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Compressed Sensing:
How Sharp Is the Restricted
Isometry Property?∗

Jeffrey D. Blanchard†

Coralia Cartis‡

Jared Tanner‡

Abstract. Compressed sensing (CS) seeks to recover an unknown vector with N entries by making
far fewer than N measurements; it posits that the number of CS measurements should be
comparable to the information content of the vector, not simply N . CS combines directly
the important task of compression with the measurement task. Since its introduction in
2004 there have been hundreds of papers on CS, a large fraction of which develop algorithms
to recover a signal from its compressed measurements. Because of the paradoxical nature
of CS—exact reconstruction from seemingly undersampled measurements—it is crucial for
acceptance of an algorithm that rigorous analyses verify the degree of undersampling the
algorithm permits. The restricted isometry property (RIP) has become the dominant tool
used for the analysis in such cases. We present here an asymmetric form of RIP that gives
tighter bounds than the usual symmetric one. We give the best known bounds on the
RIP constants for matrices from the Gaussian ensemble. Our derivations illustrate the
way in which the combinatorial nature of CS is controlled. Our quantitative bounds on
the RIP allow precise statements as to how aggressively a signal can be undersampled, the
essential question for practitioners. We also document the extent to which RIP gives precise
information about the true performance limits of CS, by comparison with approaches from
high-dimensional geometry.

Key words. compressed sensing, sparse approximation, restricted isometry property, phase transi-
tions, convex relaxation, Gaussian matrices, eigenvalues of random matrices
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1. Introduction. Consider the task of measuring an unknown vector x ∈ R
N by

taking inner products with vectors of one’s choosing. The obvious choice would be to
ask for the inner product of x with respect to each of the N canonical unit vectors ej
(the jth entry of ej being one and all others zero). But what if it is known a priori
that x is k-sparse, i.e., has only k < N nonzero entries? Can’t one then do better? If
the nonzero entries of x are indexed by the set K (x(j) �= 0 if j ∈ K and x(j) = 0 for
j ∈ Kc), then only k inner products are needed: those with the canonical unit vectors
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ej for j ∈ K. However, what if K is unknown? Is it still possible to make fewer than
N measurements of x?

Questions of this form must have been around for millennia. Consider this puzzle:
A counterfeit coin is hidden in a batch of N otherwise similar coins; it is distinguished
from the others by its slightly heavier weight. How many balance weighings are
needed to find the counterfeit? Abstractly, this concerns the special case where K is
an unknown singleton and the nonzero value is nonnegative; the balance is abstractly
the same as an inner product which gives weight +1 to the coefficients placed in
the “right” pan and −1 to the coefficients placed in the “left” pan. Many people
quickly find that roughly log(N) measurements suffice to find the position and value
of the nonzero, each time putting half the remaining coins in one pan, half in the
other, and discarding from further consideration the coins that are on the light side.
Lighthearted as puzzles can sometimes seem, they can lead to serious applications.

During World War Two, efficient screening of large groups of soldiers for certain
infections was based on the principle of group testing, in which blood from many
soldiers is combined in a single tube and tested for presence of an infectious agent.
If an infection is found, one studies that group and by dyadic subdivision eventually
isolates the infecteds [26, 34].

More advanced mathematics can do much better than such commonsense ideas.
Those with a physical bent may quickly see that, if N is prime, again assuming a
singleton K and a nonnegative x, it will be enough, in fact, to make only two inner
products with, respectively, a sine and a cosine of frequency 2π/N ; the phase of
the corresponding complex Fourier coefficient immediately reveals the position of the
nonzero. Note here that, for large N , we are doing dramatically better than common
sense (two measurements rather than log(N)).

Advanced mathematics is better than the commonsense approach in another way:
common sense uses adaptive measurements, where the next measurement vector is se-
lected after viewing all previous measurements. In the advanced approach, adaptivity
is unnecessary: one simply makes two measurements defined a priori and later com-
bines the two to reconstruct.

Compressed sensing (CS) embodies the advanced approach: it designs a special
matrix A of size n × N , measures x via y = Ax, giving n measurements of the N
vector x in parallel, and reconstructs x from (y,A) using computationally efficient
and stable algorithms. The key point is that n can be taken to be much smaller than
N , and much closer to k. For example, if x is known to be k-sparse and nonnegative,
n = 2k+1 suffices [21], and if x is only known to be k-sparse, roughly n = 2 log(N/n)·k
will suffice if k/N is small [22].

Since the release of the seminal CS papers in 2004 [10, 8, 17], a great deal of ex-
citement has been generated in signal processing and applied mathematics research,
with hundreds of papers on the theory, applications, and extensions of CS (more than
400 of these are collected at Rice’s online Compressive Sensing Resources archive at
dsp.rice.edu/cs). Many applications have been proposed, including magnetic reso-
nance imaging [40, 41], radar [45], and single-pixel cameras [28], to name a few. In
the MRI applications, it has been reported that diagnostic quality images can be
obtained in 1/7 the recording time using CS approaches [39]. For a recent review of
CS, see the special IEEE journal issue containing [28, 40], and for a review of sparse
approximation, see [5].

In CS the matrix A and reconstruction algorithm are referred to as an en-
coder/decoder pair and much of the research has focused on their construction; that
is, how should the measurement matrix A be selected and what are the most computa-
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tionally efficient and robust algorithms for recovering x given y and A? The two most
prevalent encoders in the literature construct A by drawing its entries independently
and identically (i.i.d.) from a Gaussian normal distribution, or by randomly sampling
its rows without replacement from among the rows of a Fourier matrix. These en-
coders are popular as they are amenable to analysis, and they can be viewed as models
of matrices with mean-zero entries and fast matrix-vector products, respectively. The
most widely studied decoder has been �1-minimization,

(1.1) min
z∈RN

‖z‖1 subject to Az = y,

which is the convex relaxation of the computationally intractable decoder [42], seeking
the sparsest solution in agreement with the measurements

(1.2) min
z∈RN

‖z‖0 subject to Az = y.

Following the usual convention in the CS community, ‖z‖0 counts the number of
nonzero entries in z. Many other encoder/decoder pairs are also being actively studied,
with new alternatives being proposed regularly; see section 3.

Here we do not review these exciting activities, but focus our attention on how
to interpret the existing theoretical guarantees; in particular, we believe an impor-
tant task for theory is to correctly predict the triples (k, n,N) for which a given
encoder/decoder will successfully recover the measured signal, or a suitable approx-
imation thereof. To exemplify this, we restrict our attention to a now-standard en-
coder/decoder pair: A Gaussian and �1-minimization. This pair offers the cleanest
mathematical structure, enabling us to make the strongest and clearest statements
possible at this time, for example, by drawing on the existing wealth of knowledge
in random matrix theory and high-dimensional convex geometry. In this paper we
focus almost exclusively on the most widely used tool for analyzing the performance of
encoder/decoder pairs, the restricted isometry property (RIP) introduced by Candès
and Tao [11].

Definition 1.1 (RIP). A matrix A of size n×N is said to satisfy the RIP with
RIP constant R(k, n,N ;A) if, for every x ∈ χN (k) := {x ∈ R

N : ‖x‖0 ≤ k},
(1.3) R(k, n,N ;A) := min

c≥0
c subject to (1 − c)‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + c)‖x‖2

2.

As suggested by the name, the RIP constants measure how much the matrix A
acts like an isometry when “restricted” to k columns; it describes the most significant
distortions of the �2 norm of any k-sparse vector. Typically, R(k, n,N ;A) is measured
for matrices with unit �2-norm columns, and in this special case R(1, n,N) = 0.
Specifically, the RIP constant R(k, n,N ;A) is the maximum distance from 1 of all the
eigenvalues of the

(
N
k

)
submatrices, AT

KAK , derived from A, where K is an index set
of cardinality k that restricts A to those columns indexed by K.

It is important to note that the RIP is predominantly used to establish theoretical
performance guarantees when either the measurement vector y is corrupted with noise
or the vector x is not strictly k-sparse. Proving that an algorithm is stable to noisy
measurements is essential for applications since measurements are rarely free from
noise. In this paper, we focus on the ideal noiseless case in the hope of investigating
the best possible theoretical results. For the noisy case, see [1] for �q-minimization
for q ∈ (0, 1] and [3] for greedy algorithms.

For many CS encoder/decoder pairs it has been shown that if the RIP constants
for the encoder remain bounded as n and N increase with n/N → δ ∈ (0, 1), then the
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decoder can be guaranteed to recover the sparsest x for k up to a critical threshold,
which can be expressed as a fraction of n, ρ(δ) · n. Typically, each encoder/decoder
pair has a different ρ(δ). Little is generally known about the magnitude of ρ(δ) for
encoder/decoder pairs, making it difficult for a practitioner to know how aggressively
they may undersample, or which decoder has stronger performance guarantees. (For a
recent review of CS algorithms, including those that have ρ(δ) > 0, see [43, section 7].)
In this paper, we endeavor to be as precise as possible about the value of the RIP con-
stants for the Gaussian ensemble, and show how this gives quantitative values for ρ(δ)
for the �1-minimization decoder. Similar results for other decoders are available in [3].

To quantify the sparsity/undersampling trade-off, we adopt a proportional-growth
asymptotic, in which we consider sequences of triples (k, n,N) where all elements grow
large in a coordinated way, n ∼ δN and k ∼ ρn for some constants δ, ρ > 0. This
defines a two-dimensional phase space (δ, ρ) in [0, 1]2 for asymptotic analysis.

Definition 1.2 (proportional-growth asymptotic). A sequence of problem sizes
(k, n,N) is said to grow proportionally if, for (δ, ρ) ∈ [0, 1]2, n

N → δ and k
n → ρ as

n→ ∞.
Ultimately, we want to determine, as precisely as possible, which subset of this

phase space corresponds to successful recovery and which subset corresponds to un-
successful recovery. This is the phase-transition framework advocated by Donoho et
al. [16, 18, 20, 21, 24]; see section 3 for a precise definition. By translating the suffi-
cient RIP conditions into the proportional-growth asymptotic, we find lower bounds
on the phase transition for (δ, ρ) in [0, 1]2. An answer to this question plays the role
of an undersampling theorem: to what degree can we undersample a signal and still
be able to reconstruct it?

The central aims of this paper are
• to shed some light on the behavior of the RIP constants of a matrix ensemble

with as much precision as possible;
• to advocate a unifying framework for the comparison of theoretical CS results

by showing the reader how to interpret and compare some of the existing
recovery guarantees for the prevalent �1 decoder;

• to introduce a reader new to this topic to the type of large deviation analysis
calculations often encountered in CS and applicable to many areas faced with
combinatorial challenges.

In pursuit of these goals, we sharpen the use of the RIP and squeeze the most out of
it, quantifying what can currently be said in the proportional-growth asymptotic and
thereby making precise the undersampling theorems the RIP implies. We proceed
in section 2 along two main avenues. First, we concentrate on Gaussian matrices;
using bounds on their singular values we develop the sharpest known bounds on their
RIP constants; in fact, these are the best known bounds of any class of matrices
in the proportional-growth asymptotic with n < N . Second, we use an asymmetric
definition of the RIP, where the lower and upper eigenvalues are treated separately,
and in doing so further improve the conditions in which the RIP implies CS decoders
recover the measured signal. In section 3 we combine these two improvements to
exhibit a region of the (δ, ρ) phase space where RIP analysis shows that undersampling
will be successful for the �1-minimization decoder (1.1).

The RIP is not the only tool used to analyze the performance of CS decoders. The
different methods of analysis lead to results that are rather difficult to compare. In
section 3.2, we describe in the proportional-growth asymptotic, with A Gaussian and
the �1-minimization decoder, two alternative methods bounding the phase transition:
the polytope analysis [16, 18, 22] of Donoho and Tanner and the geometric func-
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tional analysis techniques of Rudelson and Vershynin [46]. By translating these two
methods of analysis and the RIP analysis into the proportional-growth asymptotic,
we can readily compare the results obtained by these three techniques by comparing
the regions of the (δ, ρ) phase space where each method of analysis has guaranteed
successful recovery. In particular, we find that for the Gaussian encoder, the RIP,
despite its popularity, is currently dramatically weaker than the other two approaches
in the strength of conclusions that it can offer. However, this limitation is counter-
balanced by RIP being successfully applied to a broad class of encoder/decoder pairs
and also seamlessly proving stability to noisy measurements and approximation of
compressible signals.

We conclude with a discussion of some other important and related topics not
addressed in the current paper. We briefly discuss comparisons of results when noise
is present in the measurements or the signal x is not perfectly k-sparse, average case
analysis versus the theoretical worst case analysis presented here, and the potential to
improve the phase-transition curves through improved analysis or improved bounds.

2. Bounds on RIP for Gaussian Random Matrices. Let K ⊂ {1, . . . , N} be an
index set of cardinality k which specifies the columns of A chosen for a submatrix, AK ,
of size n× k. Explicitly computing R(k, n,N ;A) would require enumerating all

(
N
k

)
subsets K of the columns of A, forming each matrix GK = AT

KAK , and calculating
their largest and smallest eigenvalues. We have never seen this done except for small
sizes of N and k, so not much is known about the RIP constants of deterministic
matrices. Fortunately, analysis can penetrate where computation becomes intractable.
Associated with a random matrix ensemble is an, as yet unknown, probability density
function for R(k, n,N). Let us focus on the Gaussian ensemble where much is already
known about its eigenvalues. We say that an n×N random matrix A is drawn from
the Gaussian ensemble of random matrices if the entries are sampled i.i.d. from the
standard normal distribution, N (0, n−1). (The n−1 scaling in the Gaussian ensemble
causes the �2 norm of its columns to have expectation 1.) We say that a k× k matrix
Wn,k is a Wishart matrix if it is the Gram matrix XTX of an n× k matrix X from
the Gaussian ensemble. The largest and smallest eigenvalues of a Wishart matrix
are random variables, denoted here Λmax

n,k = λmax(Wn,k) and Λmin
n,k = λmin(Wn,k).

These random variables tend to defined limits, in expectation, as n and k increase
in a proportional manner. With k

n → ρ as n → ∞, we have E(Λmax
n,k ) → (1 +

√
ρ)2

and E(Λmin
n,k ) → (1 −√

ρ)2 [33, 48]; see Figure 2.1. Explicit formulas bounding Λmax
n,k

and Λmin
n,k are available [30]. An empirical approximation of the probability density

functions of Λmax
n,k and Λmin

n,k is shown in Figure 2.2.
The asymmetric way in which the expected eigenvalues Λmax

n,k and Λmin
n,k deviate

from 1 suggests that the symmetric treatment used by the traditional RIP is missing
an important part of the picture. We generalize the RIP to an asymmetric form and
derive the sharpest recovery conditions implied by the RIP.

Definition 2.1 (asymmetric RIP). For a matrix A of size n×N , the asymmetric
RIP constants L(k, n,N ;A) and U(k, n,N ;A) are defined as

L(k, n,N ;A) := min
c≥0

c subject to (1 − c)‖x‖2
2 ≤ ‖Ax‖2

2 for all x ∈ χN (k);(2.1)

U(k, n,N ;A) := min
c≥0

c subject to (1 + c)‖x‖2
2 ≥ ‖Ax‖2

2 for all x ∈ χN (k).(2.2)

(A similar change in the definition of the RIP constants was used independently
by Foucart and Lai in [32], motivated by different concerns.)

D
ow

nl
oa

de
d 

06
/2

7/
13

 to
 1

29
.2

15
.1

04
.5

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

110 JEFFREY D. BLANCHARD, CORALIA CARTIS, AND JARED TANNER

ρ = k/n

Fig. 2.1 Expected values of the largest and smallest eigenvalues of a Wishart matrix Wn,k with

ρ = k
n

. Note the asymmetry with respect to 1.

ρ = k
n

Fig. 2.2 Empirical distributions of the largest and smallest eigenvalues of a Wishart matrix. A
collection of frequency histograms of Λmax

n,k and Λmin
n,k : x-axis = size of the eigenvalue; y-

axis = number of occurrences; z-axis = ratio ρ = k
n

of the Wishart parameters. Overlays:

curves depicting the expected values (1±√
ρ)2 of Λmax

n,k and Λmin
n,k . Here n = 200. At this

value of n it is evident that Λmax
n,k and Λmin

n,k lie near, but not on, curves. For larger n, the

concentration would be tighter.

Remark 1. Although both the smallest and largest eigenvalues of AT
KAK affect

the stability of the reconstruction algorithms, the smaller eigenvalue is dominant for
CS in that it allows distinguishing between sparse vectors from their measurement by
A. In fact, it is often incorrectly stated that R(2k, n,N) < 1 is a necessary condi-
tion to ensure that there are no two k-sparse vectors, say, x and x′, with the same
measurements Ax = Ax′; the actual necessary condition is L(2k, n,N) < 1.
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We see from (2.1) and (2.2) that (1 − L(k, n,N)) = minK λmin(GK) and (1 +
U(k, n,N)) = maxK λmax(GK) with GK = AT

KAK . A standard large deviation
analysis of bounds on the probability density functions of Λmax

n,k and Λmin
n,k allows

us to establish upper bounds of L(k, n,N) and U(k, n,N) which are exponentially
unlikely to be exceeded.

Definition 2.2 (asymptotic RIP bounds). Let A be a matrix of size n × N
drawn from the Gaussian ensemble and consider the proportional-growth asymptotic
( n
N → δ and k

n → ρ as n→ ∞). Let H(p) := p log(1/p)+(1−p) log(1/(1−p)) denote
the usual Shannon entropy with base e logarithms, and let

ψmin(λ, ρ) := H(ρ) +
1
2

[(1 − ρ) log λ+ 1 − ρ+ ρ log ρ− λ] ,(2.3)

ψmax(λ, ρ) :=
1
2

[(1 + ρ) logλ+ 1 + ρ− ρ log ρ− λ] .(2.4)

Define λmin(δ, ρ) and λmax(δ, ρ) as the solutions to (2.5) and (2.6), respectively:

(2.5) δψmin(λmin(δ, ρ), ρ) +H(ρδ) = 0 for λmin(δ, ρ) ≤ 1 − ρ,

(2.6) δψmax(λmax(δ, ρ), ρ) +H(ρδ) = 0 for λmax(δ, ρ) ≥ 1 + ρ.

Define L(δ, ρ) and U(δ, ρ) as

(2.7) L(δ, ρ) := 1 − λmin(δ, ρ) and U(δ, ρ) := min
ν∈[ρ,1]

λmax(δ, ν) − 1.

The values obtained by the bounds L(δ, ρ) and U(δ, ρ) over the phase space [0, 1]2

are shown as level sets in Figure 2.3. To facilitate ease of calculating L(δ, ρ) and
U(δ, ρ), web forms for their calculation are available at ecos.maths.ed.ac.uk.

In the proportional-growth asymptotic, the probability that L(δ, ρ) and U(δ, ρ)
bound the random variables L(k, n,N) and U(k, n,N), respectively, tends to 1 as
n → ∞. In statistical terminology, the coverage probability of the upper confidence
bounds L(δ, ρ) and U(δ, ρ) tends to 1 as n → ∞. In fact, all probabilities presented
in this paper converge to their limit “exponentially in n”; that is, the probability
for finite n approaches its limit as n grows with discrepancy bounded by a constant
multiple of e−nβ for some fixed β > 0.

Theorem 2.3 (validity of RIP bounds). Fix ε > 0. Under the proportional-
growth asymptotic, from Definition 1.2, sample each n×N matrix A from the Gaussian
ensemble. Then

Prob (L(k, n,N ;A) < L (δ, ρ) + ε) → 1 and Prob (U(k, n,N ;A) < U (δ, ρ) + ε) → 1

exponentially in n.
Remark 2. Extensive empirical estimates of L(k, n,N) and U(k, n,N) show

that the bounds L(δ, ρ) and U(δ, ρ) are rather sharp; in fact, they are no more than
twice the actual upper bounds on L(k, n,N) and U(k, n,N) (see Figure 2.4 and Table
2.1) and are much closer for the region applicable for CS decoders, ρ � 1. The
empirically observed lower bounds on L(k, n,N) and U(k, n,N) are calculated through
the following process. The number of rows, n, is fixed at one of the values in Table
2.1. For each n, 47 values of N are selected so that n/N ranges from 1/20 to 20/21.
For each (n,N) a matrix A of size n×N is drawn from N (0, n−1) and the algorithm
from either [27] or [38] is applied to determine support sets of size k = 1, 2, . . . , n− 1,
which are candidates for the support sets that maximize L(k, n,N ;A) or U(k, n,N ;A).
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δ

ρ

δ

ρ

Fig. 2.3 The RIP bounds of (2.7). Level sets of L(δ, ρ) (left panel) and U(δ, ρ) (right panel) over
the phase space (δ, ρ) ∈ [0, 1]2. For large matrices from the Gaussian ensemble, it is over-
whelmingly unlikely that the RIP constants L(k, n, N ;A) and U(k, n, N ;A) will be greater
than these values.

δ

ρ

δ

ρ

Fig. 2.4 Empirically observed lower estimates of RIP bounds of RIP constants. Although there is no
computationally tractable method for calculating the RIP constants of a matrix, there are
efficient algorithms which perform local searches for extremal eigenvalues of submatrices,
allowing for observable lower bounds on the RIP constants. Algorithms for lower bounding
L(k, n, N) [27] and U(k, n, N) [38] were applied to dozens of A drawn Gaussian N (0, n−1)
with n = 400 and N increasing from 420 to 8000. Level sets of the observed L(k, n, N ;A)
(left panel) and U(k, n, N ;A) (right panel).

The largest or smallest eigenvalue of each resulting n× k submatrix is calculated and
recorded. The above process is repeated for some number of matrices; see the caption
of Table 2.1 and the maximum value recorded. The empirical calculation of RIP
constants are lower bounds on the true RIP constants as the support sets calculated
by [27] and [38] may not be the support sets which maximize the RIP constants.

2.1. Proof of Theorem 2.3. In order to prove Theorem 2.3, this section employs
a type of large deviation technique often encountered in CS and applicable, in fact,
to many areas faced with combinatorial challenges.

We first establish some useful lemmas concerning the extreme eigenvalues of
Wishart matrices. The matrix A generates

(
N
k

)
different Wishart matrices GK =
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Table 2.1 The maximum ratio of the RIP bounds in Theorem 2.3 to empirically observed values.
For each of the ratios n/N tested, multiple matrices were drawn and empirical low bounds
on their RIP constants calculated. For n = 200 between 9 and 175, matrices were drawn
for each n/N , and for n = 400 between 7 and 489, matrices were drawn for each n/N .
Our bounds were numerically found to be within a multiple of 1.83 of empirically observed
lower bounds.

n max
L(δ,ρ)

L(k,n,N)
max

U(δ,ρ)
U(k,n,N)

200 1.22 1.83
400 1.32 1.81

AT
KAK . Exponential bounds on the tail probabilities of the largest and smallest

eigenvalues of such Wishart matrices can be combined with exponential bounds on(
N
k

)
to control the chance of large deviations using the union bound. This large devia-

tion analysis technique is characteristic of proofs in CS. By using the exact probability
density functions on the tail behavior of the extreme eigenvalues of Wishart matri-
ces, the overestimation of the union bound is dramatically reduced. We focus on
the slightly more technical results for the bound on the most extreme of the largest
eigenvalues, U(δ, ρ), and prove these statements in full detail. Corresponding results
for L(δ, ρ) are stated with their similar proofs omitted.

The probability density function, fmax(k, n;λ), for the largest eigenvalue of the
k× k Wishart matrix AT

KAK was determined by Edelman in [29]. For our analysis, a
simplified upper bound suffices.

Lemma 2.4 (see [29, Lemma 4.2, p. 550]). Let AK be a matrix of size n × k
whose entries are drawn i.i.d. from N (0, n−1). Let fmax(k, n;λ) denote the probability
density function for the largest eigenvalue of the Wishart matrix AT

KAK of size k×k.
Then fmax(k, n;λ) satisfies
(2.8)

fmax(k, n;λ) ≤
[

(2π)1/2(nλ)−3/2

(
nλ

2

)(n+k)/2 1
Γ(k2 )Γ(n2 )

]
· e−nλ/2 =: gmax(k, n;λ).

For our purposes, it is sufficient to have a precise characterization of gmax(k, n;λ)’s
exponential (with respect to n) behavior.

Lemma 2.5. Let k/n = ρ ∈ (0, 1) and define

ψmax(λ, ρ) :=
1
2

[(1 + ρ) logλ+ 1 + ρ− ρ log ρ− λ] .

Then

(2.9) fmax(k, n;λ) ≤ pmax(n, λ) exp(n · ψmax(λ, ρ)),

where pmax(n, λ) is a polynomial in n, λ.
Proof. Let gmax(k, n;λ) be as defined in (2.8) and let ρn = k/n. To extract the

exponential behavior of gmax(k, n;λ), we write 1
n log(gmax(k, n;λ)) = Φ1(k, n;λ) +

Φ2(k, n;λ) + Φ3(k, n;λ), where

Φ1(k, n;λ) =
1

2n
log (2π) − 3

2n
log (nλ) ,

Φ2(k, n;λ) =
1
2

[
(1 + ρn) log

(
λn

2

)
− λ

]
,

Φ3(k, n;λ) = − 1
n

log
(

Γ
(
k

2

)
Γ

(n
2

))
.
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Clearly, limn→∞ Φ1(k, n;λ) = 0 and can be subsumed as part of pmax(n, λ). To
simplify Φ3, we apply the second of Binet’s log gamma formulas [52, section 12.32],
namely, log(Γ(z)) = (z−1/2) log z−z+log

√
2π+I, where I is a convergent, improper

integral. With c(n, ρ) representing the constant and integral from Binet’s formula we
then have

Φ2(k, n;λ) + Φ3(k, n;λ)

=
1
2

[
(1 + ρn) log λ−

(
ρn − 1

n

)
log ρn +

2
n

log
n

2
+ ρn + 1 − λ+

1
n
c(n, ρn)

]
.

As limn→∞ n−1c(n, ρn) = 0 it can be absorbed into pmax(n, λ) and we have

ψmax(λ, ρ) := lim
n→∞

1
n

log [gmax(k, n;λ)] =
1
2

[(1 + ρ) logλ− ρ log ρ+ ρ+ 1 − λ]

and the conclusion follows.
To bound U(k, n,N), we must simultaneously account for all

(
N
k

)
Wishart ma-

trices AT
KAK derived from A. Using a union bound this amounts to studying the

exponential behavior of
(
N
k

)
gmax(k, n;λ). In the proportional-growth asymptotic this

can be determined by characterizing limN→∞N−1 log
[(

N
k

)
gmax(k, n;λ)

]
, which from

Lemma 2.5 is given by

lim
N→∞

1
N

log
[(
N

k

)
gmax(k, n;λ)

]
= lim

N→∞
1
N

log
[(
N

k

)]
+ lim

N→∞
1
N

log [gmax(n, k;λ)]

= H

(
k

N

)
+ δ lim

n→∞
1
n

log [gmax(n, k;λ)]

= H(ρδ) + δψmax(λ, ρ) =: δψU (δ, ρ;λ).(2.10)

Recall that H(p) := p log(1/p) + (1 − p) log(1/(1 − p)) is the usual Shannon entropy
with base e logarithms.

Equipped with Lemma 2.5 and (2.10), Proposition 2.6 establishes λmax(δ, ρ) − 1
as an upper bound on U(k, n,N) in the proportional-growth asymptotic.

Proposition 2.6. Let δ, ρ ∈ (0, 1), and let A be a matrix of size n × N whose
entries are drawn i.i.d. from N (0, n−1). Define Ũ(δ, ρ) := λmax(δ, ρ) − 1, where
λmax(δ, ρ) is the solution to (2.6). Then, for any ε > 0, in the proportional-growth
asymptotic

Prob
(
U(k, n,N) > Ũ(δ, ρ) + ε

)
→ 0

exponentially in n.
Proof. Throughout this proof δ and ρ are fixed, and we focus our attention on

λ, often abbreviating ψU (δ, ρ;λ) in (2.10) as ψU (λ). We first verify that (2.6) has a
unique solution. Since

d

dλ
ψU (λ) =

1
2

(
1 + ρ

λ
− 1

)
,

ψU (λ) is strictly decreasing on [1 + ρ,∞) and is strictly concave. Combined with

ψU (1 + ρ) = δ−1H(ρδ) +
1
2

[
(1 + ρ) log(1 + ρ) + ρ log

1
ρ

]
> 0

and limλ→∞ ψU (λ) = −∞, there is a unique solution to (2.6), namely, λmax(δ, ρ).
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Select ε > 0 and let (k, n,N) be such that n
N = δn, k

n = ρn. First, we write the
probability statement in terms of λmax(δn, ρn):

Prob
[
U(k, n,N) > Ũ(δn, ρn) + ε

]
= Prob [U(k, n,N) > λmax(δn, ρn) − 1 + ε]

= Prob [1 + U(k, n,N) > λmax(δn, ρn) + ε]

=
(
N

k

) ∫ ∞

λmax(δn,ρn)+ε

fmax(k, n;λ)dλ

≤
(
N

k

) ∫ ∞

λmax(δn,ρn)+ε

gmax(k, n;λ)dλ.(2.11)

To bound the integral in (2.11) in terms of gmax(δ, ρ;λmax(δn, ρn)), we write
gmax(k, n;λ) in terms of n, ρn, and λ as gmax(k, n;λ) = ϕ(n, ρn)λ−

3
2λ

n
2 (1+ρn)e−

n
2 λ,

where

ϕ(n, ρn) = (2π)
1
2n− 3

2

(n
2

)n
2 (1+ρn) 1

Γ
(
n
2 ρn

)
Γ

(
n
2

) .
Since λmax(δn, ρn) > 1 + ρn, the quantity λ

n
2 (1+ρn)e−

n
2 λ is strictly decreasing in λ on

[λmax(δ, ρn),∞). Therefore, we have∫ ∞

λmax(δn,ρn)+ε

gmax(k, n;λ)dλ

≤ ϕ(n, ρn) (λmax(δn, ρn) + ε)
n
2 (1+ρn) e−

n
2 (λmax(δn,ρn)+ε)

∫ ∞

λmax(δn,ρn)+ε

λ−
3
2 dλ

= (λmax(δn, ρn) + ε)
3
2 gmax (k, n;λmax(δn, ρn) + ε)

∫ ∞

λmax(δn,ρn)+ε

λ−
3
2 dλ

= 2 (λmax(δn, ρn) + ε) gmax (k, n;λmax(δn, ρn) + ε) .
(2.12)

Therefore, combining (2.11) and (2.12) we obtain

Prob
[
U(k, n,N) > Ũ(δn, ρn) + ε

]
≤ 2 (λmax(δn, ρn) + ε)

(
N

k

)
gmax (k, n;λmax(δn, ρn) + ε)

≤ pmax (n, λmax(δn, ρn)) exp [n · ψU (λmax(δn, ρn) + ε)]

≤ pmax (n, λmax(δn, ρn)) exp
[
nε · d

dλ
ψU (λ)|λ=(λmax(δn,ρn))

]
,(2.13)

with the last inequality following from the strict concavity of ψU (λ). Since the
quantity d

dλψU (λmax(δ, ρ)) < 0 is strictly bounded away from zero and limn→∞
λmax(δn, ρn) = λmax(δ, ρ), we arrive at, for any ε > 0,

lim
n→∞ Prob

[
U(k, n,N) > Ũ(δ, ρ) + ε

]
→ 0.

The term H(ρδ) in (2.10), from the union bound over all
(
N
k

)
matrices AT

KAK ,
results in an overly pessimistic bound in the vicinity of ρδ = 1/2. As we are
seeking the least upper bound on U(k, n,N), we note that any upper bound for
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U(j, n,N) for j > k is also an upper bound for U(k, n,N), and replace the bound
Ũ(δ, ρ) with the minimum of Ũ(δ, ν) for ν ∈ [ρ, 1].

Proposition 2.7. Let δ, ρ ∈ (0, 1), and define U(δ, ρ) := minν∈[ρ,1] Ũ(δ, ν) with
Ũ(δ, ν) defined as in Proposition 2.6. For any ε > 0, in the proportional-growth
asymptotic

Prob (U(k, n,N) > U(δ, ρ) + ε) → 0

exponentially in n.
Proof. By the definition of χN (k) in Definition 1.1, U(j, n,N) ≥ U(k, n,N) for

j = k + 1, k + 2, . . . , n; combined with Proposition 2.6 for j
n → ν as n→ ∞,

Prob(U(j, n,N) > Ũ(δ, ν) + ε) → 0

exponentially in n, and taking a minimum over the compact set ν ∈ [ρ, 1] we arrive
at the desired result.

A similar approach leads to corresponding results for L(δ, ρ). Edelman also de-
termined the probability density function, fmin(k, n;λ), for the smallest eigenvalue of
the k× k Wishart matrix AT

KAK [29]. Here, again, a simplified upper bound suffices.
Lemma 2.8 (see [29, Proposition 5.2, p. 553]). Let AK be a matrix of size n× k

whose entries are drawn i.i.d. from N (0, n−1). Let fmin(k, n;λ) denote the probability
density function for the smallest eigenvalue of the Wishart matrix AT

KAK of size k×k.
Then fmin(k, n;λ) satisfies

fmin(k, n;λ) ≤
( π

2nλ

)1/2

· e−nλ/2

(
nλ

2

)(n−k)/2

·
[

Γ(n+1
2 )

Γ(k2 )Γ(n−k+1
2 )Γ(n−k+2

2 )

]

=: gmin(k, n;λ).(2.14)

With Lemma 2.8, we establish a bound on the asymptotic behavior of the distri-
bution of the smallest eigenvalue of the Wishart matrix of size k × k.

Lemma 2.9. Let k/n = ρ ∈ (0, 1), and define

ψmin(λ, ρ) := H(ρ) +
1
2

[(1 − ρ) logλ+ 1 − ρ+ ρ log ρ− λ] .

Then

(2.15) fmin(k, n;λ) ≤ pmin(n, λ) exp(n · ψmin(λ, ρ)),

where pmin(n, λ) is a polynomial in n, λ.
With Lemma 2.9, the large deviation analysis yields

(2.16) lim
N→∞

1
N

log
[(
N

k

)
gmin(k, n;λ)

]
= H(ρδ) + δψmin(λ, ρ).

Similar to the proof of Proposition 2.6, Lemma 2.9 and (2.16) are used to establish
L(δ, ρ) as an upper bound on L(k, n,N) in the proportional-growth asymptotic.

Proposition 2.10. Let δ, ρ ∈ (0, 1], and let A be a matrix of size n×N whose en-
tries are drawn i.i.d. from N (0, n−1). Define L(δ, ρ) := 1−λmin(δ, ρ), where λmin(δ, ρ)
is the solution to (2.5). Then, for any ε > 0, in the proportional-growth asymptotic

Prob (L(k, n,N) > L(δ, ρ) + ε) → 0

exponentially in n.
The bound L(δ, ρ) is strictly increasing in ρ for any δ ∈ (0, 1), and as a consequence

no tighter bound can be achieved by minimizing over matrices of larger size as was
done in Proposition 2.7.

D
ow

nl
oa

de
d 

06
/2

7/
13

 to
 1

29
.2

15
.1

04
.5

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPRESSED SENSING: HOW SHARP IS THE RIP? 117

3. RIP Undersampling Theorems. The high level of interest in CS is due to
the introduction of computationally efficient and stable algorithms which provably
solve the seemingly intractable (1.2) even for k proportional to n. New CS decoders
are being introduced regularly; broadly speaking, they fall into one of two categories:
greedy algorithms and regularizations. Greedy algorithms are iterative, with each
step selecting a locally optimal subset of entries in x which are adjusted to improve
the desired error metric. Examples of greedy algorithms include orthogonal matching
pursuit (OMP) [50], regularized OMP (ROMP) [44], stagewise OMP (StOMP) [25],
compressive sampling MP (CoSaMP) [43], subspace pursuit (SP) [15], and iterated
hard thresholding (IHT) [4]. Regularization formulations for sparse approximation
began with the relaxation of (1.2) to the now ubiquitous (convex) �1-minimization
[14] (1.1) and has since been extended to nonconvex �q-minimization for q ∈ (0, 1)
[35, 32, 13, 12, 47]. Although general-purpose convex optimization solvers may be
employed to solve �1-minimization (1.1), highly efficient software has recently been
designed specifically for �1-minimization in the context of CS; see [14, 31, 51, 54].
Nonconvex formulations have sometimes been able to offer substantial improvements,
but at the cost of limited guarantees that the global minima can be found efficiently,
so it remains unclear how practical they really are.

As stated at the end of the introduction, one of the central aims of this article
is to advocate a unifying framework for the comparison of results in CS. Currently
there is no general agreement in the CS community on such a framework, making it
difficult to compare results obtained by different methods of analysis or to identify
when new results are improvements over existing ones. Donoho has put forward the
phase-transition framework borrowed from the statistical mechanics literature and
used successfully in a similar context by the combinatorial optimization community;
see [36, 37]. This framework has been successfully employed in CS by Donoho et al.
[20, 21, 24].

Fortunately, every CS algorithm that has an optimal recovery order of n propor-
tional to k can be cast in the phase-transition framework of Donoho et al., parametrized
by two inherent problem size parameters:1

• the undersampling rate of measuring x through n inner products with the
rows of A, as compared to directly sampling each element of x ∈ R

N ,

δn = n/N ∈ (0, 1);

• the oversampling rate of making n measurements as opposed to the optimal
oracle rate of making k measurements when the oracle knows the support of
x,

ρn = k/n ∈ (0, 1).

For each value of δn ∈ (0, 1) there is a largest value of ρn which guarantees successful
recovery of x.

We now formalize the phase-transition framework described above.
Definition 3.1 (strong equivalence). The event StrongEquiv(A,alg) denotes the

following property of an n×N matrix A: for every k-sparse vector x, the algorithm
“alg” exactly recovers x from the corresponding measurements y = Ax.

1For some algorithms, such as 1-regularization, these two parameters fully characterize the
behavior of the algorithm for a particular matrix ensemble, whereas for other algorithms, such as
OMP, the distribution of the nonzero coefficients also influences the behavior of the method.
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For most CS algorithms and for a broad class of matrices, under the proportional-
growth asymptotic there is a strictly positive function ρS(δ;alg) > 0 defining a region
of the (δ, ρ) phase space which ensures successful recovery of every k-sparse vector
x ∈ χN (k). This function, ρS(δ;alg), is called the strong phase-transition function
[10, 16, 18].

Definition 3.2 (region of strong equivalence). Consider the proportional-growth
asymptotic with parameters (δ, ρ) ∈ (0, 1) × (0, 1/2). Draw the corresponding n × N
matrices A from the Gaussian ensemble and fix ε > 0. Suppose that we are given
a function ρS(δ;alg) with the property that, whenever 0 < ρ < (1 − ε)ρS(δ;alg),
Prob(StrongEquiv(A,alg)) → 1 as n → ∞. We say that ρS(δ;alg) bounds a region
of strong equivalence.

Remark 3. The subscript S emphasizes that the phase-transition function
ρS(δ;alg) will define a region of the (δ, ρ) phase space which guarantees that the event
StrongEquiv(A,alg) is satisfied with probability on the draw of A converging to 1 expo-
nentially in n. This notation was established in the literature by Donoho and Tanner
[16, 21] to distinguish strong equivalence (i.e., that every k-sparse vector x is suc-
cessfully recovered) from weak equivalence (i.e., all but a small fraction of k-sparse
vectors are successfully recovered). For example, [16, 21] study the event where �1-
minimization (1.1) exactly recovers x from the corresponding measurements y = Ax,
except for a fraction (1 − ε) of the support sets.

For the remainder of this section, we translate guarantees of StrongEquiv(A, �1)
into bounds on the region of strong equivalence in the proportional-growth asymp-
totic; we denote ρS(δ; �1) ≡ ρS(δ). A similar presentation of other CS decoders
is available in [3]. In order to make quantitative statements, the matrix or random
matrix ensemble must first be specified [2]; we again consider A drawn from the Gaus-
sian ensemble.2 In section 3.1 we demonstrate how to incorporate the RIP bounds
from section 2 into results obtained from an RIP analysis. In section 3.2 we com-
pare bounds on the region of StrongEquiv(A, �1) proven by three distinct methods of
analysis: eigenvalue analysis and the RIP [32], geometric functional analysis (GFA)
[46], and convex polytopes [16].

3.1. Region of StrongEquiv(A, �1) Implied by the RIP. In this section, we in-
corporate the bounds on RIP constants established in section 2 into a known condition
implying StrongEquiv(A, �1) obtained from an RIP analysis. Following the pioneer-
ing work of Candès, Romberg, and Tao (see [8, 11]), many different conditions on the
RIP constants have been developed which ensure recovery of every k-sparse vector
via �1-minimization; see [6, 7, 9, 10, 46], to name a few. The current state-of-the-art
RIP conditions for �1-minimization were developed by Foucart and Lai [32].

Theorem 3.3 (Foucart and Lai [32]). For any matrix A of size n×N with RIP
constants L(2k, n,N) and U(2k, n,N), for 2k ≤ n < N , define

(3.1) µFL(k, n,N) :=
1 +

√
2

4

(
1 + U(2k, n,N)
1 − L(2k, n,N)

− 1
)
.

If µFL(k, n,N) < 1, then there is StrongEquiv(A, �1).
To translate this result into the phase-transition framework for matrices from the

Gaussian ensemble, we apply the RIP bounds (2.7) to the asymmetric RIP constants
L(2k, n,N) and U(2k, n,N). It turns out that naively inserting these bounds into

2Similar results have been proven for other random matrix ensembles, but they are even less
precise than those for the Gaussian distribution.
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δ

ρ

δ

ρ

Fig. 3.1 Left panel: Three lower bounds on the strong 1/0-equivalence phase transition, ρS(δ), for
Gaussian random matrices from Theorem 3.7 (ρD

S (δ), solid line), Theorem 3.9 (ρRV
S (δ),

dashed line), and Theorem 3.5 (ρF L
S (δ)1, dotted line). Right panel: The inverse of the

1/0-equivalence phase transition lower bounds in the left panel.

(3.1) yields a bound on µFL(k, n,N) (see Lemma 3.6) and provides a simple way to
obtain a bound on the region of strong equivalence.

Definition 3.4 (RIP region of StrongEquiv(A, �1)). Define

(3.2) µFL(δ, ρ) :=
1 +

√
2

4

(
1 + U(δ, 2ρ)
1 − L(δ, 2ρ)

− 1
)

and ρFLS (δ) as the solution to µFL(δ, ρ) = 1.
The function ρFLS (δ) is displayed as the dotted curve in Figure 3.1.
Theorem 3.5. Fix ε > 0. Consider the proportional-growth asymptotic in Defini-

tion 1.2 with parameters (δ, ρ) ∈ (0, 1)×(0, 1/2). Draw the corresponding n×N matri-
ces A from the Gaussian ensemble. If ρ < (1−ε)ρFLS (δ), then Prob(StrongEquiv(A, �1))
→ 1 as n→ ∞.

Therefore, the function ρFLS (δ) bounds a region of strong equivalence for �1-
minimization.

Theorem 3.5 follows from Theorem 3.3 and the validity of the probabilistic bounds
on the RIP constants given by Theorem 2.3. In particular, Lemma 3.6 bounds
µFL(k, n,N) in terms of the asymptotic RIP bounds L(δ, 2ρ) and U(δ, 2ρ), by the
quantity µFL(δ, (1+ε)ρ) defined in (3.3). If ρε(δ) is the solution to µFL(δ, (1+ε)ρ) = 1,
then for ρ < ρε(δ) we achieve the desired bound, µFL(k, n,N) < 1, to ensure
StrongEquiv(A, �1). The statement of Theorem 3.5 follows from relating ρε(δ) to
ρFLS (δ), the solution to µFL(δ, ρ) = 1.

Lemma 3.6. Fix ε > 0. Consider the proportional-growth asymptotic with pa-
rameters (δ, ρ) ∈ (0, 1)× (0, 1/2). Draw the corresponding n×N matrices A from the
Gaussian ensemble. Then

(3.3) Prob
(
µFL(k, n,N) < µFL(δ, (1 + ε)ρ)

) → 1

exponentially in n.
Proof. Theorem 2.3 and the form of µFL(δ, ρ) imply a bound similar to the above

with a modified dependence on ε. For any cε > 0, with n/N → δ ∈ (0, 1) and
k/n → ρ ∈ (0, 1/2], the probability, on the draw of A from the Gaussian ensemble,
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that

(3.4) µFL(k, n,N) <
1 +

√
2

4

(
1 + U(δ, 2ρ) + cε

1 − L(δ, 2ρ) − cε
− 1

)

is satisfied converges to 1 exponentially with n. Since U(δ, ρ) is nondecreasing in ρ
and L(δ, ρ) is strictly increasing in ρ for any δ and ρ ∈ (0, 1), it follows that the
right-hand side of (3.4) can be bounded by the right-hand side of (3.3) for any fixed
ε satisfying 0 < ε < 1

2ρ − 1, by setting

c :=
ρ

2
∂L(δ, z)
∂z

∣∣∣∣
z=2(1+ε)ρ

> 0.

(The upper bound on ε is imposed so that the second argument of U(δ, ·) and L(δ, ·),
2(1 + ε)ρ, is in the admissible range of (0, 1).) That the bound (3.3) is satisfied for all
ε > 0 sufficiently small, and that the right-hand side of (3.3) is strictly increasing in
ε, establishes that (3.3) is satisfied with probability on the draw of A converging to 1
exponentially in n for any ε ∈ (

0, 1
2ρ − 1

)
.

Proof of Theorem 3.5. Let ρε(δ) be the solution of µFL(δ, (1 + ε)ρ) = 1. Then,
for any ρ < ρε(δ), Lemma 3.6 implies that µFL(k, n,N) < 1, which by Theorem 3.3
ensures StrongEquiv(A, �1). To remove the dependence on the level curve ρε(δ), note
that ρε(δ) is related to ρFLS (δ), the solution of µFL(δ, ρ) = 1, by (1+ε)ρε(δ) ≡ ρFLS (δ).
Since (1− ε) < (1 + ε)−1 for all ε > 0, we have (1− ε)ρFLS (δ) < ρε(δ). Thus, provided
ρ < (1 − ε)ρFLS (δ), the statement of Theorem 3.5 is satisfied.

3.2. Comparison of Bounds on StrongEquiv(A, �1). In this section we use
the phase-transition framework to readily compare bounds on the region of Strong-
Equiv(A, �1) obtained from vastly different methods of analysis. In section 3.1, we
determined the region of strong equivalence for �1-minimization obtained by using the
RIP. Here we look at two other examples, namely, Donoho’s polytope results [16, 18]
and the sufficient condition of Rudelson and Vershynin [46] obtained from GFA. We do
not go into great detail about how the results were obtained, but simply point out that
the methods of analysis are rather different. As a result, the original statements of the
theorems take drastically different forms and are therefore difficult to compare even
qualitatively. Translating the results into the phase-transition framework, however,
offers a direct, quantitative, and simple method of comparison.

Using polytope theory and the notion of central-neighborliness, Donoho [16] de-
fined a function ρDS (δ) which defines a region of the (δ, ρ) phase space, ensuring
StrongEquiv(A, �1) with probability on the draw of A converging to 1 exponentially
in n. The phase-transition function ρDS (δ) is displayed as the solid curve in Figure 3.1.

Theorem 3.7 (Donoho [16]). Fix ε > 0. Consider the proportional-growth
asymptotic in Definition 1.2 with parameters (δ, ρ) ∈ (0, 1) × (0, 1/2). Sample each
n × N matrix A from the Gaussian ensemble. Suppose ρ < (1 − ε)ρDS (δ). Then
Prob(StrongEquiv(A, �1)) → 1 as n→ ∞.

Therefore, ρDS (δ) bounds a region of strong equivalence for �1-minimization.
Rudelson and Vershynin [46] used an alternative geometric approach from GFA

to determine regions of StrongEquiv(A, �1) for Gaussian and random partial Fourier
matrices. For Gaussian matrices their elegantly simple proof involves employing Gor-
don’s “escape through the mesh theorem” on the nullspace of A. Their lower bound
on the region of StrongEquiv(A, �1) is larger for the Gaussian ensemble than for
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the Fourier ensemble. We restate their condition for the Gaussian ensemble in the
proportional-growth asymptotic.

Definition 3.8 (GFA region of StrongEquiv(A, �1)). Define

γ(ρδ) := exp
(

log(1 + 2 log(e/ρδ))
4 log(e/ρδ)

)
,

(3.5) µRV (δ, ρ) := ρ
(
12 + 8 log(1/ρδ) · γ2(ρδ)

)
,

and ρRVS (δ) as the solution to µRV (δ, ρ) = 1.
The function ρRVS (δ) is displayed as the dashed curve in Figure 3.1.
Theorem 3.9 (Rudelson and Vershynin [46]). Fix ε > 0. Consider the propor-

tional-growth asymptotic in Definition 1.2 with parameters (δ, ρ) ∈ (0, 1) × (0, 1/2).
Sample each n×N matrix A from the Gaussian ensemble. Suppose ρ < (1−ε)ρRVS (δ).
Then Prob(StrongEquiv(A, �1)) → 1 as n→ ∞.

Therefore, ρRVS (δ) bounds a region of strong equivalence for �1-minimization.
Versions of Theorems 3.7 and 3.9 exist for finite values of (k, n,N) [23, 46], but in

each case the recoverability conditions rapidly approach the stated asymptotic limiting
functions ρS(δ) as (k, n,N) grow; we do not further complicate the discussion with
their rates of convergence.

Since Theorems 3.5, 3.7, and 3.9 provide a region of StrongEquiv(A, �1), we
now have three subsets of the exact region of StrongEquiv(A, �1). Although The-
orems 3.5, 3.7, and 3.9 each have the same goal of quantifying the exact boundary
of StrongEquiv(A, �1) for Gaussian random matrices, they are arrived at using sub-
stantially different methods of analysis. The efficacy of the bounds from the largest
region of StrongEquiv(A, �1) to the smallest region are ρDS (δ) of Donoho, ρRVS (δ) of
Rudelson and Vershynin, and ρFLS (δ) of Foucart and Lai; see the left panel of Fig-
ure 3.1. From the inverse of ρS(δ) (see the right panel of Figure 3.1) we can read
the constant of proportionality where the associated method of analysis guarantees
StrongEquiv(A, �1); from Theorems 3.7, 3.9, and 3.3 they are bounded below by
n ≥ 5.9k, n ≥ 56k, and n ≥ 317k, respectively.

3.3. Further Considerations. The phase-transition framework can also be used
to quantify what has been proven about an encoder/decoder pair’s speed of conver-
gence and its degree of robustness to noise, and to make comparisons of these prop-
erties among different algorithms. A general framework for expressing the results of
RIP-based analyses as statements in the phase-transition framework is presented in
[3], where it is also applied to three exemplar greedy algorithms, CoSaMP [43], SP
[15], and IHT [4]. Bounds on regions of StrongEquiv(A, �q) for �q-minimization for
q ∈ (0, 1] implied by the RIP are available in an extended technical report [1], where
the effects of noise are also considered. Through these objective measures of compar-
ison we hope to make clear the proven efficacy of sparse approximation algorithms
and allow for their transparent comparison.

In this article, we have considered only the case of noiseless measurements, regions
of strong equivalence, and a particular result obtained via an eigenvalue analysis and
the RIP. We briefly discuss some additional considerations for the phase-transition
framework.

3.3.1. Phase Transitions with Noisy Measurements. In a practical setting, it is
more reasonable to assume that the measurements are corrupted by noise, y = Ax+e
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δ

ρ

Fig. 3.2 Example improvements on bounds on the strong 1/0-equivalence phase transition, ρS(δ),
for Gaussian random matrices: ρC

S (δ), dotted line; ρF L
S (δ)1, dashed line; ρemp

S (δ), solid
line.

for some noise vector e. The RIP has played a vital role in establishing stable sig-
nal recovery in the presence of noise for many decoders. When noise is present,
the curves ρS(δ) bounding regions of strong equivalence serve as an upper bound
to the curves depicting the regions of the phase plane which guarantee stable recov-
ery. The RIP constants also describe how significantly the noise will be amplified by
the encoder/decoder pairing; details are available for the Gaussian encoder and �q-
minimization decoder [1] and greedy decoders [3] CoSaMP, SP, and IHT. Hassibi and
Xu have developed a stability analysis of �1-minimization from the analysis of con-
vex polytopes [53], establishing substantially larger stability regions than the regions
implied by the RIP.

3.3.2. Regions of Weak Equivalence and Average Case Performance. In many
applications, it may not be imperative that the decoder be able to reconstruct every
k-sparse vector. Instead, one may be willing to lose a small fraction of all possible
k-sparse signals. This is the behavior observed when a decoder is tested on k-sparse
vectors whose support sets are drawn uniformly at random. Large scale empirical
testing of CoSaMP, SP, and IHT were compiled by Donoho and Maleki [19]. Most
sparse approximation algorithms do not have a theoretical average case analysis. The
polytope analysis of Donoho and Tanner allows for analytical arguments providing a
region of weak equivalence where recovery is guaranteed for all but a small fraction of
k-sparse signals. An average case variant of the RIP is being developed; see [49].

3.3.3. Improving the RIP Phase Transition. It is possible that Theorem 3.3
could be improved with alternative methods of analysis. For example, Theorem 3.3
built on the work of Candès, Romberg, and Tao [7, 9, 10]. In [7], Candès proved
that if R(2k, n,N) <

√
2 − 1, then �1-minimization will successfully recover every

k-sparse vector. An asymmetric analysis and translation into the strong equivalence
terminology of section 3.1 produces a function ρCS (δ) which bounds a region of strong
equivalence. The alternative methods of Foucart and Lai leading to Theorem 3.3
provided a larger region of strong equivalence. See Figure 3.2.

Alternatively, the region of strong equivalence might be increased by improving
the bounds on the RIP constants, L(δ, ρ), U(δ, ρ). If the method of analysis remained
the same, we could explore the effects of improved bounds by examining the state-
ments with empirically observed lower bounds on RIP constants for Gaussian matrices.
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As detailed in Table 2.1, the current bounds from Theorem 2.3 are no more than twice
the empirical RIP constants. Replacing the RIP constants with empirically observed
lower bounds of the RIP constants (for n = 800) in µFL(k, n,N) gives us a function
ρemp
S (δ) (see Figure 3.2), which is an upper bound on the region of strong equiva-

lence implied by Theorem 3.3; this improvement is no more than 2.5 times ρFLS (δ) for
δ ∈ [1/20, 20/21].
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[27] C. Dossal, G. Peyré, and J. Fadili, A numerical exploration of compressed sampling recov-
ery, Linear Algebra Appl., 432 (2010), pp. 1663–1679.

[28] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.

Baraniuk, Single-pixel imaging via compressed sampling, IEEE Signal Process. Mag., 25
(2008), pp. 83–91.

[29] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal.
Appl., 9 (1988), pp. 543–560.

[30] A. Edelman and N. R. Rao, Random matrix theory, Acta Numer., 14 (2005), pp. 233–297.
[31] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse

reconstruction: Application to compressed sensing and other inverse problems, IEEE J.
Sel. Topics Signal Process., 1 (2007), pp. 586–597.

[32] S. Foucart and M.-J. Lai, Sparsest solutions of underdetermined linear systems via q-
minimization for 0 < q ≤ 1, Appl. Comput. Harmon. Anal., 26 (2009), pp. 395–407.

[33] S. Geman, A limit theorem for the norm of random matrices, Ann. Probab., 8 (1980), pp. 252–
261.

[34] A. C. Gilbert, M. A. Iwen, and M. J. Strauss, Group testing and sparse signal recovery, in
Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers, 2008,
pp. 1059–1063.

[35] R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Trans. Inform.
Theory, 49 (2003), pp. 3320–3325.

[36] A. K. Hartmann and H. Rieger, New Optimization Algorithms in Physics, Wiley VCH,
Cambridge, MA, 2006.

[37] A. K. Hartmann and M. Weight, Phase Transitions in Combinatorial Optimization Prob-
lems, Wiley VCH, Cambridge, MA, 2005.
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