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Abstract

The aim of the MATHsAiD project is to build a tool for auto-
mated theorem-discovery; to design and build a tool to automatically
conjecture and prove theorems (lemmas, corollaries, etc.) from a set
of user-supplied axioms and definitions. No other input is required.
This tool would, for instance, allow a mathematician to try several
versions of a particular definition, and in a relatively small amount of
time, be able to see some of the consequences, in terms of the result-
ing theorems, of each version. Moreover, the automatically discovered
theorems could perhaps help the users to discover and prove further
theorems for themselves. The tool could also easily be used by educa-
tors (to generate exercise sets, for instance) and by students as well. In
a similar fashion, it might also prove useful in enabling automated the-
orem provers to dispatch many of the more difficult proof obligations
arising in software verification, by automatically generating lemmas
which are needed by the prover, in order to finish these proofs.

∗The research reported in this paper was supported by EPSRC grants EP/F033559/1
and EP/J001058/1. Thanks to Grechuk Bogdan, Moa Johansson, Ursula Martin, Omar
Montano Rivas and the audience of a Mathematical Reasoning Group seminar for feedback
on an earlier draft.
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1 Introduction

MATHsAiD (Mechanically Ascertaining Theorems from Hypotheses, Axioms
and Definitions) is a tool for assisting the working mathematician explore
new mathematical theories. Given the axioms of a theory it will derive
from it the kind of routine theorems that would be of interest to the math-
ematician, either confirming that the initial axiomatisation met the original
intentions or revealing some undesired consequence, e.g., proving a theorem
that wasn’t intended or failing to prove one that was intended. The theo-
rems routinely generated by MATHsAiD can then be used as lemmas in more
significant theorems whose proofs exceed MATHsAiD’s unaided abilities.

To be useful to working mathematicians, it is essential that MATHsAiD
should be capable of conjecturing and proving theorems in theories of current
mathematical interest, ideally including non-trivial theorems. In particular,
it should be able to conjecture and prove theorems inter-relating different
mathematical theories. These goals constitute the main aim of MATHsAiD
2.0, the current version of MATHsAiD, which is described in this paper.

The aim of the MATHsAiD 2.0 system, therefore, is:

To be a useful aid to the working mathematician, by conjecturing
and proving many of the interesting theorems of a given math-
ematical theory (from user-provided axioms), whilst limiting the
number of non-interesting theorems generated.

In order to test whether MATHsAiD 2.0 could meet its aim, we set it the
task of conjecturing and proving at least one recently published theorem.
We targeted the theory of Zariski spaces, which was discovered and explored
by the first and third authors. In particular, we hoped that MATHsAiD 2.0
could re-discover some general results about prime submodules and, more
specifically, some results in the theory of Zariski spaces.

MATHsAiD 2.0 classifies the conjectures it proves as either facts, lemmas,
Theorems and inter-theory theorems/results.

Facts: are intermediate results of no intrinsic mathematical interest. Facts
are so classified because they are trivial consequences of previously
known Theorems or because they are unnecessarily complex, i.e., that
they could be simplified. Each Fact is generated as a side product
of the generation of a particular Theorem and is deemed to be useful
only during that process. Once the Theorem generator has completed
its immediate task, all the Facts that it has generated are deleted.
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Lemmas: are generated by the theorem generating process but fail to meet
all the criteria demanded of a Theorem. They are stored permanently
in case they find a use as intermediate lemmas in the proof of subse-
quent Theorems, but are not reported to the user as Theorems.

Theorems: are generated by the theorem generating process and meet all
the criteria demanded of a Theorem. They are stored permanently
and reported to the user as Theorems.

Inter-Theory Theorems/Results: are Theorems that relate two differ-
ent operators in two different theories. Those that meet the criteria
for Theorem-hood are called inter-theory Theorems, are stored perma-
nently and reported to the user; those that are just lemmas are called
inter-theory results.

The key filters used to determine Theoremhood are listed in §3.
Given a set of axioms and definitions for a theory, MATHsAiD 2.0 analyses

the information supplied, and based on this analysis, generates a sequence
of sets of hypotheses and terms of interest. This sequence is designed to dis-
cover the more ‘routine’ Theorems in this theory; i.e., results that one might
expect to see in an introductory mathematics textbook. For example, in set
theory, given the usual definitions of union and intersection, MATHsAiD 2.0
discovers, among other things, that these operations are commutative, as-
sociative, and each is distributive over the other. For each set of hypotheses
in the aforementioned sequence, MATHsAiD 2.0 uses a combination of ‘gen-
erating’ and ‘trivial’ proof plans to discover all the more-or-less interesting
results it can, subject to numerous constraints. In particular, the ‘generat-
ing’ proof plans serve to derive (generate and prove) various conclusions c
from the given hypotheses, whereas the ‘trivial’ proof plans act as a con-
straint, by allowing the assertion of a newly-derived c only if it fails to be
proven by any of the ‘trivial’ proof plans. Once the system is no longer
able to assert any additional conclusions, either because the combination
of ‘generating’ and ‘trivial’ proof plans do not allow such, or because the
time limit has expired, the generated conclusions are then passed to a final
filtering stage, in which the less interesting ones are weeded out, leaving
(hopefully) only the sorts of results that the user desires to see.

In this paper, we will use the following conventions:

• We will use ‘theorem’ to describe all provable formulae, but ‘Theorem’
to distinguish those theorems that pass the Theorem-hood criteria of
§2, so are considered sufficiently interesting to be report as such to the
user.
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• We will use the lower case letters x, y, z, possibly sub-scripted, to
stand for meta-level variables, which we will also call holes.

• We will use Greek letters, possibly sub-scripted, to stand for all other
meta-level expressions in patterns, e.g., to express the structure of
Theorem-producing rules, the conjecture shell, term of interest schemas,
etc. Occasionally, we will also use special symbols, such as ≈, to stand
for particular kinds of meta-level expressions, in this case equivalence
relations.

• An operator is a non-nullary function or predicate.

2 An Overview of MATHsAiD 2.0

The logic used by MATHsAiD 2.0 is user defined, but its default logic is
a classical, untyped higher-order logic. The default logic was chosen to
reflect standard mathematical practice and is based on Gentzen’s Natural
Deduction. Table 1 lists the logical rules of inference used by MATHsAiD
2.0.

Mathematicians typically do not assign types to objects, but they do use
sets. We have followed the Gödel-Bernays approach to sets and classes, as
found in (Hungerford, 1980), for instance, where classes are comprised of
sets and proper classes. Proper classes are, roughly speaking, too large to
be sets, e.g., the class of all sets. Inconsistencies, such as Russell’s Paradox,
can arise from the application of set comprehension to classes; this dilemma
is avoided by restricting comprehension to apply only to sets.

Implicit typing information is represented by unary properties, such as
Class(S), or binary set member relations, such as n ∈ N, where N is the
set of natural numbers. These typing propositions are internally tagged by
MATHsAiD 2.0, which distinguishes between type and non-type propositions
during its formation of Theorems. Note that one type can be a subtype of
another. For instance, Sets are a subtype of Classes. When two types share
a common subtype, we will say they are compatible.

Each MATHsAiD 2.0’s Theorem consists of a, possibly empty, hypothesis
followed by a conclusion. The hypothesis is a conjunction of some type
propositions and possibly some non-type propositions. Each variable in the
Theorem is implicitly universally quantified and its type is declared in one
of these type propositions. Each conclusion contains a term of interest, i.e.,
a term that has some intrinsic mathematical interest.
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Introduction Rules Elimination Rules

P ∨ ¬P ExMid
⊥
P
⊥E

P....
⊥
¬P ¬I

P ¬P
⊥ ¬E

P Q

P ∧Q ∧I
P ∧Q
P

∧EL
P ∧Q
Q

∧ER

P
P ∨Q ∨IL

Q

P ∨Q ∨IR
P ∨Q

P....
R

Q....
R

r ∨E

P....
Q

P =⇒ Q
=⇒ I

P =⇒ Q P

Q
=⇒ E

P =⇒ Q Q =⇒ P

P ⇐⇒ Q
⇐⇒ I

p ⇐⇒ Q

(P =⇒ Q) ∧ (Q =⇒ P ) ⇐⇒ E

A(y)
∀x.A(x) ∀I

C(y)....
A(y)

∀x : C(x).A(x) ∀ : I
∀x.A(x)
A(t) ∀E

∀x : C(x).A(x) C(t)
A(t) ∀ : E

A(t)
∃x.A(x) ∃I

A(t) C(t)
∃x : C(x).A(x) ∃ : I

∃x.A(x)

A(y)....
P

P
∃E

∃x : C(x).A(x)

A(y) C(y)....
P

P
∃ : E

Table 1: The Rules of Natural Deduction: All type inheritance rules
and the type antecedents on all rules have been omitted to reduce clutter.
The type conventions are that: P , Q and R range over propositions, A and
C over open sentences, t over terms and x and y over variables. The ys in
rules ∀I, ∃E, ∀ : I and ∃ : E are fresh variables that do not occur in the
A(x)s.
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MATHsAiD 2.0’s proofs consist of logical and transitive reasoning, plus
induction, when a theory contains inductive rules. By transitive reasoning
we mean that a proof of ξ1 Ξ ξn, say, takes the form:

ξ1 Ξ ξ2 Ξ . . . Ξ ξn

where Ξ is a transitive relation, whose transitivity is invoked to then con-
clude that ξ1 Ξ ξn. This is essentially rewriting.

The proofs of Theorems are quite short, i.e., a few rule applications.
This ensures that interesting Theorems are not overlooked by the generation
process and reflects the high density of interesting Theorems in MATHsAiD
2.0’s search spaces. Theorems requiring long proofs are discovered by the
accumulation and combination of intermediate lemmas, each of which is a
theorem.

Theorems are generated in parallel with their proof, which is partly by
a forwards reasoning process. First, the hypothesis, the conclusion’s main
predicate and a term of interest are generated. These are combined to form
a Theorem shell, i.e., some holes in the Theorem remain unspecified. Then
a forward inference process explores what conclusions containing this term
of interest follow from the hypothesis. The holes in the Theorem are filled
in as a side-effect of its proof.

The proof process is guided by sketch plans. These help to ensure that
interesting Theorems are generated. There are two kinds of sketch plans:
generating and trivial. Generating plans are used to generate interesting
Theorems and trivial plans to check that they are not merely facts, i.e., if a
formula can be proved by a trivial plan, then it is classified as a fact rather
than a Theorem. In addition, the last step of the proof of a Theorem must
be by a Theorem-producing rule. These are rules whose conclusions are no
more complex than their hypotheses, i.e., a rule of the form:

θ1 ∧ . . . ∧ θn =⇒ γ

where:

size(γ) ≤ maxi∈[n]size(θi)

and size counts the number of operators in an expression, as a measure of
its complexity. At least two of the θi must be non-type propositions. The
restriction to these rules helps ensure the simplicity of the Theorems.

In some cases one cannot check that a candidate Theorem-producing
rule meets the non-increasing size criterion until it is known how it will be
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instantiated within a proof. Consider, for instance, a transitivity rule, such
as:

x = y ∧ y = z =⇒ x = z

MATHsAiD 2.0 cannot tell whether:

size(x = z) ≤ max(size(x = y), size(y = z))

until it is known what y will be instantiated to. This problem occurs when-
ever a variable occurs in a θi that does not occur in γ. Such rules are called
conditional Theorem-producing rules and the non-increasing size criterion is
checked dynamically once a rule has been fully instantiated in use.

There are a few Theorems that cannot be proved using terminal appli-
cations of Theorem-producing rules but are too important to exclude, e.g.,
the transitivity of =⇒ . Its standard proof is:

P, P =⇒ Q

Q, Q =⇒ R

R
P =⇒ R

but in this proof the final implication, Q =⇒ R, fails to be a Theorem
producing rule because it only has one non-type antecedent. In fact, none
of the implications used in the proof meets this requirement, ruling out the
possibility of some meeting the requirement by some rearrangement of the
proof. We could try to introduce a redundant Theorem-producing rule in
order to meet the requirement, but this would not just be ugly but would
probably exceed our maximum proof length and not be discovered.

Such Theorems are instead generated by instantiating schemas, e.g., of
transitivity, and are proved by backward reasoning from these instantiated
schemas.

3 Implementation

In outline, the Theorem/lemma generation process consists of three stages:

1. A conjecture shell is constructed using the material provided by the
hypothesis and term of interest generators described in §3.1. This
material consists of a hypothesis θ, a term of interest ξ and a k-ary
predicate, ρ. The conjecture shell is then:

θ =⇒ ρ(y1, . . . , ξ, . . . , yk) (1)

where the yi are distinct new variables called holes.
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2. The sketch plans are used to reason backwards from this conjecture
shell. If successful, this backwards reasoning both generates a proof
sketch and instantiates the yi, i.e., fills in the holes. Note that this
process usually fails, either because the conjecture shell cannot be
instantiated to a true formula or because MATHsAiD 2.0 fails to outline
a proof of it. If it succeeds then some filters are applied to identify
and discard mere facts.

(a) The proof sketch must outline a non-trivial proof.

(b) The last rule applied in the proof sketch must be a Theorem
producing rule.

(c) The conjecture must not also have a trivial proof. An attempt
is made to prove it using some very simple techniques, such as
showing that it is an instance of an existing Theorem.

Only conjectures that pass all these filters proceed to the final stage.

3. The fully instantiated conjecture and its proof sketch are sent to the
theorem prover, which uses a process of forwards reasoning to turn the
proof sketch into a full proof. If this succeeds then the conjecture is
reclassified as a Theorem.

Not all these new theorems are equally interesting. Some are useful as
lemmas to use in subsequent proofs, so need to be stored for reuse, but are
not intrinsically interesting in their own right. If ρ is instantiated to a type
predicate, then the result is a lemma. On the other hand, if the predicate
ρ in the conjecture shell (1) is instantiated to = during its proof, then the
result is usually a Theorem. An exception to this is two-results, as explained
in §3.4.7.

Unfortunately, not all Theorems and lemmas can be produced by the pro-
cess outlined above and in §3.1 below. For instance, the Theorem-producing
rule filter ((2b) above) excludes some standard Theorems, e.g., transitivity
Theorems. Also, some Theorems are produced in a non-standard format,
e.g., monotonicity Theorems. So an additional Theorem generation mecha-
nism is also used. Schemas describing the shape of these lemmas and Theo-
rems are instantiated and then an attempt is made to prove them. This ad-
ditional mechanism and the lemmas and Theorems it produces is described
in §3.2. Note that all lemmas are produced top-down from schemas.
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3.1 Hypothesis and Term of Interest Generation

The hypothesis generator and the term of interest generator identify a pred-
icate, ρ, and use it to generate the term of interest, ξ, the hypothesis, θ, and
the conjecture shell (1).

Each predicate in the current theory is a candidate for ρ. Each candidate
is used in combination with each compatible candidate for θ and ξ.

3.1.1 Term of Interest Generation

The term of interest generator works by systematically and exhaustively
instantiating a set of schemas up to some resource limits, namely term size
and nesting bounds. Each possible instantiation of a schema is a possible
candidate for the term of interest ξ. For instance, the schemas used for a
binary operator µ are:

• µ(x, y) in all situations.

• µ(x, x) if the arguments of µ have compatible types.

• µ(µ(x, y), z) and/or µ(x, µ(y, z)) if the result of µ has a type compat-
ible with one or both of its arguments.

• µ(c, x) and/or µ(x, c) if there is also a constant c with a type compat-
ible with one or both of µ’s arguments.

• ν(µ(x, y)), µ(ν(x), y), µ(x, ν(y), µ(ν(x), ν(y)) if there is also another
unary operator ν, where the type of µ’s result is compatible with the
type of ν’s argument or vice versa.

• ν(µ(x, y), z), ν(x, µ(y, z)) and/or ν(µ(x, y), µ(z, w)) if there is also an-
other binary operator ν, where the type of µ’s result is compatible
with one or both of the types of ν’s arguments. And ditto with the
roles of µ and ν reversed.

A term of interest is used to generate zero, one or more Theorems. If
one is generated that has already been used in an equivalence relation in an
existing Theorem, then it is filtered out.

3.1.2 Hypothesis Generation

The hypotheses of each conjecture consist of two parts: type declarations
and non-type hypotheses.
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The type declarations can be easily calculated from the term of interest
ξ. For each variable, say x, in ξ, we must first identify its type, say τ , and
then create a hypothesis asserting that type, say τ(x). The identification of
the type τ must take into account any compatibility conditions accumulated
during the construction of the term of interest. For instance, suppose the
term of interest is µ(x, x), where µ has type τ1× τ2 7→ τ3. To form this term
of interest τ1 and τ2 must be compatible, say τ1 is a subtype of τ2. Now the
type of x is restricted to τ1. The result of this stage of hypothesis generation
will be a conjunction of type declarations of the form τ1(x1) ∧ . . . ∧ τn(xn).

A non-type hypothesis is generated for each predicate ς in the theory
that is different from ρ and for each combination of arguments chosen from
compatible xi. Suppose, for instance, that ς has type τ ′1 × . . . × τ ′m 7→ τ ′.
A hypothesis of the form ς(x′1, . . . , x

′
m) is formed for each combination of

x′1, . . . , x
′
m where the type of x′i is compatible with τ ′i and each x′i is xj for

some j.
A complete hypothesis, θ, now consists of all the type declarations plus

zero or more non-type hypothesis.

3.1.3 Lemma Generation

Lemmas are formed from conjectures of the form (1) by exhaustive execution
of the following procedure:

• Pick a k-ary predicate ρ.

• Pick an argument of ρ and generate a term of interest ξ whose type is
compatible with that argument of ρ. Fill the rest of the arguments of
ρ with distinct variables yi.

• Use the term of interest to form a hypothesis θ.

The conjecture is:

θ =⇒ ρ(y1, . . . , ξ, . . . , yk)

An example is

Class(A) ∧ Class(B) ∧ Class(C) ∧R : A 7→ B ∧ S : B 7→ C

=⇒ S ⊕R : A 7→ C (2)

where S⊕R ::= λx. S(R(x)), i.e., the composure of S and R, and R : A 7→ B
means R is a function from A to B.

The above procedure generates this lemma as follows:
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• Let ρ be the ternary predicate . . . : . . . 7→ . . ., which is not an equiva-
lence relation.

• Pick the first argument of ρ and generate the term of interest ξ to be
S ⊕R.

• One of the hypotheses generated is:

Class(A) ∧ Class(B) ∧ Class(C) ∧R : A 7→ B ∧ S : B 7→ C

• The conjecture shell has now been instantiated to (2).

One example of lemmas produced by MATHsAiD 2.0 are type inheritance
rules, e.g.,

Class(A) ∧ Class(B) =⇒ Class(A ∪B)

Type inheritance conjectures are generated for every operator. For instance,
suppose the arguments of a binary operator µ are both of type τ , but its
output type is not known. The following schema is used:

τ(x) ∧ τ(y) =⇒ τ(µ(x, y))

to try to prove that the output type is also τ .
A special case of lemma production is two-results. These are formed

from terms of interest containing recursively defined operators and are used
in the construction of inductive conjectures. Suppose ξ is a term of interest
containing a recursively defined operator and a universally quantified vari-
able, say x of type τ . MATHsAiD 2.0 calculates a two-object for terms of
type τ , say c, and substitutes c for x in ξ to form a two-term, say ξ′. Two-
objects are terms formed from two applications of a step constructor to a
base constructor, e.g., s(s(0)), cons(a, cons(b, nil)), etc., where and s is the
successor function, i.e., s(0) represents 1, s(s(0)) and cons is the function to
attach a new element to the head of a list. Suppose, for instance, that the
term of interest is m + n, where + is recursively defined and m and n are
universally quantified and have type N. The two-object for type N is s(s(0)),
and s(s(0)) + n and m+ s(s(0)) are the two-terms formed from m+ n.

The two-terms are then adopted as new terms of interest to create two-
results, i.e., theorems in which these two-cases form the left-hand side of an
equation. In our example, a process of forwards reasoning from the two-
terms produces the following two-results:

∀n ∈ N =⇒ s(s(0)) + n = s(s(n)) (3)
∀m ∈ N =⇒ m+ s(s(0)) = s(s(m)) (4)
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These two-results are then proved, which results in (3) being rejected as triv-
ial but (4) being used to suggest an inductive conjecture. It is re-generalised
by replacing the two-objects with universal variables to form the following
inductive conjecture:

m+ n = n+m (5)

where each s(s(0)) has been replaced by m.
A sketch plans of each inductive conjectures is sought. If its proof sketch

is trivial then it is rejected. If not, and a full inductive proof is found, the
conjecture is adopted as a Theorem. Conjecture (5) is the commutativity of
+, which does have an interesting sketch plan and which can be proved by
induction. More details of this process can be found in (McCasland, Bundy,
& Autexier, 2007).

3.1.4 Theorem Generation

Theorems are formed from conjectures of the form:

θ =⇒ ρ(y1, . . . , ξ, . . . , yk)

by exhaustive execution of the following procedure.
The term of interest and hypothesis generators instantiate ξ and θ in

the above conjecture shell. This partially instantiated shell is now passed
to the theorem generator. Its role is to instantiate ρ and prove the resulting
Theorem. It uses the following process.

• A Theorem-producing rule:

θ1 ∧ . . . ∧ θn =⇒ γ (6)

is chosen such that ρ(y1, . . . , ξ, . . . , yk)σ2 ≡ γσ1 for some substitutions
σ1 and σ2. The search for suitable (6), σ1 and σ2 proceeds as follows:

For each candidate (6):

– Suppose θj is the first hypothesis of maximum size, i.e., size(θj) =
maxi∈[n]size(θi).

– If possible, instantiate θj so that it contains ξ as a subterm, i.e., ξ
occurs in θjσ1 for some substitution σ1, otherwise terminate with
failure.

– Now match ρ(y1, . . . , ξ, . . . , yk) to γσ1 with substitution σ2, oth-
erwise terminate with failure.

12



Note that ρ is now fully instantiated and that the term of interest
ξ occurs in both the hypothesis and the conclusion of the Theorem-
producing rule. The first step of backwards reasoning has also been
accomplished and the new sub-goal is:

θσ2 =⇒ (θ1 ∧ . . . ∧ θn)σ1 (7)

• Use the sketch plans to generate a proof sketch for (7) by backwards
reasoning. The proof sketch is assessed. If it is deemed too trivial to
justify classifying the conjecture as a Theorem, then terminate with
failure.

• Execute the proof sketch by forwards reasoning to produce a full proof.

This process is repeated for all Theorem-producing rules (6) and all ways to
fit ξ to θj .

For instance, suppose that the term of interest ξ is A ∩ B, so that the
conjecture shell is:

Class(A) ∧ Class(B) =⇒ P (y1, . . . , A ∩B, . . . , yk)

and the transitivity of = is selected as the Theorem-producing rule:

x = y ∧ y = z =⇒ x = z (8)

where x = y is θj .

• One instantiation of θj to contain ξ is to make the substitution σ1 be
{A ∩B/x} where n is 2, so that (8) is:

A ∩B = y ∧ y = z =⇒ A ∩B = z

• Matching ρ(y1, . . . , A∩B, . . . , yk) to A∩B = z makes the substitution
σ2 be {z/y1,= /ρ} where k is 2.

• The sketch plans are now used to instantiate and prove:

Class(A) ∧ Class(B) =⇒ A ∩B = y ∧ y = z

by backwards reasoning. During this process z is instantiated to B∩A
and y to {w : w ∈ A ∧ w ∈ B}.
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• This instantiates the conjecture to:

Class(A) ∧ Class(B)
=⇒ A ∩B = {w : w ∈ A ∧ w ∈ B} ∧ {w : w ∈ A ∧ w ∈ B} = B ∩A

• The transitive chain can now be collapsed to give the final conjecture
as:

Class(A) ∧ Class(B) =⇒ A ∩B = B ∩A

The sketch plan is then used to generate the full proof of this conjecture
by forwards reasoning.

Some other examples of Theorems proved by MATHsAiD 2.0, labelled by
the theories in which they are proved, are:

Classes:

Class(A) ∧ Class(B) ∧ Class(C) =⇒ A \ (B \ C) = (A \B) ∪ (A ∩ C)

Zariski Topology:

comRingWOne(R) =⇒ ζ(R) topologyOn spec(R)

Zariski Spaces:

comRingWOne(R) ∧ leftUnitalModule(M,R)
=⇒ leftSemimodule(ζ(M), ζ(R))

3.2 Lemma and Theorem Schemas

As mentioned in §3, to complement the theorem generation process de-
scribed in §3.1, MATHsAiD 2.0 also generates lemmas and Theorems by the
instantiation of schemas. The schemas are divided into two types: those
producing lemmas and those producing Theorems. Below we describe these
two kinds of schema and give examples of the kind of lemmas and Theorems
they produce.
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3.2.1 Lemma Schemas

The following schemas are used to produce positive or negative monotonicity
rules, which are classified as lemmas. These lemmas show how a relationship
is inherited or inverted under operator application, e.g.,

Class(A) ∧ Class(B) ∧ Class(R) =⇒ (A ⊂ B =⇒ A ∪R ⊂ B ∪R)

Monotonicity conjectures are generated for every combination of transitive,
binary predicates Ξi (of type τ × τ 7→ τ) and unary and binary operators
µ1 (of type τ 7→ τ) and µ2 (of type τ × τ 7→ τ) using the schemas:

τ(x) ∧ τ(y) =⇒ (x Ξ1 y =⇒ µ1(x) Ξ2 µ1(y))
τ(x) ∧ τ(y) =⇒ (x Ξ1 y =⇒ µ1(y) Ξ2 µ1(x))

τ(x) ∧ τ(y) ∧ τ(z) =⇒ (x Ξ1 y =⇒ µ2(x, z) Ξ2 µ2(y, z))
τ(x) ∧ τ(y) ∧ τ(z) =⇒ (x Ξ1 y =⇒ µ2(z, x) Ξ2 µ2(z, y))
τ(x) ∧ τ(y) ∧ τ(z) =⇒ (x Ξ1 y =⇒ µ2(y, z) Ξ2 µ2(x, z))
τ(x) ∧ τ(y) ∧ τ(z) =⇒ (x Ξ1 y =⇒ µ2(z, y) Ξ2 µ2(z, x))

where Ξ1 and Ξ2 may or may not be the same predicate.

3.2.2 Theorem Schemas

The following schemas are used to produce Theorems, i.e., results that are
intrinsically interesting.

Reflexivity rules: These show the reflexivity of binary predicates, e.g.,

Prop(P ) =⇒ (P =⇒ P )

Reflexivity conjectures are generated for every binary predicate φ (of
type τ × τ 7→ bool) using the schema:

τ(x) =⇒ φ(x, x)

Transitivity rules: These show the transitivity of binary predicates, e.g.,

Class(A) ∧ Class(B) ∧ Class(C) =⇒ (A ⊂ B ∧B ⊂ C =⇒ A ⊂ C)

Transitivity conjectures are generated for every binary predicate φ (of
type τ × τ 7→ bool) using the schema:

τ(x) ∧ τ(y) ∧ τ(z) =⇒ (φ(x, y) ∧ φ(y, z) =⇒ φ(x, z)

15



Quantifier distributivity rules: These distribute quantifiers over con-
nectives, e.g.,

∀z. (P (z) ∧Q(z)) =⇒ (∀x.;P (x) ∧ ∀y.;Q(y))

and transitive relations, e.g.,

∀z. (P (z) ⇐⇒ Q(z)) =⇒ {x : P (x)} = {y : Q(y)}

Quantifier distributivity conjectures are generated for every transitive
relation π (of type τ × τ 7→ bool) using the schema:

∀z. (τ(z) =⇒ Ξ(φ(z), ψ(z))) =⇒ π(Πx. φ(x),Πy. ψ(x))

where Ξ is either =⇒ or ⇐⇒ and Π is either ∀, ∃ or set compre-
hension, e.g., {x : φ(x)}. Conjectures are made for all well-defined
combinations.

Converses: Provided the user has selected the ‘converse’ option, then there
is an attempt to turn all implications into equivalences, i.e., if θ =⇒ γ
has been proved, then MATHsAiD 2.0 will conjecture γ =⇒ θ.

Once a schema has been instantiated to a conjecture, then an attempt
is made to prove it.

3.3 Inter-Theory Theorem/Result Generation

An inter-theory theorem/result relates two or more different operators in
two or more different theories. For instance, the ⊆ operator in the theory
of Sets is an example of a partial order � from the theory of Orderings.
Such an inter-theory theorem is established by showing that an operator
from one theory meets the definition of an operator from another theory.
In our example, a partial order � is defined to be a binary operator that
is reflexive, transitive and antisymmetric. The ⊆ operator is then shown to
meet these defining properties.

A more challenging example is illustrated in Figure 1, where the The-
orem marked ‘Theorem (15)’ shows that given an R-module M (R is a
commutative ring with 1 and M is unital) the set ζ(M) of all varieties of
subsets of M forms a semimodule over the Zariski topology of R (viewed
as a semiring), with an appropriate choice of scalar multiplication. This is
essentially Theorem 2 from (McCasland, Moore, & Smith, 1998). MATH-
sAiD 2.0’s discovery and proof of this Theorem shows both that it can reason
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with high-level theories and that it can conjecture and prove mathematics
of current research interest. By high-level theory we mean a theory that is
built on top of a tower of other theories. Zariski spaces are built on the
theories of topology and (semi)modules; (semi)modules are in turn built on
(semi)rings, which are built on (semi)groups, etc. All of these theories are
built on class/set theory, which is built on logic.

3.4 Sketch Plans and Proof Sketches

The theorem generation process described in §3.1.4 uses sketch plans for
three purposes:

• to complete the instantiation of a partially instantiated conjecture
shell;

• to produce a proof sketch to guide the search for a proof; and

• to assess the proof sketch to ensure the result is worthy of classification
as a Theorem.

Except for the sketch plan forwards reasoning, the sketch plans work
backwards from the conjecture to the axioms and previously proved lemmas
and Theorems. To keep proofs short, there is a user-defined limit on the
number of times each sketch plan can be successively applied, e.g., twice.
The sketch plans pass information between them on: which sketch plans
should be called next; limits on the number of further applications of a sketch
plan; whether or not a sketch plan must fully instantiate the conjecture;
whether the conjecture will yield a lemma or a Theorem; etc.

A proof sketch falls short of a full proof mainly in that no type checking
is done, so that some formulae may not be well formed. Additionally, some
parts of the proof may be omitted with indicators of what must be done
to complete it, e.g., use another part of the proof as a guide, fill in missing
steps in a transitive chain, etc.

A sketch plan is an and tree in which the nodes are sub-goals and the
arcs are instances of rules of inference. Indicators are attached to nodes to
advise the theorem proving procedure when the sketch is completed. These
indicators are:

Derivation Needed: This is a non-leaf sub-goal so the proof sketch below
it needs to be unpacked. This indicator is added by the Derivation
sketch plan.
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Symmetry: The proof of this sub-goal is similar to one that has already
been proved and whose proof can be used as a guide. This indicator is
added whenever symmetry is used by the sketch plans of Replacement,
Simplification, Transitivity handler, Induction or Targeted Manipula-
tion.

Previously Proved: This sub-goal has previously been proved elsewhere,
so does not need to be reproved. This indicator may be added by the
Derivation and Targeted manipulation sketch plans.

Transitive chain completion: The proof of this sub-goal involves a tran-
sitive chain that must be unpacked, as only the first and last sub-goal
of the chain, plus the transitive relation used, are present in the proof
sketch. This indicator may be added by the Simplification, Transitiv-
ity handler, Induction and Targeted Manipulation sketch plans.

The sketch plan application is controlled by a cascade process, which suc-
cessively applies them until no sub-goals remain. To avoid duplicated effort,
the cascade first checks that a sub-goal has not been previously asserted,
proved or sketched, before applying sketch plans to it.

Below we outline each of the sketch plans used by MATHsAiD 2.0.

3.4.1 Derivation

Consider the =⇒ I rule from Table 1.

P....
Q

P =⇒ Q
=⇒ I

Like five of the other logical rules in that Table, one of its antecedents is
a nested derivation — in this case of Q from P . To prove such a nested
derivation, MATHsAiD 2.0 makes P into a temporary assumption and then
tries to prove Q from it. At the end of this attempt, whether successful or
not, the temporary assumption of P is withdrawn.

The Derivation sketch plan is responsible for such nested derivations. It
combines the Forwards Reasoning sketch plan from any assertions and the
Backwards Reasoning sketch plan from the subgoal, trying to get them to
meet in the middle. It sets a limit on the number of applications of each
of these sketch plans. The following is an example of the Derivation sketch
plan.
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Suppose the current goal is:

A ∧B =⇒ x

and that the =⇒ I rule has been used to set up a hypothetical context in
which A∧B is asserted. Derivation first calls the Forward Reasoning sketch
plan to draw conclusions from this assumption. From this assertion, two
applications of Forwards Reasoning are possible using ∧ elimination.

A ∧B
A

A ∧B
B

i.e., both A and B are deduced.
Derivation next calls Backwards Reasoning from the goal x. The situa-

tion is as follows:
A, B
x

Two applications of Backwards Reasoning are possible using the ∧ intro-
duction rule. One of these instantiates x to B ∧A to give.

A, B

B ∧A

Discharging the hypothetical assumption gives the Theorem:

A ∧B =⇒ B ∧A

where the hole x has now been instantiated to B ∧A.

3.4.2 Backwards Reasoning

This sketch plan applies a rule backwards by unifying the current goal with
the conclusion of the rule and creating new sub-goals from the instantiated
hypotheses of the rule, i.e.,

θ1σ ∧ . . . ∧ θ1σ
ζσ

θ1 ∧ . . . ∧ θn =⇒ γ

where ζ is the goal, θ1 ∧ . . . ∧ θn =⇒ γ is a rule with the type hypotheses
elided, and γσ ≡ ζσ, for some substitution σ. The θiσ become the new
sub-goals.

The following conditions must be met for backwards reasoning to apply:

• The limit on the number of successive applications of backwards rea-
soning must not have been reached; and
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• If this rule application is required to fully instantiate ζ then ζσ must
contain no uninstantiated holes.

The count of successive backwards reasoning applications is now incremented
and the indicator of full or partial instantiation is updated.

An example of backwards reasoning is:

(A ∨B) =⇒ (B ∨A) ∧ (B ∨A) =⇒ (A ∨B)
(A ∨B) ⇐⇒ (B ∨A)

where the rule is:

(P =⇒ Q ∧Q =⇒ P ) =⇒ (P ⇐⇒ Q)

and σ is {(A ∨B)/P, (B ∨A)/Q}.

3.4.3 Forward Reasoning

This sketch plan1 applies a rule forwards by unifying a previously proved
formula or current hypothesis with one of the hypotheses of the rule, proving
the remaining instantiated rule hypotheses and deducing the instantiated
rule conclusion, i.e.,

φσ ∧ θ2σ ∧ . . . ∧ θ1σ
γσ θ1 ∧ θ2 . . . ∧ θn =⇒ γ

where φ is a previously proved formula or current hypothesis such that
φσ ≡ θ1σ. Without loss of generality we assume that φ is matched to the
first hypothesis of the rule. As with backward reasoning, we elide all type
hypotheses from the rule, so that none of the dominant predicates of φ or
the θi is a type predicate. Note that the θiσ must all be proved for 2 ≤ i ≤ n
before γσ can be deduced.

An example of forwards reasoning is:

((A ∨B) ∧ ((A ∨B) ⇐⇒ (B ∨A)))
B ∨A (P ∧ (P ⇐⇒ Q)) =⇒ Q

where A ∨ B is assumed known and the hypothesis (A ∨ B) ⇐⇒ (B ∨ A)
remains to be proved before the conclusion B ∨A can be deduced.

1Note that the Forward Reasoning sketch plan is to be distinguished from the use of
forwards reasoning to complete full proofs from proof sketches.
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3.4.4 Replacement

This sketch plan uses monotonicity lemmas to replace one subterm with
another, i.e.,

ξ1 ≈ ξ2
φ(ξ1) Ξ φ(ξ2)

(x1 ≈ x2) =⇒ (φ(x1) Ξ φ(x2))

where ≈ is an equivalence relation and Ξ is a transitive relation.
An example of replacement is:

(s(a+ b) = s(a+ c)) ⇐⇒ a+ b = a+ c

(s(a+ b) = s(a+ c)) ⇐⇒ x
y = z =⇒ s(y) = s(z)

where a, b, c are natural numbers and s is the successor function. Note how
the hole x is instantiated as a side effect of the sketch plan application.
Replacement could be used again to derive the goal b = c, which might, for
instance, be an induction hypothesis.

3.4.5 Simplification

This sketch plan replaces a sub-term of the goal with an equivalent but
simpler expression, i.e.,

φ[ξ] Ξ φ[ξ′]
φ[ξ] Ξ x

α ≈ β

where ασ ≡ ξ, βσ ≡ ξ′, ≈ is an equivalence relation and

(y ≈ z) =⇒ (φ[y] Ξ φ[z])

is a previously proved positive monotonicity lemma. Ξ is a transitive relation
and m(ξ′) < m(ξ), where m is a measure of simplicity, e.g., the syntactic
size of a term. Note that the hole x is instantiated to φ[ξ′] by this sketch
plan application.

An example of simplification is:

(A =⇒ (¬B ∨ C)) ⇐⇒ (A =⇒ (B =⇒ C))
(A =⇒ (¬B ∨ C)) ⇐⇒ x

(¬P ∨Q) ⇐⇒ (P =⇒ Q)

where α is ¬P ∨ Q, β is P =⇒ Q, ≈ is ⇐⇒ , φ[. . .] is A =⇒ . . ., ξ is
¬B ∨ C, ξ′ is B =⇒ C, Ξ is ⇐⇒ , m(B =⇒ C) < m(¬B ∨ C) and:

(y ⇐⇒ z) =⇒ ((A =⇒ y) ⇐⇒ (A =⇒ z))

is a previously proved positive monotonicity lemma.
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3.4.6 Transitivity Handler

Like simplification, this sketch plan also starts by replacing a sub-term of the
goal with an equivalent expression, but it has more restrictive preconditions
and does a great deal more subsequent work by rewriting the resulting goal,
i.e.,

φ[ξ] Ξ φ′

φ[ξ] Ξ x
α ≈ β

where ≈ is an equivalence relation, Ξ is a transitive relation and ασ ≡ ξ, for
some substitution σ. This sketch plan is similar to simplification, but note
that the right hand side of the new goal has been further rewritten to φ′.
The preconditions of the transitivity handler sketch plan are more liberal
than simplification in allowing φ to be a quantified expression, i.e., φ can be
dominated by either ∀, ∃ or set comprehension.

Initially, α ≈ β is used, together with the positive monotonicity lemma:

(y ≈ z) =⇒ (φ[y] Ξ φ[z])

on the goal φ[ξ] Ξ x to derive φ[ξ] Ξ φ[βσ], which is then rewritten into
φ[ξ] Ξ φ′, where φ′ is in normal form.

Suppose A ∩ (B ∪C) is the term of interest and the following transitive
chain has already been formed:

A ∩ (B ∪ C) = {x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)}

so the right hand side becomes the new goal. Note that it is dominated by
set comprehension. Then an example of transitivity handling is:

{x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)}
(A ∩B) ∪ (A ∩ C)

using the rule:

∀x : Element(x). P (x) ⇐⇒ Q(x) ⇐⇒ {x : P (x)} = {x : Q(x)} (9)

where Element(x) means that x is an element of some set. This is a device
to avoid Russell’s paradox.

P (x) is first matched to x ∈ A∧ (x ∈ B ∨x ∈ C), then the distributivity
of ∧ over ∨:

∀x. R(x) ∧ (S(x) ∨ T (x)) ⇐⇒ (R(x) ∧ S(x)) ∨ ((R(x) ∧ T (x))

is used to instantiate Q(x) to (x ∈ A∧x ∈ B)∨ (x ∈ A∧x ∈ C). The whole
goal is then simplified into normal form, which is

A ∩ (B ∪ C) Ξ (A ∩B) ∪ (A ∩ C)
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3.4.7 Induction

This sketch plan applies an induction rule in a recursive theory. A typical
induction rule is the one for natural numbers, i.e.,

P (0), ∀n ∈ N. P (n) =⇒ P (s(n))
∀n ∈ N. P (n) (10)

This induction rule gives rise to one base case, P (0), and one step case,
∀n ∈ N. P (n) =⇒ P (s(n)), but, in general, there could be several of
each. Within the step case, P (n) is called the induction hypothesis and
P (s(n)) is called the induction conclusion. Note that all induction rules are
Theorem-producing rules.

For instance, applying the induction rule (10) to the commutativity of
+ from §3.1.3, with m as the induction variable gives:

∀l,m : N. 0 + n = n+ 0
∀m,n : N. m+ n = n+m =⇒ s(m) + n = n+ s(m)

∀l,m, n : N. m+ n = n+m

3.4.8 Targeted Manipulation

The Targeted Manipulation sketch plan identifies a sequence of sub-terms
of the current goal as sources that must be manipulated and a sequence
of targets that help direct this manipulation. This need arises, for instance,
during inductive proof when an induction hypothesis is used during the proof
of the induction conclusion. In general, differences between a source and a
target help locate the sub-terms to be manipulated and to measure success
in this manipulation. Targeted manipulation is similar to rippling (Bundy,
Basin, Hutter, & Ireland, 2005).

An example of Targeted Manipulation arises during the proof of the step
case of the associativity of +. The induction conclusion is the goal:

(l +m) + s(n) = l + (m+ s(n))

where the left-hand side (l+m)+s(n) is the initial source and the right-hand
side l + (m+ s(n)) is the initial target. The left-hand side of the induction
hypothesis becomes an intermediate target; this target is reached, from the
initial source, by a simple application of the definition of +. This is followed
by an application of the monotonicity rule for s applied to the induction
hypothesis. The Targeted Manipulation conducted thus far is summarised
as follows:
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(l +m) + s(n) = s((l +m) + n) By definition of +
= s(l + (m+ n)) By induction hypothesis

Targeted manipulation now compares the new source s(l + (m+ n)) to the
target l + (m + s(n)) to identify sub-terms that occur in the target, but
not in the source, for instance, m+ s(n), which becomes a new target. An
attempt is made to reach this next target, but the attempt fails. Instead,
Targeted Manipulation now reasons backwards from this target to obtain
another target.

m+ s(n) = s(m+ n)
m+ s(n) = x

So s(m + n) becomes an intermediate target, which guides the following
manipulation:

. . . = s(l + (m+ n)) Previous source
= l + s(m+ n) By definition of +

The equation m+s(n) = s(m+n) is now used in a similar fashion to the way
in which the induction hypothesis was used; i.e., we apply a monotonicity
rule for + to the recursive definition of + to obtain the final target.

. . . = l + s(m+ n) Previous source
= l + (m+ s(n)) By definition of +

The transitivity of = is now used to equate the first and last terms in the
chain of equalities and to conclude the proof.

3.5 User Interface

MATHsAiD 2.0 is implemented in Amzi! Prolog. This version of Prolog
includes an interface to Java, which is used to build a graphical user interface
in Eclipse. A screen shot of this interface is given in Figure 1.

Using this interface facilitates the rapid input of new theories and the
generation of Theorems in these theories. LATEX commands can be associ-
ated with symbols in the theory and are used by MathJax and JMathTex
to render expressions in standard mathematical notation. The interface is
intended to be used by mathematicians without the need to understand the
inner workings of MATHsAiD 2.0.

The user uses the ‘Ops & Constants’ tab to declare the operators and
constants to be used in the theory, then provides definitions for them in the
‘Axioms & Defs’ tab. MATHsAiD 2.0 then automatically adds ‘Theorems’,
‘Lemmas’ and ‘I-T Results’.
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MATHsAiD 2.0 can be run entirely automatically or interactively, if the
user wishes to guide its operations. The following interactive functionality
is provided:

• Users may delete any automatically generated results they don’t want,
and they may form their own conjectures and ask the system to prove
them. The user may choose to add any resulting theorems to the
database as either lemmas or Theorems.

• In case it is unable to prove a conjecture, then users may ask MATH-
sAiD 2.0 to prove one or more intermediate lemmas, which they think
may help it to prove the original conjecture.

4 Evaluation

The aim of the MATHsAiD 2.0 system, reproduced from §1, is:

To be a useful aid to the working mathematician, by conjecturing
and proving many of the interesting Theorems of a given math-
ematical theory (from user-provided axioms), whilst limiting the
number of non-interesting theorems generated.

To be useful, MATHsAiD 2.0 should be capable of conjecturing and prov-
ing Theorems in theories of current mathematical interest, ideally including
non-trivial Theorems. Such theories are usually high-level, in the sense
defined in §3.3. It also requires an interface that is accessible to mathemati-
cians who are not experts in automated reasoning. While we have presented
such an interface in Figure 1, we have not evaluated its usability in this
paper.

Since theorem proving in non-trivial theories is undecidable, it is nec-
essary to impose resource limits on MATHsAiD. These are primarily on the
size of the conjectures generated, the lengths of their proofs and the time
spent on working on them. These limits are under user control, but have
default settings. The settings chosen for these limits can, not surprisingly,
affect the results produced by MATHsAiD 2.0.

Note that in our previous work with MATHsAiD 1.0 (see section 5.5), our
primary goal was to demonstrate that an automated reasoning system could
produce, at least in low-level mathematical theories, results comparable to
those found in mathematics textbooks. That is to say, the system should
be able to distinguish between interesting and non-interesting theorems. In
(McCasland, Bundy, & Smith, 2006) we provided some precision/recall data
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which supported our claim that this goal had been met. Because the current
system, MATHsAiD 2.0, produces, in these same low-level theories, results
quite similar to those produced by MATHsAiD 1.0, we do not include this
data in our present evaluation.

Of course, there is no universal agreement on what constitutes an inter-
esting Theorem, even for low-level theories; and certainly not for theories
which are still actively being explored by mathematicians. Nor is it reason-
able to expect perfect performance from MATHsAiD 2.0. It might omit to
prove Theorems that some mathematicians might consider interesting and
it might prove some theorems that they do not consider interesting. We
must, therefore, temper any claim to allow for both disagreement on the
‘gold standard’ to be obtained and for minor deviations from perfection.
With these caveats, the hypothesis to be evaluated in this section can be
stated as:

MATHsAiD 2.0 can conjecture and prove interesting Theorems in
high-level theories, including Theorems of current mathematical
significance, without generating an unacceptable number of un-
interesting theorems.

In order to evaluate this hypothesis, we chose Zariski spaces 2 to be our
primary (high-level) theory in which we would determine whether MATH-
sAiD 2.0 could conjecture and prove any interesting Theorems. In particular,
we wanted to see whether it could ‘discover’ some Theorems that have been
published (recently) in a refereed mathematics journal. In contrast, by ‘un-
interesting theorems’, we mean results which we deem not to be publishable.
Lastly, ‘an unacceptable number of uninteresting theorems’ means a number
sufficiently large as to either discourage one from looking, or in some way
make it difficult for one to find the interesting Theorems in amongst the
uninteresting ones.

In mathematical terms, the main motivation for considering Zariski spaces,
and more generally, prime submodules, is that these concepts are generalisa-
tions of ring-theoretic constructs — constructs which are widely recognised
as being of major significance in commutative ring theory. One would like to
determine whether properties held by the ring-theoretic versions carry over
to their module-theoretic counterparts. It turns out that, while a few im-
portant properties do indeed carry over, many do not. In fact, the module-

2Briefly, the Zariski space of an R-module M (in this case, R is a commutative ring
with 1 and M is unital) is the set of varieties of subsets of M , viewed as a semimodule
over the semiring consisting of the Zariski topology of R. The variety of a subset A of M
is the set of prime submodules of M which contain A.
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theoretic concepts have proven to be far more complex (and some would
argue, more interesting) than their ring versions.

From an automated reasoning perspective, the theory of Zariski spaces
poses a real challenge; it is unusual for automated theorem provers to prove
Theorems that relate multiple theories, let alone to conjecture such Theo-
rems in the first place. As indicated in §3.3, Zariski spaces incorporate the
theories of topology, (semi)modules, (semi)rings, (semi)groups, etc. That
said, one does not necessarily have to develop a terribly large amount of
module theory (for example) within a good automated reasoning system, in
order for the system to reason about Zariski spaces.

All of the above are good reasons for choosing Zariski spaces. Add to
these the fact that the first and third authors are two of the three original
discoverers/inventors of this field of study3.

In the event, MATHsAiD 2.0 did indeed conjecture and prove Theo-
rems which have been published in refereed mathematics journals. In par-
ticular, within the theory of Zariski spaces, it ‘discovered’ a Theorem4

that appears in (McCasland et al., 1998). As for whether MATHsAiD 2.0
also generated, along with these interesting Theorems, an unacceptable
number of uninteresting ones, we were frankly surprised by how few un-
interesting theorems were produced (even in the high-level theories); the
number of interesting Theorems far surpasses the number of uninterest-
ing ones. Table 2 gives some statistics on interesting vs uninteresting the-
orems for some sample theories. Further details can be found at http:
//dream.inf.ed.ac.uk/projects/mathsaid/currentResults.html.

Theory Interesting Uninteresting
RVarieties 5 2
MVarieties 10 2
Zariski topology 4 1
Zariski spaces 13 2

Table 2: Interesting vs Uninteresting Theorems: Note that only results
that MATHsAiD 2.0 labelled as Theorems were classified. The classification
as ‘interesting’ or ‘uninteresting’ was made by the first author, who is an
expert in these theories. Some of the ‘interesting’ Theorems were arguably
only lemmas – albeit lemmas required in the proof of interesting Theorems.

3The other discoverer was M.E. Moore.
4‘Theorem (15)’ in Figure 1.

27



5 Related Work

By mathematical theory exploration we mean the generation of Theorems
from the axioms of a mathematical theory. Since it is a relatively trivial mat-
ter to derive theorems by forwards reasoning from the axioms, the ultimate
goal is to generate all and only the interesting Theorems. Such perfection
is, however, both ill-defined and practically unobtainable. In well-developed
theories we can define ‘interesting’ by appeal to what experts in the field
have previously published as Theorems in research papers and textbooks,
but even the experts will not be in perfect agreement. In new theories, which
is where we hope MATHsAiD will find application, we can only appeal to the
subjective opinions of the MATHsAiD users, referees and other observers.
Even if we can agree on ‘interestingness’, it is only realistic to hope that an
automated theory explorer will conjecture and prove nearly all and nearly
only the interesting Theorems.

There are several other systems that automate mathematical theory ex-
ploration. We now briefly describe these systems and point out the principle
differences between them and MATHsAiD 2.0.

5.1 Knuth-Bendix Completion

Completion, (Knuth & Bendix, 1970), is a technique for converting an ar-
bitrary set of equations into a confluent set of rewrite rules, i.e., it defines
unique normal forms. Coupled with the termination of the rewrite rule set,
this provides a decision procedure for the theory defined by adopting the
confluent set of rewrite rules as equational axioms.

The completion process works by finding a term ξ that can be rewritten
into two terms ξ1, ξ2 with distinct normal forms ξ̂1, ξ̂2. Note that ξ̂1 = ξ̂2,
but they are syntactically distinct. The normal forms are put into their
most general form ζ1, ζ2 and the result is called a critical pair. This critical
pair can be oriented and added as a new rewrite rule, say ζ1 → ζ2, so that
ξ̂1 and ξ̂2 now do have a common normal form, namely ξ̂2. All rules in the
set are put into normal form, so that some rules become trivial and can be
discarded. The process is then repeated recursively. If it terminates, then it
does so with a confluent set. It might, however, terminate with failure if, at
some stage, no measure can be found to simultaneously orient the whole set.
It might also not terminate, as it might be possible to continue to construct
new critical pairs indefinitely.

Empirical results show that critical pairs often define interesting equa-
tional Theorems in their own right. When completion terminates, it often
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does so with an aesthetically pleasing set of equational axioms. Since these
axioms also provide a decision procedure, it is not really necessary to develop
the theory further.

Completion is attractive, but limited in its application. It works only
for equational theories, although all theories can be encoded as equations.
Clearly, it will not succeed on undecidable theories. It also has difficulty with
inherently unorientable equations, such as commutativity, although these
can sometimes be built into the unification algorithm instead. Attempts to
apply it to inductive theories have so far proved unsuccessful (but see the
discussion of IsaScheme in §5.3.2). MATHsAiD 2.0 is more general in that
it also works in undecidable and inductive theories, and deals successfully
with commutativity and other unorientable equations. It can also deal with
non-equational reasoning in a natural way.

5.2 Proof Planning

MATHsAiD 2.0’s sketch plans are similar in spirit to proof plans, (Bundy,
1991). The idea behind both techniques is to capture common patterns
of reasoning in mathematical proofs and use these to guide the search for
new proofs. Most proof planning research has focused on inductive proof,
with a particular emphasis on rippling: a plan for rewriting the inductive
conclusion so that the induction hypothesis can be applied to it. When a
proof plan fails, proof critics are used to analyse the cause of failure and to
try to repair the proof, e.g., by conjecturing and proving a missing lemma,
generalising the conjecture, using a different induction rule, etc.

Proof plans are less general, more focused and more prescriptive than
MATHsAiD 2.0’s sketch plans. For instance, rippling is aimed at a specific
stage in inductive proof, specifies multiple steps of the proof and allows al-
most no branching. A typical sketch plan, on the other hand, applies to
many proof stages, sometimes specifies only a single proof step and permits
branching. Also, only proof plans utilise critics to repair failed proof at-
tempts. Sketch plans instantiate the conjecture in parallel with proving it,
whereas proof plans work with fully instantiated conjectures. Proof critics,
however, like sketch plans, often work with conjectured lemma or gener-
alisation schemas containing meta-variables that are instantiated as a side
effect of their proof. In proof planning, this is called middle-out reasoning,
because it allows instantiation choices to be postponed and determined ret-
rospectively by later reasoning, i.e., the middle of a proof can be completed
before the beginning is complete.
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5.3 Inductive Systems

5.3.1 IsaCoSy and Hipster

IsaCoSy synthesises inductive consequences of recursive theories (Johansson,
Dixon, & Bundy, 2011). Recursive theories consist of recursive definitions
of data-structures, such as natural numbers or lists, and recursive defini-
tions of functions on these data-structures, such as addition, multiplication,
append and reversal. The key idea underlying IsaCoSy is to generate only
irreducible terms, i.e., terms in normal form with respect to a set of rewrite
rules. These rewrite rules are formed by orienting all function definitions
and previously proved Theorems, so that the rewrite rule set grows during
theory exploration.

Requiring all conjectures to be irreducible is a surprisingly powerful in-
terestingness heuristic.

• Firstly, all conjectures are simplified by being in normal form. This
removes redundancy from their expression.

• Secondly, none of the conjectures can be proved by rewriting alone.
In fact, no rewrite rules apply to them. Therefore, either induction or
the backwards application of rewrite rules, is required to prove them,
i.e., their proof is non-trivial.

Simple Theorems with non-trivial proofs tend to be interesting. This conclu-
sion has been confirmed by a precision/recall comparison with the Theorems
in the libraries of the Isabelle theorem prover. The idea behind this eval-
uation was that the Isabelle library Theorems have been manually chosen
by Isabelle users as being interesting enough to be worth recording for the
benefit of future users. IsaCoSy’s precision was very good, i.e., it generated
nearly all the Theorems in the Isabelle libraries. Its recall was not quite
as good, i.e., it generated some theorems that were not in the library, but
one could usually make a case that these extra theorems would have been
reasonable additions to the library.

IsaCoSy uses a language of constraints to ensure that reducible terms
are never generated. The left hand side of each rewrite rule contributes
constraints to ensure that no term is generated which it would match. Con-
jectures are equations between these irreducible terms. Conjectures are first
sent to Isabelle’s quickcheck counter-example finder (Berghofer & Nipkow,
2004) to filter out obvious non-theorems. Only a few conjectures survive this
filter. These survivors are sent to the IsaPlanner proof planner (Dixon &
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Fleuriot, 2003) to be proved. IsaPlanner guides the Isabelle theorem prover
(Paulson, 1994) to find a proof. This whole process is completely automated.

The main difference between MATHsAiD 2.0 and IsaCoSy is that IsaCoSy
was designed for purely-definitional, recursive theories, i.e., it usually has no
non-definitional axioms, although there is nothing to stop a user adding such
axioms. MATHsAiD 2.0 is designed to work with any kind of mathematical
theory, including recursive theories, but is mainly aimed at algebraic the-
ories, such as groups, rings, etc. Unlike IsaCoSy, MATHsAiD 2.0 does not
use an irreducibility heuristic, but it does achieve similar effects by different
mechanisms.

• By including simplification among its sketch plans, conjectures are put
into a simplified form during their instantiation.

• By rejecting conjectures with a trivial proof sketch, MATHsAiD 2.0
ensures that its Theorems are non-trivial.

Another major difference is that MATHsAiD 2.0 simultaneously instantiates
its Theorems from a conjecture shell and finds proof sketches for them.
This ensures that it only generates Theorems and it does not need to filter
its conjectures through a counter-example finder, which is the most time-
consuming sub-process within IsaCoSy.

Hipster is a successor system to IsaCoSy (Johansson, Rosén, Smallbone,
& Claessen, 2014). It improves on IsaCoSy in the following respects:

• All functions in conjectures are translated only once into Haskell in
order that they can be evaluated by Haskell’s QuickCheck. Conjec-
ture generation uses this Haskell representation of terms. In contrast,
IsaCoSy uses Isabelle’s representation of terms and applies Isabelle’s
QuickCheck to conjectures when they must be counter-example checked.
Isabelle’s QuickCheck translates each IsaCoSy’s conjecture into ML,
which means that functions are re-translated each time they appear
in a conjecture, which is inefficient.

• Hipster uses Haskell’s QuickCheck to evaluate each term on a selection
of inputs. If terms agree on these inputs they are put into the same
equivalence class. Conjectures are formed between a representative of
each equivalence class and each other element in the class. This means
that counter-example checking is not needed and the conjectures can
be sent straight for proof in Isabelle.

• Although Hipster’s success rate is comparable to IsaCoSy’s (and to
IsaScheme’s, see §5.3.2), it is significantly more efficient.
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• In Hipster, the user classifies tactics into routine or hard. Conjec-
tures that can be proved using only routine reasoning are discarded
as uninteresting. This is similar to MATHsAiD 2.0’s use of trivial and
generating proof plans.

• Like IsaCoSy, Hipster can generate interesting lemmas just from the
recursive definitions of functions. Unlike IsaCoSy, it can also generate
lemmas to unstick a stuck proof.

• Like MATHsAiD 2.0, Hipster is not restricted to inductive proof, but it
has not yet been tested on non-inductive proofs.

The main differences between MATHsAiD 2.0 and Hipster are similar to those
between MATHsAiD 2.0 and IsaCoSy.

5.3.2 IsaScheme

IsaScheme also synthesises Theorems (Montano-Rivas, McCasland, Dixon,
& Bundy, 2010), but using a different method. It uses a collection of user-
determined schemes representing common forms of function definitions and
conjectures to help ensure that the Theorems it generates are interesting.
For instance, conjecture schemes might include associativity, commutativity,
distributivity, idempotency, etc. Most of the evaluation has been conducted
using a single, very general, conjecture scheme.

Of course, many instantiations of this scheme create non-theorems. As
with IsaCoSy, the most obviously false conjectures are filtered out with
a counter-example finder. IsaScheme also uses quickcheck, but additionally
uses a second pass through the Nitpick counter-example finder (Blanchette &
Nipkow, 2010). The rationale is that quickcheck is quicker, but Nitpick finds
counter-examples to more false conjectures. Survivors of counter-example
finding are sent to a user-determined theorem prover to be proved, and those
that are proved are candidate Theorems. Various Isabelle-based provers
have been used for evaluation, including IsaPlanner, a custom-made, Isabelle
induction tactic and Auto (for non-inductive theories).

If possible, the candidate Theorems of a theory are oriented as rewrite
rules using a recursive path ordering (Jouannaud & Rubio, 1999). Knuth-
Bendix completion is applied to these rewrite rules in an attempt to turn
them into a confluent set. If successful, the equations are extracted from
this confluent set and are adopted as Theorems. It is not possible to ori-
ent all candidate Theorems, e.g., commutativity laws. These unorientable
candidates are also adopted as Theorems.
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Like MATHsAiD 2.0, IsaScheme has been applied to both inductive and
non-inductive theories. Unlike MATHsAiD 2.0, IsaScheme may generate false
conjectures, which it filters out with counter-example finders. MATHsAiD
2.0 uses schemes, but only for a small class of Theorems. It also uses a
termination order. This is currently a simple size ordering. Although this
restriction has not yet proved problematic, it would be interesting to ex-
periment with IsaSchema’s more sophisticated recursive path ordering. It
would also be interesting to explore the use of Knuth-Bendix completion.

5.4 Example-Based Theory Exploration

Some theory-exploration systems are example-based, i.e., new concepts and
conjectures are suggested by philosophical induction, e.g.,

P (0), P (1), P (2), . . .
∀n ∈ N. P (n)

If proof is used at all, it is only to confirm these suggestions.

5.4.1 AM

am generated a mathematical theory by using examples to suggest new
objects, such as concepts, conjectures and examples, guided by a measure
of interestingness that was inherited by new objects from those that led to
its creation (Lenat, 1982). The am system was composed by a collection
of approximately 242 heuristic rules. Each rule was responsible for creating
new objects from old, and assigning them an interestingness value. The
creation of a new object would trigger further heuristic rules to be fired.
These rules were placed on an agenda, ordered by their interest measure, so
that those rules were fired first that were predicted to lead to the creation of
the most interesting new objects. am was initialised with 115 very general
objects, such as sets, relations, etc. During a typical run, am would generate
of the order of 300 objects. These would include the natural numbers, prime
numbers and arithmetic functions on numbers. During some runs, some
important Theorems were suggested, such as De Morgan’s Laws, the prime
factorisation Theorem, Goldbach’s conjecture, etc. After about 300 objects,
a run would typically cease to generate interesting new concepts.

The main difference between MATHsAiD 2.0 and am is the lack of proof,
so that conjectures are only suggestive. In particular, MATHsAiD 2.0 formu-
lates its conjectures by instantiating holes during proof. Moreover, it does
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not use a measure of interestingness to determine what is worthy of Theo-
remhood, and what just mere truth, but has a general set of criteria that a
Theorem must meet.

5.4.2 HR

The hr system follows in the am tradition, but:

• has only 10, very general, production rules for generating new objects;

• bases its interesting measure on few general principles, such as com-
prehensibility, parsimony, novelty and applicability;

• does have a proof capability, provided by the third party prover, Otter
(McCune, 1990); and

• uses another third party model generator, Mace (McCune, 1994) to
generate examples of a concept.

The production rules operate on a common, table-based representation of
the examples of a column. The production rules can speculate equalities be-
tween concepts, compose concepts, abstract concepts, etc. As a consequence
of its generality and simplicity, hr has been successfully applied to a variety
of domains, including finite algebra, number theory, and graph theory.

It has also been integrated with ideas on mathematical methodology due
to (Lakatos, 1976) to correct faulty conjectures. For instance, given a faulty
conjecture, hr can be used to learn concepts that distinguish those circum-
stances in which the conjecture is true from when it is false. The faulty
conjecture can then be automatically repaired into a correct one (Pease,
2007).

The main difference between MATHsAiD 2.0 and hr is that MATHsAiD
2.0 discovers conjectures in parallel with its attempt to prove them, whereas
hr only uses proof to confirm the correctness of conjectures induced from
examples. hr is also limited to first-order theorem proving, since Otter is a
resolution-based prover.

5.4.3 MCS

The Model-based Conjecture Searching (mcs) system, (Zhang & Jian, 1999),
uses a variety of third party theorem-proving and model-finding systems,
such as Otter (McCune, 1990) and Mace (McCune, 1994) to generate and
prove conjectures. Given an axiomatic theory, a set of finite models of these
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axioms are generated. Then a set of closed well-formed formulae are gen-
erated, consisting of equations, each of whose variables is either universally
or existentially quantified. If a set of rewrite rules is provided then these
formulae are rewritten into normal form. The models are used to classify
these formulae into always true, always false and contingent. The always
false ones are discarded and the always true ones become conjectures. An
attempt is made to prove the conjectures automatically. Inductive learning
is used to try to find relations between the contingent formulae, e.g., to
find a minimal set of formulae whose conjunction implies another formula.
Successful experiments have been conducted using various algebras, such as
group theory, ring theory and quasi-group theory.

The main differences between MATHsAiD 2.0 and mcs are similar to
those between MATHsAiD 2.0 and hr, namely: mcs’s two stage conjecture
and prove process, as opposed to the integration of testing into generation
in MATHsAiD 2.0 and mcs’s limitation to first-order, non-inductive theories.

5.5 The Previous Version of MATHsAiD

This paper describes MATHsAiD 2.0, which is a complete refactoring of the
earlier MATHsAiD 1.0 (McCasland et al., 2006). The main differences be-
tween the old and new versions are as follows:

• MATHsAiD 1.0 only proved Theorems in low-level theories, such as set
theory, whereas MATHsAiD 2.0 proves Theorems in high-level theories,
i.e., ones, such as Zariski spaces, that are built on lower-level theories.
These higher-level Theorems include some that have only recently been
published.

• For instance, MATHsAiD 2.0 can prove inter-theory Theorems and re-
sults, i.e., Theorems about relationships between theories, e.g., that
given an R-module M the set of all M -varieties forms a semimodule
over the set of all R-varieties.

• In MATHsAiD 1.0 the logic was hard coded, but in MATHsAiD 2.0 it
is user definable, provided it can be presented in a Natural Deduction
format.

• MATHsAiD 2.0 uses both MathJax and JMathTeX to provide displays
of mathematical symbols using LATEX. The displays provided by Math-
Jax are presented in the GUI itself; see Figure 1 for an illustration.
JMathTeX is used for rendering HTML files, one file for each theory.
MATHsAiD 1.0 had no capability of displaying mathematical symbols.
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• MATHsAiD 1.0 used only forwards reasoning, whereas MATHsAiD 2.0
uses both forwards and backwards reasoning, increasing its reasoning
power.

• In MATHsAiD 1.0 users directed the system by a choice of axioms,
whereas in MATHsAiD 2.0 the user selects only a collection of operators.
We have found this to be a better match to user expectation.

• In MATHsAiD 1.0 candidate theorems were generated and then unin-
teresting ones were filtered out. MATHsAiD 2.0’s sketch plans integrate
these filters into the generation process, so that fewer uninteresting theorems
are generated in the first place. This is more efficient. The new concept of
Theorem-producing rules plays a key role in this process.

• MATHsAiD 1.0 used schemas for induction, whereas MATHsAiD 2.0 uses
induction rules, making it easier to expand its inductive capabilities.

6 Conclusion

We have described the MATHsAiD 2.0 system, which is a tool for automated
Theorem-discovery. Given an axiomatic theory, it automatically conjectures
and proves Theorems of that theory. Our hypothesis is:

MATHsAiD 2.0 can conjecture and prove interesting Theorems in
high-level theories, including Theorems of current mathematical
significance, without generating an unacceptable number of un-
interesting theorems.

We have successfully evaluated this hypothesis by showing that MATH-
sAiD 2.0 is able to work in the theory of Zariski spaces, which is a topic
which the first and third authors have worked on in their capacity as profes-
sional mathematicians (McCasland et al., 1998). In particular, MATHsAiD
2.0 was able to conjecture and prove a key Theorem from (McCasland et al.,
1998). This Theorem appears as Theorem (15) in Figure 1. This key The-
orem is just one example of many inter-theory Theorems that MATHsAiD
2.0 has proved. It is unusual for automated theorem provers to prove Theo-
rems that relate multiple theories, but they are a common aspect of modern
mathematics, so it is essential for MATHsAiD 2.0 to demonstrate its abilities
in this area.

We have attributed MATHsAiD 2.0’s successful performance to its use of
sketch plans and Theorem-producing rules. These two techniques combine
to ensure that each Theorem has a short proof but does not have a trivial
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proof. Sketch plans only construct short proofs. If a trivial proof is found
then the theorem is rejected or relabelled as a lemma. Theorem-producing
rules ensure that a Theorem’s proof ends with a non-trivial proof step. The
absence of a trivial proof means that each Theorem adds some significant
new information to the mathematical theory, so maximising MATHsAiD 2.0’s
precision. By constructing a series of short proofs it minimises the chances
that an interesting Theorem is overlooked because it occurs only at an in-
termediate stage in a longer proof, so maximising MATHsAiD 2.0’s recall.

The sketch plans interleave the construction of each Theorem with its
proof. This ensures that only interesting Theorems are constructed. This
obviates the need to filter conjectures with a counter-example finder to reject
false conjectures, as done by IsaCoSy or IsaScheme, for instance. False
conjectures are never constructed. It also obviates the need to improve
interestingness by only generating conjectures in normal form, as done by
IsaCoSy or mcs, for instance. Uninteresting theorems are rarely constructed.

Future work with MATHsAiD will focus on two issues:

• Improving its range, so that it can produce interesting Theorems in
more complex theories. This will require the development of additional
sketch plans.

• Improving its usability, so that mathematicians can use it with very
little preparation. For instance, we plan to offer it as a web service,
so that it is not necessary for users to install it and they can use it via
a simple graphical user interface. This will also make it possible for
users to share theories via a central server, and hence easily add new
theories on top of old ones.
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Figure 1: The User Interface to MATHsAiD 2.0: The left hand tab
allows the user to view different theories and add new ones. Within each
theory, the other tabs allow the viewing and editing of: definitions, Theo-
rems, lemmas, IT-results and operators. The bottom window displays the
results in plain text and the top window displays the same results in more
readable format using MathJax (http://www.mathjax.org/). Clicking on
the ‘View HTML’ button displays the run of MATHsAiD 2.0 on the selected
theory, rendered using JMathTex (http://jmathtex.sourceforge.net/). Dis-
played are the Theorems (including, as here, the inter-theory Theorems)
from the Zariski spaces theory. In particular, MATHsAiD 2.0 has conjec-
tured and proved the inter-theory Theorem that given an R-module M the
Zariski space of M is a semi-module over the Zariski topology of R (see §3.3
for an explanation).
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