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Abstract

Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to
mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope
transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-
one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters
of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin
compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a
number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/
STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to
either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response
factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the
cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the
condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted
chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a
previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general
chromatin architecture.
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Introduction

The wide range of functions recently ascribed to the nuclear

envelope (NE), the double membrane system surrounding the

nucleus, indicates that it is a major signaling node for the cell [1,2].

One of these functions appears to be the organization of

chromatin. Indeed, gross structural rearrangement of chromatin

is observed in a variety of diseases linked to the NE. In normal cells

the majority of dense chromatin as inferred from electron

microscopy (darker negative stained regions — the original

definition of heterochromatin) occurs at the nuclear periphery.

In cells isolated from patients with several NE-linked muscular

dystrophies and cardiomyopathy this dense chromatin redistrib-

utes away from the NE [3–7] and similar chromatin distribution

defects are observed in a mouse model for NE-linked cardiomy-

opathy [8]. Moreover, in cells from patients with NE-linked

progeria, mandibuloacral dysplasia, and lipodystrophy the dense

chromatin partly or completely dissipates [9–11]. In addition to

these ultrastructural observations, changes in the distribution of

epigenetic silencing marks were found in cells from patients with

NE diseases and in tissue culture cells expressing disease mutations

[12–14], leading to the idea that loss of this silencing function at

the NE might alter gene expression to yield the disease

pathologies. Indeed, changes in gene expression were found in

patients with NE-linked muscular dystrophy and were recapitu-

lated in a mouse model for this disease [15,16].

The NE is thought to provide a principally silencing environ-

ment for several reasons. Early electron microscopy studies

observed considerable dense chromatin at the nuclear periphery

in resting lymphocytes that have little transcriptional activity while

this dense chromatin largely dissipates in the activated state

[17,18]. Several individual genes have also been observed to move

from the periphery to the nuclear interior as they become

activated, including the IgH locus [19], the Mash1 and CFTR
genes [20,21]. A more global profiling of genes and chromatin

proteins in contact with NE proteins also supported the idea of the
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periphery as a generally silenced environment [22–25]. Thus

disruption of this organization could have major and pleiotropic

consequences for gene regulation.

The proteins mutated in diseases linked to the NE include both

the nuclear lamins that form an intermediate filament meshwork

underlying the inner nuclear membrane and several NE trans-

membrane proteins (NETs). Lamins themselves have been found

to bind core histones [26–28], though no preference for modified

histones was reported [29]. However, a more recent study found

that an unprocessed form of lamin A could bind to heterochro-

matin protein 1 (HP1) alpha and that a farnesyl modification

associated with a mutated form of lamin A in NE-linked progeria

reduced this binding [13], though whether this binding also occurs

with the processed lamins of other NE diseases has yet to be

investigated. Some NETs, however, are known to associate quite

specifically with silenced chromatin. For example, in yeast the

nuclear membrane protein Esc1 interacts with Sir4 [30], while in

mammals lamin B receptor (LBR) binds HP1 alpha and gamma

[31] and preferentially binds to histone H3 carrying K9 tri-

methylation that supports gene silencing [25,32]. Additionally, the

NET LAP2b can recruit HDAC3 to the periphery to deacetylate

histones and thus maintain/increase silencing at the periphery

[33]. Most of the NE-linked diseases with gross changes in

heterochromatin have mutations in lamin A and the NETs LBR

and LAP2b that affect heterochromatin have been reported to

preferentially bind lamin B1; thus it is likely that other NETs exist

that mediate the heterochromatin changes observed in most of

these diseases.

One such NET that has been extensively investigated is emerin.

Both mutations in lamin A and in emerin that cause Emery-

Dreifuss muscular dystrophy result in the redistribution of electron

dense chromatin away from the nuclear periphery [5–7]. Whereas

LAP2b has been reported to bind lamin B1 [34], emerin has been

shown to bind lamin A [35]. Although emerin has not been shown

to bind specifically to chromatin with epigenetically silencing

marks, it has been found to, like LAP2b, interact with HDAC3

[36]. Moreover, it has been found to bind to transcriptional

repressors germ cell-less (gcl) and Btf [37,38], which could either

sequester the repressor away from targets in the nucleoplasm or

potentially assist in recruiting their nuclear gene targets to the

periphery. Indeed, it has been reported for both LAP2b and for

emerin that their interactions with HDAC3 contribute to changes

in spatial genome organization [39,40].

To identify other NETs that might be involved in silencing/

reorganizing chromatin either directly through compaction or

through recruitment of silencing factors and thus possibly

contribute to chromatin defects in NE-linked diseases, a panel of

NETs that had been identified by proteomics [41] was screened

for their ability to promote chromatin compaction when

exogenously expressed based on a simple visual readout. This

identified NET23 (gene name TMEM173), also subsequently

called STING, MITA, MPYS, and ERIS [42–46] as a strong

promoter of chromatin compaction. Several studies have now

linked this protein to signaling events in innate immune responses

upstream of the nucleus [42,46], but have ignored its function in

the NE. Nonetheless, chromatin remodeling, particularly through

epigenetic modification, is associated with innate immunity

[47,48], and this is the first indication that NET23/STING might

contribute to these signaling events in innate immune responses

via chromatin remodeling. The compaction induced by NET23/

STING was accompanied by changes in the epigenetic state of

chromatin associated with silencing and the amount of compacted

chromatin observed in a variety of untreated cells correlated with

the endogenous levels of NET23/STING protein. Thus NET23/

STING appears to add a chromatin remodeling function that

contributes to establishing a particular chromatin organization in

different cell types. This may indicate a novel nuclear function for

NET23/STING in innate immune responses and may be involved

in some of the chromatin changes that occur in wide-ranging NE

diseases.

Results

A screen for NETs that promote chromatin compaction
To identify novel NE proteins that affect the compacted/

condensed state of chromatin, 31 proteins that had been identified

in a proteomic analysis of NEs were screened for their ability to

promote chromatin compaction when exogenously expressed.

These were cloned as mRFP and/or HA tag fusions [41,44] and

transfected into HeLa human cervical cancer epithelial cells stably

expressing H2B-GFP [49]. Untransfected cells had little compact-

ed chromatin based on the distribution of the marker, exhibiting

an H2B-GFP pattern that was mostly diffuse with just a small

increase in intensity around nucleoli (Figure 1B). Cells transfected

with most NETs were still indistinguishable from the untransfected

cells at 3 days post-transfection with no visible effects on the

distribution of H2B-GFP labeled chromatin (Table 1 and

Figure 1A, emerin and NET51, upper panels). NET30 and

NET34 yielded a moderate increase in the amount of visually

dense chromatin (Table 1), but expression of NET23 (gene name

TMEM173) promoted a very strong increase in the amount of

visually dense chromatin (Figure 1A, lower panels, and Fig-

ure 1B). As NET34 expressing cells looked generally unhealthy

and smaller and NET30 expressing cells had a much weaker

phenotype, subsequent studies were focused on NET23.

The compacted chromatin induced by NET23 expression was

distributed throughout the nucleoplasm (Figure 1A and B). This

might at first seem counter-intuitive because by definition a NET

will be embedded in the membrane and NET23 has multiple

predicted transmembrane spans so that it should in theory only be

able to affect juxtaposed chromatin at the nuclear periphery. We

Figure 1. A screen for NETs that alter chromatin compaction.
(A) 72 h post-transfection HeLa cells have no gross changes in
distribution of H2B-GFP (green) when most NETs fused to mRFP (red)
are exogenously expressed (e.g. emerin and NET51, upper panels).
However, cells transfected with NET23/STING (lower panels) exhibit
considerable chromatin compaction. (B) Zoomed images of chromatin
in untransfected (left) and NET23 transfected cells. All images were
taken using identical settings and all scale bars = 10 mm.
doi:10.1371/journal.pone.0111851.g001

NET23/STING Promotes Chromatin Compaction

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e111851



postulated that NET23 might enzymatically act directly on

chromatin or recruit factors to the NE that alter the chromatin

or could additionally activate such factors at the periphery that

could subsequently function throughout the nucleoplasm. How-

ever, it is reasonable that a function from the NE could be

propagated throughout the nucleoplasm because studies using the

Dam-ID method to determine globally the amount of chromatin

at the nuclear periphery have indicated that a much higher

percentage of the genome than can be physically present at the

periphery at a given time interacts with the periphery, suggesting

that many of the interactions are transient [50,51]. Therefore the

timeframe of 3 days post-transfection for fixation could have

enabled a much larger percentage of the genome to interact at the

nuclear periphery and so the H2B-GFP HeLa cells expressing

NET23 were also viewed at 21 h post-transfection. Indeed, at this

early timepoint after transfection the majority of compacted

chromatin as determined both by the H2B-GFP signal (not shown)

and by an increased density in the 49,6-diamidino-2-phenylindole

(DAPI)-stained DNA signal (shown) that mirrored the H2B-GFP

signal was observed at the NE (Figure 2A).

NET23 has been independently reported on as both a mediator

of innate immune signaling and apoptosis and separately named

STING, MPYS, MITA and ERIS [42,43,45,46]. As the STING

name has been most widely used we will refer to the protein as

NET23/STING henceforth. Although most reports on this

protein have used fusions with a number of tags on both ends

including HA, FLAG, GFP and RFP [43–46], one report stated

that most tags interfered with its function [42]; so tags of different

sizes at both ends of NET23/STING were tested. The compaction

occurred independent of the tag placed on it or the position of the

tag (Figure 2B). Nonetheless C-terminally tagged NET23/STING

generally appeared to yield a stronger effect on chromatin

compaction than N-terminally tagged protein, similarly to the

report that N-terminal tags yielded less activity for experiments in

Table 1. List of proteins screened for effects on chromatin compaction.

NET alt name tag fusion to phenotype

4 Tmem53 HA N-terminus no effect

5* Tmem201/Samp1 mRFP C-terminus no effect

8 LPGAT1 HA N-terminus no effect

13 (n) SMPD4 mRFP C-terminus no effect on condensation, but many apoptotic cells

14 (n) WDR33 HA N-terminus no effect

20 FAM105A mRFP C-terminus no effect

23 Tmem173 mRFP C-terminus strong condensation

23 Tmem173 HA strong condensation

24 ERIGIC1 mRFP C-terminus no effect

25 LEMD2 HA N-terminus no effect

26 Tmem14c HA N-terminus no effect

29 Tmem120 mRFP C-terminus no effect

30 MOSPD3 mRFP C-terminus some condensation, but cells very sick

33 SCARA5 mRFP C-terminus no effect

34 SLC39A14 mRFP C-terminus some condensation and apoptosis

35 (n) KIAA1967 HA N-terminus no effect

37 KIAA1161 mRFP C-terminus no effect

38 ALG2 mRFP C-terminus no effect

39 PPAPDC3 HA N-terminus no effect

43 (n) NAT10 mRFP C-terminus no effect

45 DAK mRFP C-terminus no effect

46 SLC22A24 mRFP C-terminus no effect

47 TM7SF2 mRFP C-terminus no effect

49 (n) NOC4L mRFP C-terminus no effect

50 DHRS7 mRFP C-terminus no effect

51 C14orf1 mRFP C-terminus no effect

52t HA N-terminus no effect

54 (n) mRFP C-terminus no effect

55 APH1B mRFP C-terminus no effect

56 Dullard HA N-terminus no effect

59 NCLN mRFP C-terminus no effect

62 MCAT HA N-terminus no effect

*shorter splice variant.
ttruncated version, (n) indicates NETs that targeted poorly to the NE in these cells or appeared to be nucleoplasmic.
doi:10.1371/journal.pone.0111851.t001
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innate immune signaling [42]. Furthermore, this is consistent with

its topology that has previously been reported for a separate pool

at the plasma membrane with the N-terminus in the cytoplasm

[43], which would indicate for the nuclear pool the N-terminus

being in the nucleoplasm. The nucleoplasmic region would need

to interact with chromatin to modify it and so a tag on the

nucleoplasmic N-terminus could in theory weaken this interaction.

The NET23/STING chromatin compaction effect was not due

to a potential artificial interaction with the GFP labeled H2B

molecules because it was also observed in multiple cell types not

expressing the labeled [52] chromatin protein by using just DAPI

staining for the DNA. Moreover, an increase in chromatin

compaction as defined by the intensity of the DAPI signal was

observed in all cell types even though they each had visually

different basal levels and distribution of dense chromatin

(Figure 2C).

Chromatin compaction levels in different untreated cell
lines roughly correlates with endogenous levels of
NET23/STING

That the cell types tested had visually different endogenous

levels of chromatin compaction raised the question of whether

NET23/STING plays a role in this basal state. Indeed, NET23/

STING was very highly expressed in lymphocytes and mouse cells

that both visually tend to have high levels of chromatin

compaction compared to most other cell types. To test this more

directly, an approach was developed to objectively quantify the

degree of chromatin compaction in the different cell lines so this

could be compared to the endogenous levels of NET23/STING.

In setting up the assay HT1080 cells derived from a human

fibrosarcoma were used because they are known to have a lower

basal level of epigenetic silencing marks and chromatin compac-

tion and tend to maintain a reasonably stable genotype [53].

Nuclear DNA was stained with DAPI and imaged using identical

microscope and camera settings (e.g. magnification, pixel size,

exposure time, etc). High-density chromatin clusters were identi-

fied, and a number of metrics were calculated for them, such as

number of clusters and size among others (Figure 3A). Nuclei with

greater visual compaction based on the intensity of the DAPI

signal after NET23/STING expression tended to have a larger

number of smaller separate clusters of dense chromatin compared

to untreated cells (Figure 3B). The method used three basic

parameters. The main parameter is a signal threshold, to select

pixels above a certain level. The two remaining parameters are

minimum cluster size, to remove spurious isolated specks, and a

merge parameter that controls how close two separate clusters can

be before they are merged into one (see Materials and Methods for

details). Various parameterizations were tested to confirm the

method was able to distinguish between the two conditions

(NET23/STING overexpression and untreated), including thresh-

olds between top 5 to top 20 percentile of the DAPI signal, and a

range of merge and minimum cluster size parameters (Figure 3C).

For these control conditions across the entire range tested strong

and clear differences could be observed with p-values using the KS

test for all except the 20% signal intensity condition ,1.94E-05.

For further application the value of 15% signal intensities, 20 pixel

minimum cluster size, and 3 connecting pixels required for

merging was chosen with a p-value ,1.1E-07. The differences in

the distribution of numbers of clusters could be clearly observed

using both histogram and box plots for this particular parameter-

ization (Figure 3D,E). Other metrics were also checked such as

area and size of clusters that also yielded significant p-values

(Figure 3F). Since NET23-mediated nuclear compaction could be

due to decreased nuclear area we have measured this parameter,

Figure 2. The NET23/STING chromatin compaction effect does
not depend on H2B-GFP or the epitope tag used and occurs in
a wide range of cell types. (A) Though at later times (72 h post-
transfection) the compacted chromatin in the H2B-GFP HeLa cells was
distributed throughout the nucleus (Figure 1), at 21 h post-transfec-
tion a large percentage of the compacted chromatin could be observed
at the nuclear periphery. In this case, the compaction shown was
visualized using DAPI to stain the DNA that yielded similar changes as
observed for the H2B-GFP signal, indicating that outputs in subsequent
experiments using other cell lines without the H2B-GFP could be
compared. (B) The effect of NET23/STING is independent of the epitope
tag used. NET23/STING with a large C-terminal mRFP tag (upper panels)
or a small N-terminal HA tag (lower panels) both yielded the chromatin
compaction phenotype in the H2B-GFP HeLa cells, again using DAPI
staining to visualize the DNA. The NET is shown in red and the DAPI
staining for DNA in grey. (C) The chromatin compaction phenotype of
NET23/STING was not cell type dependent as the effect could be
observed in MRC5 primary human lung fibroblasts, 2162/2 lamin A
knockout mouse embryonic fibroblasts, U2OS human osteocarcinoma
cells, HepG2 human liver cancer cells, HEK/293T human embryonic
kidney cells, and NIH3T3 mouse fibroblasts. Again, the NET23/STING is
shown in red and the DAPI staining for DNA in grey. All scale bars
= 10 mm.
doi:10.1371/journal.pone.0111851.g002
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but no difference in nuclear size was observed between the

NET23-transfected and control cells (Figure 3G).

To determine the accuracy of the term compaction to describe

the phenomenon being measured with the imaging algorithm,

electron microscopy was performed on control HT1080 cells and

HT1080 cells expressing NET23/STING. To ensure that all cells

analyzed by electron microscopy expressed NET23/STING a

stable-inducible cell line was generated. The degree of chromatin

compaction as measured by denser stained areas of the nucleus by

electron microscopy was similar between the parent HT1080 cells

and uninduced HT1080 cells (No Dox) carrying the inducible

NET23/STING construct (Figure 4, left panels). In contrast,

induction of NET23/STING (+Dox) resulted in more electron

dense clusters of chromatin both at the nuclear periphery and in

the nuclear interior (Figure 4, right panels).

To test if NET23/STING could contribute to differences

observed in the basal levels of chromatin compaction in different

cell lines, NET23/STING levels were measured and chromatin

compaction quantified based on the DAPI staining using the

cluster algorithm in a variety of cell lines. As changes in nuclear

size could in theory diffuse clusters, experiments investigating

endogenous levels of NET23 utilized only cell types that had

similar nuclear sizes (Figure 5). NET23/STING levels were

measured by Western blot in five cell lines: HT1080, human

fibrosarcoma cells; Jurkat, human immortalized T-lymphocytes;

EL4, mouse lymphoma cells; LNCaP, human prostate adenocar-

cinoma cells; and HEK293, human embryonic kidney cells

(Figure 5A). The amount of NET23/STING corrected against

a-tubulin levels (Figure 5B) roughly correlated with the number of

clusters measured in each cell type using the unbiased algorithm

(Figure 5C). Significant p-values illustrate the general trend

towards a higher level of chromatin condensation as the

endogenous levels of NET23/STING increases (Figure 5D) and

nuclear size was similar between all the cell types (Figure 5E) so

that this trend could not be an artifact due to different nuclear

sizes between the cell lines.

Several primary human cells were also examined as all of the

above cell lines are immortalized cancer lines and so may have lost

aspects of their parent chromatin organization. Only three of the

primary lines tested had similar nuclear sizes and so could be

considered: MRC5 lung fibroblasts, BJ foreskin fibroblasts, and

AG dermal fibroblasts. Again the NET23/STING levels roughly

correlated with the degree of compaction as measured using the

cluster algorithm on DAPI-stained chromatin (Figure 5F–I). Thus

NET23/STING may be involved in regulating endogenous levels

of chromatin compaction.

The timing of chromatin changes induced by NET23/
STING

Live cell microscopy with NET23/STING transfected cells

revealed that the protein sometimes appeared shortly after

telophase and sometimes much later (compare transfected cells

in Figure 6A and 6B). An increase in chromatin compaction

typically could be observed within 1 to 2 h following the

appearance of the protein by fluorescence microscopy and the

compaction was typically first observable at the nuclear periphery

(Figure 6 and Figure 2A). Though many cells remained a long

while with the chromatin in a condensed state visibly distinct from

that of apoptosis (Figure 6A), a number of cells yielded chromatin

compaction patterns characteristic of those associated with DNA

fragmentation in apoptosis [52]; however, this occurred within 3 to

4 h following the appearance of NET23/STING (Figure 6B). This

is very rapid for apoptosis because the DNA fragmentation/

compaction stage typically is not observed even in the more rapid

intrinsic apoptosis pathway until much later (e.g. 5–24 h for

staurosporin-induced apoptosis, depending on cell type [54]).

Though some cells previously expressing NET23/STING were

observed to go through a successful mitosis in movies, many cells

were observed to begin expressing the protein only after mitosis or

in interphase where it was not possible to determine if the cells had

previously expressed NET23/STING. As the cells were transfect-

ed with Fugene 6 and the liposomes maintained on the coverslips

Figure 3. An algorithm for measuring chromatin compaction. (A) Pixel intensities from images obtained using identical microscope and
camera settings were plotted topographically. A plane slicing through the topographic map at a particular percentage of the total intensity reveals
only a small number of high intensity pixel clusters for untransfected cells while several high intensity pixel clusters can be observed for NET23/STING
transfected cells. (B) Each high intensity pixel cluster for a particular plane in the cells shown in A is color-coded to visualize how accurately the
algorithm distinguishes individual clusters. In setting the algorithm this step was used to optimize the parameters for numbers of pixels between
clusters that would result in a merging of the clusters. (C) Several different parameterizations are able to distinguish between untransfected and
NET23/STING transfected cells. A range of pixel intensity cutoffs for the plane are tested from 5–20% total pixel intensity (%). Also the number of
pixels connecting clusters before merging them (m) and the minimum cluster size in pixels (s) were varied. This confirmed that the algorithm is
robust and unbiased as statistically significant differences between the untransfected and NET23/STING transfected cells could be observed for nearly
all parameters tested. (D) Histogram showing the shift in the distribution of the number of clusters between untransfected and NET23/STING
transfected cells at the final parameters chosen: 15% signal intensities, 20 pixel minimum cluster size, and 3 connecting pixels required for merging.
(E) Box and whiskers plot showing the distribution for the data in D and p-value calculated using a Kolmogorov-Smirnov (KS) test. (F) The same
parameterization with plotting instead the cluster size medians. A similarly strong difference is observed with p-value calculated using a KS test. (G)
Nuclear size was also measured for the cells analyzed and found to not change between the untransfected and NET23/STING transfected cell
populations.
doi:10.1371/journal.pone.0111851.g003

Figure 4. Chromatin compaction in NET23/STING overexpress-
ing cells as visualized by electron microscopy. Panels on the right
are for the HT1080 parent cell line and its uninduced progeny (HT1080+
NET23 No Dox) carrying the integrated NET23/STING construct. Panels
on the left are cells induced with doxycycline for NET23/STING
expression for overnight prior to fixation for electron microscopy. Scale
bars are 0.5 mm.
doi:10.1371/journal.pone.0111851.g004
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Figure 5. Endogenous NET23/STING expression correlates with levels of normal chromatin compaction observed in various cell
types. (A–E) Transformed cell lines. (A) Western blot comparing levels of NET23/STING in different cell lines with a-tubulin used as a loading control.
(B) Quantification of NET23/STING levels from three separate Western blots. The endogenous levels of NET23/STING have been corrected for a-
tubulin levels and ordered from lowest to highest. (C) Using the algorithm described in Figure 3 to determine endogenous levels of chromatin
compaction in the same cell lines, similarly ordered, reveals a general trend that cells with higher endogenous levels of NET23/STING have higher
levels of chromatin compaction. (D) Table showing p-values for C, comparing all possible combinations using KS tests. (E) Nuclear size was also tested
for each cell line, finding no notable differences. All p-values for nuclear size using KS tests were.0.05 with the exception of comparing HT1080 and
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over the course of the experiment, it is possible that some cells

fused with liposomes after dividing cells migrated closer to unfused

liposomes on the coverslips. It is also possible that the changes to

chromatin induced by NET23/STING make the cells more

susceptible to laser damage in live cell microscopy. Therefore, it

was important to quantify apoptosis separately.

Exogenous NET23/STING expression promotes apoptosis
To directly measure the percentage of apoptotic cells in the

population without previous laser exposure stress, HCT116

human colon carcinoma cells transfected for NET23/STING

with GFP fused at either the N- or C-terminus were fixed, stained

with propidium iodide (PI) to measure all dying cells (PI only stains

when the plasma membrane has been compromised) and annexin

V for cells engaging early phases of defined apoptosis pathways,

and analyzed by flow cytometry. Cells were gated on forward

versus side scatter (FSC-A and SSC-A) to exclude debris before

gating on DNA content to exclude aggregates to restrict analysis to

intact singlet cells. Finally samples were gated on forward scatter

versus GFP expression to distinguish transfected cells from non-

transfected and very late stage apoptotic/necrotic transfectants

(Figure 7A). This population is shown plotting the PI intensity

against the annexin V intensity with non-transfected cells in each

population in the left column and the transfected cells in the right

column (Figure 7B). The right-most green peak indicates the cell

population with a strong enough annexin V signal to indicate cells

EL-4 cells (p = 0.039) and HT1080 and Jurkat cells (p = 0.003). (F–I) Primary cell lines. (F) Basal NET23/STING protein levels for three primary cell lines
relative to the AG line. (G) Cluster algorithm to determine endogenous levels of chromatin compaction based on DAPI staining. (H) P values for
comparing cluster number between the different cell lines using KS tests comparing each to the others. (I) Nuclear size measured for the three
primary lines to ensure that all were similar so that this parameter could not influence cluster number results.
doi:10.1371/journal.pone.0111851.g005

Figure 6. Live cell imaging of chromatin compaction reveals the process is fast and can lead to apoptosis. (A) Frames from movies of
cells transfected with NET23/STING show the development of the chromatin compaction phenotype over time. The times shown are hours post
transfection. Chromatin compaction begins at the nuclear periphery and then propagates throughout the nucleoplasm and considerable compaction
is observed within 1 to 2 h from when the NET23/STING protein first appears. Note in the top movie that chromatin compaction looks distinct from
that observed during apoptosis. (B) Many cells observed during live imaging yielded chromatin features and cell blebbing characteristic of apoptosis.
From first appearance of NET23/STING to chromatin compaction and blebbing reminiscent of apoptosis typically took 2 to 3 h. All scale bars
= 10 mm.
doi:10.1371/journal.pone.0111851.g006
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Figure 7. NET23/STING promotes apoptosis. (A) Gating strategy used for cells in B using forward and side scatter profiles to exclude debris
followed by DNA content to determine intact singlet cells. The transfected population (expressing GFP) was identified by subsequently gating singlet
cellular material on forward scatter versus GFP intensity. All cells in this experiment were analyzed at 44 h post-transfection. (B) The cells used to
determine the gates were also stained for propidium iodide (PI; y-axis) and annexin V (x-axis). The traces in the left panels show the untransfected
cells in the population and those in the right panels show the cells with GFP signal. The right-most green peak delineates cells with an annexin V
signal of sufficient intensity to indicate cells undergoing apoptosis. As expected, for the mock-transfected culture essentially no GFP positive cells
were identified and very few apoptosing cells could be observed. Expression of NET23/STING consistently increased the apoptosing population
regardless of whether the tag was on the N-terminus (GFP-NET23) or the C-terminus (NET23-GFP) and the effect of NET23/STING did not require
function of the master regulator p53 as apoptosis was induced in both wild-type (p53+/+) and p53 knockout (p532/2) cells. Nonetheless, it is notable
that the responses were very similar between the two NET23/STING constructs in the wild-type cells while the N-terminal tag showed a lagging
apoptotic response in the p53 knockout cells. (C) The percentage of annexin V-positive cells is plotted after correction to subtract the number in the
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undergoing defined apoptosis. NET23/STING typically increased

the percentage of cells in each of these three groupings by roughly

2–3 fold compared to the internal untransfected populations. The

percentage of annexin V-defined cells undergoing apoptosis is

plotted after correction for the GFP-transfected cells in the wild-

type cell line (Figure 7C).

As the tumor suppressor protein p53 is commonly involved in

inducing apoptosis in response to viral infections, we considered

that NET23/STING might induce apoptosis via a p53-mediated

pathway. Therefore the ability of NET23/STING to induce

apoptosis was tested here in both wild-type HCT116 and

HCT116 p532/2 knockout cells. Apoptosis was induced in both

cell backgrounds and to similar levels for the construct with GFP

fused to the C-terminus of NET23/STING; however, intriguingly

the construct with GFP fused at the N-terminus of NET23/

STING exhibited a delayed response in the p532/2 cells with

more annexin V-positive and fewer PI-positive cells (Figure 7).

When sampling NET23/STING transfected cells at earlier

timepoints and instead plotting annexin V staining against DNA

staining, an unusual distribution was observed (Figure 8A). At

23 h post-transfection, cells transfected with a plasmid expressing

just GFP had a typical distribution pattern with most cells healthy

in G1 and a smaller healthy population in G2/M. Only about

10% of transfected cells were sub-G1 with annexin V staining. By

contrast cells transfected with NET23/STING fused to GFP at

this early timepoint had similar levels of annexin V staining, but

yielded a very unusual distribution pattern with most healthy cells

running at a higher sub-G1 position based on DNA content. To

investigate this further, NET23/STING-GFP transfected cells

were followed at 17, 44, and 66 h post-transfection measuring

both DNA content and cell size/shape by forward scatter

(Figure 8B, left panels). Already at 17 h post-transfection the

population of cells expressing NET23/STING included a group

with a slightly reduced size, suggesting that this might reflect the

chromatin compaction observed by microscopy. This population

was however transient as it initially increased and then

subsequently dissipated. The data were also plotted more

quantitatively for DNA content (Figure 8B, right panels), indicat-

ing that while the larger sub-G1 population initially increased and

then subsided the smaller sub-G1 population (close to the y-axis)

indicative of dead/fragmented cells steadily increased. Further-

more, less than a quarter of the population of NET23/STING

expressing cells in the intermediate compacted state stained with

the Annexin V. Thus, we postulate that this higher sub-G1 state

indicates an intermediate state where cells have compacted

chromatin, but have not yet chosen to go down the apoptosis

pathway. Nonetheless, that this state is transient while the smaller

sub-G1 state steadily increases, suggests that most cells exoge-

nously expressing NET23/STING eventually undergo apoptosis.

Chromatin compaction occurs by a pathway
independent of apoptosis

Though the cells gave indications from the Annexin V staining

that apoptosis was occurring in the NET23/STING transfected

population, the rapid timecourse and initial appearance of the

chromatin compaction were unusual for apoptosing cells. To test if

the chromatin compaction phenotype was distinct from apoptosis

pathways, populations of transfected cells were treated with the Z-

VAD pan-caspase inhibitor or control buffer. The population was

split and part was stained for DNA and immunofluorescence while

the other part was stained with annexin V and analyzed by flow

cytometry. The flow cytometry revealed that the Z-VAD

significantly reduced apoptosis in the NET23/STING transfected

population (Figure 9A). The microscopy revealed that the

chromatin compaction phenotype was nonetheless still observed

in the Z-VAD treated NET23/STING transfected population

despite blocking apoptosis (Figure 9B).

Chromatin compaction induced by NET23/STING is
accompanied by epigenetic modifications

As the chromatin compaction phenotype was independent of

apoptosis and innate immune responses are often accompanied by

epigenetic modification of chromatin [47], the observed chromatin

compaction induced by NET23/STING might be mediated by

epigenetic silencing mechanisms. To test for this cells were stained

with antibodies to epigenetic marks at 21 and 85 h post-

transfection. Antibodies specifically recognizing acetylation on

histone 3 lysine 18 (H3K18ac — a standard mark for active or

poised genes [55]) or tri-methylation on histone 3 lysine 9

(H3K9me3 — a standard mark for silenced genes [55]) were used.

At 21 h post-transfection (Figure 10A) a small increase in

H3K9me3 was observed compared to the adjacent untransfected

cells, mostly concentrated at the nuclear periphery (Figure 10B);

however, no corresponding reduction in H3K18ac could be

detected. At 85 h post-transfection the H3K9me3 mark could be

observed not just at the NE, but propagated throughout the

nucleoplasm (Figure 10C). By contrast to the absence of an effect

on acetylation at 21 h, at the later timepoint NET23/STING

expressing cells exhibited a strong decrease in H3K18ac staining

along with another mark of active chromatin, H3K4 di-

methylation [55] (Figure 10C). We also tested for the combination

of H3K9me3 and S10 phosphorylation, which is a particularly

interesting mark because it is associated with polycomb repressed

genes and adds to them a higher level of repression [56]. This

mark was reduced in the NET23/STING expressing cells

indicating a specific loss of repression at polycomb marked genes;

so the changes in epigenetic marks include both a general increase

in H3K9me3-associated silencing and some genes being loosened

from particularly strong repression.

The immunofluorescence staining was performed on transiently

transfected cells to avoid contributory effects from cell selection;

however, in the intact cells it is possible that epitope accessibility

within the compacted chromatin might influence the results.

Moreover, transient transfection of plasmid DNA could induce

innate immune responses to foreign DNA and so could complicate

distinguishing NET23/STING direct effects from downstream

effects of innate immune response signaling. Therefore, a stable

doxycycline-inducible cell line expressing NET23/STING was

generated. Lysates were prepared from this line after 72 h of

induction and also from the parent line with a control siRNA or a

NET23/STING siRNA knockdown after 72 h (siRNA treatment

has been found to not induce innate immune responses). Overall

levels of H3K9me3 were increased roughly 4-fold on average by

NET23/STING overexpression and reduced slightly by its

knockdown as measured with Western blot quantification using

fluorescent antibodies (Figure 11A and B).

Treatment with the histone deacetylase (HDAC) inhibitor

trichostatin A (TSA) results in genome-wide hyperacetylation with

concomitant reversible chromatin decondensation [57]. To test if

the compaction induced by NET23/STING is reversible, the

GFP control with the wild-type (p53+/+) cells. This is used as the correction for both cell lines to better indicate the effect of the p53 knockout itself on
apoptosis induction.
doi:10.1371/journal.pone.0111851.g007
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Figure 8. NET23/STING chromatin effects may set the stage for a transitional state between chromatin condensation and apoptosis.
(A) Cells were taken at 23 h post-transfection and stained for DNA and the characteristic early apoptosis marker annexin V. GFP-transfected cells
exhibit a normal distribution pattern with a large annexin V-negative G1 population (close to 100K) and smaller annexin V-negative G2/M population
(close to 200K) and a small (,10%) sub-G1 population that is mostly annexin V-positive. In contrast, at this early time post-transfection the NET23/
STING-transfected population yields an aberrant distribution pattern with the main cell populations slightly lower than the normal G1 population, yet
still slightly larger than the apoptosing sub-G1 population. This may reflect the process of chromatin condensation. (B) To investigate this population
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stable inducible line was treated with TSA with or without

induction of the NET23/STING with doxycycline. Thus stably

transfected cells carrying the inducible NET23/STING-GFP

fusion were induced with doxycycline for 48 h to promote

chromatin compaction and then treated for 6 h with TSA. In

uninduced control cells expressing endogenous levels of NET23/

STING the TSA noticeably reduced the amount of chromatin

compaction measured with the cluster algorithm, though p-values

just missed the threshold of significance at p = 0.0578 (Fig-

ure 11C). Induction of the exogenous NET23/STING-GFP

fusion with doxycycline as before caused a notable increase in

high intensity pixel clusters, though as the stable inducible system

yielded weaker expression than transient transfections the p-value

was only p = 0.0069. Treatment of the doxycycline-induced cells

with TSA fully reversed the increased chromatin compaction

achieved in the NET23/STING induced cells, fully reducing it to

even slightly lower levels than those achieved by the TSA in the

uninduced cells with p,2.0E-16 (Figure 11C). This effect was

independent of changes in nuclear size (Figure 11D). Thus all

chromatin compaction achieved by NET23/STING expression is

reversible with TSA.

further, NET23/STING-transfected cells were analyzed over a timecourse from 17 to 66 h post-transfection. Over time the higher sub-G1 population
can be observed to initially increase and then diminish as the smaller sub-G1 population increases. The density plots shown on the left plot DNA
content against forward scatter to measure overall cell size/shape and thus likely give information about the shift in chromatin compaction, but these
plots can be misleading about total numbers because of spots representing individual cells being printed on top of one another. In contrast, the cell
cycle population plots on the right clearly show the total percentage of cells for the initial appearance of a higher sub-G1 population followed by its
chasing into an apoptotic smaller/fragmented sub-G1 population.
doi:10.1371/journal.pone.0111851.g008

Figure 9. NET23/STING chromatin effects are independent of apoptosis and result in an increase in G2/M. (A) Untransfected cells
(Mock), NET23-GFP transfected cells, and NET23-GFP transfected HT1080 cells treated with 20 mM of the pan-caspase inhibitor Z-VAD were stained for
DNA content with the permeable dye Hoechst 33342 and the characteristic early apoptosis marker annexin V. The total sub-G1 population is gated
(pink box) and anything above roughly 103 should be positive for annexin V. Both the lower sub-G1 population and most of the annexin V staining of
the NET23-GFP population are absent from the Z-VAD treated population. (B) HT1080 cells were similarly treated, fixed and stained for DNA for
microscopy. Despite the blocking of apoptosis pathways with the pan-caspase inhibitor, the chromatin compaction still occurred in the NET23/STING
transfected cells. Scale bars = 10 mm.
doi:10.1371/journal.pone.0111851.g009
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As a role for NET23/STING has been clearly indicated in

innate immune response signaling, we wondered if stimulation of

innate immune responses with herpes simplex virus-1 (HSV-1)

infection would affect the compacted state of chromatin as

measured by the cluster algorithm and if any such effects could

be mediated by NET23/STING. Thus HT1080 cells were either

treated with the control scramble siRNA or NET23/STING

siRNA for three days to knock down NET23/STING prior to

infection with HSV-1 for 2 h to induce the innate immune

response. As the effect of NET23/STING overexpression was

much greater than the effect of the knockdown on H3K9me3

staining (Figure 11) and HT1080 cells have little compacted

chromatin to begin with, it is not surprising that no discernible

effect for NET23/STING knockdown was observed with the

cluster algorithm. However, NET23/STING knockdown prevent-

ed changes to chromatin compaction that normally occur early

upon HSV-1 infection. Interestingly, the HSV-1 infection in the

scramble siRNA control HT1080 cells resulted in a reduction

rather than an increase in cluster number (Figure 12A, p = 0.003).

This reduction was not observed in the cells knocked down for

NET23/STING with over 100 cells counted for each condition

(Figure 12A, p.0.9) such that the difference between the control

siRNA and NET23/STING siRNA knockdown conditions for the

HSV-1 infected cells had a p value ,0.001. However, nuclear size

was also affected slightly in this experiment (Figure 12B) so that it

is not possible to unequivocally determine that the chromatin

compaction alone accounts for the effects NET23/STING

knockdown had on the changes induced by the HSV-1 infection.

Discussion

NET23/STING was previously linked to functions in innate

immune signaling and apoptosis [42,43,46], though these two roles

were not evidently linked. The role we have shown here for

NET23/STING in promoting epigenetic changes and an inter-

mediate chromatin condensation state that is frequently associated

with subsequent apoptosis provides a possible means to link these

disparate functions.

The goal of a cell in response to pathogen infection is to prevent

the propagation of the pathogen within the host organism. A core

mechanism to do this is to induce apoptosis; however, many

pathogens have mechanisms for interfering with signaling of

apoptosis. A way for the cell to get around this and still promote its

death along with the pathogen is to activate innate immune

signaling for the release of interferons to target the immune system

to the infected cell. In this latter process several changes to the

epigenetic signature of affected cells have been observed. For

example, H3K9 di-methylation at interferon genes themselves

correlates inversely with the level of interferon expression and its

addition is thought to reflect a host cell mechanism to temper

responses in order to avoid inflammatory disease [58]. Although it

may at first seem counter-intuitive as the cell needs to robustly

express interferons to target immune cells to the infected host cells,

silencing epigenetic marks are very important for the global innate

immune response as treatment of cells with histone deacetylase

inhibitors had overall inhibitory effects on innate immune

responses [59]. This is consistent with our finding that NET23/

STING in addition to its upstream pathogen sensing activities

[60,61] also contributes to a large-scale change in the overall

Figure 10. Epigenetic marks associated with heterochromatin coincide with the compacted chromatin at the nuclear periphery.
Cells were fixed at various times post-transfection with NET23/STING and stained for various epigenetic marks, particularly the active marks histone
H3 acetylation at lysine 18 (H3K18Ac) and di-methylation at lysine 4 (H3K4me2), the silent mark histone H3 trimethylation at lysine 9 (H3K9Me3) and
the strongly repressed mark combined H3K9me3 and S10ph. (A) At 21 h post-transfection no change in the H3K18Ac was observed; however an
increase in H3K9Me3 was already visually observable by immunofluorescence microscopy. (B) The chromatin compaction effects begin at the nuclear
periphery. Higher magnification field from panel A. At 21 h post-transfection only a small amount of internal H3K9Me3 signal was observable while
most was enriched at the NE (arrowheads). (C) At 85 h post-transfection both a loss of acetylation at K18 and methylation at K4 were observed
indicating a general loss of active marks. At the same time a strong increase in methylation at K9 was visually observable by immunofluorescence
microscopy, consistent with increased silencing. The H3K9me3 was seen throughout the whole nucleoplasm though some concentration at the NE
could often be observed. However, the stronger repression mark H3K9me3 combined with S10ph was actually reduced in the NET23/STING
transfected cells. All scale bars = 10 mm.
doi:10.1371/journal.pone.0111851.g010
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pattern of epigenetic marks. It remains unclear why the effect of

HSV-1 infection in HT1080 cells was to reduce instead of increase

cluster number (used as a measure of chromatin compaction),

though the nuclear size changes in this experiment could affect the

output of the algorithm. Nonetheless, the effect of the virus was

mitigated by NET23/STING knockdown.

The pathogens themselves can also target immune response

epigenetics in that histone deacetylase expression is found to

increase upon infection of plants with pathogens and transgenic

plants overexpressing the deacetylase are more susceptible to

infection [62]. Thus, there is likely a ‘‘tug-of-war’’ effect going on

in the infected cell between the pathogen efforts to block host cell

responses and the host cell to find the right balance in its response.

Intriguingly, NET23/STING can also go too far when unregu-

lated and its exogenous overexpression can also cause experimen-

tal autoimmune encephalitis [63]. The ability of the nuclear

membrane pool of NET23/STING to promote chromatin

modifications is not only a new function for this extremely

multi-functional protein, but also may reflect a creative mecha-

nism for the host cell to get around the efforts of the pathogen to

block apoptotic and innate immune responses. Many pathogens

target central channel transport through the nuclear pore complex

— for example herpesvirus ICP27 protein targets the central

channel nucleoporin Nup62 [64] — but NETs can travel through

the peripheral channels of the nuclear pore complex [65–68].

Thus, even when central channel transport is blocked, NET23/

Figure 11. Modulation of NET23/STING levels changes levels of epigenetic marks and the chromatin compaction is reversible by
treatment with TSA, a deacetylase inhibitor. (A) Knockdown of NET23/STING. HT1080 cells were treated with either siRNA oligos for NET23/
STING or a scramble control siRNA oligo. With this treatment NET23/STING protein levels could be reduced to 30% of initial levels at 4 d post-
transfection. (B) Cell lysates were generated from a population of HT1080 cells either treated with the scramble control or NET23/STING siRNAs or a
stably-transfected HT1080 line induced to express NET23/STING with doxycycline. Staining for the total levels of the H3K9me3 mark in these
populations revealed that overall levels of H3K9 methylation were increased roughly 4-fold by exogenous expression of NET23/STING while overall
levels appeared to be slightly reduced in the NET23/STING knockdown cells. The average from 3 experiments is shown with standard deviations. (C–
D) The stably-transfected inducible NET23/STING cell line was either not treated or treated with 1 mg/ml of the histone deacetylase inhibitor TSA with
or without induction of exogenous NET23/STING by doxycycline (DOX). (C) The number of high-intensity pixel clusters measured with the unbiased
chromatin compaction algorithm is shown. NET23/STING induction increases the number of clusters while TSA completely reverses this effect. (D)
Nuclear size was also quantified, revealing that neither doxycycline nor TSA treatment yielded any noticeable effect on nuclear size.
doi:10.1371/journal.pone.0111851.g011
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STING should in theory be able to target to the inner nuclear

membrane where it could engage its nuclear functions.

Although the finding of epigenetic transmission in response to

signaling through the peripheral channels is relatively novel, a

NET function in promoting epigenetic changes has been shown

for other NETs that promote certain epigenetic marks by binding

to silencing factors and recruiting them to the NE. For example

the NET LBR can bind DNA methylating enzyme MeCP2 and

the NETs LAP2b and emerin can bind the histone deacetylase

HDAC3 [33,36,69]. The significant increase in H3K9me3 by

Western blot and its first appearance at the nuclear periphery by

immunofluorescence microscopy in the cells exogenously express-

ing NET23/STING suggests that this protein may directly recruit

histone modifying enzymes. However, future work will be needed

to test this.

How NET23/STING can pivot the cell for this chromatin

condensation and innate immune response or apoptosis choice will

also require many future studies, but this is the first study to our

knowledge that demonstrates a nuclear function for this important

multi-functional protein. One direction that will be interesting to

pursue is what drives the condensation to the point of inducing

apoptosis. What can be inferred from this study is that this can

occur by both p53 dependent and p53 independent pathways.

This is because fusions at either end of NET23/STING induced

apoptosis with similar kinetics in the wild-type cells, but the

construct with GFP fused at the N-terminus of NET23/STING

exhibited a delayed response in the p532/2 cells with more

annexin V-positive and fewer PI-positive cells. While this may

reflect in part some validity to an earlier report that tags,

particularly N-terminal tags, affect its function [42], the fact that

this lagging effect was only observed in the p532/2 cells suggests

that NET23/STING can act by both p53-dependent and p53-

independent pathways and this distinction only becomes apparent

when the tag weakens the activity of NET23/STING.

The original motivation for this chromatin compaction screen

was to identify proteins that may be involved in mediating the

aberrant chromatin distribution pathologies observed with several

lamin and NET-linked diseases [3–7,10,11]. The role we have

indicated for NET23/STING in endogenous chromatin compac-

tion suggests that in addition to its functions in innate immunity it

also contributes to mediating chromatin distribution patterns in

disease. This is further supported by observations that both the

NET23/STING compaction phenotype and the observed electron

microscopy changes in chromatin in some NE diseases have been

linked to epigenetic changes. For example, in fibroblasts from

Hutchison-Gilford Progeria syndrome caused by mutation of the

NE lamin A protein [70,71], H3K9me3 and H3K27me3 that are

associated with silenced chromatin were reduced while H4K20me

that is associated with active chromatin was increased [14]. A

potential link between NET23/STING and lamin A, causative of

many of these NE-linked diseases, is further suggested by our

previous observation that distribution of NET23/STING at the

NE was lost in lamin A knockout mouse embryonic fibroblasts

[44]. Thus we postulate that in addition to its effects in innate

immune signaling NET23/STING may also be involved in some

of the chromatin changes that occur in NE diseases.

Methods

Plasmid construction
NET expression plasmids used in the screen were cloned from

IMAGE collection cDNAs as previously described [41,44]. Most

NETs were fused to monomeric red fluorescent protein (mRFP) at

their carboxyl-terminus while a few were fused to an HA epitope

tag at their amino-terminus. All those used in the screen were

under regulation of the CMV promoter. After its identification in

the screen, NET23/STING was additionally cloned into both the

pEGFP-N2 and pEGFP-C2 vectors for C- and N-terminal GFP

fusions. The pEGFP-N2 fusion was further subcloned into pLVX-

TRE3G using NheI and NotI as restriction sites for subsequent

generation of lentiviruses for transduction to make stable inducible

cell lines.

Cell culture, generation of stable lines, transfection and
HSV-1 virus infection

HeLa cells stably transfected with H2B-GFP ([72]), HT1080

human fibrosarcoma cells (ATCC, CCL-121), MRC5 normal

human fetal lung fibroblasts (ATCC, CCL-171), 2162/2 lamin A

knockout mouse embryonic fibroblasts [73], U2OS human bone

osteosarcoma cells (ATCC, HTB-96), HepG2 human liver

carcinoma cells (ATCC, HB-8065), HEK/293T human embry-

onic kidney cells (ATCC, CRL-11268), NIH3T3 mouse fibroblasts

(ATCC, CRL-165), BJ foreskin fibroblasts (ATCC, CRL-2522),

AG short for AG-08470 dermal skin fibroblasts from a 10 year old

normal female (Coriell Institute for Medical Research, AG-08470),

HCT116 human colon carcinoma cells and their p532/2

knockout variant 379.2 (kind gift of B. Vogelstein, Johns Hopkins

University; [74]) were maintained in high glucose DMEM (Lonza)

supplemented with 10% fetal bovine serum (FBS), 100 mg/ml

penicillin and 100 mg/ml streptomycin sulfate. To maintain the

stable transfection of H2B-GFP these cells were treated with

100 mg/ml geneticin every other passage. Jurkat and EL4 cells,

Figure 12. Effect of NET23/STING knockdown on chromatin
changes in HSV-1 infected cells. (A) Three days after control siRNA
or NET23/STING siRNA treatment to deplete NET23/STING protein levels
as in Figure 11, cells were infected with HSV-1 for 2 h at MOI 5 to
induce innate immune responses. The cells were fixed, stained with
DAPI and analyzed with the cluster algorithm. P-values using KS tests to
compare the HSV-1 infected cells between the NET23/STING conditions
are given. The p value for comparing the two HSV-1 infected
populations is p,0.001. (B) Analysis of nuclear size in the same
populations indicated some differences in nuclear size in this
experiment. More than 100 cells were analyzed for each condition for
all parameters.
doi:10.1371/journal.pone.0111851.g012
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human lymphocyte cell lines, were cultured in RPMI with 10%

FBS and antibiotics.

To generate a stable inducible NET23/STING expressing cell

line, lentiviruses encoding a doxycycline inducible NET23/

STING fused to GFP at the C-terminus were prepared by

standard procedures and transduced onto HT1080 cells. Trans-

duced cells were selected with geneticin at 500 mg/ml.

Cells were plated on coverslips at ,10% confluency to prevent

their reaching confluency before fixation at 40 h post-transfection.

DNA was transfected 12 h after plating using Fugene 6 (Roche)

according to the manufacturer’s instructions. Inducible stable lines

were induced with 1–2 mg/ml doxycycline and for reversal of

chromatin condensation cells were treated with 1 mg/ml TSA.

For HSV-1 virus infection HT1080 cells were plated onto a 6

well plate (,200.000 cells/well). Cells were infected with a

multiplicity of infection (MOI) of 5 using HSV-1 wild type virus.

The virus was added to cells in 0.5 ml culture medium. The cells

were incubated for 1 h at 37uC and 5% CO2 to facilitate the

adsorption of the virus. Subsequently 1.5 ml medium were added

and the cells were incubated for additional 2 h before cell fixation

and analysis.

Screen for NETs that alter chromatin organization
NETs fused at their C-termini to mRFP or at their N-termini to

the HA epitope tag were transfected into H2B-GFP cells (kind gift

of G. Wahl, Salk Institute; [49]) and fixed between 48 and 60 h

post-transfection. Coverslips were directly mounted onto slides in

Fluoromount G (EM Sciences) and imaged.

Antibodies
To stain for NET23/STING, Tmem173 polyclonal antibody

(ProteinTech, 19851-1-AP, concentration 59 mg/150 ml) was used

at a 1/400 dilution. To stain for epigenetic marks rabbit antibodies

recognizing H3K18Ac (Ab1191, Abcam 1:500), H3K4Me2

(Ab7766 Abcam 1:500), H3K9me3 (07-523, Upstate 1:200), and

the combination of H3K9me3 and H3S10 phosphorylation

(Ab5819, Abcam 1:500). Lamin antibodies were previously

described in [75]. All fluorophore-conjugated secondary antibod-

ies used for immunofluorescence were minimally cross-reactive

from donkey (Jackson ImmunoResearch) or goat (Molecular

Probes). For Western blotting IR800 conjugated goat anti-rabbit

antibodies (LI-COR Biosciences) were used.

Live cell imaging
Live cell imaging was performed on a Leica SP5 laser scanning

confocal (Leica Microsystems). H2B-GFP was visualized with the

488 nm line of an Argon laser with excitation filter settings of 495–

550 nm. NET23-RFP was visualized using a 561 nm diode laser

with excitation filter settings of 570–630 nm. For all imaging the

lasers were set as low as possible to prevent photo-toxicity and

bleaching. The cells were cultured on #1.5 25 mm round

coverslips (Warner Instruments) and transferred to the Attofluor

Chamber (Invitrogen), which was mounted on the confocal. Cells

were then maintained at 37uC and 5% CO2 for the duration of the

experiment.

Immunofluorescence microscopy
Cells were fixed for 7 min in 3.7% formaldehyde, permeabilized

for 6 min in 0.1% Triton X-100, blocked with 4% BSA in PBS,

and reacted for 40 min at RT with primary antibodies for histone

modifications. After washing, appropriate fluorophore-conjugated

secondary antibodies were added for 30 min at RT and washed.

Cells were also stained with DAPI (4,6-diamidino-2 phenylindole,

dihydrochloride) to visualize nuclei and mounted in fluoromount

G (EM Sciences).

Most images were obtained using a Nikon TE-2000 microscope

equipped with a 1.45 NA 1006 objective, Sedat quad filter set,

PIFOC Z-axis focus drive (Physik Instruments), and CoolSnapHQ

High Speed Monochrome CCD camera (Photometrics) run by

IPLab image acquisition software. Image stacks (0.2 mm steps)

were deconvolved using AutoquantX. High-resolution images

were taken using a Deltavision (Applied Precision) microscope

system with 10061.4 NA objective and 0.2 mm stacks were

deconvolved using DeconQ and images were processed using

SoftWorks. Micrographs were saved from source programs as.tif

files and prepared for figures using Photoshop 8.0.

Image quantification of chromatin compaction
All images were captured using Metamorph acquisition software

with identical settings after identical staining and fixing conditions.

At least 50 nuclei were analyzed per condition. To distinguish

individual nuclei in a field, nuclei were either thresholded or

manually identified and segmented with individual masks. Pixel

intensities were extracted from raw 16-bit images in TIFF format

as a numerical matrix in Image J 1.33, and subsequent analysis

performed in R (http://www.R-project.org). Raw pixel intensities

were normalized to the sum of total number of pixel intensities in

each nucleus, to account for possible differences in overall intensity

between nuclei, and localized peaks of higher signal, correspond-

ing to denser chromatin, were identified by taking the 15th

percentile of the normalized pixel signals as a lower threshold. The

resulting signal peaks were then filtered so that peaks smaller than

20 pixels were discarded, and peaks closer than 3 pixels were

joined together. Images taken with the microscope configuration

described in the Immunofluorescence microscopy section above

correspond to 1 pixel equaling 0.0645 mm. The distribution of

numbers and areas of each individual peaks were then calculated

and compared between samples using Kolmogorov-Smirnov tests

for statistical significance.

Quantification of apoptosis and chromatin state by flow
cytometry

Plasmids encoding NET23/STING fused to GFP at the N- or

C-terminus (GFP-NET23 and NET23-GFP respectively), NET23-

mRFP or the fluorescent proteins alone were transfected into

HT1080 cells or HCT116 cells and the p53 knock out variant

379.2 (p532\2) of HCT116 cells using Fugene HD transfection

reagent (Roche). In experiments where apoptosis was blocked,

immediately after transfection cells were treated with 20 mM Z-

VAD, a pan-caspase inhibitor, from a 10 mM stock in 30%

DMSO. At 48 h post-transfection and Z-VAD treatment, the

DNA stain Hoechst 33342 (Molecular Probes) was added to the

cells at a final concentration of 5 mg/ml and left to incubate at

37uC for a period of 30 min to 60 min. Cells were harvested by

trypsinization followed by its inactivation with serum, cell pellets

were collected by centrifugation at 2506g for 5 min at RT,

washed once in PBS and re-suspended in 1 ml of PBS. For

apoptosis analysis the cell pellet was re-suspended in 1 ml of

Annexin binding buffer (BD biosciences), treated with RNase A,

and 2.5 mg/ml of Annexin V-Alexa flour 647 was added. Cells

were incubated in the dark at room temperature for 5 min. Cells

were kept on ice and Propidium Iodide (50 mg/ml) was added

together with RNase (100 mg/ml). Cells were immediately

analyzed on an LSR II flow cytometer (BD Bioscience, UK)

equipped with 488 nm and 350 nm lasers and appropriate filters.

Cellular debris and cell aggregates were excluded from analysis by

application of electronic gates. Cell cycle analysis was carried out
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on the live singlets gate using FlowJo software (TreeStar, Inc). At

least 10,000 cells were scored for the total live singlets and 1,000

cells for the GFP or mRFP positive live singlets. Each experiment

was repeated at least 2 times. Data are displayed in the form of

histogram overlays using %Max option, which scales each

population curve to mode = 100%.

siRNA knockdown of NET23/STING
NET23/STING siRNA oligos ‘‘GCACCUGUGUCCUGGA-

GUAUU’’ and ‘‘GCAUCAAGGAUCGGGUUUAUU’’ were

combined with 0.72 mg each or a control scrambled sequence

were transfected into cells using JetPrime transfection reagent. To

confirm knockdowns, cell lysates were prepared and levels tested

by Western blot with NET23/STING antibodies.

Western blotting
To increase lamina solubility, Jurkat cells were incubated on ice

in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM MgCl2, 0.2%

NP-40 in the presence of protease inhibitor cocktail (Roche 11 873

580 001) 15 min, then sonicated in a 4uC sonibath, followed by

adding sample buffer (100 mM Tris pH 6.8, 4 M Urea, 2% SDS,

50 mM DTT and 15% sucrose), heating at 65uC and then

sonicating again in a 4uC sonibath. Equal numbers of cells were

loaded between the wild-type cells and the NET23/STING

knockdown cells. Equal protein loading was confirmed by

coomassie blue staining of polyacrylamide gels. Proteins were

resolved by SDS-PAGE and transferred to Nitrocellulose mem-

brane (LI-COR Biosciences). Membranes were blocked in PBS,

6% milk, 0.2% tween. For blots probed for H3K9me3 to ensure

that histones were not lost Immobilon 0.2 mm pore size

membranes (ISEQ10100) were using only a 45 min transfer time.

Primary antibodies were diluted in the PBS-milk-tween buffer and

allowed to incubate overnight at 4uC. Secondary antibodies IR800

conjugated goat anti-rabbit (LI-COR Biosciences) were added at

concentration 1/5000 at RT for 2 h. Visualization and quantifi-

cation were performed using a LI-COR Odyssey and software

(Odyssey 3.0.16) using median background subtraction. Three

independent blots were run for each experiment and averages

from all three are presented.
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