might appear to be similarities with the MMV problem studied here, the problems are significantly

different. Specifically we are generically able to observe the rank of X through the observation matrix Y and we

can use this to find the unknown sparse support set. In contrast in rank minimization problems it is the unknown

rank that is being sought and which therefore plays an equivalent role to sparsity in the MMV problem.

2Currently there appear to be some difficulties in a key proof in [31] and it is not clear whether the large scale system results are valid [33].
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II. NOTATION AND PROBLEM FORMULATION

A. Notation

Throughout this paper a coefficient vector x is said to be k-sparse if the size of the support of x is no larger

than k: | supp(x)| ≤ k. We define the support of a collection of vectors X = [x1, . . . ,xl] as the union over all the

individual supports:

supp(X) :=
⋃

i

supp(xi). (1)

A matrix X is called k joint sparse if | supp(X)| ≤ k. In other words, there are at most k rows in X that contain

nonzero elements. The set of k joint sparse matrices of size n× l is defined as

Jk := {X ∈ Rn×l : | supp(X)| ≤ k}. (2)

We make use of the subscript notation xΩ to denote a vector that is equal to some x on the index set Ω and

zero everywhere else. Denoting by |Ω| the cardinality of Ω, the vector xΩ is |Ω|-sparse. For index sets that are

sequences of indices, e.g. 1, . . . , k we use the Matlab style notation 1 : k.

We say that the support of x lies within Ω whenever xΩ = x. For matrices the subscript notation ΦΩ will

denote a submatrix composed of the columns of Φ that are indexed in the set Ω, while the notation XΩ,: denotes

a row-wise submatrix composed of the rows of X indexed by Ω. We denote the ith column of a matrix, Φ, by φi,

and use N (Φ) for the null space and R(Φ) for the range of the matrix Φ.

Throughout the paper, we also require a variety of different norms. We denote by ‖x‖p, p ≥ 1 the usual `p norms,

and by ‖x‖0 the `0 quasi-norm that counts the number of non-zero elements of x so that ‖x‖0 = | supp(x)|. For

matrices we define the `p,q norms as:

‖X‖p,q :=

(∑

i

‖Xi,:‖p
q

)1/p

(3)

where, with slight abuse of notation, we also consider the quasi-norms with p = 0 such that ‖X‖0,q = | supp(X)|
for any q.

B. MMV sparse recovery problem

We are interested in solving the sparse recovery problem associated with MMV, in which the goal is to recover

a jointly sparse matrix X of size n × l from m < n measurements per channel. Here l denotes the number of

channels, or signals. This is a generalization of the standard SMV problem that has been examined in detail, e.g.

[35], [7]. Formally, the problem is defined as follows:

Definition 1 (MMV sparse recovery problem). Given Y ∈ Rm×l and Φ ∈ Rm×n with m < n find:

X̂ = argmin
X

| supp(X)| s.t. ΦX = Y. (4)

The SMV problem can be recovered as a special case with l = 1.
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Throughout the paper we assume that the dictionary Φ has unit norm columns, ‖φi‖2 = 1 and focus on the ideal

model in which the measurements Y are noiseless, and X is strictly sparse. For the important issue of sensitivity

to noise we direct the reader to [31], [32].

III. MMV UNIQUENESS

While the MMV problem reduces to the SMV one when each observation vector Yi,: is colinear, in general, the

additional measurement vectors should provide further information and make it easier to determine the support set.

The question is: by how much? In this section we focus on uniqueness conditions and show how the rank of X,

or alternatively that of Y, can be used to improve the uniqueness conditions. In later sections we will use the rank

to develop more efficient recovery algorithms with improved worst-case guarantees over the SMV setting.

In the SMV setting it is well known that a necessary and sufficient condition for the measurements y = Φx to

uniquely determine each k-sparse vector x is given by

k <
spark(Φ)

2
(5)

where the spark of Φ is defined as the smallest number of columns of Φ that are linearly dependent. Since

spark(Φ) ≤ m + 1, we have immediately that m ≥ 2k, namely, at least 2k measurements are needed to ensure

uniqueness in the SMV case for all possible choices of x. This also defines a necessary and sufficient condition

for general MMV sparse recovery, since one instance of this problem is any SMV problem replicated l times [12].

Chen and Huo [12] showed that when rank(Y) > 1 the sufficient condition for uniqueness in the MMV sparse

recovery problem can be relaxed by exploiting the rank of Y, as incorporated in the following theorem.

Theorem 1 (Chen and Huo [12]). A sufficient condition from the measurements Y = ΦX, | supp(X)| = k, to

uniquely determine the jointly sparse matrix X ∈ Jk is

| supp(X)| < spark(Φ)− 1 + rank(Y)
2

. (6)

This condition was further shown in [13] to hold even in the case where there are infinitely many vectors yi. A

direct consequence of Theorem 1 is that matrices X which result in matrices Y with larger rank, can be recovered

from fewer measurements. Alternatively, matrices X with larger support can be recovered from the same number

of measurements. Since rank(X) ≤ k, it is obvious that rank(Y) ≤ k. When rank(Y) = k and spark(Φ) takes

on its largest value of m + 1, condition (6) becomes m ≥ k + 1. Therefore, in this best-case scenario, only k + 1

measurements per signal are needed to ensure uniqueness. This is much lower than the value of 2k obtained in the

SMV setting.

Chen and Huo note that it would also be interesting to bound k in terms of rank(X) instead of rank(Y).

Naturally we have that rank(Y) ≤ rank(X). The next lemma shows that we can actually replace rank(Y) by

rank(X) in condition (6):

August 10, 2011 DRAFT
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Lemma 1. The sufficient condition of (6) is equivalent to

| supp(X)| < spark(Φ)− 1 + rank(X)
2

. (7)

Proof: Since rank(Y) ≤ rank(X), (6) automatically implies (7). For the reverse direction, suppose that (7)

holds. Since rank(X) ≤ | supp(X)|, we have from (7) that

| supp(X)| < spark(Φ)− 1. (8)

Therefore ΦΩ, Ω = supp(X), must be full rank. This implies that rank(X) = rank(Y) and consequently (7)

implies (6).

We now complete Theorem 1 by showing that both (7) and (6) are necessary and sufficient for uniqueness in the

MMV problem.

Theorem 2. Condition (7), or equivalently (6), is a necessary and sufficient condition for the measurements Y =

ΦX to uniquely determine the jointly sparse matrix X ∈ Jk.

An immediate consequence of the theorem is that in order to have a unique X with support set of size k when

X has full rank (i.e. rank(X) = k), it is enough to take m = k + 1 measurements, as long as spark(Φ) ≥ k + 2,

namely, that every set of k + 1 columns of Φ are linearly independent.

Interestingly the m ≥ k + 1 bound also occurs in the SMV case, where for almost all dictionaries Φ almost all

k sparse vectors x are uniquely determined by y = Φx if m ≥ k + 1 (for apropriately defined measures) - see

[11], [16]. The key difference in the MMV scenario is that the condition on X that guarantees recovery using only

k + 1 measurements is readily testable from the observed data, namely that rank(Y) = k.

Proof: Sufficiency follows immediately from Lemma 1 and Theorem 1.

To show necessity we will show that 2k ≥ spark(Φ) − 1 + τ implies that there exists an X ∈ Rn×l with

rank(X) = τ that is not uniquely determined by Y = ΦX.

Suppose that 2k ≥ spark(Φ)− 1 + τ . Then there exists a support set T , |T | = 2k − τ + 1 and a vector v 6= 0

such that ΦT v = 0. Let V = [v, . . . ,v] be the matrix consisting of l replications of v. We can now construct an

X with supp(X) ⊂ T , as follows:

XT,: =




V{1:k−τ+1,:}

Iτ−1 0

0{k−τ+1×l}




(9)

where Iτ−1 represents the identity matrix of size τ−1. Without loss of generality we can assume that v1:k−τ+1 6= 0

by re-ordering the indices if necessary, then, by construction, X will k-joint sparse and rank(X) = τ . However
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Algorithm 1 discrete MUSIC
1: Calculate U = orth(Y) an orthonormal basis for R(Y);

2: Calculate Ω = {i : ‖φT
i U‖2 ≥ θk} where the threshold, θk, is set to select the k largest values;

3: X̂ = Φ†
ΩY.

we can also define the matrix X̃, with supp(X̃) ⊂ T , by:

X̃T,: = XT,: −V. (10)

By construction, X̃ is also k-joint sparse, and ΦX = ΦX̃. Therefore, it follows that (7) is also a necessary condition

for uniqueness.

Theorem 2 shows that rank(X) plays an important role in uniqueness of MMV problems, since the rank defines

the dimension of the subspace of sparse coefficients that generate observation vectors. In the ensuing sections we

will further show that rank(X) also plays an important role in the performance of joint sparse recovery algorithms.

IV. MMV RECOVERY: EXHAUSTIVE SEARCH

Our goal now is to show how the rank of X can be used to improve MMV recovery. We begin by considering

the (generally impractical) exhaustive search approach for X using combinatorial optimization. That is we seek to

minimize the number of nonzero rows of X subject to the constraint ΦX = Y. A solution can be found from an

exhaustive search through all
(

n
k

)
support sets Ω with |Ω| = k. However this search can be significantly reduced

when we have additional rank information. We begin by considering the full rank case.

A. Full-Rank MMV: MUSIC

Surprisingly, in the case in which Y has rank equal to k, an exact solution can be found using a very simple

linear time search algorithm. This method incorporates the rank information of Y to efficiently determine X. We

refer to this scenario as the full rank case, since, we always have that rank(Y) ≤ rank(X) ≤ k. The last inequality

is a result of the fact that X is k-sparse.

A rank-aware algorithm for the case in which rank(Y) = k, can be obtained by using a discrete version of the

MUSIC algorithm [28], popular in array signal processing. This technique was first proposed for solving a discrete

sparse MMV problem by Feng and Bresler [27], [36] in the context of multiband sampling.

Since, by assumption, rank(Y) = k, it follows immediately that R(Y) = R(ΦΩ) and hence every correct

column φi of Φ, lies within the range of Y. The discrete MUSIC algorithm [27], [36] exploits this property by

first calculating an orthonormal basis U = orth(Y) for R(Y) and then selecting the k columns of Φ that minimize

‖(I−UUT )φi‖2. The algorithm is summarized in Algorithm 1.

If we further assume that the uniqueness condition of Theorem 2 is satisfied (i.e. spark(Φ) > k + 1), then only
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the correct columns lie in R(Y) and are therefore orthogonal to the null space of Y.3 That is:

‖(I−UUT )φi‖2 = 0, if and only if i ∈ Ω. (11)

We summarize this result in the following theorem.

Theorem 3 (Feng [27]). Let Y = ΦX with | supp(X)| = k, rank(X) = k and k < spark(Φ)− 1. Then discrete

MUSIC is guaranteed to recover X (i.e. X̂ = X).

A direct consequence of the theorem is that m = k + 1 measurements are sufficient to recover X, as long as Φ

has maximal spark, namely, that all sets of k + 1 columns are linearly independent.

As noted in [27], [36], due to the stability of invariant subspaces [37] MUSIC based recovery is also robust to

noise and other perturbations. However, this requires that Algorithm 1 be modified to make a practical estimate of

the rank of the signal subspace and to separate the signal and noise subspaces. This is typically done through an

eigenvalue decomposition of the covariance matrix YYT where the eigenvalues are used to distinguish between

the signal and noise subspaces [38].

We can still apply the discrete MUSIC algorithm when rank(Y) < k, however we are no longer guaranteed

recovery from Theorem 3. In the reduced rank case, as in the noisy case, care must be taken in determining the

best choice of the threshold. This will typically depend on the conditioning of the submatrices of Φ as well as the

dynamic range of the sparse components: see [31], [32] for details.

B. Reduced-Rank MMV

When τ = rank(Y) < k guaranteed recovery is possible through a reduced combinatorial search. If τ < k

then R(Y) ⊂ R(ΦΩ) and there must exist at least one subset γ ⊂ Ω such that |γ| = k − τ and φi 6∈ R(Y).

In fact typically all k − τ sized support sets γ ⊂ Ω will satisfy this. Assuming that the identifiability condition

of Theorem 2 is again met, we then have that R([Φγ ,Y]) = R(ΦΩ). Since |γ| = k − τ we only need to search

over subsets of size k− τ . Of course there are ‘only’
(

n
k−τ

)
such support sets, so this search still has exponential

complexity unless k ≈ τ .

Specifically let Q(γ) = orth([Φγ ,Y]). Then an optimal γ can be found by solving:

γ̂ = argmin
γ,|γ|=k−τ

‖ΦT
γc(I−Q(γ)Q(γ)T )‖0,q (12)

for an arbitrary q. This counts the nonzero columns of Φγc projected onto the null space of Q(γ) and will achieve a

minimum of n−k when Q(γ) spans the range of ΦΩ. The correct support set can then be recovered by considering

the full rank problem associated with the augmented measurement matrix [Φγ̂ ,Y]. Generally the optimal solution

to (12) will not be unique and there will typically be multiple solutions associated with the
(

k
k−τ

)
subsets of the

3Traditionally MUSIC projects the columns into the null space of Y, however, since we assume that ‖φi‖2 = 1 we can equally project into

the range of Y as in Algorithm 1.
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true support. This presence of multiple equivalent minima here suggests that such a problem might be difficult to

convexify.

As noted in the introduction, independent work [31], [30] recently proposed an ingenious hybrid MMV recovery

scheme using similar ideas where the reduced combinatorial search is replaced by a greedy selection strategy in

order to find the partial support set γ until it is possible to apply an augmented MUSIC. In Section VI we propose

a different solution. First, however we consider the effect of rank on some of the popular MMV sparse recovery

algorithms.

V. RANK-BLIND MMV ALGORITHMS

Despite the fact that the rank of X (and therefore that of Y) plays an important role in the MMV problem,

we next show that some of the most popular algorithms are effectively rank blind. Namely, they do not allow for

perfect recovery in the full rank case, and furthermore the worst case behaviour of such algorithms approaches that

of the SMV problem. In practice, as we will see in Section VII, such algorithms often exhibit improved (average

case) performance when there are multiple measurements, however, they suffer from not properly exploiting the

rank information.

A. Greedy Methods

Several greedy algorithms have been proposed to treat the MMV problem. Two examples are extensions of

thresholding and OMP to the multiple measurement case [23], [39], [25], [14], [18]. For 1 ≤ q ≤ ∞ they produce

a k-sparse signal X̂ from measurements Y = ΦX using a greedy search.

In q-thresholding, we select a set Ω of k indices whose q-correlation with Y are among the k largest. Let θk be

the kth largest q-correlation of any φi with Y. Then:

Ω = {i : ‖φT
i Y‖q ≥ θk}. (13)

After the support Ω is determined, the non-zero coefficients of X̂ are computed via an orthogonal projection:

X̂Ω = Φ†
ΩY.

The q-simultaneous OMP (SOMP) algorithm is an iterative procedure where in each iteration, an atom is selected,

and a residual is updated. The next selected atom is the one which maximizes the q-correlation with the current

residual. A pseudocode for SOMP is summarized in Algorithm 2.

Different authors have advocated the use of different values for q in step 3. However, it has been shown [12]

that, independent of q, SOMP will recover a joint sparse representation with joint support Ω whenever the Exact

Recovery Condition (ERC) [7] is met:

max
j 6∈Ω

||Φ†
Ωφj ||1 < 1. (14)

For OMP, in the SMV problem, Tropp showed that the ERC is also necessary to guarantee recovery for all vectors

with support Ω [7, Theorem 3.10]. It turns out that the necessary condition for SOMP is also the ERC, independent
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Algorithm 2 Simultaneous Orthogonal Matching Pursuit (SOMP)

1: Initialization: R(0) = Y,X(0) = 0,Ω0 = ∅
2: for n = 1; n := n + 1 until stopping criterion do

3: in = argmaxi ‖φT
i R(n−1)‖q

4: Ωn = Ωn−1 ∪ in

5: X(n)
Ωn,: = Φ†

ΩnY

6: R(n) = Y −ΦX(n)

7: end for

of the rank of X. This implies that the SOMP algorithm is not able to exploit rank information in order to improve

the recovery ability in the worst-case, as we show in the following theorem.

Theorem 4 (SOMP is not rank aware). Let τ be given such that 1 ≤ τ ≤ k and suppose that

max
j 6∈Ω

||Φ†
Ωφj ||1 > 1 (15)

for some support Ω, |Ω| = k. Then there exists an X with supp(X) = Ω and rank(X) = τ that SOMP cannot

recover.

Proof: Since the ERC does not hold, we know that for the SMV problem, there exists a vector x for which

OMP will fail (specifically we can set x = sign(Φ†
Ωφj) the j that maximises (15), see [7]). Let x be a vector with

supp(x) = Ω such that OMP incorrectly selects atom j? 6∈ Ω at the first step with

|φT
j?Φx| > max

i∈Ω
|φT

i Φx|+ ε (16)

for some ε > 0. Let X := [x,x, . . . ,x] be the rank 1 matrix associated with x that cannot be recovered from

Y = ΦX by SOMP using any q. We can now perturb X. Let E be any rank τ − 1 perturbation matrix such that:

supp(E) = Ω, maxj ‖φT
j ΦE‖q ≤ l1/qε/2 and whose row and column spaces are disjoint with those of X. Then

X̃ = X + E has rank τ .

If we now define Ỹ = ΦX̃ we have:

‖φT
j?Ỹ‖q ≥ ‖φT

j?ΦX‖q − ‖φT
j?ΦE‖q

≥ l1/q|φT
j?Φx| − l1/qε/2

> l1/q max
i∈Ω

|φT
i Φx|+ l1/qε/2

= max
i∈Ω

‖φT
i ΦX‖q + l1/qε/2

≥ max
i∈Ω

{
‖φT

i ΦX‖q + ‖φT
i ΦE‖q

}

≥ max
i∈Ω

‖φT
i Ỹ‖q.

(17)
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Line 1 in (17) is the reverse triangle inequality, line 2 follows from the definition of the q norm and the fact that

X is rank 1, and line 3 follows from (16). Lines 4 − 6 are a result of reversing these arguments. Equation (17)

therefore shows that no correct atom will be selected at the first step in the perturbed problem and X̃ will not be

correctly recovered.

We conclude from Theorem 4 that SOMP is effectively blind to the rank of X. An identical argument can also

be used to show that an MMV version of any similar Matching Pursuit type algorithm (e.g. M-MP, M-ORMP [10])

will also be rank blind, including identification of the support set by thresholding ||φT
j Y||q as proposed in [25].

B. Mixed `1/`q minimization

Another popular joint sparse recovery algorithm is to perform mixed norm minimization:

X̂ = argmin
X

||X||1,q s.t. ΦX = Y (18)

for some q ≥ 1 (values of q = 1, 2 and ∞ have been advocated). This is a simple extension of the `1 minimization

used to solve SMV problems. In SMV the necessary and sufficient condition for the recovery of vectors x with

support Ω is given by the Null Space Property (see [35], [40], [41]):

||zΩ||1 < ||zΩc ||1, ∀z ∈ N (Φ). (19)

Here Ωc is the complement of the set Ω.

As with SOMP we can leverage the SMV conditions for recovery to show that mixed norm methods are not

rank aware:

Theorem 5 (`1/`q minimization is not rank aware). Let τ be given such that 1 ≤ τ ≤ k and suppose that there

exists a z ∈ N (Φ) such that

||zΩ||1 > ||zΩc ||1 (20)

for some support Ω, |Ω| = k. Then there exists an X with supp(X) = Ω, rank(X) = τ that (18) cannot recover.

Proof: The proof follows along the same lines as Theorem 4. Let X = [x,x, . . . ,x] be the rank 1 matrix such

that `1 minimization fails to recover x. Denote the `1 minimum solution by x̂ and define X̂ = [x̂, x̂, . . . , x̂]. We

know that

||X||1,q > ||X̂||1,q + ε (21)

for some ε > 0. We now perturb X by a matrix E, X̃ = X + E, such that supp(E) = Ω, rank(X̃) = τ and

||E||1,q ≤ ε/2. Therefore, the solution ˆ̃X of (18) for the perturbed problem must satisfy:

|| ˆ̃X||1,q ≤ ||X̂||1,q + ||E||1,q ≤ ||X̂||1,q + ε/2 < ||X||1,q − ε/2. (22)

On the other hand, by the triangle inequality,

||X̃||1,q ≥ ||X||1,q − ||E||1,q ≥ ||X||1,q − ε/2. (23)
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Therefore, ||X̃||1,q > || ˆ̃X||1,q so (18) fails to recover the correct solution.

The argument in the proof of the theorem can be applied to any joint sparse recovery that uses || · ||p,q for p < 1,

using the appropriate Null Space Property associated with the p-quasi-norm [40]. Thus the result also applies to the

M-FOCUSS family of algorithms [10] that define a specific means of (locally) minimizing the {p, q}-quasi-norms.

Interestingly the above argument does not apply to the ReMBo algorithm [13] which uses a random projection to

transform the MMV problem to an SMV counterpart, and then solves the SMV problem using, for example, Basis

Pursuit. A partial analysis of ReMBo can be found in [42].

In the next section we develop a new algorithm that is rank aware: in the full rank case it guarantees recovery

from k + 1 measurements, and in the non full rank case, its performance degrades gracefully with the rank.

VI. RANK AWARE PURSUITS

In the last section we noted that two classes of popular techniques for joint sparse recovery were effectively rank

blind. We now examine methods that can be shown to be rank aware. In particular, we consider two algorithms,

both of which can be categorized as “greedy pursuits” and are based upon the discrete MUSIC algorithm.

We have already seen in Section IV-A that the MUSIC algorithm can be viewed as a rank aware form of

thresholding. However it is also well known that thresholding techniques can generally be refined through the use

of pursuit based methods. These involve iteratively selecting a single atom at a time, calculating an approximate

solution for X and the residual R, and then selecting a new atom. This is repeated until completion. The exact form

of the pursuit algorithm depends on the selection strategy and the refinement step. Here we introduce a selection

strategy based upon the MUSIC thresholding described above.

A. Rank Aware Selection

Given a residual R(n−1) at the (n− 1)th iteration we define the following selection strategy at the nth iteration:

Ω(n) = Ω(n−1) ∪ argmax
i

||φT
i U(n−1)||2, (24)

where U(n−1) = orth(R(n−1)). We restrict our attention to the 2-norm since this norm is invariant to the orthonormal

basis U.

The main difference between rank aware selection and standard OMP type algorithms, is that the criterion is based

on the inner products with U(n), rather than R(n). This is the same idea that is used in discrete MUSIC: instead of

comparing with the given measurements Y or the resulting residuals R(n), we compare with an orthonormal basis

for the span. This simple difference, which is easy to implement in practice, is enough to allow for rank awareness.

Furthermore, as we will see in the simulations section, it results in enhanced performance.

Below, we introduce two algorithms that use the rank aware selection principle. The first is a natural generalization

of SOMP, where we simply adopt the rank aware selection step. Although we will see that this substitution improves

performance considerably, it does not result in full rank awareness. In the full rank case, perfect recovery from k+1

measurements under the spark condition is not guaranteed (or typically observed as we will see in Section VII).
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As we show, this is a result of rank degeneration of the residual: the rank of the residual generally decreases in

each iteration. To rectify this behaviour, we propose below the use of a different algorithm, a Rank Aware Order

Recursive Matching Pursuit (RA-ORMP), with a modified selection step which forces the sparsity of the residual

to decrease along with its rank. This ensures that the residual has full rank at each iteration, and results in a fully

rank aware OMP-type algorithm. In simulations, we will see that this approach tends to have the best performance

for all choices of the rank of X.

Similar to other MP techniques, successful selection of an atom φi from the correct support set i ∈ Ω requires

the following condition:
maxj 6∈Ω ‖φT

j U‖2
maxi∈Ω ‖φT

i U‖2
< 1. (25)

We begin by noting that for successful selection, i.e. for (25) to hold, the ERC is a sufficient but not necessary.

Specifically we have the following proposition.

Proposition 1. Let Y = ΦX, supp(X) = Ω, |Ω| = k and rank(Y) = τ . Then:

1) maxj 6∈Ω ‖Φ†
Ωφj‖1 < 1 is a sufficient condition for Rank Aware selection to correctly choose an atom i ∈ Ω.

2) If τ > k + 1− | supp(Φ†
Ωφj?)| for all j? := argmaxj 6∈Ω ‖Φ†

Ωφj‖1 then

max
j 6∈Ω

||Φ†
Ωφj ||1 < 1 (26)

is not a necessary condition for correct atom selection.

3) When τ = k, then k < spark(Φ)− 1 is necessary and sufficient for rank aware selection to correctly select

an atom with index i ∈ Ω.

Proof: The proof of part 1 that ERC is sufficient is identical to that for SOMP, given in [12] and is based

upon standard norm inequalities. Let j? := argmaxj 6∈Ω ‖Φ†
Ωφj‖1. We can then bound the norm maxj 6∈Ω ‖φT

j U‖2
for any U as follows:

max
j 6∈Ω

‖φT
j U‖2 = max

x 6=0

|(Φ†
Ωφj?)T ΦT

ΩUx|
‖x‖2

= max
x 6=0

|(Φ†
Ωφj?)T ΦT

ΩUx|
‖ΦT

ΩUx‖∞
‖ΦT

ΩUx‖∞
‖x‖2

≤ ‖Φ†
Ωφj?‖1 max

x 6=0

‖ΦT
ΩUx‖∞
‖x‖2

= ‖Φ†
Ωφj?‖1 max

i∈Ω
‖φT

i U‖2.

(27)

Hence ERC implies (25) and is sufficient for recovery. However, unlike SOMP, the norm equalities cannot necessarily

be approached since U is constrained to be column orthonormal.

If the ERC is also a necessary condition then we must be able to find a U that achieves equality in (27). This

in turn implies that there must be a single x? 6= 0 that simultaneously satisfies:

x? = argmax
x

|(Φ†
Ωφj?)T ΦT

ΩUx|
‖ΦT

ΩUx‖∞
(28)
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and

x? = argmax
x

‖ΦT
ΩUx‖∞
‖x‖2 . (29)

Now, (28) implies that:

ΦT
ΩUx? ∝ sgn(Φ†

Ωφj?), (30)

where we use the convention that sgn(0) can take any value in [−1, 1]. Therefore

|〈φi,Ux?〉| = |〈φj ,Ux?〉| ≥ |〈φk,Ux?〉| (31)

for all i, j, k ∈ Ω, i, j ∈ supp(Φ†
Ωφj?) and k 6∈ supp(Φ†

Ωφj?). On the other hand (29) implies that x? ∝ UT φi?

for some φi? = argmaxφi
‖φT

i U‖2, i ∈ Ω. That is x must be proportional to the projection of φi? by U. In fact

x must also be the common projection of all the columns φi, i ∈ supp(Φ†
Ωφj?). Indeed from (31),

‖UT φi?‖2 =
|〈φi? ,Ux?〉|
‖x?‖2 =

|〈φi,Ux?〉|
‖x?‖2 ≤ ‖UT φi‖2. (32)

Therefore we can define the vector v := [ΦT
Ω]†sgn(Φ†

Ωφj?) such that:

UUT φi ∝ v, ∀i ∈ supp(Φ†
Ωφj?) (33)

Now define the subspace W as:

W := {w : w =
∑

i

αi〈φi,v〉φi, i ∈ supp(Φ†
Ωφj?),

∑

i

αi = 0}. (34)

Note that by definition UT w = 0. However we also have dim(W) = | supp(Φ†
Ωφj?)| − 1. Since dim(U) = τ this

is only possible if τ ≤ k + 1− | supp(Φ†
Ωφj?)|. Thus when τ > k − 1 + | supp(Φ†

Ωφj?)| equality in (27) cannot

be achieved. Since the set of column orthonormal matrices U is compact a maximum must exist:

max
U

maxj 6∈Ω ‖φT
j U‖2

maxi∈Ω ‖φT
i U‖2

= c < max
j 6∈Ω

||Φ†
Ωφj ||1. (35)

Therefore, (26) is not a necessary condition for correct atom selection, which proves part 2.

Finally when τ = k the necessary and sufficient conditions in part 3 for correct atom selection follow from the

rank aware thresholding result, Theorem 3, and the identifiability conditions in Theorem 2.

Proposition 1 shows that in the worst case scenario we lose nothing by incorporating the orthogonalization within

the selection step. Furthermore part 2 shows that in general the selection is more effective than that of SOMP,

although we have not quantified by how much as this seems difficult to estimate for general τ . The exception is, of

course, when τ = k. In this case, RA-selection inherits the desirable property from the discrete MUSIC algorithm

that when identifiability conditions are satisfied correct detection is guaranteed.

B. Rank Aware Greedy Algorithms

We now proceed to develop two specific greedy algorithms that exploit the RA-selection.
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1) (Partially) Rank Aware OMP: One possible approach to developing a Rank Aware Pursuit would be to

substitute (24) as the selection step within SOMP (step 3). We call this algorithm RA-OMP. In Section VII we will

see that the incorporation of the rank aware selection step substantially improves the average recovery performance

over SOMP. However, curiously even when rank(Y) = k, RA-OMP is not guaranteed to exactly recover X. That

is, it does not achieve the performance of MUSIC in the full rank case.

This can be explained by the fact that the rank of the residual deteriorates at each step of RA-OMP, a process

we call rank degeneration. When selecting the first atom we have R(0) = Y and from Proposition 1, assuming that

rank(Y) = k, we are guaranteed to select an atom φi such that i ∈ Ω. The updated residual is R(1) = (I−φiφ
T
i )Y.

Since R(Y) = R(ΦΩ), the rank will be reduced by one such that rank(R(1)) = k − 1. With a little manipulation

we can write R(1) as follows:

R(1) =
∑

j∈Ω\i
φjXj,: − φi

( ∑

j∈Ω\i
(φT

j φi)Xj,:

)
. (36)

The matrix R(1) will therefore still be k-joint sparse unless
∑

j∈Ω\i(φ
T
j φi)Xj,: = 0. However since X is assumed

to be rank k the set of row vectors Xj,:, j ∈ Ω \ i must be linearly independent. Therefore the joint sparsity will

decrease only if φT
j φi = 0, ∀j ∈ Ω \ i, i.e. the columns are orthogonal. If the columns are not orthogonal then

R(1) will not have maximal rank and the rank aware selection is no longer guaranteed to make a correct selection.

The rank degeneration can continue in subsequent iterations.

2) Rank Aware Order Recursive Matching Pursuit: We can rectify the rank degeneration problem using a

modified selection step or equivalently modifying the dictionary at each step. The idea is to force the sparsity of

the residual to decrease along with its rank, so that Lemma 1 can still be applied. The mechanism we exploit

has already been used in the SMV problem and goes by various names including: Orthogonal Least Squares [43]

(since it selects the atom that minimizes the residual in the least squares sense at each step), and Order Recursive

Matching Pursuit (ORMP) [3].4 While an MMV extension of ORMP was presented in [10], it is based on similar

norm extensions to those used in SOMP and therefore is similarly rank blind. Here we present a Rank Aware Order

Recursive Matching Pursuit (RA-ORMP), and show that it has guaranteed recovery in the full rank case, as well as

empirically exhibiting improved performance for all values of rank(X). The pseudocode for RA-ORMP is given

in Algorithm 3.

In practice, we do not calculate the projections as detailed above and instead use a Gram-Schmidt orthogonal-

ization procedure as in the standard implementation of ORMP [44]. Furthermore, a practical implementation of

RA-ORMP would also need to incorporate an estimate of the signal subspace in step 3 of Algorithm 3 along the

same lines as that proposed in Section IV-A.

Note that the key difference between RA-OMP and RA-ORMP is that we not only project the observed data Y

orthogonal to the selected atoms to calculate the residual, we also project the remaining dictionary atoms (step 9)

and then, crucially renormalize them (step 10), so that all atoms are again unit norm.

4Note that historically OMP and ORMP have been repeatedly confused for each other. For a potted history of the subject see [44].
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Algorithm 3 Rank Aware Order Recursive Matching Pursuit (RA-ORMP)

1: Initialize R(0) = Y,X(0) = 0, Ω0 = ∅ and φ̃i = φi for all i.

2: for n = 1;n := n + 1 until stopping criterion do

3: Calculate orthonormal basis for residual: U(n−1) = Orth(R(n−1))

4: in = argmaxi 6∈Ω(n−1) ‖φ̃T

i U(n−1)‖2
5: Ωn = Ωn−1 ∪ in

6: X(n)
Ωn,: = Φ†

ΩnY

7: Calculate orthogonal projector: P⊥
Ω(n) := (I−ΦΩ(n)Φ†

Ω(n))

8: R(n) = P⊥
Ω(n)Y

9: Φ′ = P⊥
Ω(n)Φ

10: Renormalize φ̃i = φ′i/‖φ′i‖2, for i 6∈ Ω(n−1).

11: end for

We next show that, like MUSIC, RA-ORMP will exactly recover X in the full rank scenario:

Theorem 6 (RA-ORMP, full rank case). Let Y = ΦX with | supp(X)| = k, rank(X) = k and k < spark(Φ)−1.

Then RA-ORMP is guaranteed to recover X (i.e. X̂ = X).

Proof: From the spark condition we know that φj 6∈ R(ΦΩ) for j 6∈ Ω and thus X is identifiable. From

Proposition 1 and the rank assumption, the selection at the first step is successful. It is therefore sufficient to show

that the updated residual provides another full rank identifiable problem.

Suppose that we select index i ∈ Ω at the first step. The new residual is then:

R(1) = P⊥Ω(n)Y. (37)

Therefore rank(R(1)) = k − 1. If we now expand R(1) in terms of the atoms φj we get:

R(1) =
∑

j∈Ω\i
P⊥Ω(n)φjXj,:

=
∑

j∈Ω\i
φ̃jX̃j,:

(38)

where X̃j,: is the jth row of X rescaled by ‖P⊥
Ω(n)φj‖−1

2 . Thus R(1) has a (k − 1) sparse representation within

the modified dictionary Φ̃.

Finally we need to show that X̃ is also identifiable. Since φj 6∈ R(ΦΩ) for j 6∈ Ω, we know that ‖P⊥Ω φj‖2 > 0.

However this property is preserved under the projection of the dictionary since P⊥Ω P⊥i = P⊥Ω for all i ∈ Ω, so that

X̃ is also identifiable. Recursively applying the above arguments until R(k) = 0 completes the proof.

We see that RA-ORMP does not suffer the same rank degeneration that RA-OMP does and provides a natural

rank aware algorithm that reduces to ORMP in the SMV case while achieving guaranteed recovery in the full rank

MMV setting when rank(Y) = k.
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ORMP is usually championed as superior to OMP, since at each step it selects the atom that most decreases the

size of the residual. Furthermore, empirical evidence suggests that ORMP generally outperforms OMP (slightly)

but at the expense of additional computation. However, to our knowledge, there is no study of the necessary and

sufficient recovery conditions for ORMP. It is easy to see that the ERC provides a necessary condition since in

the first selection step OMP and ORMP are identical. Curiously though, it is not clear whether the ERC condition

holding for Φ implies that it will also hold for the modified dictionary Φ̃.

C. Link with sequential MUSIC techniques

Within the array processing literature a number of sequential variants of MUSIC have previously been proposed

[45], [46], [47], which relate to our derivations here. In [45] a sequential MUSIC algorithm is introduced which

can be thought of as a continuous parameter version of a Rank Aware Matching Pursuit, i.e. RA-OMP, but without

the orthogonalization step. In [47] an algorithm called Recursively Applied and Projected (RAP) MUSIC was

introduced. This is formally equivalent to RA-ORMP proposed here. However, because in array processing the aim

is to estimate a continuous parameter vector (even when this is done through discretization) associated with the

directions of arrival for multiple sources the type of analysis performed on these algorithms is very different than

the exact recovery results presented here for the discrete sparsity model.

VII. NUMERICAL EXPERIMENTS

In this section we explore the empirical performance of MUSIC, RA-OMP and RA-ORMP. We contrast these

with results for the rank blind recovery algorithm SOMP (using p = 2). For comparisons with mixed `1/`q norm

minimization we point the reader to the comparisons performed in [14], where empirically SOMP generally exhibited

superior performance.

To test the four algorithms we consider the family of random matrices Φ whose elements were drawn indepen-

dently from a normal distribution: Φi,j ∼ N (0, 1). The columns of Φ are then normalized so that ‖φi‖2 = 1. The

dimensions of Φ are fixed to n = 256 and m = 32, while the number of measurement vectors, l, is varied between

1 and 32. Finally the non-zero entries of X were also draw independently from a unit variance normal distribution,

implying that, with probability one, rank(Y) = l.

Plots of the empirical probability of recovery for the four algorithms are given in Figure 1. It is clear from these

plots that while RA-OMP appears to be superior to SOMP for moderate numbers of measurement vectors (l = 2, 4)

both SOMP and RA-OMP appear to stall at around the same sparsity level and fail to recover vectors with k > 11.

In contrast, both RA-ORMP and MUSIC demonstrate full recovery in the full rank case, including when l = 32

up to a sparsity level of k = 31 as predicted by the theory. However MUSIC does not appear to provide recovery

much beyond the full rank condition. That is, recovery drops immediately once k > l. As with SMV thresholding,

better performance can be achieved if we restrict the dynamic range of the nonzero coefficients.

The performance of RA-ORMP clearly provides the best recovery. It uniquely amongst the four appears to be

able to achieve OMP type performance in the SMV case and consistently provides recovery well beyond the full
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Fig. 1. The empirical probability of recovery for SOMP, RA-OMP, RA-ORMP and MUSIC as a function of sparsity level k. The curves in

each plot relate to l = 1, 2, 4, 8, 16 and 32 (from left to right).

rank case. For example when l = 16 correct recovery is maintained up to k = 23.

In Figure 2 we show explicitly the improvement in recovery performance as a function of l for the same setup

as above with a fixed sparsity level of k = m/2 = 16. Note that for l ≤ 16 the rank of Y is equal to l, while for

l > 16 the rank remains constant at 16. For this level of sparsity none of the algorithms achieve significant recovery

rates in the SMV case. However, as the number of measurements and the rank of Y is increased all algorithms

improve. The figure highlights that the rank aware methods are clearly able to exploit rank information and the

recovery rate grows to 100% when the data matrix Y achieves maximal rank. What is particularly striking though

is how quickly rank information improves the recovery rate in the RA-ORMP algorithm even when the rank of Y

is significantly below the maximal rank.

In contrast, the recovery rates for SOMP and RA-OMP (recall this is not fully rank aware) do not even reach 100%.

Interestingly these plots suggest that the rank information is still playing some role in the recovery performance

of SOMP as the dominant increase in its performance occurs during the range of increasing rank. When l > 16

and the rank remains fixed the performance appears to plateau at around 80% recovery. Additional simulations (not

shown) indicate that further increasing the number of measurement vectors does not enable SOMP to pass this

bound. Curiously, although the performance of RA-OMP increases much more rapidly than that of SOMP at first,

it appears to stall at the same recovery rate as that for SOMP, suggesting that the rank degeneration identified in

Section VI introduces a bottleneck to the recovery performance for RA-OMP.
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Fig. 2. The empirical probability of recovery for SOMP, RA-OMP, RA-ORMP and MUSIC as a function of number of measurement vectors

for a fixed sparsity level, k = m/2 = 16.

VIII. DISCUSSION

In this paper we considered the role of the rank of the coefficient matrix in sparse recovery with multiple

measurement vectors (MMV). We began by reviewing known sufficient conditions for identifiability of the MMV

problem and showed that these conditions are also necessary. We then demonstrated that algorithmically rank

information can be used to reduce the complexity of the general combinatorial search procedure.

Next we turned our attention to practical algorithms. The MMV problem has already been studied extensively.

However we have shown that the most popular classes of algorithms, q-SOMP and mixed `1/`q minimization,

are both rank blind. Similar arguments apply to related algorithms (e.g. mixing `p/`q minimization) but we have

omitted the details. Indeed, to our knowledge, none of the existing popular techniques being used for joint sparse

recovery have been shown to be fully rank aware. We therefore developed some rank aware greedy algorithms

and derived certain worst case recovery conditions for these methods. One might (rightly) criticise such analysis

as overly pessimistic, however we stress that, in the full rank case, the worst case performance of MUSIC and

RA-ORMP still significantly outperform the average case performance for the most popular (rank blind) algorithms

[14]. Such are the benefits of exploiting the rank information.

In this paper we have focused on greedy rank aware algorithms. An interesting open question is whether a convex

rank aware recovery algorithm exist that can interpolate between `1 minimization when l = 1 and guaranteed

recovery when rank(Y) = k. Similarly we could ask whether other popular sparse recovery algorithms such as

CoSaMP [8] or Iterative Hard Thresholding [48], [49] can be adapted to create new rank aware recovery algorithms

for the MMV problem.

An important direction for future work is to analyze the recovery properties of the proposed algorithms in more
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detail for the region 1 < rank(X) < k. It is also important to quantify the typical performance of the algorithms

rather than the worst case scenario and to account for the effects of noise. We expect that an analysis similar to

that in [25], [14] would be appropriate here.
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