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Abstract. - We analyze fluctuations of particle displacements and stresses in a sheared athermal
suspension of elastic capsules (red blood cells). Upon variation of the volume fraction from the
dilute up to the highly concentrated regime, our numerical simulations reveal different character-
istic power-law regimes of the fluctuation variances and relaxation times. In the jammed phase
and at high shear rates, anomalous scaling exponents are found that deviate from pure dimen-
sional predictions. The observed behavior is rationalized via kinetic arguments and a dissipation
balance model that takes into account the local fluid flows between the particles. Our findings
support the view that the rheology of dense suspensions is essentially governed by the non-affine
displacements.

Introduction. – Athermal suspensions of deformable
particles, such as blood, occur manifold in nature and
technology and a statistical description of these far-from-
equilibrium systems is a challenging task. Characteristic
for their behavior is their ability to ‘jam’, that is, to ac-
quire a solid-like character above a certain critical parti-
cle concentration, yet they remain amorphous in structure
[1]. Any dynamics in an athermal suspension can only be
induced by external means, such as shearing. Under con-
stant shear, athermal suspensions generally show diffusive
behavior [2, 3] and the resulting mixing and segregation
phenomena are crucial for the flow of blood [4, 5], drug
delivery and the processing of pasty materials as divers as
clay, food and cosmetic items [6]. While shear-induced dif-
fusion is well understood for suspensions of rigid particles
[7–12], soft-particle suspensions consisting of vesicles or
capsules have so far been investigated almost exclusively
in the dilute regime, where hydrodynamic two-particle in-
teractions dominate [13–18]. For a dense suspension, how-
ever, collective effects and near-contact interactions are

(a)Corresponding author: gross@is.mpg.de

prevalent [1]. Moreover, in the case of driven glassy and
jammed systems, a range of different predictions and ob-
servations for the scaling behavior of the diffusivity with
shear rate or volume fraction exists [19–24].

In the present work, we study shear-induced diffu-
sion together with the underlying particle displacement
and stress fluctuations in a dense athermal suspension of
aggregation-free red blood cells (RBCs) under wall-driven
shear flow. We cover volume fractions φ between 12%
and 90% and four orders of magnitude in reduced shear
rate, which include not only the typical human body con-
ditions (φ ∼ 40− 45%), but also regimes that are relevant
for certain diseases – such as thrombosis or polycythemia
(large φ) – as well as for microfluidic processing of blood
(low φ, [25]). We identify distinct scaling behaviors in the
dilute and in the jammed regime: in the dilute case, fluc-
tuations typically scale ‘canonically’ with shear rate, i.e.,
they follow the predictions from purely dimensional argu-
ments. In contrast, ‘anomalous’ scaling is observed in the
jammed phase. The static and dynamic behavior of the
displacement and stress fluctuations is quantitatively ex-
plained in terms of a dissipation balance, which links the
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Fig. 1: (a) Simulation setup including a sketch of the sur-
face mesh of an RBC. The flow is bounded by walls in the
z-direction and periodic in the x- and y-directions. Shear is
applied in the x-direction (indicated by the black arrows). The
system size is Lx ×Ly ×Lz = 10× 10× 20 particle diameters.
The structure of the suspension remains amorphous over the
whole parameter space studied. (b) Effective viscosity of the
particle phase in dependence of the capillary number.

local shear rate fluctuations to the injected power. Our
analysis extends previous applications [26, 27] of dissipa-
tion arguments to more realistic suspension models that
involve explicit solvent hydrodynamics and particle elas-
ticity. The predictions are expected to be applicable to
a wide range of soft-particle suspensions. Together with
simple kinetic arguments, we arrive, for the first time, at a
complete characterization of fluctuations and diffusion in
a suspension of hydrodynamically interacting elastic par-
ticles.

Simulations and rheology. – RBCs in a Newto-
nian solvent are simulated via a combined Finite-Element-
Immersed-Boundary-Lattice-Boltzmann method, which
has been thoroughly benchmarked [28, 31] and whose de-
tails can be found in [29,30]. The capsules posses a shear
and bending elasticity and are approximately area- and
volume-incompressible. The interior of a capsule is filled
with a fluid of the same viscosity as the surrounding. Par-
ticles interact only via hydrodynamics and short-range re-
pulsive forces, the latter of which are essentially present
to avoid direct particle contacts and have been previously
shown to be negligible for the rheology [30]. The shear rate
γ̇ is imposed by the walls (see Fig. 1a) and is expressed in
terms of the dimensionless capillary number,

Ca =
η0γ̇r

κS
, (1)

where η0 is the bare solvent viscosity, r is the large RBC
radius and κS is the shear-elastic modulus of the capsule.
The choice of Ca as the governing parameter is motivated
by the fact that the shear elasticity provides the most dom-
inant contribution to the suspension stress [30]. Detailed
simulation parameters can be found in Table 1. We re-
mark that we do not observe long-time stable shear bands
[32] or indications of crystallization.
As a central result we will show – via computer simula-

tions which take explicit account of hydrodynamic inter-

(a)

æ æ æ

æ
æ
æ

à à à

à
à
à

ì
ì

ì

ì

ì

ì ì

ô

ô

ô

ô

ô
ô ô

ò

ò

ò

ò

ò
ò

ç

ç

ç

ç

ç

á

á

á

10-4 10-3 10-2

0.01

0.02

0.05

0.10

0.20

0.50

Ca

X∆
u

y2
\
�
HΓ
  r
L

2 µCa-0.5

Φ

æ 12%

à 24%

ì 42%

ô 54%

ò 66%

ç 78%

á 90%

(b)

æ

æ
æ

æ

à

à
à

à
à

ì

ì
ì ì

ì ì

ô

ô

ô
ô

ô
ô

ò

ò

ò

ò

ò ò
ò

ç

ç

ç ç
ç

á

á

á

á

á á
á

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.05

0.10

0.20

0.50

Φ

X∆
u y2 \
�
HΓ
  r
L

2

Ca

æ 0.08

à 0.055

ì 0.028

ô 0.0028

ò 2.8´10-4

ç 8.3´10-5

á 4.2´10-5

Fig. 2: Variances of the instantaneous particle velocity fluc-
tuations (displacements at vanishing strain) in the vorticity
direction (uy) in dependence of (a) the capillary number and
(b) the volume fraction. The behavior is similar in the other
two spatial directions x and z (not shown here).

actions – the validity of dissipation-based theoretical ar-
guments which relate fluctuation variances and relaxation
times to the effective suspension viscosity η = η(φ,Ca).
The latter quantity has been discussed in [30] and, for
convenience, is shown again in Fig. 1b. One may directly
distinguish two different regimes: a Newtonian regime
(η ∼ const.) for small volume fractions (φ) and a shear-
thinning regime (η ∝ Ca−q with q ≃ 0.5) for larger
φ. A detailed numerical analysis of the stress data [30]
also reveals the existence of a third, yield-stress, regime
(η = σyCa

−1 + bCa−q, with σy and b being φ-dependent
parameters), caused by the elastic compression of the cap-
sules above a jamming concentration of φc ≃ 0.66. In
Fig. 1b, this behavior is reflected by the slight upward
bending of the viscosity curves for large φ and low Ca.

Instantaneous particle velocity fluctuations. –

Fig. 2 shows the variance of the instantaneous particle
velocity fluctuations 〈δu2

y〉, scaled by the natural time and
length scales, 1/γ̇ and r, in the vorticity direction (y). The
probability distribution of δuy are found to have Gaussian
cores with exponential tails that are enhanced for larger
φ and lower Ca. Here and in the following, averages are
performed over time offsets and all particles in the bulk of
the simulation box (i.e., excluding a region of two particle
diameters adjacent to the walls). The overall scaling be-
havior is similar in the flow (x) and shear-gradient (z) di-
rections and not separately shown. From Fig. 2a, we note
a plateau at low Ca and φ and a characteristic power-law
behavior at large Ca and φ. As Fig. 2b shows, the velocity
fluctuations grow approximately exponentially with parti-
cle concentration up to φ ≃ 0.6 − 0.7, beyond which they
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bare capillary number (Ca) 0.081 0.056 0.028 0.0028 2.8× 10−4 8.4× 10−5 4.2× 10−5

shear rate γ̇/10−4 1.6 1.1 0.56 0.056 0.19 0.11 0.056
shear modulus κS 0.003 0.003 0.003 0.003 0.1 0.2 0.2

Table 1: Shear rate and elastic shear modulus (in lattice units) corresponding to the different bare capillary numbers used in
this work. The bending modulus, which describes the resistance of the capsule to bending forces, is taken as κB = κS/5. The
size of the simulation box is Lx×Ly×Lz = 180×180×360 lattice units and contains between 1000 and 7700 RBCs, each having
a large radius of r = 9 lattice units. The interior of a capsule is filled with a fluid of the same viscosity as the surrounding. See
[28–30] for a detailed description of the underlying simulation model.
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Fig. 3: Effective interparticle gap size l as obtained from veloc-
ity fluctuations in our simulations via eq. (2) (symbols). The
dashed curve represents the theoretical estimate of eq. (3), tak-
ing r ≃ 2 as a fit parameter. Inset: The magnitude of the
viscous stress (red corresponding to large, blue to low values)
as a measure for the local dissipation in the liquid. Large dis-
sipation occurs in the narrow gaps between adjacent cells.

saturate or even slightly decrease. Notably, this cross-over
volume fraction is close to the random-close-packing value
of φc ≃ 0.66 obtained for hard oblate ellipsoids of the same
aspect ratio (∼ 0.33) as RBCs [33]. As the reduced instan-
taneous velocity fluctuation represents a length scale (the
zero strain limit of a displacement), the non-monotonic
volume fraction dependence is consistent with the idea
that the limit φ → φc, Ca → 0 represents a critical point
for an athermal suspension [24, 34].

Independently from the notion of a critical point, a
quantitative and complete description of the particle ve-
locity fluctuations can be achieved by noting that, for
sufficiently large φ, dissipation occurs predominantly in
the fluid (occupying a volume fraction of 1 − φ) between
the particles (cf. [35]). The typical shear rate in the
gap of characteristic size l between two neighboring par-
ticles can be expressed as γ̇∗

α ≃ (∆ūα + δuα)/l, where
∆ūα = γ̇l δαx is the velocity difference due to the affine
flow (only in x-direction) and δuα is the velocity fluc-
tuation. As the total power injected into the system is
given by σγ̇ – independently of the precise origin of σ
(i.e., viscous or elastic) – dissipation balance requires that
ηγ̇2 = η0γ̇

2 + (1 − φ)η0
∑

α〈γ̇
∗2
α 〉 , where first term arises

from the affine motion of the background fluid and the
sum runs over all three spatial directions. To proceed, we
assume that the average flow velocity and its fluctuations
are uncorrelated (〈∆ūxδux〉 = 0) and obtain, as our first
central result, a relation between the velocity fluctuations

and the suspension viscosity

∑

α〈δu
2
α〉

γ̇2
=

[

η − η0
(1 − φ)η0

− 1

]

l2 . (2)

In the case of rigid spherical particles of radius r, the typ-
ical interparticle gap size can be estimated as

l ≃ 2r(φ−1/3 − 1) . (3)

Note that we assumed here a maximal packing fraction
of φmax = 1, which, for the present purpose, can be jus-
tified by the fact that short-range repulsive forces in our
model prevent direct contacts between particles so that
interstitial fluid regions are preserved.

As demonstrated in Fig. 3, for φ & 0.2, the estimate
of eq. (3) is consistent with our simulation data: taking
r ≃ 2 (in lattice units, which is roughly 2/3 of the small
radius of the RBC inertia ellipsoid) as a fit parameter
– which we deem admissible given the simplifications in
our theory –, we observe an impressive agreement over al-
most the full parameter region studied. In particular, the
independence of l on capillary number is correctly repro-
duced. The breakdown of our scaling model at low φ is
not surprising, as here η ≃ η0 and dissipation becomes less
localized.

In summary, relation (2) indicates that the character-
istic scaling behavior of the reduced velocity fluctuations
observed in Fig. 2a originates essentially from the effective
viscosity (assuming η0 ≪ η): indeed, we observe a New-
tonian regime 〈δu2〉/γ̇2 ∝ η ∼ const. for small φ and Ca
and a shear-thinning regime 〈δu2〉/γ̇2 ∝ η ∝ Ca−q with
q ≃ 0.5 for large Ca. For smaller Ca, a yield stress regime
is expected, where 〈δu2〉/γ̇2 ∝ η = σyCa

−1 + bCa−q.
An unambiguous exhibition of this regime represents a
formidable task for future work.

A similar connection between velocity fluctuations and
rheology has also been previously noted for idealized
jammed model systems in two dimensions [26,27]. In these
systems, however, particles were point-like and dissipa-
tion was explicitly implemented via a friction force that
mimics the effect of the solvent. In contrast to this, the
dynamics of the solvent is explicitly resolved by the lat-
tice Boltzmann part of our simulation methodology. We
furthermore infer from Fig. 2a that relation (2) holds in-
dependently for each velocity component.
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Fig. 4: Velocity relaxation: (a) Typical behavior of the normalized VACF in our simulations [legend in panel (b) applies]. (b)
Relaxation time τv and exponent b (inset) obtained from fits of eq. (4) to the VACFs in the vorticity direction. (c) Length scale
λ (‘mean free path’) defined by eq. (5).

Velocity relaxation. – Collisions of two or more
elastic particles in a sheared suspension break the re-
versibility of Stokes flow and give rise to diffusive behavior
at long times [13,36]. The associated decorrelation of par-
ticle displacements can be quantified by the velocity au-
tocorrelation function (VACF), Cv(t) = 〈δuy(t) δuy(0)〉,
which is examplified in Fig. 4a. Despite the negative long-
time tail emerging at low volume fractions (which can be
attributed to two-particle encounters [10]), the VACF can
be well fitted by a stretched exponential form,

Cv(t) = 〈δu2〉 exp[−(t/τv)
b] , (4)

at small strains (i.e., tγ̇ . 1). Fig. 4b shows the extracted
relaxation time τv. The observed scaling behavior of τv
can be explained by approximating

τv ≃ λ/〈δu2〉
1

2 , (5)

where 〈δu2〉
1

2 is the typical particle velocity scale and λ
defines the characteristic distance a particle travels be-
fore its velocity changes significantly. Assuming λ depends
only weakly on Ca, eq. (5) together with eq. (2) predicts

τvγ̇ ∼ const. in the Newtonian regime and τv γ̇ ∝ Caq/2

in the shear-thinning regime, in approximate agreement
with the simulation results (Fig. 4b). As Fig. 4c shows,
while its Ca-dependence is indeed weak, λ varies by up to
a factor of five over the range of volume fractions studied.
The decrease of λ with φ in the jammed phase is expected,
as a higher packing density leads to a reduced mean-free
path (kinetic theory would predict λ ∼ 1/φ). The rea-
son for the (albeit slight) increase of λ with φ in the fluid
regime, as well as for the behavior of the exponent b (inset
to Fig. 4b), is unclear at present.

Mean-squared displacements and diffusivity. –

Fig. 5a shows simulation results of typical mean-squared
displacements (MSDs), 〈∆Rα(t)

2〉 = 〈[Rα(t) − Rα(0)]
2〉,

with R being the center coordinate of a particle. Consis-
tent with previous simulations of non-Brownian suspen-
sions [10,11], we observe a ‘ballistic’ regime (〈∆Rα(t)

2〉 ∝
tn with n ≃ 2) at small strains that crosses over into a
diffusive regime (〈∆Rα(t)

2〉 ∝ t) at large strains. At the
largest volume fraction studied (φ = 0.9), an exponent of

n ≃ 1.7 is found in the ballistic regime, which has been as-
sociated with dynamical heterogeneities [23, 24, 37]. The
onset of a plateau connecting the ballistic and diffusive
regimes of the MSD, concomitant to a negative long-time
tail of the VAC, appears only at low volume fractions and
can be attributed to two-particle encounters [10]. We de-
fer a more detailed discussion of these phenomena to a
forthcoming work.
The overall behavior of the MSDs can be understood

from their relation to the VACF [38]:

〈∆R(t)2〉 = 2t

∫ t

0

(

1−
s

t

)

Cv(s)ds , (6)

which predict a ballistic and diffusive regime,

〈∆R(t)2〉 ∼

{

t2Cv(0) (t → 0)

t
∫

∞

0 Cv(s)ds (t → ∞) .
(7)

Importantly, these relations hold independently of the
thermal or athermal nature of the system. In particular,
the ballistic scaling of the MSD merely reflects the fact
that particles move unperturbed at small times. From
this point of view, one might suspect that our observation
of an exponent n < 2 at early times is related to insuffi-
cient temporal resolution and that an exponent closer to
2 should emerge at sufficiently small times.
The diffusivity in the vorticity direction, as extracted

from linear fits to the MSDs, is plotted in Figs. 5b,c.
The behavior in the shear-gradient direction is similar,
although the relative magnitude of the diffusivity is larger
(smaller) for low (high) φ. The observed scaling behav-
ior can be rationalized from eq. (7), which yields, after
making use of eqs. (4) and (5):

D =

∫

∞

0

Cv(t)dt = 〈δu2〉τvΓ(1 + 1/b) ≃ 〈δu2〉
1

2λ . (8)

Here, Γ is the Gamma-function, which we have neglected
in the final result as it varies only weakly over the stud-
ied parameter ranges. Note that expression (8) applies
also to a thermal equilibrium system if 〈u2〉 is taken as
the kinetic temperature. Eq. (8) predicts D/γ̇ ∼ const.
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Fig. 5: Mean-squared displacements and diffusivity: (a) Typical MSDs observed in our simulations [legend in panel (b) applies].
(b,c) Diffusion coefficient D (in the vorticity direction), scaled by the intrinsic time and length scales, 1/γ̇ and r in dependence
of (b) capillary number and (c) volume fraction. (NB: For the data point at φ = 24% and the lowest Ca we have used simulation
parameters γ̇ = 0.0056 × 10−4, κS = 0.02, deviating from Table 1.)

in the Newtonian regime and D/γ̇ ∼ Ca−q/2 in the shear-
thinning regime, which is indeed confirmed by the data
shown in Fig. 5b. The canonical scaling D ∝ γ̇ at low φ
is characteristic for the purely hydrodynamic limit, where
the external shear rate provides the only time scale of
the problem [3, 8, 11]. In contrast, in the jammed case,
non-hydrodynamic effects, such as particle deformability
[13, 36], become relevant and give rise to anomalous scal-
ing of the fluctuations as well as of the viscosity. Devia-
tions seen in Fig. 5b at large Ca might be related to the
tumbling-to-tank-treading transition [29]. We point out
that, differently from [23,39], but similar to [19], structural
relaxation and macroscopic rheology are not connected by
a simple Stokes-Einstein-type relation (Dη ∼ const).

The diffusivity grows approximately linearly with φ for
large Ca and quadratically for low Ca (Fig. 5c). These de-
pendencies can be understood from the fact that rigid par-
ticles (small Ca) require three-particle collisions to break
the time-reversal symmetry of Stokes flow, while two-
particle collisions are sufficient when deformability is rel-
evant (large Ca) [3, 13, 36]. Remarkably, for low capillary
numbers, the diffusivity is a non-monotonic function of φ
and reaches its maximum near the random-close-packing
value of φc ≃ 0.66, consistent with the idea of critical
jamming point. The overall behavior is, by eq. (8), es-
sentially a consequence of the φ-dependencies of the ve-
locity fluctuations 〈δu2〉

1

2 and the empirical length scale
λ, which both grow up to approximately φc ≃ 0.66 and
then slightly decrease. For comparison, we remark that
experiments on RBCs in quasi-2D pressure-driven flow [4]
obtained D/(γ̇r2) ≃ 0.05 at Ca ≃ 0.008 and φ ≃ 0.33,
which is of similar magnitude to our results.

Stress fluctuations. – Owing to the deformability
of the RBCs, mutual encounters generate elastic stresses
in the cells which can affect their biochemical state [40].
Fig. 6a shows the root-mean-square of the particle stress
fluctuations δσyz , normalized by the average suspension
stress 〈σxz〉 = (η−η0)γ̇ (cf. [30] for computational details).
The observed scaling behavior can be rationalized by not-
ing that the release of a stress fluctuation δσ ≃ 〈σ2〉

1

2 is as-
sociated with a driving force Fσ ∼ δσ d2σ (dσ being a char-
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Fig. 6: (a) Root-mean-square of the particle stress fluctuations
δσyz, normalized by the average particle stress in the suspen-
sion 〈σxz〉. (b) Stress relaxation time obtained from stretched
exponential fits to the stress autocorrelation function [legend
in panel (a) applies].

acteristic length scale comparable to the cell diameter)

that produces a displacement by a velocity δu ≃ 〈δu2〉
1

2 .
Assuming the suspension to act as an effective medium
of viscosity η, Fσ will be counteracted by a drag force
Fd ∼ dση δu. Balancing the two forces gives

dσ〈σ
2〉

1

2 ≃ η〈δu2〉
1

2 . (9)

As our simulations show that dσ varies only weakly over
the studied parameter range, we find, using eq. (2), that

〈σ2〉
1

2 /〈σ〉 ∝ η1/2, which is constant in the Newtonian

regime and scales as Ca−q/2 in the shear-thinning regime,
in good agreement with the results in Fig. 6a. The bend-
ing of the curves at low Ca and large φ in Fig. 6a might
point to a different scaling behavior deep in the yield
stress regime, where possibly 〈σ2〉

1

2 ∼ 〈σ〉. The coupling
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between stress and velocity relaxation furthermore sug-
gests that the stress relaxation time τσ scales in a similar
way as τv (see Fig. 4b). This is corroborated in Fig. 6b,
where τσ has been determined from fits of a stretched
exponential decay to the stress autocorrelation function
〈δσxy(t) δσxy(0)〉 at small strains. A more detailed dis-
cussion of stress fluctuations will be presented elsewhere.

Summary and outlook. – We have shown that, be-
sides the complex dynamics of the RBCs, their position
and stress fluctuations generated in an athermal sheared
setup can be understood based on a simple dissipation
balance model, requiring only the viscosity as input. In
agreement with our scaling arguments, extensive numeri-
cal simulations show that (reduced) velocity fluctuations

〈δu2〉
1

2 /γ̇, stress fluctuations 〈σ2〉
1

2 /σ, diffusivity D/γ̇, ve-

locity and stress relaxation rates 1/τv,σγ̇ all scale ∝ η
1

2 ,
with η being the effective viscosity. Remarkably, the de-
tailed dynamics of the RBCs, such as the tumbling-to-
tank-treading transition [29], do not seem to play a dom-
inant role here. This suggests the generality of our ar-
guments, which can be straightforwardly applied to other
types of suspensions or extended to include further dissi-
pation mechanisms, such as intra-cellular viscosity.
Our results can be used to improve coarse-grained trans-

port models [5, 41] describing particle migration and seg-
regation effects. We have demonstrated that deviations
from the usually assumed canonical scaling behaviors are
significant and must be taken into account when devis-
ing proper constitutive relations. This should contribute
to the better understanding of the role of particle fluctu-
ations for nutrient transport, margination and occlusion
phenomena in blood flow [4, 5]. We finally remark that,
within the presently covered parameter region, the yield
stress is small and clear effective power-laws could be iden-
tified. For future work, it will be interesting to check our
predictions further in the quasistatic regime, where finite-
size effects are expected to become relevant [20,42] and the
reduced fluctuation variances might cross over to another
plateau.
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