
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07051 Working Group Outcomes -- Programming Paradigms for
the Web: Web Programming and Web Services

Citation for published version:
Hull, R, Thiemann, P & Wadler, P 2007, 07051 Working Group Outcomes -- Programming Paradigms for
the Web: Web Programming and Web Services. in Programming Paradigms for the Web: Web
Programming and Web Services, 28.01. - 02.02.2007.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Programming Paradigms for the Web: Web Programming and Web Services, 28.01. - 02.02.2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/07051-working-group-outcomes--programming-paradigms-for-the-web-web-programming-and-web-services(a3b02059-3894-49fb-b6d3-3922d518d18f).html


Dagstuhl Seminar 07051
Programming Paradigms for the Web:
Web Programming and Web Services

28.01.2007–02.02.2007
Working Group Outcomes

Rick Hull1, Peter Thiemann2, and Philip Wadler3 (editors)

1 Bell Labs, Lucent Technologies
600 Mountain Ave., 2D-510, Murray Hill, NJ 07974, USA

hull@alcatel-lucent.com
2 Albert-Ludwigs-Universität Freiburg, Institut für Informatik

Georges-Köhler-Allee 079, 79110 Freiburg, Germany
thiemann@informatik.uni-freiburg.de

3 University of Edinburgh, Department of Computer Science
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh

EH9 3JZ, Scotland
wadler@inf.ed.ac.uk

Abstract. Participants in the seminar broke into groups on “Patterns
and Paradigms” for web programming, “Web Services,” “Data on the
Web,” “Software Engineering” and “Security.” Here we give the raw
notes recorded during these sessions.

Keywords. Web programming, web services, programming paradigms,
analysis and verification, implementation techniques and optimizations

1 Overview

During the initial plenary session, the attendees as a group created a list of topics,
which became working groups. These included “patterns and paradigms,” “web
services” “data on the web,” “software engineering,” and “security.”

“Patterns and Paradigms” concerned familiar problems of web programming
and their solutions (patterns), as well as whole solution styles (paradigms). This
group was large enough to break into several sub-sections which each took a
different path.

The “Web Services” group looked into the problems that arise when pro-
gramming web services, that is, programs that talk to other programs over the
web (as opposed to users). This included issues like service discovery and com-
position.

“Data on the Web” asked whether data should be organized in new ways for
web programming, and whether databases should take on a new form to better
support it.

Dagstuhl Seminar Proceedings 07051
Programming Paradigms for the Web: Web Programming and Web Services
http://drops.dagstuhl.de/opus/volltexte/2007/1127



2 R. Hull, P. Thiemann, P. Wadler

“Software Engineering” examined the process of creating software, and the
special difficulties that arise in programming web software—for example, the
novel interaction between programmers and web designers, or the demands
placed on software engineering through the always-on nature of websites.

The “Security” group, last but certainly not least, examined new security
challenges that have cropped up with the web, which becomes increasingly im-
portant as we become more dependent on web browsers in our day-to-day use
of computers.

Each attendee participated in more than one working group, and each dis-
cussion was captured on the seminar’s wiki or on paper. This document contains
the raw records of these discussions.

These discussions incorporate the active participation of all the attendees:
Serge Abiteboul, Nick Benton, Ezra Cooper, Daniel Deutch, Susan Eisenbach,
John H. Field, Christophe Fouqueré, Alain Frisch, Martin Gasbichler, Michael
Gruninger, Haruo Hosoya, Richard Hull, Dean Jacobs, Trevor Jim, Shriram Kr-
ishnamurthi, Niels Lohmann, Florian Loitsch, Bogdan-Eugen Marinoiu, Florian
Matthes, Jay McCarthy, Tova Milo, Yasuhiko Minamide, Tom Murphy, An-
ders Møller, Matthias Neubauer, Barry Norton, Peter Patel-Schneider, Matthias
Radestock, Mukund Raghavachari, Helmut Seidl, Manuel Serrano, Bertrand Sou-
ville, Jianwen Su, Peter Thiemann, Philip Wadler, Stefan Wehr and Jeremy
Yallop.

2 Outcomes

This section collects the outcomes of the working groups. Each subsection is
authored by members of the group with some editorial changes.

2.1 Patterns and Paradigms

Discussion participants: E. Cooper, J. Field, T. Jim, S. Krishnamurthi, J. Mc-
Carthy, M. Neubauer, J. Yallop

What are the challenges of multi-tier programming and what are ap-
proaches to overcome these?

– challenges of multi-tier/locale programming
• keeping browser and server in sync
• keeping schema and program in sync
• keeping application logic and database in sync
• exacerbated by scalability, security aspects

– tierless programming languages and paradigms
• HOP (client/server)
• Links (client/server, database)
• ML5 (generalized client/server)
• Reactors/Collage (databases, transactions, client/server)



Dagstuhl Seminar 07051 Working Group Notes 3

– tiered approaches
• Servlet analysis [Møller et al]
• introspective Framework [Matthes et al]
• Flapjax [Krishnamurthi et al]

Discussion Notes

Tiered/tierless discussion points

– should there be a dichotomy at all?
– web service (broadly defined. . . lots of autonomous entities on the net) inter-

action necessarily introduces “tier” distinctions
– explicitly distinguished servers vs. implicit “theServer” in standard client-

server architecture
– one distinction: explicitly distributed programming model vs. virtual single

function/process/program
– introduce tier distinctions as a separate annotations/advice
– resolved: tiered/tierless distinction is not very important. . . just a question

of style
– dimensions:

• primitives for communication?
• is there a distinguished/implicit server?
• do some nodes have distinguished capabilities (e.g., only broker can talk

to external web services)
• how is reactivity managed?

∗ explicit language support
∗ libraries
∗ patterns (e.g., callbacks)

Functional-reactive programming a solution?

Web games as challenge problem

– hard to do using standard web components
– synchronizing multiple browsers difficult
– scaling/performance issues in the presence of shared state

Long-running transactions are difficult

– has this been solved outside the web?
– even harder to do with standard web protocols
– how do you support this pattern?
– maybe it’s always ad-hoc?

User management / identity / login / access control

– very common pattern; many languages provide no support
– support for “roles”/policy?
– session management closely related



4 R. Hull, P. Thiemann, P. Wadler

Page flow management

– is this “inside” the web language or outside?
– how to translate designer’s page flow design into code?
– special support for MVC pattern?
– should we have special abstractions?
– is the whole idea of “page flow” becoming dated?
– want to make “logical pages” linkable (i.e., they need a URL)
– this may be partly a matter of proper software architecture
– managing browser cloning, back button, etc.

Dealing with untrustworthy client, network, . . .

How to program crypto protocols on the web? (cross-cutting concern)

– can’t assume that they’re baked into the infrastructure
– not a good idea to bake all protocols into the infrastructure
– HTTPS doesn’t do it all, e.g., non-repudiation

Flickr as challenge problem (“rich” GUIs as challenge?)

– photos can be part of multiple albums
– coordinating little web widgets, animations, etc.
– how to do this stuff w/o 1000’s of lines of JScript?
– what is the right GUI toolkit for the web?
– how to do fancy stuff while maintaining ability to access web in a lightweight

way?
– easy stuff is easy, hard stuff practically impossible (on the web)

Interfacing with legacy

– JScript
– Web services
– data stores
– third-party libraries (client-side, server-side, whatever)

Lack of good interface/contract technology for web components

– a lot of good ideas out there, just need to get them used
– need “ontologies”, but current technologies too heavyweight
– is there something lighter. . . like folksonomies.

Resource management for stateful services

– does affect web programming models
– stateless is nice. When do you release stuff that’s no longer relevant? [With

today’s storage capacities, is it necessary to release anything?]



Dagstuhl Seminar 07051 Working Group Notes 5

“Basic” web programming benchmarks/baselines

– wiki/blog
• users can add content
• versioning

– mini eCommerce (catalog order app). Not THE wine store, but something
with a clean spec.

– hotel selection with appropriate user interaction pattern
• user explores graph of options, needs to move back and forth through

space without getting losing context
• want back/clone/refresh to have sensible semantics from user perspective

– client-side mashup (e.g., Yaggle)
– draggable lists and similar UI functionality
– chat

Performance

– optimizations in this space are primitive or nonexistent
– want to optimize across tiers
– want implementation to reflect nonfunctional requirements
– take advantage of existing work on data synchronization,

distributed message opt., data- and control migration
– background syncronization of client-server state

Want challenge problem(s) to test scalability Specifically, set of well-defined
apps/input sequences

Browser is an OS but not a very good one at this point

– want to blur OS/PL boundary. . . implies PL needs more OS-like features
– need to do it right. . . learn from previous efforts

What are some representative programs that highlight challenges in
web-based programming (and how do various frameworks compare on
these?)

What are the primary design patterns/idioms/mechanics of web pro-
gramming and of web services, and produce a useful taxonomy/ontology?

Summary Group #1 scribe Ezra Cooper

Two extremes of web programming:

– Document-centric, open
Hypertext-Web ⇒ Content Managemnt Bookmarking, Sending links to a
friend, Importance of URI & Document Searchable, Accessible

– Experience-centric, closed
Browser as Interface to a remote Application, Flash-based games & apps



6 R. Hull, P. Thiemann, P. Wadler

Web services and web applications

– Agreement that apps are an instance of web services, or:
– two possible interfaces to one core.

• User-facing ⇒ Web Applications Computer - Computer ⇒ Web Services
programing

• Two approaches: Human User first, Serve first
User-Centered design vs. Service design

– Commonalities: Remote store
Composabality at the page level (mashups), e.g. Flickr images, Maps,

Patterns (and Problems)

– URL. Encodes a view (of data) and/or some actions
– Redirect after POST so that action cannot be repeated.
– Unexpected control flow due to back-button (controlling this)
– Persistence of previous states, mutability of state
– Paging (of lists of results)
– Login screen
– General umbrellas:
– Authorization - Access Control
– (Untrusted Clients)
– Controlling machine consumers: Crawling / Robots as Roles
– Redundant validation (Client and Server)
– Incremental Checking / Form Validation (?)
– Site Navigation and Orientation (Menus, . . . )
– Page-level assembly of components (fragments)
– • Portlets

• Mashup (components from different sites)
– Notification

• RSS-Feeds (Streams) & Ping vs. Event-Based architectures
Processing feeds : combining filtering.

• Notification of Clients through blocking read ⇒ “Comet” (synchronous
mode of interaction)
problem of routing information between multiple clients connected at
once (technical problem: # of sockets, when to close it?)

• Loose structures
∗ Tagging vs. Ontologies
∗ Queries vs. Folders

Summary Group #2 scribe Jay McCarthy

Login

– Get login and password
– Identity management
– Unsolved problem: Many logins for closely related entities
– Difficulty: HTTP-Auth or GET/POST authentication (different security and

relates to below)



Dagstuhl Seminar 07051 Working Group Notes 7

Correlating new login with running sessions/servers

– Found in web services and web applications
– Jay doesn’t like being logged out when you open new sites

• Not like in PLT
• More difficult in different authentication regimes

Maybe change browsers to stop re-logging when open a new window, but
this is new semantics

• Firefox profiles are like this
• Most businesses are not interested in this

– Concurrent sessions of some kind managed by clients
• Some limitations on browsers and many servers don’t work with it
• Manuel [Serrano]: Starts Firefox and Mozilla when he wants this.

– Determining shared ontologies based on what both speak, so they can es-
tablish common meaning

Service discovery

– Like mining jungloids and type inhabitation
But with more interesting description of what is needed than types

– Do I ask for one service or service composition?
Dynamic composition for latter

Conversations

– One service looking for 3 things and another can deliver 2
– Manufacturing product: Needs plant utilization, orders, and available ma-

chines
– Calculator: Addition, Subtraction, and not Multiplication
– Only machines, rather than just clients and servers
– Rather than a programmer looking through a manual and finding the ser-

vices, he specifies what is needed, rather than how to get it
– How does a conversation end?

One ultimate initiator, with a goal that is achieved
– Like distributed transactions? and long-running transactions?
– Built on top of service discovery?

When a service doesn’t answer yes or no, but maybe or partially

Transactions

– [What is a long-running transaction?]
• No hope of locking everyone else out, because it is so long
• Must apply compensations to undo, but external observers saw incon-

sistencies
• No, a better notion is: Unfair, maybe, if it is too long it will always be

preempted
– Most credit card payment services are not as robust as you’d like



8 R. Hull, P. Thiemann, P. Wadler

– Ad-hoc protocols may not be enough when you need to integrate multiple
components

– BPEL extension to compensate multiple parties and receiving failure notifi-
cation

– Compensations may not be exact — send a sorry card for the bomb
– Traditional ways just don’t work
– One level beneath is failure discovery and propagation

• Are these broken on the web as well?
• Lack of connectivity is like hardware errors

Reusing code without cutting and pasting or reading

– Moving things from the backend to the frontend
– Interfaces and types

• Are the types in web services enough? Or are the web applications
enough?

• Patterns of interaction, rather than just input/output types
Like session types

• Do we need more?
• Types/contracts have been useful outside the Web
• Maybe the Web is different in this way and need more
• And with more complicated types, how do you verify that implementa-

tions meet
– Checking something discovered dynamically, must be checked with contracts

• Or with proof carrying code—by Phil Wadler or compilers
• You must have some trusted base

– Problem of saying interesting enough things without requiring NP-hard ver-
ification
• The perfect is the enemy of the good
• Confusing a product with a sum
• Confusing an airplane’s idea of customer to a train’s idea of customer

Is Web Programming fundamentally different?

– Idiom that implies convergence: Portals—user oriented web page that inte-
grates others—presentation oriented component integration

– Shown in a browser, but composed in a style like web services

– Web programming is providing a fronted for web services?
Portals compose the frontends, not the services

– Where it happens — server or client — doesn’t matter
Client-side portal or Server-side mashup

– What to learn?
• The server has finer composability
• The client is more sexy and ad-hoc

– Why should they be different?



Dagstuhl Seminar 07051 Working Group Notes 9

Buying a house is complicated in the US, with manual transactions

– So many people are involved
– People hate each other
– Misunderstandings about tiny bits of the contract
– People don’t want to share some secrets, must share others, and keep them

consistent
– What would stop you?

• Web services don’t handle the long running-ness
• If something important fails it is difficult to undo
• Fire lawyer, real-estate, etc in the middle and get another

– Could we hack it together or do we need something principled?
– Tax applications are like this

They release new versions every year

Summary Group #3 scribe Shriram Krishnamurthi
Because good software engineering practice demands that we focus on the

problem space before we dive into the solution space, we organized our discussion
around problems and challenges that people had identified. These issues fell into
the following loose categories.

Use Patterns

– Web users employ a host of browser-endowed operations that confuse and
complicate the flow of control in the application, which must now guard itself
against these.

– The need for continuous provision of service places new demands on the
structure and implementation of applications.

– The Web offers both the ability to continuously monitor what users are
doing — without having to ask for their permission — while simultaneously
demanding that sites do [the monitoring] to ensure a reasonable quality of
service (a concern that software vendors of traditional desktop applications
were previously able to push onto the end-users).

Program Structure

– Compared to desktop applications, Web applications have a much broader
range of scopes (single-client, multi-client, browser, shared, . . . ) and extents
(round-trip, session, eternal, . . . ) for data.

– The tiering of applications creates difficulties, with different languages [and
data encodings] often used in different tiers.

– The fragmented structure of Web applications (broken up by response points)
complicates the task of program analysis, because just reconstructing what
the “program” is takes effort (and may yield an answer that is not compatible
with the expectation of traditional program-analysis tools).

– While any platform may use multiple languages, this seems almost de rigeur
on the Web, creating a further challenge for program analyses.



10 R. Hull, P. Thiemann, P. Wadler

Data Management

– The distribution of data across autonomous and potentially uncooperative
peers makes it difficult to apply many traditional database techniques.

– Query planning and related tasks must now take into account the access
control restrictions of the domain.

– The lack of centralization in Web services, such as loosely-coupled B2B pro-
cesses, poses a challenge for data administration.

Security and Privacy

– Publishing data through Web interfaces demands the securing of sensitive
data.

– Centralizing data on the Web, and giving different people access to the same
central data, highlights the need for care in data dissemination (access con-
trol and information flow)

– Moving data between clients and servers, or between services, demands the
proper use of encryption and related techniques.

– Whereas application writers have traditionally not needed to deal with struc-
turing programs around multiple users, [such structuring] becomes critical
in a typical shared Web application.

– The various forms of patterns that sites use to identify users and data lead
directly to means for violating the privacy of users; how can we have the
former without the latter?

Scalability

– Scalability must now be performed across a variety of potentially uncooper-
ative and often non-homogenous machines.

– The scalability techniques available to Web applications, such as router hard-
ware support for dispatching to servers on the basis of cookie information,
has no analogue in Web services.

2.2 Web Services

Two very different approaches to typing arise from logic: ontologies
and description logic on the one hand and types as found in program-
ming languages on the other. How do these compare and contrast?

– WSDL-S allows to attach rich information concerning the types of input/output
arguments of web services. In particular, one can link to OWL-DL and use a
description-logic-based specification, and/or one can use a conventional rich
typing mechanism.

– The Curry-Howard correspondence or propositions-as-types relates logic to
types and proofs to programs.



Dagstuhl Seminar 07051 Working Group Notes 11

How do we describe the effects of web services in a way that supports
reasoning and querying? How do the approaches used in the semantic
web community compare with the type and effect systems used in the
programming languages community?

– OWL-S, DAML-S
– effect systems in programming languages (Gifford and Lucassen; Wadler and

Thiemann)

What forms of service discovery, composition, and analysis might we
expect to realize in the short, medium, and long term?

– What are useful approaches to expose, reason about, and program with [data,
info, content] in the context of web (services) programming?

– Is the problem of “automated composition/synthesis of services” discussed
by the Semantic Web Services community handled in some way by techniques
from other fields (e.g., type theory)?

– Is there a relationship between the business model and composition? (In-
terest in automatic service composition might be less because it removes
opportunities for selling ads.)

– BP-QL

2.3 Data on the Web

edited by Serge Abiteboul, Rick Hull, Dean Jacobs

Why is managing data on the web fundamentally different than in
other distributed database settings? While accessing and managing the
data on the web can take advantage of much of the standard database manage-
ment techniques, the workshop participants identified several areas where new
techniques are emerging or are needed. Key areas are reflected in the questions
below. We focus here on database reads. Database updates are usually controlled
by application-specific web services, and these side-effecting services have been
discussed in the preceding section.

At a fundamental level, the challenges of data management on the web stem
from loose coupling of services, their autonomous creation and management, the
emergence of community-created data sets, and the predominance of streaming
rather more static data.

What are the challenges of managing and working with meta-data in
the web context? In a local database, and in a centrally managed distributed
database, you know the schema, you know its semantics and you can easily
write applications on it. On the Web, you possibly just discovered the schema
and it may not even be what you expected or wanted to see. Indeed, for many
large bodies of data on the web today, such as user-generated photos or videos,



12 R. Hull, P. Thiemann, P. Wadler

there is essentially no database schema, and tags are used to find objects of
interest. Furthermore, these tags are often generated by users through various
community mechanisms. This contrasts with the conventional approaches to data
management, which rely on a database schema or ontology, as in the area of the
Semantic Web. Going forward, it will be important to develop linkages between
these two approaches to describing and accessing web data.

For cases where database schemas are available, the data that you are in-
terested in may come from (a possibly large number of) heterogeneous data
sources typically as Web services. This is branching to all the work on (seman-
tic) integration and to the need for also exchanging information about resources.
An immediate challenge is to provide a unifying database schema for the data
of interest to a user or application, along with mappings that relate the data
offered by the individual services to the unifying schema. Existing techniques
include “Global as View”, the “Local as View” approach pioneered in [?], and
hybrids of these. For example, [?] develops an approach based on the use of the
Entity Relationship model for representing the global schema and description
logic based reasoning have been developed. Ontologies, or techniques such as
Data Exchange [?] additionally provide mechanisms to incorporate relationships
between data sources. A key challenge concerns how robust the above frame-
works are in the context of loose coupling, data source evolution, and inexact
correspondences between the schemas of the data sources. Querying across the
union of multiple unifying schemas is also a challenge. There is also a sociolog-
ical challenge, namely, it is not clear what will motivate communities to invest
the resources to develop and maintain unifying schemas and their associated
mappings. One approach that may help overcome this problem is provided by
the ActiveXML framework [?]. An ActiveXML source essentially provides an
XML schema, but some nodes of the XML document may be pointers to remote
ActiveXML sources. This approach permits a more “organic” or distributed ap-
proach to the creation of unifying schemas.

What makes data on the web different than traditional data? Streams
are at the core of Web data management. They arise naturally in many places,
e.g., subscriptions (cf. RSS), sensors, and interaction with browsers. Further-
more, when query processing large quantities of data it is sometimes convenient
to stream the answers, because of both the transfer time latency (especially if to
a browser) and the possibly cyclic nature of how the data sources refer to each
other. Recent work in the database community on streaming data is relevant
here, but has not yet been focused on challenges specific to the web, such as the
need to support subscriptions against an integrated view of multiple streams.

Change control also takes a very different flavor. Standard transaction tech-
niques developed for distributed database systems are typically not adapted, be-
cause of the autonomy of sources and possible transfer time latencies. There is
more emphasis on aspects such as reconciliation, asynchronicity, pub/sub mech-
anisms, and broadcasting.



Dagstuhl Seminar 07051 Working Group Notes 13

Finally, scaling comes with a new bias in some applications, not because of
the size of data or the rate of queries (that is standard in databases) but in the
number of peers that are possibly involved, thousands or more. An important
aspect here is distributed optimization in the context of loosely coupled sources.
For example, query plans may be distributed, but challenges arise in communi-
cating plans between the sources and enabling cooperation between them (e.g.,
for tuning, healing, statistics gathering, etc.)

What can be done about the “impedance mismatches” for data on
the Web? The “impedance mismatch” between programming languages and
databases has been studied for many years. The problem is that data types in
programming languages differ from data types in databases, thus type conver-
sions must be performed at the boundary between the two. Such type conver-
sions make programming more difficult and more error prone, and make program
execution less efficient. Techniques for automatic type conversion, such as Ob-
ject/Relational mapping, reduce but do not eliminate the programming complex-
ity. More comprehensive solutions include pushing programming language types
down into the database, e.g. in persistent programming languages, and pulling
database types up into the programming language. Neither of these approaches
has achieved wide-spread acceptance.

The introduction of loosely-coupled programming over the web has exac-
erbated the problem by introducing a second type conversion boundary. Data
traversing the web using Web Services protocols is represented as XML. When
it enters a program for processing on an application server, it must be converted
to programming language types, a process referred to as data binding. Again,
automatic type conversion can reduce but not eliminate the programming com-
plexity. Moreover, it can result in a loss of information, as not all aspects of an
XML document can be captured. At a fundamental level, XML is becoming the
intended form for data rather than just a form for its transport.

Researchers have been pursing the expected comprehensive solution: ele-
vating XML to being a first-class data type in programming languages and
databases (e.g., [?] was presented at the workshop). This approach is likely to
achieve acceptance for applications that are fundamentally transport-oriented,
however it may not be universal. Computationally-intensive applications will
continue to bind to programming language types and query-intensive operations
will continue to bind to database types.

2.4 Software Engineering

edited by Susan Eisenbach
One key issue in software engineering is the interaction between social and

technological problems.

Are there problems in software engineering and software lifecycle that
are somewhat unique to the web? With regards to trouble shooting, de-
bugging, and maintaining operational web applications (24x7, high volume), are



14 R. Hull, P. Thiemann, P. Wadler

there aspects that make this different than in more conventional kinds of appli-
cations?

How can we foster separation of concerns between web designers and
web programmers?

– Contracts for Cooperation (Moeller and Schwartzbach)
– Templates (as in Florian Matthes’ talk)
– real practical problem (Matthias Radestock)

Even assuming that the models and tools for producing code, data,
processes are sensible, what are the non-functional factors that can
make a website fail?

– scalability & performance
– usability
– evolution and deployment
– availability 24/7
– adding value through customization
– translation

Open software engineering research questions

– How do you do testing of websites? (Some tools available, e.g., Selenium.)
– How do you encapsulate the different concerns of a website?
– How do we evolve websites continuously, distributed and consistently?

Are there Software Engineering concerns that should be taken into
consideration when designing programming models and languages?
Having good technology to produce a website is desirable, but not sufficient to
guarantee that the website will be successful. There are many problems that
arise when people use websites. Some of these occur with any large distributed
program, but there are problems that are primarily or completely web based.
For example, there are some ways to test websites but it is clear that many are
going live without thorough testing.

One of the promises of the web is that it is usable by the untrained user
24 × 7. This puts constraints on the user interface that non-web applications
do not have. Programmers as a group may have difficulties empathizing with
technologically challenged website users. The 24 × 7 nature of the web means
that a poorly designed website, if used at all, will need serious support. One of
the ways to get new users confident in using technology is to customize software
so that it is very simple and then add the functionality as the users become
familiar with the system. The idea of not giving users the full functionality of
the product and then revealing functionality is often surprising to developers.



Dagstuhl Seminar 07051 Working Group Notes 15

The web development world uses designers, but this in itself causes diffi-
culties as abstraction skills are very different between programmers and de-
signers. Can we characterize a common basis of understanding for both de-
signers and programmers? Can we find a model that could present both the
designer’s and the programmer’s view? As an example, there seems to be no
way in today’s tools for a designer to say there should be alternating colors
for the items of a list. This kind of problem is not unique to web program-
ming. How does the game programming world solve this problem? Research
languages are being designed without thought to usability and how design-
ers can be part of the development process. See the talk by Florian Matthes
http://kathrin.dagstuhl.de/files/Materials/07/07051/07051.MatthesFlorian1.Slides.pdf

The massive growth in computer users because of the web makes performance
and scalability a first class problem on many sites. If a site does not have a fast
response time and there is any competitor people will seek out the competition.
We don’t yet have cost effective solutions that would enable all websites to have
reasonable performance.

One of the pressures on websites is that they must always provide new func-
tionality and today’s look. Hence, web programmers must be able to update live
code and persistent data, not an easy task. If the site is large and there is also dis-
tributed development then there is a serious problem of maintaining a running,
consistent site. Serious work needs to be done on evolution and deployment.

2.5 Security

What is wrong with JavaScript and browser security mechanisms?

– The same-domain restriction prevents a script in a web page from accessing
data from pages from other web sites (domains). E.g., a script in a page from
skeletor.evil cannot access data from a page from bank.com, when both pages
are loaded in a browser.
• Good: this prevents Skeletor from stealing banking information.
• Bad: this prevents mashups.

∗ People are trying to evade the same-domain restriction by using
Flash-JavaScript bridges. Flash has different, and, in some ways,
less onerous restrictions.

∗ People also get around this with proxies, e.g., Yaggle (the Yahoo/Google
Maps mashup of Shriram et al.). A problem is that the proxy might
require your credentials, so it must be highly trusted.

– Shriram Krishnamurthi points out that there is insufficent isolation of tabs
for different sites in the same browser (one tab takes up all cycles and the
others starve). This may be improved in new browsers. Unfortunately this
means that concerns that are typical for OSes start to become concerns of
the browser.

What changes to JavaScript and browsers could improve security?

http://kathrin.dagstuhl.de/files/Materials/07/07051/07051.MatthesFlorian1.Slides.pdf


16 R. Hull, P. Thiemann, P. Wadler

– We would like hooks to be built into the browser and ?JavaScript interpreter
that would allow us to intercept certain actions before they occur.
• This was used in Trevor Jim’s talk to prevent script injection, via whitelist

and other policies.
• We might be able to use this to implement a more fine-grained security

model, e.g., something like Java’s. Jay mentioned running an instru-
mented interpreter written in JavaScript; Trevor thinks this has already
been done.

– Trevor Jim and Jay McCarthy both suggested having more efficient crypto
libraries exposed. This would allow us to program up new security protocols
and primitives directly in JavaScript without paying a huge performance
penalty.
• Some of Trevor Jim’s policies to prevent script injection would get better

performance this way (whitelists).
• Jay McCarthy had a couple of examples: a bank transfer purchase order

often requires authentication beyond that given by https; and multi-
party protocols, where https is clearly not sufficient.

– Tainting (dynamic tracking of information flow) could be useful. Note, this
used to be in JavaScript, but was removed.

How can we formalize script injection/cross-site scripting and prove
that a web application is not vulnerable to it? We considered this question
but do not have a final answer. It may be possible to formulate a very general and
abstract notion, but, in the end, what you want is going to involve a semantics for
a web application framework and a proof that no app written in the framework
can exhibit a certain behavior (producing an injected script).

What kinds of languages and language features can help us write more
secure web applications?

– Systems that act as web application “compilers” can “compile in” security.
By web application compiler we mean a system in which you write a pro-
gram and which transforms that program into a client-side and server-side
program.
• Trevor’s suggestion is a security monitor that operates at the web API

(inserting checks at each http message). The enforced policies could be
derived from a static analysis of the program and could include control-
flow, possible values of parameters, etc. This can foil some script injection
attacks as well as some other attacks.

• Good: tool support could be a uniform solution that can be applied
uniformly.

• Good: static analysis may be enhanced: rather than trying to analyze the
client- and server-side separately, you have a single, uniform analysis.

• Bad: this may hide details of the compilation target and these could be
exploited.



Dagstuhl Seminar 07051 Working Group Notes 17

• Anders Møller gave a talk about JSPs generating XML via printfs, and
checking the output. This means that a web applicatoin compiler may
not be necessary for automated hardening.

– Information flow systems are clearly useful, e.g., the work of Myers et al. It
is notable that none of the tool builders here is doing this so far.

– Denial of service protections. Systems could build in monitoring that at-
tempts to ensure that the web application is only used by humans, e.g., pre-
vent 100 clicks per second in a session. Have compilation flags like -Ohumans
and -Orobots. (Like most denial of service protections this would be far
from perfect.)
• This sort of protection could have made things harder for the Samy/MySpace

worm.
– High-level languages are easier to reason about in general, but beware that

the actual program running is at the low-level and may have different be-
havior.

– Static checks give earlier guarantees of errors (resource utilization etc.). But
in security, you don’t control part of the system, hence guarantees are dif-
ferent than in the typical scenario. If you are worried about security you
will need additional dynamic checks that are not needed in a non-security
scenario.

3 Conclusions

The meeting was very productive, it provoked many new ideas and provided
new perspectives on the topic. The participants learned a lot from each other, in
particular, there was a lively exchange of knowledge between the programming
language and the database world. We hope to further consolidate the results in
an article that provides research directions for web programming and related
areas.


	 Dagstuhl Seminar 07051 Programming Paradigms for the Web: Web Programming and Web Services 28.01.2007--02.02.2007 Working Group Outcomes 
	Rick Hull, Peter Thiemann, and Philip Wadler (editors) 

