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ABSTRACT

Motivation: Model selection and parameter inference are complex

problems of long-standing interest in systems biology. Selecting

between competing models arises commonly as underlying

biochemical mechanisms are often not fully known, hence alternative

models must be considered. Parameter inference yields important

information on the extent to which the data and the model constrain

parameter values.

Results: We report Dizzy-Beats, a graphical Java Bayesian evidence

analysis tool implementing nested sampling - an algorithm yielding

an estimate of the log of the Bayesian evidence Z and the moments

of model parameters, thus addressing two outstanding challenges in

systems modelling. A likelihood function based on the L1-norm is

adopted as it is generically applicable to replicated time series data.

Availability: http://sourceforge.net/p/bayesevidence/home/Home/

Contact: s.aitken@ed.ac.uk

1 INTRODUCTION

Bayesian methods provide a sound basis for ranking alternative

systems biology models and for characterising the extent to which

parameters are constrained by models and data (Kirk et al., 2013).

Markov Chain Monte Carlo (MCMC) methods have been applied to

model selection (Schmidl et al., 2012) and to parameter inference

in systems biology (Hug et al., 2013; Kanodia et al., 2014), but

often require considerable algorithmic and conceptual development.

Nested sampling promises to ease these complex computational

tasks: Recent biological applications include (Aitken and Akman,

2013; Kirk et al., 2013; Pullen and Morris, 2014).

General purpose code for nested sampling is available in

R (Skilling, 2006; Aitken and Akman, 2013), and biological

applications of the MultiNest tool (Feroz et al., 2013) have been

reported (Kirk et al., 2013; Pullen and Morris, 2014). A C-

based command-line application implementing nested sampling and

providing an SBML interface has recently been released (Johnson

et al., 2014), but no graphical tool is currently available. Thus

we sought to add nested sampling to the widely-used Dizzy

chemical kinetics simulation tool (Ramsey et al., 2005) (over 200

∗to whom correspondence should be addressed

citations as of November 2014). While doing so we also added an

optimisation function and SBML 3.1 compatibility. However, as

Dizzy’s command language has operators that cannot be captured in

SBML 3.1, and SBML 3.1 has features not supported by Dizzy, this

feature is restricted to the intersection of the modelling languages.

2 METHODS

Nested sampling calculates two of the central results of Bayesian inference:

the posterior distribution P (θ|D,Hi) of the parameters θ, and the evidence

P (D|Hi), that is, the support for the data D under hypothesis Hi (Skilling,

2006), through a sampling strategy. A selection between two alternative

models H0 and H1 can be made by calculating the ratio of their posterior

probabilities (1), a calculation that can be decomposed into the Bayesian

evidence (Z0 and Z1) and the prior probability of the respective hypotheses.

P (H1|D)

P (H0|D)
=

P (D|H1)P (H1)

P (D|H0)P (H0)
=

Z1P (H1)

Z0P (H0)
(1)

Z =

∫
L(θ)π(θ) dθ (2)

The evidence (2) is a scalar quantity that can be viewed as an integral of

the likelihood (L) over the elements of mass (dX = π(θ)dθ) associated

with the prior density π(θ). The prior mass can be accumulated from its

elements (dX) in any order. The enclosed prior of likelihood > λ can be

defined (3), and this allows the evidence to be written as a one-dimensional

integral of the (inverse) likelihood L(X) over the unit range (taking the

enclosed prior mass X to be the primary variable) (4) (Skilling, 2006).

X(λ) =

∫
L(θ)>λ

π(θ) dθ (3)

Z =

∫ 1

0
L(X) dX (4)

L(X(λ)) ≡ λ

Given a sequence of decreasing values 0 < Xm < . . .X2 < X1 < 1

where the likelihood Li = L(Xi) can be evaluated, the evidence can be

approximated numerically as a weighted sum. Inferences about the posterior

can be obtained from the sequence of m discarded points generated by

sampling, P . Each point is assigned the weight pi = L(θi)wi/Z, from

which the first and second moments of each parameter in θ can be estimated

– for more details see Skilling (2006) and Aitken and Akman (2013).

The size of the population of active points (points θi within the evolving

constraint L(θ) > λ) used to sample the parameter space is the only
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