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Abstract—Instruction set simulators are indispensable tools
for exploring the design-space of innovative processor architec-
tures, for processor verification, and for software development.
Traditional interpretive simulators are too slow to cope with
the increasing complexity of embedded processors now being
deployed in many high performance systems. High speed em-
ulation techniques based on dynamic binary translation have
been proposed previously, but thus far we have not seen flexible
multi-function full-system simulators capable of acting as golden
reference models, software development platforms and design-
space exploration tools. This paper presents a target-adaptable
full-system simulator which combines the speed of JIT binary
translation with the observability of interpreted simulation. We
explain the mechanisms it uses to achieve sufficiently high
performance to boot and run Linux interactively at speeds
exceeding those achievable with FPGA-based RTL emulation of
the same processor. We report performance figures from a set
of representative embedded benchmarks which range from 187
to 373 MIPS. Our results also indicate that transient simulation
speeds can exceed 1,000 MIPS, and we show that a full-system
Linux simulation can sustain more than 148 MIPS.

I. INTRODUCTION

Simulators play an important multi-function role in the de-
sign of today’s high performance processors. They enable ap-
plication specific (ASIP) design-space exploration, as well as
providing an essential tool for software developers. Processor
characteristics such as speed and power consumption may be
accurately predicted by a simulator, allowing the most efficient
design to be adopted for fabrication. Simulators also facilitate
the testing of experimental ISAs, and the development and
verification of new compilers and applications. Simulation
platforms enable concurrent engineering during the design
of a new microprocessor, reducing the overall development
time. This is especially important for embedded system-on-
chip designs, where processors may be extended to support
specific applications.

The ever-increasing complexity of modern microproces-
sors exacerbates the central challenge of CPU simulation:
to achieve high-speed simulation whilst retaining absolute
modelling accuracy. In addition to modelling complex events
such as interrupts and exceptions, simulators need to be
highly configurable. Many embedded processors now incorpo-
rate memory management hardware to support multi-tasking
operating systems. This presents a significant challenge for

high speed simulators as virtual memory translation can easily
become a bottleneck.

The class of simulators with which we are concerned, are
required to provide accurate and observable modelling of the
entire processor state. This is possible to achieve by operating
at the register transfer level, but such simulations are very slow.
In contrast, a compiled simulation [1] can be many orders
of magnitude faster, but does not have the same degree of
observability, and can only be used in situations where the
application code is known in advance and is available in source
form. Programs which require an operating system, which are
self-modifying, or which are shrink-wrapped, can not benefit
from compiled simulation.

Dynamic JIT binary translation combines interpretive and
compiled simulation techniques, maintaining both flexibility
and high simulation speeds. However, achieving accurate state
observability remains in tension with high performance.

This paper presents a high-speed simulator which provides
both interpretive and JIT binary translation, whilst also provid-
ing full observability of all target state changes. The simulator
also captures all architecturally-visible CPU state changes as
instructions commit, in order to support high-speed hardware-
software co-verification.

Section II presents an overview of the simulator and its
modes of operation. Section III describes the novel mechanism
which supports high-speed memory access operations in the
presence of virtual address translation and memory-mapped
I/O. Sections IV, V and VI respectively explain the interpretive
mode of simulation, the method of profiling which takes place
during interpretation, and the dynamic JIT translation scheme.
Performance results are presented in section VII, followed by
a brief discussion of related work in section IX and concluding
remarks in section X.

II. SIMULATOR OVERVIEW

The simulator presented in this paper is target-adaptable,
with the initial target being the ARC 700TM processor which
implements the ARCompactTM instruction set architecture [2].
It is a full-system simulator, implementing the processor,
its memory sub-system (including MMU), and sufficient
interrupt-driven peripherals to simulate the boot-up and inter-
active operation of a complete Linux-based system. In contrast



with other high-speed functional simulators, we maintain a
precise view of the target processor state. This allows the
simulator to be used as a software development platform
as well as a tool for functional verification of customised
processors derived from the ARC 700 baseline processor.

There are two modes of operation: an interpretive mode
which provides precise observability after each instruction;
and a just-in-time (JIT) binary translation mode which pro-
vides similarly precise observability between successive basic
blocks.

In common with other conventional interpretive simulator,
such as SimpleScalar [3], the interpretive mode repeatedly
fetches, decodes and interprets successive instructions in the
execution path. Registers, memory and the context of I/O de-
vices are updated as instructions commit, thereby maintaining
a precise view of the target system.

Functions which update simulation statistics, and which
model micro-architectural features of the processor, may be
enabled at appropriate points in either mode of operation.
These typically count program events, model caches, or even
predict power consumption. Interpretive simulators typically
execute approximately 100 host instructions per target instruc-
tion, although this may rise significantly depending on the
accuracy of timing or power modelling.

The JIT binary translation mode combines the speed of
compiled simulation with the flexibility of interpretive simula-
tion, allowing even shrink-wrapped binaries to be simulated at
high speed. When running in this mode the simulator initially
operates interpretively, discovering and profiling the basic
blocks as they are encountered. The simulator periodically
examines the execution profile looking for frequently executed
blocks, which are thus identified for binary translation. Binary
translation in this context is the process of translating target
basic blocks to semantically-equivalent native code which can
then be run on the host machine [4]. The locality present
in most programs means that a few basic blocks will be
executed many times. A basic block which has been previously
translated will then be simulated with much greater speed by
simply executing the translation.

In this simulator, the underlying system architecture for
handling memory access, I/O, interrupts, and exceptions is the
same for both the interpreted and translated code. This allows
the simulator to switch between modes at the granularity of
a single target instruction. At any time, a translated block
can be terminated and simulation restarted at the current
program counter location. This enables translated blocks to
raise exceptions part-way through, after which the remaining
instructions in the block will be interpreted.

III. SIMULATING MEMORY ACCESSES

Memory access simulation is a critical aspect of high speed
full-system simulators. Our goal, when simulating memory
accesses, is to achieve accurate modelling of the target memory
system semantics whilst simulating load and store instruc-
tions at the highest possible rate.

The simulator simulates memory accesses based on target
processor addresses, which will be virtual addresses when
the MMU is enabled. The requirement for accurate event
modelling means that each memory-related exception that
would occur on a real target must also occur in precisely the
same way and at the same point in the simulated program. To
achieve a useable simulation speed, memoization techniques
are employed to avoid simulating the full MMU semantics
when we can deduce the outcome of a translation without
actually interrogating the simulated TLBs.

The functional requirements for memory access simulation
can be summarized as:

1) Implementing a mapping from target virtual addresses
to host virtual addresses, via the target physical address
space.

2) Detecting all forms of memory access exceptions, in-
cluding: misalignment, access violation and TLB miss.

3) Providing visibility of the outcome of each load or
store instruction upon completion of the instruction.

4) Minimizing the number of host instructions required to
implement each target load or store instruction.

The logical process of translating a target virtual address
is illustrated in figure 1a. The TLB contents are used to
translate from target virtual address to target physical address,
possibly raising a TLB-related exception. If no exception
occurs, the corresponding location of the physical page in
host memory must be determined. As target memory may
be sparsely populated, a Standard Template Library map<>
container is used to hold all such mappings.

Raise 
memory 
exception

Simulated
TLB lookup

O (log N) 
host page

search

Perform memory
access on host

Target physical address

Host virtual address

Target virtual address

(a)
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refill
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(b)

Fig. 1. The process of translating target memory references: fig.(a) shows
the sequence of translation steps and look-ups required in principle; fig.(b)
shows the memoized translation process.

In practice, these address mappings are memoized by in-
troducing three Page Translation Cache (PTC) structures, one
each for Read, Write and Fetch accesses, as shown in figure 1b.
Each PTC is a direct-mapped software cache, indexed by low-
order target virtual address bits. Each valid entry memoizes a
target page if, and only if: the following:

• The associated target virtual address is currently mapped
by one of the target’s TLB entries.

• The current process has sufficient privilege to access the
page.



• When present in the Read PTC, the page is Read Per-
mitted. Similarly, when present in the Write PTC or the
Fetch PTC, the page must be Write or Execute permitted
respectively.

• The physical page is implemented as ordinary external
memory with no side-effects on Read or Write.

By having three separate PTCs, the simulator can trap write
accesses to read-only pages whilst providing full-speed read
or execute access to those pages. The PTC can also be used to
trap self-modifying code by enforcing a rule that any physical
page, for which there is an entry in the Fetch PTC, may not be
also present in the Write PTC, and vice versa. A write access
to a page that is present in the Fetch PTC will be trapped
by a Write PTC miss, resulting in the flushing of all dynamic
translations or cached instruction decodings for that page. A
subsequent Fetch access to that page will be trapped by a Fetch
PTC miss, which will remove its entry from the Write PTC.
This takes care of virtual aliasing between processes which
may have different permissions to access the same physical
page (common in Linux, for example).

Each PTC tag has several spare bits which can be used
to flag special properties of the associated page. If present,
such property bits result in a PTC miss on every access.
However, the miss handler quickly determines the presence of
the property and processes it as necessary. For example, there
is a property bit for memory regions with side-effects on Read
or Write. The housekeeping structure for such a page contains
a pointer to the Read and Write functions, which can be
provided by an external user-defined library. This enables fast
and efficient simulation of memory-mapped I/O devices. The
data structures to support fast address translation are illustrated
in figure 2.
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System ::

ExtMem *mem

Processor cpu[] JTLB

read write exec
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.
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Fig. 2. Address translation structures
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Fig. 3. Decode cache illustration and example add instruction.

16 native host instructions. Similarly, a memoized write hit
requires 18 native instructions. PTC misses take longer to
process, but occur with much lower frequency. Effectively,
the PTCs bypass MMU translation as well as bypassing the
process of locating the actual data page in the host.

IV. INTERPRETIVE MODE

The simulator can operate in an interpretive mode which
incorporates several features to speed up simulation. The de-
coding of instructions through the use of switch statements
is performed in an order such that the most frequently executed
instructions are decoded quickest. The simulator incorporates
a Decode Cache (DCC) which caches individual decoded
instructions. Although the decode process is comparatively
time consuming, the high hit rates in the DCC amortize the
decode time over many executions of the same instruction.
The program counter indexes the DCC when interpreting
instructions. On a hit the the fields of the selected decode
cache entry point directly to the decoded instruction operands
in the processor state structures. On a miss the instruction must
first be fetched and then decoded. The decoded instruction is
then added to the DCC, after which it is interpreted as above.
Figure 3 shows a typical DCC entry for an add instruction.

V. BLOCK PROFILING

A key feature of the simulator is its ability to translate
target instructions into host instructions dynamically. One
might reasonably ask why we do not translate target programs
statically, and in advance of execution. The answer is three-
fold:

1) It is not possible in general to discover the regions of
the text section that are guaranteed to contain instruc-
tions rather than embedded data. Instead, the simulator
discovers each basic block when it is first executed.

2) The simulator image would be expanded unecessarily by
including translated basic blocks that are not essential
for high performance. Instead, we only translate blocks
that are considered hot, leaving cool blocks to be inter-
preted.

3) Simulator responsiveness would suffer if a large quantity
of target code has to be translated before any part of



an application can begin simulating. By translating on-
demand we are able to spread out the translation effort,
making it less noticeable to the user.

The simulator maintains a Basic Block Map (BBM), con-
taining an entry for every basic block encountered during
simulation. Each BBM entry contains the block location, the
number of instructions in the block, and the number of times
it has been interpreted and executed in translated mode. If the
block has been translated, there will also be a pointer to the
Translated Block Function (TBF) representing the translated
version of the block. This method of block profiling allows the
simulator to keep track of the number of instructions executed
in each block and hence for the entire simulation.

Simulation time is partitioned into epochs, where each
epoch is defined as the interval between two successive JIT
translations. During each epoch new blocks may be discov-
ered; previously seen but non-translated blocks may be re-
interpreted; and translated blocks may be executed directly.
Throughout this process the simulator continues to build up
a profile of every block executed, regardless of the execution
mode. The end-point of an epoch is reached when sufficient
basic blocks have been interpreted. This definition of an
epoch ensures that translations are only made when there is
something worth translating.

VI. JIT TRANSLATION

When JIT translation is enabled, instead of fetching and
decoding the next instruction, as occurs in a purely interpretive
mode, the simulator checks to see whether the current PC
is present in a fast, direct-mapped, Block Translation Cache
(BTC), using the sequence of steps illustrated in figure 4. The
BTC, which is indexed by basic block entry points, contains
the address of each corresponding TBF, allowing the simulator
to locate most translations very quickly.

If the PC for the next basic block hits in the BTC, the func-
tion pointed to by its TBF will be called, thereby emulating the
block directly. In addition to performing all of the operations
within the basic block, all state information for the simulated
processor, including PC value, is updated prior to exit from
the TBF.

If the next PC misses in the BTC, it is looked for in the
BBM. If present, and if a translation for the next block exists,
the corresponding TBF is obtained from the BBM and loaded
into the BTC.

If the next block is not present in the BBM we know this is
the first execution of the block. An entry is therefore created
in the BBM and a cached entry is created in the Epoch Block
Cache (EBC) in order to record all blocks that miss in the BTC
and BBM during the current epoch. This is always a subset of
the BBM. Each EBC entry also points to its parent entry in
the BBM, where the TBF is maintained for each basic block
that has been previously translated. Hence, if a basic block
has been translated but misses in the BTC, it will be found in
the EBC or the BBM unless the entry has been subsequently
nullified (e.g. due to self-modifying code or page reuse).

for basic block
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no
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New
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block

yes

no Call TBF

PC address
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no
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Fig. 4. Flow Chart showing Algorithm for JIT Binary Translation.

At the end of each epoch, all blocks in the EBC are scanned.
These represent blocks that have been executed at least once
during the last epoch, and are therefore inspected to see if
they are hot enough to translate. A simple heuristic based on
the number of instructions per blocks and block execution
frequency is used to select hot blocks. Hot blocks are then
translated in batches comprising blocks from the same physical
page of target memory. Grouping blocks in this way enables
easy elimination of the entire batch if the target page is
overwritten by self-modifying code or (more likely) by the
reuse of that physical page for a different process.

When each batch of blocks has been identified for transla-
tion, the translations are created and compiled into a shared
library which is then loaded using a dynamic linker. Finally,
the BBM is updated with the TBF address of each newly-
translated basic block. The next time one of the recently
translated basic blocks needs simulating, it will hit in the
BBM, an entry will be added to the BTC and its TBF called.

A. Example translation

Figure 5 shows a basic block actually identified as hot
during Linux boot-up. This is a single-block loop terminating
in a branch with a delay-slot.



80007214 <dcache_init>:
:
800072ce: 2f23c200 lsr r3, r3
800072d2: 40224200 add r2, r2, 1
800072d6: 4c230080 cmp r3, 0
800072da: f607e2ff bnz.d 800072ce
800072de: 0a248000 mov r4, r2

Fig. 5. Example hot basic block from the Linux kernel

Figure 6 shows the translated sequence for this hot block,
which comprises 18 native x86 instructions plus a further 5
instructions for the function entry and exit sequence. Three
of the cmp status outputs are not needed by the bne.d
instruction, which only uses the Zero condition. However, they
cannot be eliminated because complete observability of all
state modifications is a functional requirement for simulators
such as this one, which can be used as a debugger target. At
any observation point the processor state should be indistin-
guishable from the state at an equivalent observation point in
a real processor.

L_800072ce:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %edx

#--------------------------- lsr r3,r3 ---
movl 20(%edx), %ecx
shrl %ecx
movl %ecx, 20(%edx)

#--------------------------- add r2,r2,1 -
incl 16(%edx)

#--------------------------- cmp r3,0 ----
xorl %eax, %eax
cmpl %eax, %ecx # r3 is in %ecx
seto 268(%edx)
setc 267(%edx)
sets 266(%edx)
setz 265(%edx)

#--------------------------- bne.d -10 ---
movb 265(%edx), %al
cmpb $1, %al
sbbl %ecx, %ecx
andl $-20, %ecx
subl $2147454238, %ecx
movl %ecx, (%edx)

#--------------------------- mov r4,r2 --
movl 16(%edx), %eax
movl %eax, 24(%edx)

# ----------------------------------------
leave
ret

Fig. 6. Translation of example block

B. Analysis of JIT behaviour

Figures 7a and 7b present two related views on the distri-
bution of translated blocks within the Linux kernel after boot
up. Figure 7a shows blocks sorted by execution frequency,
whereas figure 7b shows them sorted by program address.
It is clear that dominant blocks are translated, whereas less
frequently executed blocks are not.

Figure 7c shows an instruction profile for both Linux and
one of the larger embedded benchmarks, mpeg2enc. From
this we see that a relatively small number of distinct op-codes
account for the majority of the simulated instructions. Using
this knowledge the simulator is able to special-case the most
frequent variants of multi-variant instructions. For example,

load instructions have several addressing modes, but only
one mode (the simplest) occurs with high frequency.

VII. PERFORMANCE MEASUREMENTS

The characteristics of the simulator have been measured
extensively to assess its performance across a varied workload.
In this section we present a range of performance measure-
ments and explore their implications. All measurements were
performed on the server detailed in table I under conditions
of low system load.

TABLE I
SIMULATION HOST CONFIGURATION

Parameter Value

Vendor & model DellTM PowerEdgeTM 2960
Number CPUs 4 (2 × dual-core)
Processor Intel R© Xeon R© 5160
Clock frequency 2992 MHz
L1 caches 32KB I/D caches
L2 cache 4 MB per dual-core CPU
FSB frequency 1333 MHz

Simulator performance depends not only on the speed at
which individual target instructions can be simulated on the
host, but also on the memory locality characteristics of the
application. Our initial benchmarks therefore attempt to isolate
core CPU simulation speed from performance degradations
due to limitations of the host memory system.

We have observed that most non-memory target instructions
translate into sequences of 1 to 5 host instructions. In contrast,
the typical path through the translation of a load or store
instruction is 16 and 18 host instructions respectively. For this
reason we present micro-benchmarks to illustrate separately
the peak simulation speeds of non-memory instructions and
memory-referencing instructions.

A. Performance of non-memory instructions

To test the performance of non-memory instructions we
constructed a synthetic test comprising a typical sequence
of simple arithmetic operations including add, sub, cmp,
shift and logical operation, terminating with a branch and its
delay slot. The number of instructions in the block was varied
between 5 and 25 to isolate the overhead of executing small
blocks. The resulting execution speeds versus block size, are
shown in table II.

TABLE II
SIMULATION RATE OF ALU AND MEMORY OPERATIONS

Instructions ALU-op MIPS Mem-op MIPS
per block non-JIT JIT-enabled non-JIT JIT-enabled

5 26 295 28 295
10 27 505 27 357
15 28 711 28 421
20 26 880 26 450
25 29 1,028 29 466

With an unreasonably large block size of 100 simulated
instructions, the JIT-translated simulation rate reaches 1,560
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million instructions per second. In practice such speeds will
not be sustained on real programs, although this measurement
gives a useful indication of the transient peak simulation rate.

B. Performance of load and store instructions

To test the performance of load and store instructions
we constructed a synthetic test comprising a typical sequence
of memory referencing instructions placed within a loop. In
common with the previous experiment, the number of memory
access instructions was varied between 5 and 25. The resulting
execution speeds versus block size, are shown in cols. 4 and 5
of table II. Figure 8 illustrates the relationship between block
size and peak performance for both non-memory operations
and memory-access operations. It also shows that the effective
time to simulate a single instruction can be as low as 0.9ns
for non-memory operations, and 2.14ns for memory-access
operations.

As expected, the simulation of memory referencing instruc-
tions is slower than other instructions: each memory access
instructions is typically implemented by a sequence of 16
to 18 host instructions. A host processor running at 3 GHz,
simulating such instructions at a rate of 466×10

6 per second,

achieves an IPC of at least 2.5 during simulation. As the code
to simulate each individual memory operation has low ILP, the
results in table II indicate there is significant overlap between
the instructions generated for each of the target instructions in
a single basic block.

C. Benchmark application performance

In this section we explore simulator performance on a
range of embedded benchmarks drawn from MiBench, Dhry-
stone 2.1 and MediaBench I. As the simulator is fully-
capable of executing Linux, we also include the Linux boot-
up phase. The selected benchmarks and their characteristics
are detailed in table III, which shows their static .text
section size, the static average number of target instructions
per basic block (measured statically and dynamically), and the
number of instructions simulated. All benchmarks were run to
completion, except for Linux boot-up which was terminated
when the console prompt was reached.

Linux has a relatively large .text section, compared with
other embedded benchmarks. For this reason it represents an
interesting test-case for just-in-time dynamic binary transla-
tion, motivating a more detailed analysis of Linux behavior
later in this section.

TABLE III
BENCHMARK CHARACTERISTICS

Benchmark Origin
Text Ave. block size Instruction

(KB) Static Dyn. count ×10
6

bitcnts MiBench 36 6.09 9.09 936
dijkstra MiBench 39 5.74 5.26 56
dhry21 Dhystone 2.1 34 5.85 5.62 5,280
mpeg2enc MediaBench I 137 6.43 8.75 13,121
qsort MiBench 37 5.76 7.34 137
10-queens Traditional 27 5.94 5.89 244
susan MiBench 60 5.71 9.47 32
linux-boot Linux 2.1.14 1,378 5.53 5.78 129

All benchmarks were compiled for the ARC 700TM architec-
ture using gcc version 3.4.5 with -O2 optimisation and linked



against uClibc. The simulator itself was compiled for an
Intel host architecture using gcc version 4.1.1 with level -O4
optimisation. Each benchmark was simulated in a stand-alone
manner, without an underlying operating system, to isolate
benchmark behavior from background interrupts and virtual
memory exceptions. Such system-related effects are measured
by including a Linux system simulation in the benchmarks.

The Dhrystone 2.1 benchmark was pre-compiled to run
for 10

7 iterations. The well-known N -queens problem was
configured to solve a 10 × 10 problem 12,800 times in
succession. The linux-boot benchmark consisted of simulating
the boot-up sequence of a Linux kernel configured to run on
a typical embedded ARC 700 system with two interrupting
timers, a console UART, and paged virtual memory system
with a 512-entry 2-way set-associative joint TLB.

One of the key features of the simulator that helps to deliver
high performance is the collection of software caches which
yield low average search times for some of the more complex
data structures in the simulator. Table IV shows the hit ratios
for two of the most important software caches, the Decode
Cache (DCC) and the Block Translation Cache (BTC).

TABLE IV
DECODE CACHE AND BLOCK TRANSLATION CACHE PERFORMANCE

Benchmark
Cache hit ratios
DCC BTC

bitcnts 98.42 99.77
dijkstra 98.15 99.54
dhry21 95.14 99.99
mpeg2enc 99.83 99.92
qsort 98.73 99.74
queens 98.66 99.93
susan 97.34 98.94
linux-boot 79.71 99.55

Both the DCC and BTC achieve hit rates above 97% in
all cases except one – the DCC when booting Linux. The
reason for the lower hit ratio of just under 80% is that many
small sections of code are touched infrequently during booting.
However, as we see in figure 10b, the majority of Linux kernel
code is executed in translated mode rather than interpreted
mode, so the high BTC hit ratio of 99.55% has a dominant
impact on performance in that case.

The overall simulator performance for the all selected
benchmarks is shown in figure 9. When JIT binary translation
is enabled, the simulator achieves between 187 and 373
simulated MIPS for the stand-alone embedded benchmarks.
Linux booting from a cold-start achieves a lower figure of
119 MIPS. However, when the translations are pre-loaded
from a previously-saved run, performance rises to 135 MIPS
for Linux boot-up. Figure 9a also shows the speed of exe-
cuting a sequence of typical shell commands on a simulated
Linux system, immediately after booting. This achieves 143
MIPS, contrasting favourably with the speeds of 90–100 MHz
typically achievable when emulating the ARC 700 on the
ARCangel 4TM FPGA-based development platform.

When JIT translation is disabled, performance is relatively

stable across all benchmarks at around 22 million instructions
per second, as seen in figure 9b. Figure 9c shows the relative
fraction of time spent simulating versus translating, as well as
the total number of instructions executed by each benchmark.

Given the lower simulation speed observed for Linux, we
now examine the dynamic characteristics of Linux simulation
during the boot-up phase. To do this, the simulator was
instrumented to report simulation and translation times, as
well as the number of instructions executed in each mode,
during each simulation epoch. The average epoch length was
0.74 seconds, measured over the duration of Linux booting.
Figure 10 shows the time-evolving results from each epoch
when simulating Linux.

VIII. EXTENDING THE SIMULATOR DYNAMICALLY

One of the defining features of the ARCompact architecture
is its support for user-defined extensions. These may extend
the instruction set, the core register file, the set of branch con-
ditions and the auxiliary register set. The simulator provides
an API through which extension capabilities can be defined.
This is still at an early stage of development but provides, for
example, the means to introduce pages of physical memory
with side effects. These are registered in the ExtMem class,
as illustrated in figure 2. Future developments will investigate
how the translation mechanism can be extended to handle user-
defined instruction set extensions.

IX. RELATED WORK

Prior work on high-speed instruction set simulators has
tended to focus on compiled and hybrid mode simulation. A
method using in-line macro expansion capabilities is illustrated
in [1]. Target code is statically translated to host machine code
which is then executed directly. It was demonstrated that a
statically-compiled simulator could run up to three times faster
than an interpretive simulator.

Dynamic translation techniques have been used to overcome
the lack of flexibility inherent in a statically compiled simu-
lation. The MIMIC simulator [5] simulates IBM System/370
instructions on the IBM RT PC. Groups of target basic blocks
are translated to host instructions, with expansion factor of
about 4 compared with natively compiled source code. On
average MIMIC could simulate S/370 code at the rate of 200
instructions per second on a 2 MIPS RT PC.

Shade [6] and Embra [7] also used dynamic binary transla-
tion and translation caching, resulting in increased simulation
speeds. Shade is able to simulate SPARC V8, SPARC V9, and
MIPS I code on a SPARC V8 platform. On average Shade
simulates V8 SPEC89 integer and floating-point binaries 6.2
and 2.3 times slower respectively than they run natively.
The corresponding V9 binaries are simulated 12.2 and 4
times slower respectively. Embra on the other hand, which is
part of the SimOS [8] simulation environment, can simulate
MIPS R3000/R4000 binary code on a Silicon Graphics IRIX
machine. In its fastest configuration Embra can simulate
SPEC92 benchmarks at speeds ranging from 11.1 to 20 MIPS,
corresponding to slowdowns of 8.7 to 3.5 when compared to
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Fig. 9. Overall simulation performance for a selection of benchmark applications: chart (a) shows the simulation rate when JIT-translation is enabled; chart (b)
shows the simulation rate when simulation is purely interpretive; chart (c) shows the distribution of time spent simulating and translating for each benchmark,
and also the number of instructions executed by each benchmark.
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Fig. 10. Dynamic simulation trace showing boot-up and operation of Linux: chart (a) shows the distribution of time spent performing binary translation
versus simulating; chart (b) shows how the percentage of instructions simulated in interpretive and JIT-translated modes evolves during the simulation; chart
(c) shows the instantaneous simulation rate.

native code. The simulation rate for the MAB benchmark is
5.6 MIPS representing a slowdown by a factor of 8.9. The test
machine used for benchmarking was an SGI Challenge with
four MIPS R4400, 150MHz processors.

More recently a number of research groups have developed
retargetable instruction set simulators. The static compiled
method in [9] applies static scheduling techniques to retar-
getable simulation, improving simulation performance at the
expense of flexibility. Compiled simulators were generated
from model descriptions of TI’s TMS320C54x (cycle accurate)
and the ARM7 (instruction accurate) processors. A FIR filter
was used to benchmark both processor models running on
an 800MHz Athlon PC. The results showed that for the
TMS320C54X processor, static scheduling led to a speedup
of almost a factor of 4 when compared to dynamically
scheduled simulation. For the ARM7 processor there was
an observed speedup by a factor of 7, from 5 (dynamic) to
35.5 (static) MIPS. The Ultra-fast Instruction Set Simulator
in [10] improves the performance of static compiled simulation
through the use of low-level binary translation techniques to
take full advantage of the host architecture. Results showed
that employing static compilation with this hybrid technique
led to a 3.5-fold increase in simulation speed.

Just-In-Time Cache Compiled Simulation (JIT-CCS) [11]
executes and then caches pre-compiled instruction-operation
functions for each instruction fetched. The speed of simulation
of the JIT-CCS simulator with a reasonably large simulation
cache is within 5% of a compiled simulator, and at least
4 times faster than an equivalent interpretive simulator. The
simulator was benchmarked by simulating adpcm running on
ARM7 and STM ST200 functional models. Results showed
that adpcm simulated at up to 8 native MIPS for the ARM7
and ST200, running on a 1200MHz Athlon host.

The Instruction Set Compiled Simulation (IS-CS) simula-
tor [12] was designed to be a high performance and flexi-
ble functional simulator. To achieve this the time-consuming
instruction decode process is performed during the compile
stage, whilst interpretation is enabled at simulation time. Per-
formance is further increased by a technique called instruction
abstraction which produces optimized decoded instructions. A
simulation rate of up to 12.2 MIPS is quoted for adpcm on an
ARM7 functional model running on a 1GHz Pentium III host.

The SimICS [13] full system simulator translates the tar-
get machine-code instructions in to an intermediate format
before interpretation. During simulation the intermediate for-
mat instructions are processed by the interpreter which calls



the corresponding service routines. A number of SPECint95
benchmarks running under SunOS 5.x were simulated using
SimICS and a Sun Ultra Enterprise host. The results showed
a performance decrease by a factor of 26 to 75 compared with
native execution of the benchmarks.

SyntSim is a synthesis system for functional simula-
tors which uses binary translation to achieve high perfor-
mance [14]. SyntSim performs static, or off-line, binary
translation based on an optional application profile and the
application binary. The authors report an average slowdown
of 6.6 compared with native execution, on SPECcpu2000
benchmarks. Our simulator goes beyond this in several im-
portant respects. Firstly we perform a truely dynamic binary
translation, allowing the system to cope with self-modifing
code and the swapping behavior of multi-tasking operating
systems such as Linux. Secondly, our simulation retains a
precise view of the target processor state at all points of
observation, allowing the simulator to be used as a high speed
debugger target or functional verification engine. Thirdly, we
model the TLBs and realistic I/O devices, to support real
operating systems and multi-threaded workloads.

X. CONCLUSIONS

This paper presents a full-system simulator which is fast
enough to simulate many embedded applications in real time,
whilst also offering the precise observability required from
the golden reference model of an embedded system. By
linking together these two capabilities in the same simulator,
we are able to support the seemingly disparate requirements
of processor verification, embedded software development,
system performance evaluation, and design-space exploration
in a single tool.
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