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A neuromorphic chip with an array of neurons has connections
(“synapses”) which implement a biological learning mechanism known
as spike-timing-dependent plasticity (“STDP”). STDP is a homeostatic
mechanism which regulates the firing rate of neurons. This mechanism
is shown here to reduce variation in performance between neurons, due to
both mismatch in fabrication and inhomogeneities in the electronic design.

Introduction:Neuromorphic engineers create integrated circuits which
mimic neural computation in biological nervous systems. This may have
applications in real-time, low-power, mobile processing, particularly in
neural prosthetic devices. In a typical neural chip, analogue circuits
model the electrical behaviour of nerve cells, with currents through
transistors physically representing currents through nervous membranes
[1]. Mismatch results in variation in the excitability of integrated neurons.
Although this can be representative of the variation between biological
neurons, it is not always desirable. One way to compensate for this
variability is calibration through programmable neural network wiring [2].
However, in the connections between biological neurons (“synapses”),
there is a learning mechanism in which the relative timing of spikes
(the electrical pulses with which neurons communicate) from neurons
before and after a synapse causes changes in synaptic strength [3]. This
spike-timing-dependent plasticity (STDP), as it is known, has interesting
computational properties: it can detect correlations, with inputs to a neuron
which have more correlated activity working together to strengthen their
synapses at the expense of others which are weakened; also, when the spike
rates of inputs to a neuron are raised, the strengths of its incoming synapses
tend to reduce, providing negative feedback on the increase in the rate of
spikes produced, [4]. Thus STDP is a form of homeostasis, one of many
found in biological neural networks [5]. STDP can be used explicitly as
an engineering solution to ameliorate the effects of mismatch in analogue
computations [6]. Here STDP in its native context of a neuromorphic
chip is shown to partially compensate for mismatch as well as design
inhomogeneites.

Methods:In this work, a chip has been designed in order to investigate
issues in developmental neuroscience [7]. Its silicon synapses implement
STDP; the learning rule and the circuit used are fully described in [8].
To briefly describe the system, 32 neuron circuits are integrated on each
chip, each neuron had 64 dedicated circuits for incoming synapses, and 8
chips were used together to create a grid of neurons. Spikes, represented
as digital pulses, are received at synapse circuits and create currents in
proportion to the strength of the synapse, which is stored as a voltage across
a capacitor. These currents indirectly charge another capacitor representing
the activation of the neuron, and the neuron may then produce digital spikes
of its own. The spikes cause integration of charge on other capacitors
and this short-term memory of spike arrival times is used to change the
strengths of the synapses according to the learning mechanism.

0 20 40 60
0

20

40

60

80

Spike rate (Hz)

N
um

be
r 

of
 n

eu
ro

ns

(a)

0 0.5 1
0

20

40

60

Strength (normalised)

N
um

be
r 

of
 n

eu
ro

ns

(b)

Fig. 1 (a) Histogram of output spike rates for the neurons (mean rate: 44 Hz,
std.dev. 3.8 Hz); (b) Histogram of mean strength of all the incoming synapses
for each neuron (mean normalised strength: 0.48, std.dev. 0.039)

At every stage there is variation in the performance of different neuron and
synapse circuits, due to mismatch in integrated transistors and capacitors.
To observe the effects of mismatch on the excitability of neurons, the
synapses of each neuron were connected to the same set of inputs, and
typical input was provided. Thus in a completely homogenous system
with no mismatch, neurons should perform identically (excepting a small
contribution of electronic noise). The input consisted of independent
poisson spike trains (20 Hz); these were generated by a PC for a
simulated set of input neurons, and randomly connected to the 64 input
synapses of each on-chip neuron. The experiment lasted 10 s. Output
spikes were streamed back to the PC to be counted. The strengths
of synapses, represented as voltages, were sequentially sampled with a
custom recording system immediately after the end of the experiment.
These voltages were then converted into a normalised scale based on their
maximum and minimum possible values. Pearson correlation coefficients
were calculated, along with related one-tailed t-tests, for various groupings
of the on-chip neurons.

Results:Within each neuron, the same synapse would receive the same
spike almost simultaneously, as each spike is transmitted as a timed
pulse on physical wires spanning each chip and reaching each synapse.
During the experiment some neurons spiked more than others (fig. 1a);
fig. 2(a) shows how these spike rates were distributed around the neurons.
There are some broad differences between chips (inter-die variation) and
some random variation between neurons within the same chip. There
is also systematic variation within chips, with the right-most and left-
most columns of neurons spiking less than the columns in the middle;
this is the result of differences in the pulse lengths at each neuron, as
pulses are broadcast laterally across the chip; this inhomogeneity could
be engineered out with careful attention to the clock distribution network
[9], at the expense of design simplicity. Also, the bottom-right neuron in
every chip has a lower spike rate because some voltages in these neurons
were buffered out for test purposes, but the buffers added capacitance to
the neurons and affected their functioning; this inhomogeneity could be
compensated with a more complex design.

During the experiment, the strengths of the synapses quickly reduced from
their initial maximum level due to STDP, some more than others (fig. 1b).
Fig. 2(b) gives the distribution of these weights around the neurons. There
is an inverse relationship between the spike rate of a neuron and the mean
weight of its synapses — those neurons which spiked faster ended up
with more depressed synapses (the relationship is shown in fig. 2(c); it
is significant). This is the homeostatic effect of STDP in action; weaker
incoming synapses make the neuron less likely to fire, providing negative
feedback on the divergence of spike rates, so the spread is not so great as
it would be if not for STDP. Interestingly, this compensation worked not
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(a) Output spike rates by neuron (b) Mean strength of synapses by neuron
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Fig. 2 (a) Distribution of output spike rates across chips. Each raster
cell is a neuron. White gaps show the boundaries between chips. Shading
gives the output spike rate, white=fastest, black=slowest. (b) Distribution
of mean strengths of synapses for neurons across chips: white=strongest,
black=weakest. (c) Relationship of spike rates to mean strengths. Each data
point represents a neuron. Pearson correlation coefficient (ρ) = -0.61 (this
is significant: p=4.8× 10−28, n=256, one-tailed t-test). The mean of the
cells with extra capacitance in the corner of each chip is shown; its location
demonstrates compensation for low spike rate. Neurons are also grouped
by chip, showing compensation for inter-die variation (ρ=-0.85, p=3.8×
10−3, n=8, one-tailed t-test), and by column, showing compensation for clock
distribution inhomogeneity (ρ=-0.98, p=9.7× 10−3, n= 4, one-tailed t-test).

just for random variation but also for the aforementioned inhomogeneities
in electronic design. This is shown statistically for the variation between
columns due to pulse lengths (fig. 2(c) caption) and graphically for the
corner cells with added capacitance.

Conclusion:In a neuromorphic chip, STDP has acted to reduce variation
in performance between neurons, due to both mismatch in fabrication
and inhomogeneities in the electronic design. This type of learning
is unsupervised and self-contained; it does not require calibration. It
may prove fruitful for electronic engineers to investigate other neural
homeostasis mechanisms.
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