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Abstract

Verifying the fidelity of domain representation in large knowl-
edge bases (KBs) is a difficult problem: domain experts are
typically not experts in knowledge representation languages,
and as knowledge bases grow more complex, visual inspec-
tion of the various terms and their abstract definitions, their
inter-relationships and the limiting, boundary cases becomes
much harder. This paper presents an approach to help verify
and refine abstract term definitions in knowledge bases. It as-
sumes that it is easier for a domain expert to determine the
correctness of individual concrete examples than it is to ver-
ify and correct all the ramifications of an abstract, intensional
specification. To this end, our approach presents the user with
an interface in which abstract terms in the KB are described
using examples and natural language generated from the un-
derlying domain representation. Problems in the KB are there-
fore manifested as problems in the generated description. The
user can then highlight specific examples or parts of the expla-
nation that seem problematic. The system reasons about the
underlying domain model by using the discourse plan gen-
erated for the description. This paper briefly describes the
working of the system and illustrates three possible types of
problem manifestations using an example of a specification of
floating-point numbers in Lisp.

Introduction
Knowledge base construction is often an iterative process of
debugging and refinement. As knowledge bases (KBs) in-
crease in size, the problems of detecting incorrect, inconsis-
tent or incomplete specifications become increasingly diffi-
cult, especially for domain experts who may be unfamiliar
with the knowledge representation language and its intrica-
cies. To alleviate this problem, a number of previous ef-
forts have considered approaches that would allow domain
experts to inspect formal specifications using natural lan-
guage, e.g., (Gil 1994; Swartout 1983). However, studies
show that people can usually understand and verify spe-
cific examples more easily and quickly than abstract, tex-
tual descriptions, e.g., (Reder, Charney, & Morgan 1986;
Pirolli 1991). Other approaches have considered the use
of examples alone to aid in debugging, e.g., (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983).

Our work integrates and extends these approaches in an
interface that allows users to inspect and debug KBs by iden-
tifying problems in automatically generated examples and

accompanying natural language descriptions. Using infor-
mation about the specific examples flagged by the user as
being problematic, information about the type of the prob-
lem (also specified by the user), and the discourse plan un-
derlying the automatically generated presentation, the sys-
tem attempts to localize the problem in the KB specifica-
tion. In cases where the system cannot uniquely identify
the problem with the knowledge base, it generates addi-
tional descriptions for the expert to verify. This work in-
tegrates previous research in three areas: (1) knowledge
acquisition and refinement, e.g., (Gil 1994; Musenet al.
1988), (2) natural language generation and reasoning about
discourse plans, e.g., (Moore & Paris 1993), and (3) au-
tomatic example generation, e.g., (Ashley & Aleven 1992;
Mittal & Paris 1994). In our analysis, problems in the KB
specification of a concept manifest themselves as a combina-
tion of one or more of the following three types of errors in
system generated explanations: (1) incorrect examples, (2)
incorrect explanations accompanying the examples, or (3)
sequencing problems in the examples.

Examples and the accompanying textual descriptions are
generated by a hierarchical discourse planner, which pro-
duces discourse plans recording the goals achieved by and
the rhetorical relationships among plan components. When
the user indicates that an example is incorrect (by highlight-
ing the example), the system uses the discourse plan to gen-
erate and reason about hypotheses regarding possible errors
in the KB specifications that could have led to the errors in
the description generated. Our system differs from previ-
ous work on example based debugging, e.g., (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983), because it uses knowl-
edge about the discourse plan that generated the examples
and accompanying text, as well as domain knowledge about
near-misses, in order to localize possible problems in the KB.

To illustrate the application and utility of our approach in
detecting and debugging KB problems, this paper discusses
three types of errors in descriptions that can indicate prob-
lems in the underlying KB specification–wrong examples,
wrong explanations and incorrect example sequencing–and
how they can help in finding the problem. In order to il-
lustrate the general problem, rather than focus on system-
and representation-specific mechanisms, all of the scenarios



discussed in this paper use a Backus-Naur Form (BNF) rep-
resentation of the domain. BNF is a generic, domain- and
task-neutral specification formalism that is capable of rep-
resenting a wide variety of domains and tasks ranging from
mechanical device design (Mohd-Hashim, Juster, & de Pen-
nington 1994) to protein-structure mapping (George, Mewes,
& Kihara 1987) and interface requirements (Reisner 1981).
To further simplify the discussion, we use the same BNF
fragment to illustrate the three types of errors that can oc-
cur in the automatically generated presentation. For this pur-
pose, we use the specification of floating point numbers in
Lisp, but the method discussed in this paper is specific nei-
ther to Lisp, nor in fact to BNF. We have chosen this example
here because (1) floating point numbers need no introduc-
tion, (2) the abstract specification of floating point numbers
is sufficiently complex so as to illustrate the utility of exam-
ples, and (3) translating BNF to other KR languages has been
described previously (Mittal & Paris 1994).

Generating Text and Examples
The system uses a text planner to generate coherent natural
language descriptions. Given a communicative goal (such as
(DESCRIBE (CONCEPT LIST))),1 the system finds opera-
tors capable of achieving this goal. Operators typically post
further subgoals to be satisfied, and planning continues un-
til all goals have been refined to primitive speech acts – i.e.,
those directly realizable in English. The result of the plan-
ning process is a discourse plan in which the nodes represent
goals at various levels of abstraction with the root being the
initial goal, and the leaves representing primitive realization
statements. This discourse plan is then passed to a gram-
mar interface, which converts it into a form suitable for input
to a natural language generation system, such as FUF (El-
hadad & Robin 1992), to produce the surface form. The sys-
tem uses a subsumption classifier, such as the one inKL -ONE

based knowledge representation systems to generate the ex-
amples (Mittal & Paris 1994). A complete description of the
generation system is beyond the scope of this paper – see
Moore and Paris (1993) for a more detailed description of
plan based natural language generation.

In order to generate and present examples that are effective
in localizing problems the system categorizes each feature of
the concept into one of two classes:� critical: features arerequired for the example to be an

instance of the concept being illustrated. For instance, by
definition, a Lisp list must contain both a left- and a right-
parenthesis (with the exception ofNIL).� variable: features can vary without causing the modified
examples to no longer be subsumed by the definition of the
concept being illustrated. For instance, the number, type
and order of elements in a list in Lisp.1The syntactic forms have been simplified for the sake of clarity.

Figure 1: Grammar fragment from (Steele, 1984: p.17)

Given the variable and critical features of a concept, the
system can use this information to plan the presentation of
effective example sequences: minimally different positive-
negative pairs for critical features, and groups of varying pos-
itive examples for the variable features. Determining the crit-
ical and variable features of a concept can be accomplished
by using a term classifier as described in Mittal and Paris
(1994) , such as the ones available in theKL -ONE family of
KR languages (Woods & Schmolze 1992).

To find critical and variable features of concepts defined
using BNF, a straightforward way is to map the BNF defini-
tions toKL -ONE type definitions and query the classifier. For
instance, the BNF specifications2 for floating point numbers
in Lisp is given in Fig. 1. Our system maps these BNF gram-
mar specifications into concept descriptions in the language
Loom (MacGregor 1994);3 This mapping is straightforward:
non-terminal symbols in the grammar are mapped to con-
cepts, and terminal symbols are mapped to instances. The
ordering of the symbols in a production is specified by link-
ing the respective concepts and instances using a pre-defined
binary relation that the system understands as specifying the
order in the BNF.

In addition to presenting critical and variable features
effectively–by either pairing contrasting examples or group-
ing similar examples–the sequence in which the examples
are presented can also be important in focusing the reader’s
attention. For instance, presenting simpler features before
more complex ones is an effective strategy, e.g., (Carnine &
Becker 1982). The presentation sequence is important be-
cause users often try and understand an example in terms of
others that they have seen before. In this case, the system
generates examples in order of increasing complexity. In the
case of BNF grammars, the measure of complexity is based
on a combination of the number of productions required to
generate an expression, and the complexity of each term in
the expression.

The next section describes how this framework can be2Brackets indicate optional components; braces are used for
grouping things or indicating kleene (+) or transitive (*) closures.3Loom is a knowledge representation language that provides
classification capabilities similar to otherKL -ONE languages. How-
ever, our technique is not specific to Loom.
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Figure 2: Description forFLOATING-POINT-NUMBER.

used to help domain experts debug and refine KBs by ex-
amining descriptions generated by the system.

Using Examples in KA
To illustrate how examples can help in detecting gaps in the
KB, consider the grammar fragment shown in Fig. 1 (float-
ing point numbers in Lisp). Even though this set of produc-
tions is one of the simpler ones in the grammar, it is easy to
overlook some of the implications of the bracketing and the
kleene-andtransitive-closuresin the productions. The rules
are complex enough that a text-only paraphrase of the rules
themselves may not be enough to spot a mistake in the rep-
resentation. However, an example generated fromonly the
faulty aspect can often stand out as a grossly wrong instance
of the definition and can thus focus attention on specific
aspects of abstract rules in a very effective fashion (Pirolli
1991).

To generate and present the examples, the system must
first determine the critical and variable features of the con-
cept FLOATING-POINT-NUMBER. In this case, the critical
features are:(i) the presence of a decimal point accompa-
nied by one or more digits on the right hand side of the dec-
imal point, or(ii) a number accompanied by an exponent.
The variable features are:(i) the presence or absence of the
sign, (ii) the value of the sign,(iii) the number of digits
in the numbers, and(iv) the values of the numbers. The
system can now utilize this critical/variable categorization
to generate sets of examples to effectively convey each of
these attributes (critical attributes by pairs of almost identi-
cal positive-negative examples; variable attributes by groups
of varying positive examples). The presentation order of the
examples is determined by the relative complexity of each
example. A typical output generated by the system is shown
in Fig. 2 (fragments of the discourse plan underlying the pre-
sentation of the critical features are shown in Fig. 3).

Now suppose that the specification of the concept
floating-point-number is incorrect. The problems in
the specification can manifest themselves in the resulting ex-
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Figure 3: Fragments of the discourse plan for the two critical
features.

planation that is generated in one of three ways: the exam-
ples generated by the system are incorrect, the explanations
accompanying the examples are incorrect, or the examples
are ordered in an inconsistent manner. (These can be marked
by the domain expert as such by selecting the appropriate ex-
amples/prompts and using the ‘buttons’ at the bottom of the
screen.) In each of these cases, the system reasons about the
underlying discourse plan used to generate the explanation
in order to localize the potential cause of the problem.

Case 1. A wrong example is generated: There are two pos-
sible ways in which problems in the KB manifest themselves
as incorrect examples in the resulting explanation:

Case 1.1. A simple wrong example: If the faulty example
differs from its adjacent (correct) examples in only a single
feature, the system can use this information in conjunction
with the discourse plan to debug the KB specification. Con-
sider, again, the specification of floating-point numbers in
Lisp shown in Fig. 1. The correct and one possible mistaken
specification for rule(1a) are shown below:

floating-point-number ::=[sign] fdigitg� decimal-pointfdigitg+ [exponent] p
floating-point-number ::=[sign] fdigitg� decimal-pointfdigitg� [exponent] �

The resulting output generated by the system for the incor-
rect case is shown in Fig. 4. The first and the third examples
presented in the explanation are incorrect. It is clearly eas-
ier to spot the mistake in the individual examples than in the
abstract specification.

Using our interface, the user can highlight these two items
and indicate them as being incorrect examples of a floating
point number. Based on this information, the system rea-
sons as follows. First, it uses the discourse plan to determine
which other examples in the presentation are most closely
related to the items that were marked incorrect. The dis-
course plan indicates not only which examples are related,
but how they are related, e.g., whether they are contrastive
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Figure 4: A simple case of incorrect examples.

examples for a critical feature, similar examples for a vari-
able feature, etc. In this case, the system determines that the
first example was generated to illustrate the following vari-
able features: the sign of the number, the number of digits on
the left of the decimal point, the number of digits on the right
of the decimal point, and the exponent. The second example
was intended to highlight the variable nature of the digitson
the leftof the decimal point, and since that example was not
marked wrong, the variable nature of the digits on the left of
the decimal point is correct. The third example was supposed
to illustrate the variable nature of the digitson the rightof the
decimal point, and that example was marked wrong. Since
the other examples were not marked wrong, the system can,
on the basis of the two wrong examples and the other correct
examples, suggest a revision to the incorrect version of rule(1a). This revision regarding the optionality of digits on the
right of the decimal point results in the transitive closure be-
ing modified to a kleene closure as follows:

floating-point-number ::=[sign] fdigitg� decimal-pointfdigitg+ [exponent]
Case 1.2. A complex wrong example: in some cases, a
component term used in the example (with its own critical
and variable features) can be incorrect, making the larger ex-
ample wrong. When an example containing such complex
component terms is marked incorrect, the system can gen-
erate additional, simpler examples about the suspect compo-
nent in order to localize the KB problem. Consider, for in-
stance, the case in Fig. 5. The fifth example in the sequence,
which is also the first example where the exponent notation
is used, is marked as incorrect by the user. The discourse
plan indicates that the example in question was generated to
illustrate the use of the exponent notation in rule(1b). The
system examines the portion of the discourse plan regarding
examples generated from rule(1b). Since one of the differ-
ences between the wrong example and its immediate neigh-
bor is the exponent (the[decimal-pointfdigitg*] portion of
the rule was not used in either of the two), the system can
infer that the problem is in the specification of the exponent.

Figure 5: A complex incorrect example can result in the gen-
eration of further examples.

There are two other examples in the same explanation that
also have exponents in them (the last two examples). These,
however, use a different exponent markers (“F” and “D”).
Thus, it is only possible to infer thateither the wrong marker
was used, i.e., “E” is not allowed, or some other piece of in-
formation is missing. To verify the first possibility, that “E” is
an invalid exponent marker, the system generates another set
of examples for floating point numbers that use the exponent
marker “E” (shown in the lower half of Fig. 5). In this case,
the first example of an exponent is wrong. The system can
now use the discourse structure used in generating the exam-
ples for the exponent to identify the problem. In this case, the
difference between the first two examples of the exponent is
that the second example has a positive number following the
exponent marker whereas the first example does not. Thus,
one possibility is that a positive number is necessary in these
cases. The third example, which has a negative number af-
ter the exponent marker, allows the system to generalize the
previous hypothesis (of needing apositivenumber following
the exponent) to the hypothesis that any number, positive or
negative, is needed. Since the production specified that the
sign is optional, the only part of the production that could
be wrong is about the optionality of the number. Thus, the
system can suggest that the specification of the exponent be
modified to makeboth the number and the exponent marker
be required in all cases:

exponent ::= exponent-marker[sign] fdigitg� �
exponent ::= exponent-marker[sign] fdigitg+ p

Case 2. A wrong prompt: Mistakes in the domain model
can also result in the generation of incorrect textual prompts.
Prompts can indicate errors in at least two cases:(i) the sys-
tem presents a valid, positive example as being a negative,
invalid example (or vice-versa), and(ii) the system presents
a valid example (either positive or negative), but the accom-
panying prompt (or explanation) is either irrelevant or incon-
sistent with the point being illustrated.
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Figure 6: Errors in prompts can indicate KB problems.

The first possibility can be handled in the same way as
in Case 1 above. However, the second possibility, where an
invalid prompt is generated for a correct example, is often
due to missing information, and must also be dealt with. For
instance, consider the case where the system generates an ex-
ample of a floating point number such as the one shown in
Fig. 6. If the specification of the production rule for theex-
ponent, (rule5) is faulty as given below:

exponent ::=[exponent-marker] [sign] fdigitg+ �
the system would generate the example using the second
production rule for floating point numbers – the part “5.7”
from rule (1b), and the digits “5” and “2” from the faulty
rule given above for the exponent. Also based on the faulty
rule, the system would assume that theexponent-marker

and thesign were optional and therefore not to be included
initially. The resulting example generated is a valid float-
ing point number “5.752”, but the accompanying textual
prompt indicates that a mistake was madein the specifi-
cation. Selecting the prompt causes the system to gener-
ate additional examples for the same discourse goal that
caused the generation of the example with the faulty prompt
in the first place. Exercising the different options of the
production rule for the exponent, the system can infer that
exponent-marker is not a variable feature, but a critical
one (i.e., its presence is mandatory in the case of an expo-
nent), and thus can propose the corrected rule:

exponent ::= exponent-marker[sign] fdigitg+ p
Case 3. A wrong presentation sequence: Finally, a
third possible manifestation of KB problems can be seen in
strange or surprising placement of examples (for instance,
a simple example appearing after a number of complex ex-
amples of the same concept have been presented). In such
cases, even though all the examples presented may be valid,
the complexity assignment to each example is computed in-
correctly because of the problems in the KB specifications.
For instance, consider what happens if the bracketing of the
transitive-closure term is done differently, as in the two rules:

floating-point-number ::=
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Figure 7: Bad sequencing can also indicate KB problems.[sign] fdigitg+ [decimal-pointfdigitg� ] exponent(1)
floating-point-number ::=[sign] fdigitg+ [decimal-point] fdigitg� exponent (2)

The complexity assignment for each example is based on the
number of productions involved in generating it. Thus, if rule
(1) is used instead of rule (2), the examples would be pre-
sented in the order shown in Fig. 7. Because +30F2 seems to
be less complex than -72.S23, the user may highlight +30F2
and indicate that it is not in the expected sequence. Since the
examples are valid and are otherwise sequenced correctly,
the system can infer from the discourse plan that the differ-
ence between the specification and the expected sequence of
examples must be caused by the bracketing of the[decimal-
point] fdigitg* component. The system can generate further
examples to verify this hypothesis with the domain expert.

This illustrates how the sequencing of the examples may
help detect a problem even when all of the examples and their
associated prompts are valid. This is an area for future work.
We must examine other domains to determine whether the
KB inconsistencies that are identified via incorrect presen-
tation sequences would typically also be manifest by either
incorrect examples or incorrect prompts.

In cases where the expert selects more than one example as
being faulty, the system examines the productions that were
used in generating the faulty examples. If the productions
have no terms in common, reasoning about each example is
done independently, since the problems were probably due
to entirely different reasons. Otherwise, the system engages
in a clarification sub-dialogue for each common term.

The System: Implementation and Evaluation
The current system has been implemented using an NL
generation system that reasons about and generates exam-
ples (Mittal & Paris 1993); Loom was used as the underlying
knowledge representation system to implement the classifi-
cation capabilities needed to determine the critical and vari-
able features. The code for reasoning about possible incon-
sistencies was based on an assumption based truth mainte-



nance system by Forbus and deKleer (1993). Finally, the
user interface was implemented using the Common Lisp In-
terface Manager (CLIM). The system has thus far been used
on BNF representations of various domains. However, as
noted previously, the BNF notation is flexible enough to rep-
resent a large variety of domains ranging from mechanical
design to protein structure.

We have not yet had an opportunity to empirically eval-
uate the system. In an informal study with 16 subjects, we
focused on being able to find and pinpoint errors in KB speci-
fications. We found that in almost all cases, all the users were
able to detectincorrect examplessuch as the ones shown here
(e.g., the floating point zero), while only 2 of the users were
able to find the corresponding errors by scrutinizing the (ab-
stract) BNF definitions for 5 minutes. Similar results were
found for cases where the examples were accompanied by
incorrect prompts.

Our test users had a much more difficult time detecting KB
problems that manifested themselves assequencing prob-
lemsin the presentation of examples. This may be due to: (1)
finding problems in a small region (just the example, or the
example and the accompanying prompt) is much easier than
finding problems across a larger region (finding problems in
a sequence requires understanding the implications of all the
examples in the sequence); (2) naturally occurring explana-
tions are not always written in order of increasing difficulty
because of other pragmatic factors (for instance, descriptions
are often constrained by convention, they may be task based,
etc.). Users are therefore apt to overlook this source of errors
unless specifically trained to do so. In the example shown
in the paper, 10 of the 16 users did not find the problematic
example in Fig. 7.

These observations, while preliminary, suggest that such
an interface can be very helpful in finding certain types of KB
errors. It is clear that a more extensive and controlled evalu-
ation is necessary before the actual value of such an interface
can be determined. We hope to be able to conduct such an
evaluation in the future, when we extend and evaluate the
system with a set of much larger KBs in various domains
that have been developed as part of other projects. Note that
this approach to specification debugging is most effective in
complex domains, where the specifications are abstract and
concept specifications are highly interrelated. Domains that
are characterized by a collection of simpler rules, such as
“Ships cannot berth in ports less thanX feet deep” may not
benefit as much from this approach. For these domains, a
purely textual description of the underlying KB structures,
as in theEXPECT project (Gil 1994) may be equally effec-
tive.

The methods used in this paper can be easily extended to
other domains. By using the BNF notation for representing
the specifications, it is clear that, at the very least, domains
that can be represented using BNF-like notation can be used
with this framework. This approach scales well if the domain

is represented using hierarchical relationships since the sys-
tem can generate text and examples focused at higher, more
abstract levels; thus any sub-concepts below this level are
assumed correct unless indicated otherwise.

Conclusions
The verification of the accuracy of domain representation in
large KBs is a difficult problem. A visual inspection of com-
plex terms, abstract definitions and their inter-relationships
may miss some of the more intricate boundary problems in
the representation. This paper has presented one approach to
alleviating this problem. The scenarios presented in the pa-
per illustrate how small mistakes in the abstract specification
can be difficult to see, but can be detected by using suitable
examples. Based on the discourse plan underlying the pre-
sentation, the system attempts to localize the problem in the
specification.

An important advantage of this approach, as compared to
previous work on example based debugging (Shapiro 1983;
Mitchell, Utgoff, & Banerji 1983) is the use of the goal struc-
ture in the discourse plan to localize the possible problems in
the KB. Just indicating whether an example is correct or in-
correct doesnot give as much leverage as being able to state
that a specific examplein a series of other, coordinated, cor-
rect examplesis wrong. Another advantage of this approach
is that it allows the system to address the issue of examples
that only look correct (syntactically correct examples gen-
erated from a faulty specification for the wrong reasons–the
reasons being indicated by prompts). Finally, the point-and-
click interface does not require the domain expert to be an
expert in the knowledge representation language.

The work described in this paper has focused on the use of
examples in describing concepts, rather than relations or pro-
cesses. The acquisition and representation of knowledge for
these two categories using examples is much more complex
and an area for future work.
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