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ABSTRACT

Motivation: Model selection and parameter inference are complex
problems of long-standing interest in systems biology. Selecting
between competing models arises commonly as underlying
biochemical mechanisms are often not fully known, hence alternative
models must be considered. Parameter inference yields important
information on the extent to which the data and the model constrain
parameter values.

Results: We report Dizzy-Beats, a graphical Java Bayesian evidence
analysis tool implementing nested sampling - an algorithm yielding
an estimate of the log of the Bayesian evidence Z and the moments
of model parameters, thus addressing two outstanding challenges in
systems modelling. A likelihood function based on the L;i-norm is
adopted as it is generically applicable to replicated time series data.
Availability: http://sourceforge.net/p/bayesevidence/home/Home/
Contact: s.aitken@ed.ac.uk

1 INTRODUCTION

Bayesian methods provide a sound basis for ranking alternative
systems biology models and for characterising the extent to which
parameters are constrained by models and data (Kirk et al., 2013).
Markov Chain Monte Carlo (MCMC) methods have been applied to
model selection (Schmidl et al., 2012) and to parameter inference
in systems biology (Hug et al., 2013; Kanodia et al., 2014), but
often require considerable algorithmic and conceptual development.
Nested sampling promises to ease these complex computational
tasks: Recent biological applications include (Aitken and Akman,
2013; Kirk et al., 2013; Pullen and Morris, 2014).

General purpose code for nested sampling is available in
R (Skilling, 2006; Aitken and Akman, 2013), and biological
applications of the MultiNest tool (Feroz et al., 2013) have been
reported (Kirk et al, 2013; Pullen and Morris, 2014). A C-
based command-line application implementing nested sampling and
providing an SBML interface has recently been released (Johnson
et al., 2014), but no graphical tool is currently available. Thus
we sought to add nested sampling to the widely-used Dizzy
chemical kinetics simulation tool (Ramsey et al., 2005) (over 200

*to whom correspondence should be addressed

citations as of November 2014). While doing so we also added an
optimisation function and SBML 3.1 compatibility. However, as
Dizzy’s command language has operators that cannot be captured in
SBML 3.1, and SBML 3.1 has features not supported by Dizzy, this
feature is restricted to the intersection of the modelling languages.

2 METHODS

Nested sampling calculates two of the central results of Bayesian inference:
the posterior distribution P(6|D, H;) of the parameters 6, and the evidence
P(D|H;), that is, the support for the data D under hypothesis H; (Skilling,
2006), through a sampling strategy. A selection between two alternative
models Hgp and H1 can be made by calculating the ratio of their posterior
probabilities (1), a calculation that can be decomposed into the Bayesian
evidence (Zp and Z1) and the prior probability of the respective hypotheses.

P(H1|D) _ P(D|H1)P(Hy) _ Z1P(Hy)
P(Ho|D)  P(D|Ho)P(Ho)  ZoP(Ho)

Z = / L(0)(0) o o)

The evidence (2) is a scalar quantity that can be viewed as an integral of
the likelihood (L) over the elements of mass (dX = m(6)d) associated
with the prior density 7(6). The prior mass can be accumulated from its
elements (dX) in any order. The enclosed prior of likelihood > X can be
defined (3), and this allows the evidence to be written as a one-dimensional
integral of the (inverse) likelihood L(X) over the unit range (taking the
enclosed prior mass X to be the primary variable) (4) (Skilling, 2006).

1

X :/L(gmw(a) do 3)
Z= /1L(X) ax @
0
LIX(\) = A

Given a sequence of decreasing values 0 < X, < ... X2 < X1 <1
where the likelihood L; = L(X;) can be evaluated, the evidence can be
approximated numerically as a weighted sum. Inferences about the posterior
can be obtained from the sequence of m discarded points generated by
sampling, P. Each point is assigned the weight p; = L(0;)w;/Z, from
which the first and second moments of each parameter in 6 can be estimated
— for more details see Skilling (2006) and Aitken and Akman (2013).
The size of the population of active points (points §; within the evolving
constraint L(6) > M) used to sample the parameter space is the only

© The Author(s) 2015. Published by Oxford University Press. 1
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommaons.org/licenses/by-nc/4.0/), which permits non-commercial re-
use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

GTOZ ‘g Arenige4 uo Aiseaiun ybinquip3g e /Hlo'sfeulnolploixo'soireuwouioiq//:dny wouy papeojumoq


http://bioinformatics.oxfordjournals.org/

Aitken, Kilpatrick and Akman

posterior samples: logL

Fig. 1. Dizzy-Beats: an application for parameter inference and model
selection.

parameter of the algorithm that the user must specify. For complex likelihood
functions with multiple modes, this number may be as high as 10000, and
for a single mode as low as 200.

Dizzy-Beats updates the user interface of the original Dizzy program
(Ramsey ef al., 2005) retaining the text of the model in the left editing panel
(see Figure 1) and placing the original simulator choices in the simulation
tab on the the right. A histogram plot for visualising the results of stochastic
simulations is added to the simulation viewing formats. Two new tabs add
optimisation and inference capabilities, and both require a data file to be
specified (a simple CSV format is used, with column headers matching the
names of species in the model). Using the simulation tab, the user can select
parameters, modify their values and see the simulation results plotted over
the data. This allows a manual tuning and exploration of the model’s fit to
the data. Computational optimisation using simulated annealing can be run
to explore a larger parameter space. Similarly, the inference tab requires
users to select parameters to be included in inference by nested sampling
and to input their prior range. A uniform prior is assumed as is typical in
nested sampling. A graph of log likelihood, or of the samples of the selected
parameters can be viewed as nested sampling progresses to monitor progress.
The stopping heuristics of Aitken and Akman (2013) are implemented but
the user can in addition specity the maximum number of iterations, and must
specify the number of active points. The outputs are a file summarising the
results, and a second listing the posterior samples for further analysis.

A likelihood function based on the L1-norm is used for optimisation and
inference — this is defined by eqns. (5) and (6) (Sivia and Skilling, 2006).

et = (ot — pe|) = / |zt — pelp(x)dN (5)

rr 1 |&: — Mt\)
, S L 6
pla|{ut, et }) t|:|1 e, P < o (©)

Equation (5) defines the normalising constant ¢; as the expected value
of the moduli of the differences between the replicate observations at time
t and the values predicted by the kinetic model (u¢). The product of the
probabilities of the median observation at time ¢ (&) defines the likelihood
function for a time series z of m samples (eqn. (6)). Maximisation of
this likelihood minimises the sum of the moduli of the residuals (rather
than their squares) on the basis that the testable information is restricted
to the expected value of the modulus of the difference between theory
and experiment. Should we know both the mean and variance, maximum
entropy considerations would lead instead to the Gaussian distribution (Sivia
and Skilling, 2006). Time points where the replicates are most dissimilar
contribute least to the likelihood as ¢; is larger — as is desirable.

3 DISCUSSION

Dizzy-Beats is a graphical application for simulating and optimising
systems models based on an established simulator (Ramsey
et al., 2005) and its simple textual model syntax, to which
we have added SBML 3.1 import/export functionality. Uniquely,
Dizzy-Beats provides model comparison and parameter inference
functions through the nested sampling algorithm in a graphical
application. Comparable functions are implemented in BioBayes
(Vyshemirsky and Girolami, 2008), however, users must edit
the XML representation of the model should they wish to make
modifications. SYSBIONS (Johnson er al., 2014) implements
nested sampling but all interaction is via the command-line. The
use of a likelihood based on the L-norm derived from biological
replicate data makes fewer assumptions than a Gaussian error model
(Vyshemirsky and Girolami, 2008; Johnson et al., 2014), and is
less computationally complex than a transitional likelihood function
derived from reaction propensities (Heron ef al., 2007; Aitken and
Akman, 2013).
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