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Adaptive Visual and Auditory Map
Alignment in Barn Owl Superior Colliculus

and Its Neuromorphic Implementation
Juan Huo, Alan Murray, Fellow, IEEE, and Dongqing Wei

Abstract— Adaptation is one of the most important phenomena
in biology. A young barn owl can adapt to imposed environmental
changes, such as artificial visual distortion caused by wearing a
prism. This adjustment process has been modeled mathematically
and the model replicates the sensory map realignment of barn owl
superior colliculus (SC) through axonogenesis and synaptogene-
sis. This allows the biological mechanism to be transferred to an
artificial computing system and thereby imbue it with a new form
of adaptability to the environment. The model is demonstrated
in a real-time robot environment. Results of the experiments are
compared with and without prism distortion of vision, and show
improved adaptability for the robot. However, the computation
speed of the embedded system in the robot is slow. A digital and
analog mixed signal very-large-scale integration (VLSI) circuit
has been fabricated to implement adaptive sensory pathway
changes derived from the SC model at higher speed. VLSI
experimental results are consistent with simulation results.

Index Terms— Inhibitory network, spike density calculator,
parallel sensory information, spatial localization, spike timing
dependent plasticity (STDP), superior colliculus, very-large-scale
integration (VLSI), visual and auditory integration, axon growth,
e-puck robot.

I. INTRODUCTION

THE AIM of this paper is to bridge between neuroscience
and engineering for the adaptive integration of sensory

information, using spiking neurons for parallel computation
of adaptive sensory systems in the superior colliculus (SC)
of a barn owl. Biological experiments show that the juvenile
barn owl is able to adapt its localization process to prism
wearing, causing a shift of its visual field. The registration
between visual and auditory map can be recovered after several
weeks’ training. The main area of plasticity of map alignment
is between the inferior colliculus (IC) auditory map and the
SC auditory map, as revealed by anatomical and physiological
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experiments. It is also the area where the sensory informa-
tion channels or pathways are changed by the continuous
information disparity caused by wearing a prism. This paper
introduces a modified mathematical model of the above points
based on our previous SC modeling in [1]. The new model
is able to carry out adaptive sensory signal integration in a
changing environment. It has already been shown in [2] and
[3] that this adaptability can reduce the disparity between
visual and auditory information. In this paper, the model is
further studied and verified by being implemented into a robot
demonstrator and then tested in a neuromorphic very-large-
scale integration (VLSI) chip.

For this verification, a robot demonstrator, an e-puck robot,
provides a hardware body which is analogous to the barn owl
head, because it can access sensory stimuli in real time and
transmit signals back to a simulation model of an artificial SC.
The robot is described in [4]. Experiments in three different
scenarios were carried out, in which the experimental results
are consistent with simulation results from a mathematical SC
model. However, the process is slow. To speed up the com-
putation, a VLSI circuit is designed emulating the SC model
in AMS 0.35 μm complementary-metal-oxide-semiconductor
(CMOS) process.

Neuromorphic circuits have been designed, aiming for an
engineering solution to problems where biological systems
currently outperform artificial systems [5]–[9]. A neuromor-
phic VLSI circuit can be used to compute using neural spikes
directly. Thus, the VLSI circuit can provide higher computing
speed. In this case, a mixed signal neuromorphic circuit per-
forms a direct hardware level simulation of a mathematical SC
model. The results of the on-chip learning are consistent with
biological barn owl experiments. Therefore, this circuit can be
a solution for a small robot to complete complex computation
autonomously, as small robots cannot carry a normal CPU or
large microprocessor. The chip presented in Section V is also
the first SC model circuit in silicon for adaptive sensory map
alignment and sensory information channel adjustment.

II. MAP ALIGNMENT IN THE BARN OWL: BIOLOGICAL

BACKGROUND

In neuroscience, the sensory maps in the SC are projected
from the other parts of brain, including the retina and IC.
Visual stimuli are elicited from the retina and projected to
the superficial SC in such a way that only a particular SC
neuron responds to visual input from a particular location in
space [10], [11].

2162–237X/$31.00 © 2012 IEEE
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Fig. 1. Audio-visual integration in barn owls. The solid black arrow
represents the pathway of sensory information integration in a normal barn
owl before wearing a prism. The dashed line between ICc and ICx represents
the new axon connection with a prism in place. ITD is mapped in frequency-
specific channels in the brain stem. This information ascends to the ICc,
and projects from the ICc to the ICx, where a map of space is created.
The connections between visual map and the SC do not change. The large
triangle sign from SC to ICx near the bottom line is the instructive signal,
MAC, generated by the interneuron in the SC. The upper circle of the retina
map initially represents 0°. With a prism in place, the upper circle no longer
represents 0°. Instead, the lower left circle which was 30° initially is now 0°.
This change creates a shift between visual and auditory maps.

The auditory stimuli to the SC come from the external
nucleus of IC (ICx), which is a part of IC [3], [12]. The
remainder of IC is called the central nucleus of IC (ICc)
which takes most of the area of IC. The auditory map in ICc
shows phase ambiguity because of the tonotopic organization
of ICc neurons as in Fig. 1. In comparison, a neuron in
ICx is nontonotopic and responds to a specific position in
space. The neural activity in IC is sensitive to the interaural
time difference (ITD) between input sound waves of two
ears. ITD is an auditory localization cue for the angle of
azimuth [13]–[15].

Auditory inputs of similar pitch project to similar regions
of the ICc. The information converges during projection from
the ICc to ICx and frequency information is lost, because ICc
neurons within the same ITD laminae but different frequency
response are connected to a single ICx neuron. This means
that each neuron in the ICx is sensitive to a specific ITD,
namely its “best ITD.” The auditory maps formed in the ICx
and the ICc also show different sensitivity to changes in the
visual map.

The projection of auditory information onto the ICx adapts
when the visual map in the SC is shifted, for example, by a
prism. It is believed that the SC represents the visual space
topographically and thus provides a template for the ICx map
shift, but has no effect on ICc. It has been shown that axon
sprouting and/or retraction (axonogenesis) and synapse forma-
tion/removal (synaptogenesis) are involved in this adaptation
[10], [12]. An inhibitory network in the SC modulates the
visual signal to allow adaptation only when auditory and visual
maps are misaligned. Visual activity does not excite the ICx
neurons if visual and auditory localization cues are aligned,
but is strong if visual and auditory maps are not in register.
Here, the modulated visual signal that triggers adaptation is
called the map adaptation cue (MAC). Between the ICc and
ICx, the axon growth factor is released to guide the growth
of new axon connections. MAC is defined here because it
has been shown in biological experiment that postsynaptic
action potentials can trigger the release of axon growth factor

from the spiking neuron [16] and the contribution for axon
growth from intracellular signals is reported in [12]. Although
neurotrophin has not been proved to be the main guidance
factor in this process, we use it in the following sections to
represent the axon growth factor.

In summary, the information stimuli flow from ICx and
the retina to bimodal neurons of the SC and adaptation
occurs between the ICx and the ICc. The output of the SC
multisensory neuron is delivered to the deeper layers of the
SC and is connected to the motor system, where the effect of
the prism is transferred to the change of orientation behavior
[2]. This whole process is shown in Fig. 1.

III. SC MODEL

Several different models have been suggested for the barn
owl SC. [3], [17], [18], and [19] used Hebbian learning
mechanisms and neurons in these papers are value dependent.
In comparison, [20] explored the integration of visual and
auditory inputs using a nonlinear spiking neuron, but without
adaptation and plasticity. The role of spike timing dependent
plasticity is also discussed in [21], which has a different
network strucutre without axonogenesis. The SC model in this
paper uses an inhibitory network for the SC bimodal neuron
and provides the MAC signal for the IC. This model has a
mechanism that can reproduce recent biologically plausible
values with respect to adaptation in the presence of a prism.

Fig. 2 shows the neural network. Each pathway represents
one direction in azimuth. The angle interval between each
pathway is 18°. To analyze its structure more clearly, the first
pathway of the network is divided into two blocks. Block I
comprises the ICc, ICx, and the axonal connections that map
between them. Block II is the controller for the ICx/ICc
mapping in Block I. Map adaptation in Block I is initiated
and directed by a learning-control signal from an interneuron
in Block II. The interneuron in Block II is connected with
the SC bimodal neuron through an inhibitory synapse. The
arrangement of the interneuron is based on the observation
that the visual activity in the ICx is gated by an inhibitory
network in SC [22]. The modeled inhibitory synapse between
the bimodal neuron and inhibitory neuron results in the mod-
ulation of the MAC. In Block II, all the bimodal neurons and
interneurons are leaky integrate and fire (LIF) neurons, which
are often used in neuromorphic designs [23]–[26]. Although in
terms of biological details IF neurons are less realistic than the
conductance based ones like Hodgkin-Huxley neuron model,
they have fewer parameters and components. This is important
if the SC network is to be extended to a larger network in the
future, because it means that a VLSI IF model needs fewer
transistors and is less complex.

In Fig. 2, neuron Nij indicates the neuron located in layer i
and pathway j . The development of axon growth cone is acti-
vated by presynaptic spikes from its source layer ICc (layer 1).
The target layer ICx (layer 2) releases neurotrophin when it
is excited by MAC spikes. The concentration of neurotrophin
c2 j is set to be linearly proportional to the synaptic activity on
neuron N2 j which is induced by MAC cues and represented
as M_spike(N2 j ). Among neurons in layer 2, N2y is set as
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Fig. 2. Modeled network response to visual and auditory misalignment
created by a prism. Neurons are shown as circles. The filled arrows represent
the excitatory synapses, but the hollow arrow is the inhibitory synapse. The
auditory input (A) represents the peak inputs, namely the site in the auditory
map that corresponds most closely to the stimulus. The visual stimulus
(V) arrives in the retina at N42, and N22 receives the strongest MAC.
The (misaligned) auditory stimulus arrives at ICc neuron N13, whose axon
growth cone is consequently attracted by neurotrophin released by N22. After
training, a new connection is made between N13 and N22, shown as a dashed
line. Although the original connection between N13 and N23 is still extant,
the information path is blocked in the model, by depression of the axonal
conductance.

the ICx neuron that receives strongest stimuli from Block II.
The concentrations of neurotrophin released by layer 2 neurons
depend upon the distance between neuron N2 j and N2y . To
emulate the extra cellular environment, c2 j is contributed
by all active release sites; this contribution, however, decays
rapidly with distance from N2y and the neighboring neuron’s
contribution is few in this model. For any position between
ICx and ICc, the neurotrophin concentration decreases with
time if there is no new release. So c2y can be expressed as

c2y(t) =
∑

εM_spike(N2y)e
−λ(t) (1)

where ε and λ are constant parameters, and t represents a time
step [27]–[29].

In the ICc layer, the growth cone activity G1x is bounded
by a presynaptic factor N_spike(N1x), which is a summation
filter representing the linear sum of the presynaptic spikes of
the corresponding neuron N1x . If the neural spikes stop, G1x

decays rapidly with time t . So in equation (2), G1x is

G1x(t) =
∑

εN_spike(N1x)e
−ξ(t) (2)

where ξ is another constant parameter to describe time decay.
The growth cone on pathway x is activated when G1x is above
a certain value, whereupon the connection from neuron N1x

has the highest probability to be extended.
The key factors in the adaptation process are c2y and

G1x . The information pathway will not be changed until c2y

Object

0◦
θL

Fig. 3. Experiment environment (schematic). The visual and auditory stimuli
sources are located in a semicircular track. The robot is equipped with two
microphones and a camera. The robot sends the sensory data to the laptop
through Bluetooth in real time.

and G1x are all above their thresholds. If N2y is the target
direction of the growth cone G1x , the position number of
N2y , y, is identified when the accumulated neurotrophin c2y

exceeds the neurotrophin concentration threshold, then the new
connection between N1x and N2y is validated. Meanwhile
the neurotrophin is reset to the initial state. When the new
connection is complete, the old connection from the same
neuron will be blocked according to [30] and [31]. The model
in this paper is a modification from our previous work in [1].

IV. BARN OWL ROBOT DEMONSTRATOR

We tested this SC model in a robot demonstrator, using
an e-puck robot. The e-puck robot with a diameter 70 mm
and height 50 mm is built around a Microchip dsPIC micro-
controller with 8 KB RAM and 144 KB of flash memory. The
robot contains three microphones to capture sound, and a color
CMOS camera with a resolution of 640 × 480 pixels in front
[4]. This robot also has extended connectors and an exten-
sion board which can be replaced by an application-specific
circuit board.

In previous works on visual and auditory information inte-
gration, researchers have concentrated on the coordination
between different visual and auditory frames, but few have
tested the effect of wearing a real prism on visual and auditory
integration [3], [19], [32], [33]. In this paper, a real prism
is used over the robot camera, replicating the environment
setting for a young barn owl [1]. We have explored the
capability of the model in a real-time system. The e-puck robot
is equipped with three lateral microphones, and a camera.
A 33° prism covers the camera, displacing the visual data
laterally. The whole configuration is presented in Fig. 3.
The e-puck robot communicates with the host computer by
Bluetooth. The loudspeaker produces 1 s bursts of 1 kHz sine
wave, and each burst lasts 1 s. The sound signal is sampled
at 33 kHz and stored in an array. Unlike many previous
sound localization experiments [34], [35], we do not use cross
correlation. The sound signal is processed by a fast Fourier
transform in a time window. When the average amplitude of
the input signal is above a chosen threshold, the characteristic
frequency f is with the highest amplitude in the Fourier series
from the left or right signal. This then yields the ITD �t and
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Fig. 4. Visual and auditory localization signals from a same target are
registered with one another. (a) No neurotrophin is released by the ICx layer
at any time during the experiment. (b) Axon connection between ICc and ICx
does not change. (c) and (d) Target direction is in 0°. Both the visual and
auditory receptive centers correspond to pathway 6 and their synaptic weights
increase simultaneously.

the target azimuth difference θ

�t = �φ

2π f
(3)

θ = arcsin

(
�tV

L

)
(4)

where V is the speed of sound in air, L is the diameter of
the robot head, and �φ is the characteristic phase difference
between left and right ears.

The robot camera is a normal camera, its visual field is
limited to −30° to 30°, so that the camera produces a target
image which has 120 pixels in one dimension and each pixel
corresponds to 0.5° of a semicircle in the plane. The visual
target is a white light-emitting diode (LED), so in the image
it is a luminous point. The target point is recognized by
identifying the peak value in the image matrix. Because we
use a grayscale image, the numerical pixel value ranges from
0 to 255.

The procedure of this experiment has two steps.
1) The owl-head robot was pointed in different azimuthal

directions in a random sequence. For every orientation,
visual or audio stimuli were presented at one of the ten
available locations.

2) The owl-head robot, wearing a prism, was presented to
randomly selected azimuthal directions.

For each direction, the target stimulus was repeated 75 times
and averaged. Visual and auditory stimuli are generated at the
same time but separately from the LEDs and loudspeakers.
In the anechoic chamber, the error for the sound localization
is very small. The standard deviation of the error in the
anechoic chamber is within 1°. In an open environment, the
error increases because of echoes and the presence of ambient
noise.

Fig. 5. Visual and auditory localization signals are misaligned.
(a) Neurotrophin is released by the target ICx neurons and accumulated.
(b) Axon connection between ICc and ICx does not change as the neurotrophin
and growth cone do not reach their thresholds. Here the visual receptive center
is in pathway 6, while the auditory receptive center is in pathway 8. (c) and
(d) Both the visual and auditory synapses are weakened because the input
spike trains are independent of one another.

A. Results and Robotic Experiment

For step one, at the beginning of the robot experiment,
without a prism, visual and auditory objects are aligned. The
results for localization of a target at 0° azimuth are shown in
Fig. 4. Since visual and auditory signals are registered, both
the visual excitatory synapse (the arrow between N4 j and N3 j

in Fig. 2) and auditory excitatory synapse (the arrow between
N2 j and N3 j in Fig. 2) are strengthened. Since visual and
auditory input spike trains are highly correlated, the visual
synapse of pathway 6 in Fig. 4(c) and the auditory synapse of
pathway 6 in Fig. 4(d) increase rapidly to their maximum value
of 0.5. This results in a more active bimodal neuron with high
firing rate. Because of the inhibitory relationship between the
bimodal neuron and the interneuron, the interneuron is strongly
inhibited and its firing rate is close to zero, thus very few MAC
spikes are generated and no neurotrophin is released by the
ICx neuron. This also means c2 j = 0 as shown in Fig. 4(a).
Although the input spike train density in the source layer,
ICc, is high enough to activate the growth cone, neurotrophin
concentration c2 j is far below its threshold, therefore there is
no change to the original axon connection, as in Fig. 4(b).

For step two of the experiment, the robot wears a prism over
its camera, which means that there is 33° disparity between
visual input and auditory input. The luminous light source
still comes from a target at 0° while the auditory sound
source comes from 33°. The results at different time points
are shown in Figs. 5 and 6. In Fig. 5, the prism places
the visual receptive center and auditory receptive center in
different pathways (pathways 6 and 8, respectively). Visual
and auditory input spike trains in pathway 6 are now quite
different from each another and are uncorrelated. Both the
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Fig. 6. New axon connection is formed. (a) Axon connection has been
updated and the neurotrophin is reset to its original (zero) status. (b) New axon
connection is formed and the old connection is inhibited. (c) and (d) Both
visual and auditory synapses begin to increase once the visual and auditory
signal have been re-registered with one another again.

visual and the auditory synapses connected to the bimodal
neuron are weakened. Thus, the SC bimodal neuron in path-
way 6 becomes less active and fewer postsynaptic spikes are
triggered. As a result, inhibition of the interneuron by the
bimodal neuron is decreased and the output spike rate of the
interneuron, MAC increases. This stimulates the release of
neurotrophin in pathway 6. In the axon source layer ICc, we
measure the axon activity by counting the input auditory spike
train density. When the accumulated neurotrophin reaches its
threshold value (here the value is set 20) in target layer of
pathway 6 and growth cone in pathway 8 is ready at the same
time, the axon connection network is updated. This also means
a new connection between pathway 8 and pathway 6 will be
created (the rectangle turns white) and the original connection
pathway 8 to pathway 8 is blocked (the rectangle turns black).

The real-time video of this process for the other positions
can be seen on the web at http://www.see.ed.ac.uk/∼s0454392/
research.html.

V. SC VLSI CIRCUIT

Implementation of the SC model in a robot provides a
real environment with sensory signal inputs. However, it is
merely software. The microcontroller of the e-puck robot
has processed the input sensory stimuli indirectly, and its
architecture is very different from a neural system, so it
requires complex mathematical programming in the PC rather
than in the robot which is limited primarily by its memory.
The microcontroller dsPIC30F6011A in our robot has only up
to 144 KB on-chip Flash program space, thus a connection
between the robot and PC is needed.

To make the robot independent, a neuromorphic circuit was
designed and fabricated, which is also expected to improve
the computing speed and better emulate the biological neural
computation. Fig. 7 is a micrograph of this SC chip, in

Fig. 7. Micrograph of mixed signal SC chip. The analog block includes
four neurons and synapses. The digital block has four switches, registers,
and eight spike calculators, although the size of the chip in total is only
0.6 mm × 0.5 mm.

which digital block and analog block sit side by side in just
0.6 mm×0.5 mm. This chip has four neurons and six synapses
and corresponds to the network model in Fig. 8(b). The power
supply current is less than 10 mA at 3.3 V. Two information
pathways are selected as the basic platform to simulate the
visual and auditory integration, whose corresponding network
model is shown in Fig. 8(b), which is basically two of the
ten pathways in Fig. 2. The system structure was designed to
be the same as the neural model and to include an “inhibitory
network” and “axon network.” The analog part of the circuit is
several paralleled “inhibitory networks,” which are composed
of STDP synapses and LIF neurons. The digital part of the
circuit is the axon network, which is composed of switch bars,
a status register network and spike counters. The whole mixed
signal CMOS chip has been fabricated using a standard AMS
0.35 μm process.

A. Inhibitory Network Circuit

The basic computing units for the analog block are neurons
and synapses. The diagram of the circuit components is shown
in Fig. 8(a) which represents an inhibitory network in one
pathway. The inhibitory network is composed of four different
components shown in different colors. The interneuron only
accesses visual input and is inhibited by the inhibitory synapse
circuit which leaks the current from the IF neuron membrane.
Thus, the output firing rate of the interneuron is inversely
proportional to the output firing rate of the bimodal neuron.
This is also called shunt inhibition in some articles [25], [36],
[37]. Shunting is an important type of gain control in biology
to regulate neural responses. In this inhibitory VLSI circuit,
both interneuron and bimodal neuron are IF neurons, whose
circuit is similar to [24]. The circuit of this IF neuron also
includes features from [23], [25], and [38]. The parameters of
the circuit in Fig. 9 are configured so that the interneuron firing
rate is lower than the other IF neuron and its neuron membrane
threshold is set to be higher than the other neurons.

Fig. 9(a) is the excitatory synapse based on the simple
synaptic structure in SC model. The output current (Isyn),
which is connected to IF neuron membrane of the neuron
circuit, is controlled by Vw , Vspike, and Vbias. Vspike is the
train of input spike pulses, which switches on M2 and induces
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Fig. 8. Inhibitory network block diagram. (a) Electronic synapses connected
with the bimodal neuron follow the rule of STDP. Since there is only one
synapse connected with the interneuron, its electronic weight value V w is
fixed. (b) This is part of the SC network. Neurons with the same labels are
in the same pathway and they are named in the form “layer name - pathway
name,” for example, ICc-1, retina-1. The synapses connected with the bimodal
neurons are also named with their pathway number such as VwA1 and V wA2.
The hollow arrow is the inhibitory connection between the bimodal neuron
and interneuron.

the spike current. Fig. 9(b) is the inhibitory synapse which dis-
charges the membrane current of IF neuron. The interneuron
is inhibited by the bimodal IF neuron output, which exerts
shunting inhibition on the interneuron. The circuit for shunt
inhibition can also be seen in [25], where it is made as simple
as merely one conductance. In the circuit shown in Fig. 9(b),
the degree of the inhibition is determined by Vpbias and
Vdec. By adjusting the Vpbias and Vdec, Vshunt is changed.
As a higher voltage value of Vshunt on the transistor gate
increases the inhibitory synapse conductance, the inhibitory
current which is drawn from the IF neuron is modulated.

Fig. 9(c) is the circuit for modulating excitatory synap-
tic weights which are represented as V wA and V wV in
Fig. 8(b). The excitatory synaptic weight is stored capacitively
and is labeled as V w in Fig. 9. V w is adjusted by STDP
module shown as Fig. 9(c), which is modified from [39].
Two extra MOS capacitors are added in the circuit. Every input
presynaptic spike discharges NMOS capacitor M2, which is
connected to node depC. During each pre-synaptic spike input,
VdepC decays immediately and then rises gradually with time.
The inverted postsynaptic spike charges the PMOS capacitor
P7 and generates VpotC. The waveforms of VdepC and VpotC
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Fig. 9. VLSI synapses used in this circuit. (a) Excitatory synapse.
(b) Inhibitory synapse. (c) STDP module dynamically increases or decreases
Vw with (causal or anti-causal) co-occurrence of pre- and post-synaptic
spikes. Cp and Cd are the two gate capacitors of transistors P7 and M2.

determine the shape of the STDP learning curve applied
to V w. For each incoming presynaptic spike, the current
Idep is controlled by VpotC. The current Ipot, charging V w
is controlled by VdepC. With equal input currents, �V w is
in inverse proportion to the MOS capacitance, Cp and Cd.
In [39], Cp and Cd are only the parasitic capacitance of P6
and M1. The capacitance value is small and varies with CMOS
process. Here, the modified Cp is the total capacitance of P6
and P7, Cd is the total capacitance of M1 and M2. Fig. 10(a)
shows the resultant RC time constant of depC (approximately
3 ms) with a capacitor area depC of 1 μm2. The new added two
extra MOS capacitors M2 and P7 increase the total capacitance
value. Fig. 10(b) shows the effect of increased MOS capacitor
area on the RC time constant.

Fig. 11 shows the test results from this inhibitory network,
the effect of inhibition on interneuron when the bimodal
neuron has higher firing rate. Both SC neuron and interneuron
are in the same SC pathway and receiving a high-density
input spike train, but their synaptic weights are different:
V wSC = 2 V, V winter = 1.2 V. The SC neuron has a higher
firing rate. The SC neural membrane voltage reaches its firing
threshold earlier than the interneuron, so the interneuron
is inhibited before its membrane capacitor can accumulate
sufficient charge to begin firing.
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Fig. 10. Effect of synaptic weight change. (a) Curve of depC and potC from
the chip with presynaptic and postsynaptic spikes as input. potC and depC
are charged and discharged by spikes on switch transistors P6 and M1. The
vertical scale of the plot is 2 V/div. (b) Effect of increased capacitor area on
time constant of depC.

In the current mirror of Fig. 9(a), the synaptic weight
change V w stored on capacitor Cw of Fig. 9(c) modulates
the output current Isyn, which is the presynaptic input current
that is injected into the membrane of IF neuron circuit. For
every input spike, transistor M1 in Fig. 9(a) is turned on if
V w > VT H , and in subthreshold if V w < VT H , where VT H is
the threshold voltage for MOS device. The firing rate of an IF
neuron depends on the input synaptic current, so the relation-
ship between the spike frequencies of the bimodal neuron and
the interneuron can be expressed as current-related parameters.

Then we present how the synaptic weight V w affects the
output firing rate. When V w > VT H and the transistor is in
saturation, the synaptic current equation is

Isyn = 1

2
μnCox

(
W

L

)
(V w − VT H )2 (5)

and for an IF neuron

Csyn
dVsyn

dt
= Isyn (6)

where Vsyn is the membrane voltage and t is inversely
proportional to the postsynaptic firing rate. So the ratio of the
SC neuron firing rate (Fsc) and interneuron firing rate (Finter)
is given by

Fsc

Finter
≈

(
V wsc

V winter

)2

. (7)
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2 V, Vwinter = 1.2 V. Although in each SC pathway, the SC neuron and the
interneuron share the same visual spike train, the SC neuron fires frequently
and the interneuron is inhibited. The inhibitory synapse sinks current from
the interneuron more frequently and thus prevents it from firing.
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the weight ratio between the SC excitatory synapse and interneuron excitatory
synapses. The interneuron is highly inhibited when this ratio is above 1.5.

To verify equation (7) from the chip, the interneuron synap-
tic weight value is fixed at 1.6 V. The interneuron synapse
works in saturation and the SC excitatory synaptic weight
is adjusted between 0 and 3.3 V. The interneuron and SC
neuron have the same input spike train firing rate for all the
tests. Simulation results shown in Fig. 12 can be explained
by the Nyquist–Shannon–Kotelnikov sampling theory: if
(Fsc/Finter) > 2, namely (V wsc/V winter) >

√
2, all interneu-

ron spikes will be inhibited by the SC neuron which has high
firing rate; if (Fsc/Finter) < 2, namely, (V wsc/V winter) <

√
2,

the interneuron firing rate Finter increases as the SC synaptic
weight decreases, which is consistent with equation (7).

When V w < VT H , then M1 in Fig. 9(a) is switched off
and works in subthreshold. The subthreshold current can be
expressed as

Isyn = Io exp

(
V w

ζ VT

)
(8)
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Fig. 13. Digital axon circuit for single pathway block I. The pathways are
labeled as circles with numbers 1 and 2. The horizontal labels are input signals
and the vertical labels are outputs. (a) Axon connection circuit. OR gates are
used between the transmission gates and the IF neurons to merge the spike
inputs. The switches which are initially switched on are marked by dashed
circles. (b) Spike calculator for the neurotrophin block and growth cone block.
It is composed of two counters and two OR gates. The spikes are either MAC
from the interneuron or presynaptic spikes of spike_A from the growth cone,
respectively.

where ζ > 1 is a nonideality factor and VT = kT/q , k is
Boltzman’s constant, T is temperature in kelvins, and q is the
charge of an electron [40], [41]. The ratio of firing rates is
then given by

Fsc

Finter
= exp

(
V wsc − V winter

ζ VT

)
. (9)

This indicates that in subthreshold, the interneuron firing
rate also increases as V wsc decreases. During simulation
and chip test, the synaptic output current actually becomes
too small to trigger the IF neuron to fire with the required
frequency. If the input spike rate is very high and the current
leakage is small, the interneuron can fire postsynaptic spikes,
but the window of voltage range for (V wsc/V winter) to mod-
ulate the postsynaptic spike frequency is narrow, because both

Vact

Vupdate

Vupdate

Vstatus

1

2

Fig. 14. Circuit of register cell. In contrast to the basic latch (symbols in
gray), transmission gates 1 and 2 are added in the feedback loop. This is to
avoid any conflict between the input and the feedback. Vact and Vupdate are
output signals from spike calculators in Fig. 13. Vact high means the growth
cone is active. Vupdate represents an enable signal for the update of network
connection.

V wsc and V winter are less than VT H . This can be seen from

Fsc

Finter
> 2 �⇒ V wsc > V winter + ζ VT ln 2 (10)

where ζ VT ln 2 is around 40 mV.

B. Digital Axon Network

The axon network is represented by a digital circuit.
It includes three kind of components: crossbar switch, spike
calculator, and register.

Fig. 13(a) shows the crossbar switch of axon connections
between neurons. Each switch is a transmission gate, a parallel
combination of an NMOS and a PMOS transistor. These
switches are controlled by signal Vstatus. The value of Vstatus
is binary and stored in a register. Each switch status, Vstatus11,
Vstatus22, Vstatus12, and Vstatus21, has its own register cell.
This reduces the chip area of axons compared with that of
capacitors for axon state storage which was used, for example,
in [25] and [27]. If the axon circuit expects long time state
storage, the capacitor must be expanded in size, however, the
larger the capacitor size, the smaller the number of axons we
can have within certain chip area.

Switches in Fig. 13(a) can effectively isolate the output from
the input and conduct the current in either direction. Output
spikes from the switch transmission gates in Fig. 13(a) are sent
to an OR gate before they arrive at the IF neuron. The OR gate
here also works as a buffer. Transmission gate 1 is used as a
switch to update the Vstatus output from register. As shown
in Fig. 14, the fundamental storage element of the register is a
simple latch. Vact high indicates that the virtual growth cone
in the circuit is active. Vupdate represents the neurotrophin
update signal. When Vupdate is high, the register updates its
state and reads Vact. The conflict between Vact and feedback
of the latch is avoided by adding transmission gate 2. Vstatus
updates its value upon the rising edge of Vact ∧ Vupdate.

In Fig. 13(a), Vact is asserted by a spike calculator for
growth cone while Vupdate is asserted by a spike calculator
for neurotrophin. Fig. 13(b) is the spike calculator, which is
used to estimate whether or not a spike cluster has arrived in
the input. The spike calculator counts the number of spikes
and the time interval in a spike train. A spike calculator is
composed of toggle flip-flop counters as shown in Fig. 13(b).
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Counter 1 counts clock pulses “clk,” which is from a regular
external clock signal. It is used to estimate the time interval.
Each clk adds 1 to counter 1 until it reaches 7. When a new
spike comes, counter 1 is reset to 0 and counter 2 counts the
number of input spikes. For both counters, the output is high
after seven pulses. Counter 2 will not start counting unless the
time interval between two spikes is small. If the time delay
between two spikes is long, counter 1 will simply count the
clk signal continuously.

During chip test, the reset signal is turned off at first
to initialize the digital block in Fig. 7. This enables the
(3-bit) counter 1 to count external clock pulses. When
counter 1 reaches its threshold value, it resets the toggle flip-
flop of both counters 1 and 2. Counter 2 sums the input
spike train and generates an update pulse when it reaches its
maximum value. For the spike calculator of the growth cone,
if the output of counter 2 is high, the growth cone is activated.
In Fig. 13(a), the spike calculator for the growth cone counts
the auditory input spikes in the ICc layer and generates output
Vact. The input clk frequency for this counter is 333 Hz, thus
the period of each clock pulse is 3 ms. If time interval between
two spikes is more than 24 ms, a reset signal for counter 2 will
be sent from counter 1. The spike calculator for neurotrophin
counts the MAC spikes of the interneuron and generates
Vupdate. The input clk frequency for this counter is 6 Hz.
If counter 2 of neurotrophin calculator is silent for more than
1.3 s and no new MAC spike appears, the accumulated spike
number in counter 2 will be cleared. This is a small deviation
from the behavior of the growth cone G1 j of equation (2) and
neurotrophin concentration c2 j of equation (1) in Section III,
which gradually decay with time. When the system finishes
updating, all counters are reset to their initial state.

C. Input Spike Train Generation

In biology, sensory stimuli induce spikes in clusters, there-
fore in this simulation, spikes are clustered. The firing rate of
neighboring neurons is a random sequence with a low average
density. Repeated stimuli are generated from the same position
in space to shorten the training time. Differences in spike
timing carry information about the location of objects in the
environment [42]. Two methods were used to generate spike
trains: inhomogeneous Poisson spike trains and spike patterns.
The instant firing rate of the center stimulus that induces spike
trains spike_A and spike_V in Fig. 8(b), was generated by the
following equations

r(t) = R max × cos

(
2π t

T

)
(11)

k(t) =
{

r(t), r(t) > 0

0, r(t) <= 0
(12)

where T = 30 ms is the period and the maximum firing
rate R max = 400 is a constant. k(t) is the inhomogeneous
spike firing rate, which varies with time. The rising and falling
sections of the cosine function cause the density of this spike
train to vary with time and produces regular spike clusters.

For the spike pattern, the time interval between spikes was
set according to the choice of the two follows: 1) a high firing

Fig. 15. SC chip test results when the visual input and auditory input spike
trains are registered with each other. Data were recorded after synaptic weight
initialization finished at 13 s.

rate spike pattern represents the direction of the stimuli in
the visual or auditory map center and 2) a low firing rate
pattern corresponds to the neurons that are neighbors of the
center. The high firing rate spike pattern and the low firing
rate spike pattern are independent of each other. The time
interval between spikes varies with pattern while the time
interval between clusters is a fixed value.

D. Adaptation

In the initial status, all the synaptic weight values are set to
be 1.5 V, and the switches 1-1 and 2-2 are initially switched
on while switches 1-2 and 2-1 are switched off in Fig. 15.

To emulate the prism-free condition, visual input and audi-
tory input are in the same pathway. This setting is similar to
the robotic experiment of step (1) in Section IV-A, where the
visual and auditory input spike trains are registered with each
other. Both the visual and auditory synaptic weights increased
quickly from around 1.5 V to 3.3 V at the start of this test,
but the interneuron synaptic weight is in a fixed value around
1.5 V. As described in Section V-A, (V wSC/V winter) > 2,
the SC neuron output firing rate is much higher than the
interneuron, so the interneuron is strongly inhibited and no
MAC spikes are out from interneuron. All switch statuses in
this case remain unchanged, which represents unchanged axon
connections.

To emulate the “with prism” condition, in Fig. 16, the initial
status of the switches are still 1-1 and 2-2, but the input
stimuli centers are moved to a different pathways such as the
visual stimulus is in pathway 1 while the auditory stimulus
is in pathway 2 as shown in Fig. 8(b). The synaptic weight
at the start of the test is also set to 1.5 V. The initial status
values are Vstatus11 = Vstatus22 = 3.3 V and Vstatus12 =
Vstatus21 = 0 V. Following the robotic test results in
Section IV-A, Fig. 16(a) shows the prism-induced disparity
between visual input and auditory input causing a decrease
in synaptic weight during the first 26 s. This decreased
synaptic weight make the inhibition of the interneuron weaker.
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Fig. 16. SC chip test results when the signal pathway is changing. Labels
in this figure correspond to those in Fig. 8. (a) VwA2 gradually decreases
first but starts to increase when Vstatus21 is on. At the bottom of the figure
is the membrane voltage of interneuron1. Before the change of Vstatus21,
interneuron1 is active with high-density input spike trains. The switch
status changes on the time of the seventh interneuron postsynaptic spike.
(b) Vstatus21 is turned on and the new connection between pathway 1 and
pathway 2 emerges, but Vstatus11 is turned off.

This decrease ends when the switch status changes at the
time shown in Fig. 16(b), recorded from the digital block.
Vstatus11 represents the status of the switch on the path
1-1 and Vstatus21 corresponds to path 2-1 in Fig. 13. The
falling edge of Vstatus11 turns the switch in path 1-1 off,
while the rising edge of Vstatus21 turns the switch of path
2-1 on. These changes occur immediately after the seventh
interneuron postsynaptic spike and are updated by the same
signal Vupdate1. At the time of this change, the neurotrophin
calculator in pathway 1 receives a MAC spike cluster and
the update signal Vupdate1 is turned on to become 3.3 V,
while Vstatus11 = Vact1 ∧ Vupdate1, Vstatus21 = Vact2 ∧
Vupdate1. The growth cone 1 is inactive, and Vact1 = 0 V
while growth cone 2 is active thus Vact2 = 3.3 V. The newly-
formed connection 2-1 re-registers the center of the auditory
and (prism-shifted) visual stimuli with one another.
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Fig. 17. (a) Time cost of MATLAB simulation from the input to the output
is linear. (b) Snapshot of neuron response of the SC chip. D1 and D2 are the
input spikes for digital block. Signal 1 and 2 are recorded from analog IF
neuron output. During recording, the time scale is 5 ms/div. The time delay
between spike input and the resultant output is less than 1 ms.

VI. DISCUSSION

Real-time robot experiments need high computing speed.
However, the limited memory storage of the microcon-
troller and serial port communication used for programming
generally cannot satisfy this requirement. During the test of
e-puck robot, after the start of sound burst, the time delay from
the environmental stimuli and the synaptic weight change in
MATLAB was close to 0.7 s.

There is also time cost for computation in simulation. As
MATLAB calculates with a whole matrix, we cannot have
neural response data after an input spike until 46.9 ms in our
simulation. The time cost of MATLAB simulation increases
linearly with the matrix size of the spike train. This can be
seen from Fig. 17(a). In comparison, the time delay for the
SC chip to respond to the input spike is less than 1 ms scale
from Fig. 17(b). There is no meaningful time delay between
the input spikes and the resulting synaptic weight changes and
the sensory spikes are effectively processed continuously. As
with other analog neuromorphic circuits, the small number of
transistors used also results in a compact hardware package.

The present design has some room for improvement:
1) there is an unstable flip-flop in digital network occasionally,



1496 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

and the logic components could be improved and 2) the STDP
circuit operates in subthreshold mode and will be influenced
by parameters such as temperature and transistor mismatch.
Identical spike train inputs may therefore result in different
synaptic weight bifurcation. Alternative STDP circuits may
solve these problems [23]. Furthermore, the synaptic weight
capacitor in STDP could be replaced by a floating gate.

VII. CONCLUSION

Adaptation is a key feature that makes neural networks,
in the brain and in artificial systems, interesting, useful,
and distinct from conventional computer programs. Although
adaptation is a general concept, which is pervasive and is
unlikely to have a single theoretical framework, here in this
article, we concentrate on sensory adaptation in the midbrain,
which can adjust a neural network to the visual and auditory
information asymmetric caused by a changed environment.
The adaptability of SC in the barn owl can be modeled to
allow its central mechanisms to be transferred to an artificial
computing system and thereby imbue it with a new form of
adaptability to its environment.

A modified computational model of SC has been demon-
strated in this paper with reconfigurable axon connections
between the visual and auditory maps. The SC model is not
only biologically plausible, but also can be used to do more
exploration in sensory integration and adaptive neural net-
works. Real-time processing of detailed sensory information
is a computationally demanding task for both biological and
artificial systems. Implementation of the SC in a robot is a step
toward filling the gap between robots and natural creatures
in terms of robustness and flexibility. Neuromorphic VLSI
SC is a further step to demonstrate axon rewiring in silicon,
processing, and adapting to data without explicit supervision.

Simulation results, robotic experiment, and a VLSI imple-
mentation all have proved that the SC model is capable of
adaptation similar to that in the biological SC. The adaptation
here between visual and auditory maps can be extended to
model the integration of other sensory inputs. This paper is a
new example of a bio-inspired neural network which can be
applied to hardware and provides a new form of self-adaptation
in silicon. In addition, it shows that computation based on
STDP, as an example of synaptogenesis and axonogenesis, can
affect the way in which sensory information transmits between
different neural areas.
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