-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

A Game-Theoretic Approach to Deciding Higher-Order Matching

Citation for published version:

Stirling, C 2006, A Game-Theoretic Approach to Deciding Higher-Order Matching. in Automata, Languages
and Programming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part Il. vol. 4052, Springer Berlin Heidelberg, pp. 348-359. DOI: 10.1007/11787006_30

Digital Object Identifier (DOI):
10.1007/11787006_30

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Automata, Languages and Programming

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/28979576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/11787006_30
https://www.research.ed.ac.uk/portal/en/publications/a-gametheoretic-approach-to-deciding-higherorder-matching(b3a31ed7-3389-44b5-b7be-ddebe0a32a0b).html

A Game-Theoretic Approach to Deciding
Higher-Order Matching

Colin Stirling

School of Informatics
University of Edinburgh
email: cps@inf.ed.ac.uk

Abstract. We sketch a proof using a game-theoretic argument that the
higher-order matching problem is decidable.
Keywords: games, higher-order matching, typed lambda calculus.

1 Introduction

Higher-order unification is given an equation ¢ = u containing free variables, is
there a solution substitution € such that ¢t6 and uf have the same normal form?
Terms ¢t and u are from the simply typed A-calculus and the same normal form
is fn-equality. Higher-order matching is the particular instance when the term
w is closed, can ¢ be pattern matched to u? Although higher-order unification
is undecidable, higher-order matching was conjectured to be decidable by Huet
[4] (and, if so then it has non-elementary complexity [11,13]). Decidability has
been proved for the general problem up to order 4 and for various special cases
[7-10,2]. Loader showed that matching is undecidable for the variant definition
when -equality is the same normal form [5].

We propose a game-theoretic technique that leads to decidability of matching.
It starts with Padovani’s reduction to the dual interpolation problem [8]. We
then define a game on a closed A-term ¢ where play moves around it relative to
a dual interpolation problem. The game captures the dynamics of S-reduction
on ¢ without changing it (using substitution). Small pieces of a solution term,
that we call “tiles”, can be classified according to their subplays and how they,
thereby, contribute to solving it. Two transformations that preserve solution
terms are introduced. With these, we show that 3rd-order matching is decidable
via the small model property: if there is a solution to a problem then there is a
small solution to it. For the general case, the key idea is “tile lowering”, copying
regions of a term down its branches. A systematic method for tile lowering
uses unfolding which is similar to unravelling a model in modal logic. Unfolding
requires a non-standard interpretation of game playing where regions of a term
are to be understood using suffix subplays. At this point, we step outside terms
of typed A-calculus. Refolding returns us to such terms. The detailed proof of
decidability uses unfolding followed by refolding and from their combinatorial
properties the small model property follows. However, here we can only outline
the method with an example. For all the details and proofs, the reader is invited
to access “Decidability of higher-order matching” from the author’s web page.



2 Matching and dual interpolation

Assume simply typed A-calculus with base type 0 and the definitions of a-
equivalence, f and n-reduction. A type is 0, with order 1, or A; — ... —
A, — 0, with order k + 1 where k is the maximum of the orders of the A;s.
Assume a countable set of typed variables x, vy, ... and typed constants, a, f, .. ..
The simply typed terms is the smallest set T such that if = (f) has type A then
x:AeT (f:AeT)ift:BeTandx: AeT, then \et : A - B eT;if
t:A—>BeTandu:A€T then tu: B € T. The order of a term is the order
of its type and it is closed if it does not contain free variables.

A matching problem is v = u where v,u : 0 and u is closed. The order is
the maximum of the orders of the free variables z1,...,z, in v. A solution is
a sequence of terms t1,...,t, such that v{t1/z1,...,tn/xn} =g, u. Given a
matching problem the decision question is, does it have a solution?

We slightly change the syntax of types and terms. A; — ... —» 4, — 0 is

rewritten (Aj,...,A,) — 0 and all terms in normal form are in n-long form: if
t : 0 then it is w : 0 where u is a constant or a variable, or wu(¢1,...,t) where
uw: (By,...,Br) — 0is a constant or a variable and each t; : B; is in n-long

form; if ¢ : (Ay,...,A,) — O then ¢ is A\y; ...y,.t" where each y; : A; and t' : 0
is in n-long form. A term is well-named if each occurrence of a variable y within
a A-abstraction is unique.

Definition 1. Assume u: 0 and v; : A;, 1 < i <n, are closed terms in normal

form and x : (A1,...,A,) = 0. z(vy,...,v,) = u (# u) is an interpolation
equation (disequation). A dual interpolation problem P is a finite family of
interpolation equations and disequations, i : 1 <1i <m, z(v},...,v}) =; u;, with

the same free variable x and each =; € {=,#}. The type and order of P are the
type and order of x. A solution of P of type A is a closed term t : A in normal
form, such that for each equation t(vi,...,vl) =5 u; and for each disequation
t(vi,...,vl) #5 u;. We abbreviate t solves P tot = P.

Padovani shows that a matching problem of order n reduces to a dual inter-
polation problem of the same order [8]: given P, is there a solution t | P? We
assume a fixed dual interpolation problem P of type A whose order is greater
than 1 (as an order 1 problem is easily decided) where the normal form terms
U;- and u; are well-named and no pair share bound variables.

A right term u of a (dis)equation may contain bound variables. If X =
{z1,...,z} are its bound variables then let C' = {c1,...,c,} be a fresh set of
constants with corresponding types. The ground closure of w with bound vari-
ables in X, with respect to C, Cl(w, X, (), is: if w = a : 0, then Cl(w, X,C) =
{a}; it w = f(wy,...,wy), then Cl(w, X,C) = {w} U Clw;, X,C); if w =
Azj, ...z, .u then Cl(w, X,C) = Clu{cj, /2j,,...,¢5, /25,1, X,C). For u =
f(Az1x223.21 (22),a) with respect to {c1,ca,c3}, it is {u,c1(e2), c2,a}.

We also identify subterms of left terms v; of a (dis)equation relative to
a set C: however, these need not be of ground type and may also contain
free variables. The subterms of w relative to C, Sub(w,C), is defined using



an auxiliary set Sub’(w,C): if w is a variable or a constant, then Sub(w,
= Sub'(w,C) = {w}; if wis z(w,...,wy) then Sub(w,C) = Sub’'(w,C)
{w} U USub(w;,C); if w is f(wy,...,wy), then Sub(w,C) = Sub'(w,C) =
{w} U Sub' (w;, C); if wis Ayy ... Yn.v, then Sub(w,C) = {w} USub(v,C) and
U{Sub(v{eci, /y1,.-.,¢i, /yn},C) : ci; € C has the same type as y;} is the set
Sub’(w,C). If v = Az.f(Az12223.21(22), z) and z2, 23 : 0 then Sub(v,{c1,c2,¢3})
is {v, f(Az12223.21(22), 2), c1(¢2), c1(e3), €2, ¢3, 2}

Given the problem P, let X; be the (possibly empty) set of bound variables
in u; and let C; be a corresponding set of new constants (that do not occur in
P), the forbidden constants.

)

Definition 2. Assume P is the fixed problem of type A. T is the set of sub-
types of A including A and subterms of u;. For i, the right subterms are R; =
Cl(u;, X;,C;) and R = |JR;. For i, the left subterms are L; = | Sub(v;:, C)uC;
and L = JL;. The arity, a, of P is the largest k where (A,...,Ar) > B€T.
The right size 6(u) relative to C is: if w = a : O then 6(u) = 0; if u =
flwy,...;wy) then 0(u) = 1+ > 6(w;); if v = Axy, ...z .w, then 6(u) =
S(w{ei, /xiy,- .. ¢, /Ti }). The right size for P, 6, is > 6(u;) of its right terms.

So, d(h(a)) = 1. If § for P is 0, then each (dis)equation contains a right term
that is a constant a; : 0: Padovani proved decidability for this special case [7].

3 Tree-checking games

We present a game-theoretic characterization of interpolation inspired by model-
checking games (such as in [12]) where a model, a transition graph, is traversed
relative to a property. Similarly, in the following game the model is a putative
solution term ¢ that is traversed relative to the dual interpolation problem.

A potential solution t for P has the right type, is in normal form, is well-
named (with variables that are disjoint from those in P) and does not contain
forbidden constants. Term ¢ is represented as a tree, tree(t). If t is y : 0 or
a : 0 then tree(t) is the single node labelled with ¢. For u(vi,...,v;) when u
is a variable or a constant, a dummy A with the empty sequence of variables is
placed before any subterm v; : 0 in its tree representation. If ¢ is u(v1, ..., v,),
then tree(t) consists of the root node labelled u and n-successor nodes labelled
with tree(v;): u |; t' represents that ¢’ is the ith successor of u. If ¢ is Ay.v, where
y could be empty, then tree(t) consists of the root node labelled Ay and a single
successor node tree(v): Ay J; tree(v). Each node labelled with an occurrence of
a variable y; has a backward arrow 19 to the Ay that binds it: the index j tells
us which element is pointed at in . We use t to be the A-term ¢, or its A-tree
or the label (a constant, variable or \y) at its root node. Dummy As are central
to the analysis in later sections. We also assume that each node of a tree ¢ is
uniquely identified.

Ezample 1. A solution term ¢ from [1] for the problem z(v) = f(a) where
v = Ay1y2.y1(y2) is Az.z(Az.f(z(Au.z, b)), z(Ay.2((As.s,y),a))). The tree for ¢
(without backward edges and indexed forward edges) is in Figure 1. O



Innocent game semantics following Ong in [6] provides a possible game-
theoretic foundation. Given ¢ and a (dis)equation from P, there is the game

(D)X=

|

(2)2
(3)Az / \ (11)x
l
@ f (12)z
PN
(5)A (13)Ay (19)A
l |
(6)z (14)z (20)a
N RN
(7)Au (9)A (15)As (17)A
l . |
(8)z (10)b (16)s (18)y
Fig.1. A term tree
board t@(vi,...,v}) u;. Player Opponent chooses a branch of u;. There is a fi-

nite play that starts at the root of t and may repeatedly jump in and out of ¢ and
the v;-’s. At a constant a : 0 play ends. At other constants f, player Proponent
tries to match Opponent’s choice of branch. Proponent wins, when the play fin-
ishes, if the sequence of constants encountered matches the chosen branch. Play
may reach y in ¢ and then jump to AZ in v;:, as it is this subtree that is applied
to Ay, and then when at z in v;- play may return to ¢ to a successor of y. Game
semantics models f-reduction on the fixed game board without changing it using
substitution. This is the rationale for the tree-checking game. However, it starts
from the assumption that only ¢ is the common structure for the problem P. So,
play will always be in #. Jumping in and out of the v%’s is coded using states.

J
The game avoids justification pointers, using iteratively defined look-up tables.



The game G(t, P) is played by player V, the refuter, who attempts to show
that ¢ is not a solution of P. It uses a finite set of states involving elements of
L and R from Definition 2. An argument state q[(l1,...,lx),r] where each [; € L
(and k can be 0) and r € R occurs at a node labelled Az; ...z in ¢ where each
l; has the same type as z;: (l1,...,[;) are the subterms applied to Az ...zz. A
value state ¢[l,r] where [ € L and r € R is associated with a node labelled with
y in t where y and [ share the same type: [ is the subterm of some v§ that play
at y would jump to in game semantics. A final state is q[V] or ¢[3].

At =Xy1...y; and tm b1 v and gm = q[(l1, ..., 1;),7].

S0, tm41 = U, Omi1 = O {linm/y1,-- -, inm/y;} and gm41, m+1 are defined by
cases on tm41.

1. a:0. So, Pmt1 = Nm- I 7 = a then gm41 = q[3] else gm41 = ¢q[V].

2. f:(Bi,...,Br) = 0. S0, tmt1 = Nm. U r = f(s1,...,8) then ¢gmi+1 = gm
else gm+1 = ¢q[V].

3. y:B. If Ony1(y) = I, then npmir = ni and g1 = q[l, r].

B. t,, = f : (Bl,...,Bk-) — 0 and qm :q[(ll,...,lj),f(sl,...,sk)].
So, Om+1 = Om, m+1 = Nm and gm+1, tm+1 are decided as follows.

1. V chooses a direction d : 1 < d < k and tmn Ja u. So, tm+1 = u.
If s4 : 0, then gmy1 = q[( ),sq]. If sq is Azi, ...xi,.s then gmy1 =
q(ciyy -y cin)s s{cin [Tin, s i [@in }]-

C. tm =y and gm = ¢[l,7].
Ifl = X...zjow and tm i ws, for ¢ @ 1 < i < j, then ppy1 =
Mm{u10m/z1, ..., uj0m/zj} else Nmi1 = Nm. Elements tmi1, gmt1 and 0,41 are
by cases on .

1. a:0 or AZ.a. S0, tmt+1 = tm and Omi1 = O If r = a then gm4+1 = ¢[3] else
gm+1 = q[V].

2. ¢:(B1,...,Br) = 0. S0, Omy1 = 0. If r #c(s1,...,8k) then tmi1 = tm and
gm+1 = q[V]. If r = ¢(s1,...,8;) then V chooses a direction d : 1 < d < k and
tm id u. SO, tm+1 =u. If Sq 0, then dm+1 = q[( ),Sd]. If Sd is )\:Eil ... X, .8
then gm+1 = q[(ciy,--.,¢i,),8{¢i, [Tiy, -, Cir [JTin }-

3. f(wi,...,w) or AZ.f(wi,...,wk). SO, tmt1 = tm and Opmy1 = 0. I r #
f(s1,-.., k), then gmi1 = q[V]. If r = f(s1,...,sk) then V chooses a direction
d:1<d<k If sqg:0 then gmt+1 = qwg, s4]. If wg = Ay1...yn.w and sq4 =
AZi, ... ;.8 then gmy1 = qlw{ci, [y1,..., ¢, [yn}, s{ci, /Tiy,. ., Cin [Tin }]-

4. x(l1,...,lg) or AZ.w(li, ..., lk). If gmy1(z) = t0; then Oy = 0; and 41 = ¢
and gm+1 = q[(l1,..., k), 7]

n

Fig. 2. Game moves

There are two kinds of free variables, in ¢ and in the left terms of states.
Free variables in ¢ are associated with left terms and free variables in states are
associated with nodes of £. So, the game appeals to a sequence of supplementary
look-up tables 8y, and ng, k > 1: 6 is a partial map from variables in ¢ to pairs
In; where l € L and j < k, and 7, is a partial map from variables in elements of



L to pairs t'6; where t' is a node of the tree ¢ and j < k. Initially, 6, and n; are
both empty.

A play of G(t, P) is t1g1611m1, - - -, tnqnbnnn where t; is (the label of) a node
of t, t; = Ay is the root node of t, ¢; is a state and ¢, is a final state. A node ¢’ of
t may repeatedly occur in a play. For the initial state, V chooses a (dis)equation

(2

z(v, ... v)) =; u; from P and q; = ¢[(vi,...,v}),u;], similar to that in game

) n ’ n

semantics except v; and u; are now part of the state (and the choice of branch
in u; happens as play proceeds). If the current position is ¢, ¢mb0mfm and ¢, is
not final, then #,,11¢m+10m+17m+1 is determined by a unique move in Figure 2.
Moves are divided into groups depending on t,,. Group A covers when it is a
Ay, B when it is a constant f (whose type is not 0) and C when it is a variable
y. In B1, C2 and C3 the constants ¢;; belong to the forbidden set C;: these are
also the only rules where V can exercise choice (by carving out a branch). The
look-up tables are used in A3 and C4 to interpret the two kinds of free variables.
If t,, is a A node, t,,, }1 t;my1 and t,,41 is the variable y, then 7,11 and @41
are determined by the entry for y in 6,,+;. For C4, if ¢, = y, ¢ = ¢[l,7] and
l=a(l1,...,lg) or \Z.x(l1,...,lx), then 0,11 and t,,11 are determined by the
entry for z in the table 7,,41: if the entry is the pair ¢'6; then t,,4+1 = t' and
Om+1 = 0;. It is this rule that allows play to jump elsewhere in the term tree
(always to a node labelled with a A). In contrast, for A1-A3, B1 and C2 control
passes down the term tree while it remains stationary in the case of C1 and C3.

A play of G(t, P) finishes with final state ¢[V] or ¢[3]. Player V wins it if
the final state is ¢[ V] and she loses it if it is q[3]. V loses the game G(¢, P) if for
each equation she loses every play whose intial state is from it and if for each
disequation she wins at least one play whose initial state is from it.

Proposition 1. V loses G(t, P) if, and only if, t = P.

Assume tg = P, so V loses the game G(to, P). The single play for Example 1
is in Figure 3. The number of different plays is at most the sum of the number of
branches in the right terms u; of P. Let d : 0 be a constant that is not forbidden
and does not occur in any right term of P. We can assume that ¢y only contains
d and constants that occur in a right term.

We also allow 7 to range over subplays, consecutive subsequences of positions
of any play of G(to, P). The length of 7, |r|, is its number of positions. The ith
position of 7 is 7 (i) and 7 (¢,7), i < 7, is the interval 7 (7),...,m(j). We write
ten(i),q€en(i),d €w(i)andn € w(i) if w(i) = tgfn and t & w (i) if 7 (i) = t'qbn
and t #t'. If ¢ = q[(l1,...,lk),r] or g[l,r] then its right term is r.

Definition 3. A subplay 7 is ri, right term invariant, if ¢ € 7(1) and ¢' € = (|7|)
share the same right term r. It is uri if it is not ri and ¢' € w(|n|) is not final.

In Figure 3, w(1,4) is ri whereas m(1,6) is nri. Ri subplays are an important
ingredient in the decidability proof as they do not immediately contribute to the
solution of P.

Proposition 2. If ¢;qi0in;, . .., tnGnOnnn s 1i, t, = Ay and q{r'/r} is state q
with right term ' instead of v, then t;q;{r'/r}0ini, ... , tngn{r'/7}0nnn is an ri
play.



(1) q[(v), f(a)] 61 m

(2) qlv, f(a)]O2m2 02 = O:1{(vm/2} nm2=m A3
(3) ql(y2), f(a)] B33 O3 = 62 ns = m2{(3)02/y1, (11)02/y2} C4
(4) q[(y2), f(a)] 0ama 04 = O3{yoms/z}  ma=rns A2
(5)q[( ),a] 05 ns 5 = 04 N5 = M4 B1
(6) q[v, a] b6 m6 s = 05 N6 = 1M A3
(7) ql(y2),al 077 07 =06 n7 = ne{(7)06/y1,(9)06/y2} Cc4
(8) qly2, al Os s 0s = O7{yomr/u}  ms=ns A3
(A1) g[( ),albome Oy = 02 No =18 C4
(12) q[v, a] B10m10 010 =6y Nio =M A3
(13) q[(y2),al Orim1 611 = 10 mi1 = nio{(13)610/y1, (19)610/y2} C4
(14) qv,a]lB12mz 012 = O1i{y2mii/y} ma2 =m A3
(15) q[(y2), a] 013 M3 013 = b2 ms = m2{(15)012/y1, (17)612/y=} C4
(16) qly2,a] B1amia  B14 = O13{y2m13/s} Mia = M3 A3
(17)q[( ),a]lb15ms 015 =012 M5 = Nia C4
(18) qly2,a] 616 me 016 = b5 N6 = N11 A3
(19)q[( ),alb1rmr 6017 =010 M7 = Nie C4
(20) g[ 31018 M8 O18 = 617 N8 = M7 Al

Fig. 3. A play

Definition 4. Ifw € G(to, P) and w(i)’s look-up table is called when move A3 or
C4 produces 7(j), j > i, then position w(j) is a child of position w(i). If m(i+1)
is the result of move B1 or C2, then w(i + 1) is a child of n(7). A look-up table

B' extends B if for all x € dom(B), B'(z) = B(z).

Proposition 3. If 7 € G(to, P), j > 1, w(j) is not a final position and Xy or y
€ w(j), then there is a unique w(i), i < j, such that 7(j) is a child of w(i). If
7(j) is a child of w(i) then 0; € w(j) extends 8; € w(i) and n; € 7(j) extends
1 € m(i).

4 Tiles and subplays

Assume ty = P. The aim is to show there is a small t' = P. Although the
number of plays in G(tg, P) is bounded, there is no bound in terms of P on the
length of a play. However, a long play contains ri subplays: across all plays, the
right term of a state can change at most d times, Definition 2. To obtain a small
solution term t', ri subplays will be manipulated. First, we need to relate the
static structure of t, with the dynamics of play.

Definition 5. Assume B = (By,...,Bg) — 0 € T. X is an atomic leaf of type
0. Ifz;:B;,1<j <k, then Az ...z} is an atomic leaf of type B. Ifu: 0 is a
constant or variable then u is a simple tile. If u : B is a constant or a variable
and tj : Bj, 1 < j <k, are atomic leaves then u(ti,...,t) is a simple tile.

Term to without its very top Ay consists of simple tile occurrences. Nodes
(2),(3) and (11) of Figure 1 form the simple tile z(Az,A) and the leaf (16) is



also a simple tile: node (2) by itself and node (2) with (3), are not simple tiles.
Tiles can be composed to form composite tiles. If ¢(AT) is a tile with leaf AT and
t' is a simple tile, then ¢(AZ.t') is a composite tile. A (composite) tile is basic
if it contains one occurrence of a free variable and no occurrences of constants,
or one occurrence of a constant and no occurrences of free variables. The free
variable or constant in a basic tile is its head element. Contiguous regions of ¢y are
occurrences of basic tiles. In Figure 1 the region z(As.s, \) is a basic tile rooted
at (14). Throughout, we assume our use of tile in ¢y means “tile occurrence” in
to. We write t(AT1, ..., AT) if ¢ is a basic tile with atomic leaves ATy, ..., AZ.

Definition 6. Assume t = t(ATy,...,ATy) is a tile in ty. t is a top tile in to
if its free variable y is bound by the initial lambda Ny of to. t is j-end in tg, if
every free variable below AT; in to is bound above t. It is an end tile in to if it is
j-end for all j. t is a constant tile if its head is a constant or its free y is bound
by Ay that is an atomic leaf of a simple constant tile. Two basic tiles t and t' in
to are equivalent, t = t', if they have the same number and type of atomic leaves
and the same free variable y bound to the same Ay in ty.

The tile z(Az, A) in Figure 1 is a top tile which is also 2-end and z(Au, A) is both
a top and an end tile: these tiles are equivalent.
We can also classify tiles in terms of their dynamic properties.

Definition 7. 7 is a play on the simple tile w(A\T1,..., \Tx) in to if u € (1),
AZ; € w(|m|) for some i and w(|7|) is a child of w(1). It is a j-play if A\T; € n(|7|).
A play on a simple constant tile w(A\T1, ..., A\Ty) is a pair of positions 7 (i,7 + 1)
with u € 7(7) and AZT; € 7(i + 1) for some j (by moves B1 or C2 of Figure 2).
A play 7 on a simple non-constant tile y(A\Z1, ..., A\T) in ¢y can be of arbitrary
length. It starts at y and finishes at a leaf A\Z;. In between, flow of control can
be almost anywhere in . Crucially, the look-up tables of 7(|7|) extend those of
m(1) by Fact 3: this means that the free variables in the subtree of ¢y rooted at
y and the free variables in w when g[Az; ... z;.w,r] € w(1) preserve their values.

If 7 € G(to, P) and y € (i) then there can be zero or more plays (i, ) on
Y(AT1,..., \Tg) in to: simple tiles u : 0 have no plays. If 7 (i,m) is a j-play on
y(A\T1,..., \Tx) and 7(i,n), n > m, is also a play on this tile, then there is a
position w(m'), m < m' < n, that is a child of 7(m). In the case of 7 in Figure 3
on the tree in Figure 1, 7(2,3) is a 1-play on z(Az,\) and 7(2,9) is also a play
on this tile: it is m(8) that is the (only) child of 7 (3).

A play 7 on a basic tile consists of consecutive subplays on the simple tiles
that are on the branch between the top of the tile and a leaf A\Z; € n(|7]).

Definition 8. Assume 7 is a j-play (play) on tile t in to. It is a shortest j-
play (play) if no proper prefiz of © is a j-play (play) on t and it is an ri j-play
(play) if w is also ri. It is an internal j-play (play) when for any i if t' € 7 (i)
then t' is a node of t. Assume t = t(AT1, ..., \Tg) is in to and 7w is a subplay.
We inductively define when t is j-directed in 7: if t & w(i) for all i, then t is
j-directed in w; if w(i) is the first position with t € 7(i) and there is a shortest
j-play w(i,m) ont and w(i,m) is ri and t is j-directed in w(m+1,|x|), then t is
j-directed in w. Tile t is j-directed in to if it is j-directed in every m € G(to, P).



7(2,3) of Figure 3 is a shortest play on tile z(Az, A) of Figure 1: this play is ri,
internal and a shortest 1-play. Although 7(2,9) is a shortest 2-play, it is neither
a shortest play nor an internal play. If ¢ is j-directed in ¢y then each m € G(tg, P)
contains a (unique) sequence of ri intervals which are shortest j-plays on ¢.

Assume t = t(ATy,...,ATy) is a top tile in to and 7 € G(tp, P). Consider two
positions ¢t € w(i) and ¢ € 7(i"). The states ¢ € 7(i) and ¢’ € 7(i") have the form
g[v,r] and g[v, r'] where v is a closed left term (a v;- from a (dis)equation of P).
Therefore, a shortest play 7 (i,i+m) on t is internal (as a jump outside ¢ requires
there to be a free variable in v via move C4 of Figure 2). If the play = (i,i + m)
is ri then there is a corresponding ri play 7 (i', %' +m) on t consisting of the same
sequence of positions in ¢ and states (except for their right terms r and r'). Tile
t is, therefore, j-directed in 7 when AZ; € w(i + m). If the play 7 (,i + m) is
nri then there is a subplay 7 (i, + m') where control is never outside ¢ that is
either a shortest play on ¢ and nri or |7| < i’ +m'. If ¢ is a j-end (end) tile and
t € 7(i) then there can be at most one j-play (play) «(i,m) on t.

Tile t' is j-below t(AT1,...,ATy) in to if there is a branch in ¢y from AZ; to
t'. If two tiles ¢; and ¢ are equivalent, t; = t» and t» is j-below #; in ¢y, then
ty is an embedded tile. Shortest plays on the embedded tile ¢ are constrained
by earlier shortest plays on ¢; and in the case of embedded end tiles there is a
stronger property that is critical to the decidability proof.

Proposition 4. Ift; =ty are end tiles in ty and ty is j-below t1, then either t is
j-directed in to, or there are w, 7" € G(to, P), an nri j-play 7(myi,mi +n1) on t;
and a subplay 7' (M2, ma+ns) where ma > my+ny, ny < ny and ©'(ms) = 7w(m2)
and either ms = ny and ' (M2, ma+ns) is an nri j-play on ta or ma+ng = |7'|.

5 Outline of the decision procedure

A transformation T converts a tree s into a tree ¢, written sTt. Let ¢’ be a
subtree of ¢y whose root node is a variable y or a constant f : B # 0. G(to, P)
avoids t' if t' ¢ w(i) for all positions and plays m € G(to, P). Let to[t" /'] be the
result of replacing t' in ¢ with the tree (of tiles) ¢".

T1 If G(to, P) avoids ¢’ and d : 0 is a constant then transform o to to[d/t']

T2 Assume t(AZy, ..., AT) is a j-directed, j-end tile in tg and ¢’ is the subtree
of ¢y rooted at ¢. If ¢; is the subtree directly beneath AZ; then transform ¢y to

to[t;/t'].
If no play enters a subtree of ¢y then it can be replaced with the constant d : 0. If
a tile is both j-end and j-directed, Definition 6, then it is redundant and can be

removed from to. Game-theoretically, the application of T2 amounts to omission
of inessential ri subplays that are structurally associated with regions of a term.

Ezample 2. Consider Example 1 and its single play in Figure 3. The tile z(Au, \)
is 1-end and 1-directed because of 7(6, 7). T2 allows us to remove it, so node (8)
is directly beneath node (5). The basic tile z(As.s, A) is 1-end and 1-directed: the
only play 7(14,17) is ri. A second application of T2 places node (18) directly



beneath node (13). Consequently, the basic tile z(Ay.y,\) is also 1-end and 1-
directed because of the play 7(12,19). The starting term is therefore reduced to
the smaller solution term Az.z(Az.f(z),a). O

Proposition 5. Ifie€ {1,2}, sTit and s |= P thent = P.

If P is 3rd-order and to |= P then tq is a tree of simple tiles: each is a constant
tile or a top tile that is also an end tile. Assume that IT = {m,...,m,} are the
plays of G(to, P) and with each such m we associate a unique colour c(mw). We
define a partition of each 7 € IT in stages. At stage 1, the initial simple tile ¢; is
w(AT1, ..., ATk) in to, a constant or top tile (where k£ may be 0). The initial play
on t1, if there is one, is (i1, j1) where i; = 2. If there is no play then j; = |7| as
q € w(j1) is final, and for all i > 1, u € w(i): t1 is final for 7 and we terminate
at this stage. Otherwise, play ends at an atomic leaf of t1, t2 is the simple tile
directly below it in tg, io = j1 + 1 and if 7 (41, j1) is nri then ¢; is coloured ¢(7).
At stage n and simple tile ¢,, m(in,jn) is the shortest play on t,, if there is
one. If there is not then j, = |7| and ¢, is final for 7. If w(iy, j,) is nri then ¢,
is coloured (7). If it ends at an atomic leaf of ¢, then ¢,; is the simple tile
directly below it in to and i,41 = j, + 1. The partition of 7 descends a branch
of to until it reaches a final tile.

Consider partitioning with respect to all plays @ € II. There is a tree of
simple tiles, as all plays share the initial tile. Tile ¢ is coloured if it has at least
one colour and ¢ is final if it is final for at least one play. Each play at stage 1
that ends at the same atomic leaf of t; shares t5 at stage 2 and so on. Therefore,
branching occurs at a (play) separator t,, at stage m if there are plays that
end at different atomic leaves of t,,. If a simple tile in tg is coloured, final or
a separator then it is special. A simple tile in ¢y with atomic leaves that is not
special is superfluous. Every play avoids it (so, T1 applies) or every subplay that
passes through it is ri and ends at the same atomic leaf (so, T2 applies). There
can be at most §, the right size for P of Definition 2, coloured tiles, at most p
final tiles and at most p — 1 separators: p is bounded by the number of branches
in the right terms of P. Decidability of 3rd-order matching, via the small model
property, follows directly from partitioning.

There is just one level of simple tile that is not a constant tile in a 3rd-order
tree: so, game playing is heavily constrained as control can only descend it. With
a 4th or 5th-order tree there are two levels of simple non-constant tiles: top tiles
t and end tiles ¢’ where the variable of ¢’ is bound in ¢. At 8th or 9th-order there
are four levels. When there is more than one level, game playing may jump
around the tree as Figure 3 illustrates. The mechanism for dealing with these
terms hinges on the idea of tile lowering, copying tiles down branches.

The mechanism for tile lowering is not a transformation like T2. Instead, it
uses an intermediate generalized tree, the unfolding, analogous to unravelling a
model in modal logic, which is then refolded into a small tree. Again, a partition
of (a subsequence of) 7 is defined in stages using tiles in 5. At each stage n, a
simple tile ¢,, in tp and a position 7(i,,) whose control is at the head of ¢,, are
examined. The play 7(i,, j.) is a suffiz of a play of a constant or generalized tile
t!. that contains t,.

10



Stage 1 follows the 3rd-order case: t; is the first simple tile in ¢, t} = t1,
and relative to 7, m(i1, j1) is defined. If ¢] is not final for 7 then ¢ is the simple
tile directly below it in ¢ty and is = j; + 1. After stage one, the unfolding of ¢
can be depicted in linear form, [t| AZ;] if 7(i1, j1) finishes at AZ;. Consider the

! T
N\ N
Lo

Q=

Ar
x

Fig. 4. Nllustrating unfolding

unfolding after stage n for = where ¢!, is not final for 7. There is the sequence
[t] AZ1] ... [t}, AT,] of (generalized) tiles where each t4 is directly below Az, in
to and there are subplays (i, ji) that start at t; in ¢}, and finish at AZj,. If t,, 4 is
a top or constant tile, then ¢, , ; = t,,4-1 and 7 (in41, jn41) is either a shortest play
on t, .y or jny1 = |7|. The other case is that t,11 = y(AZ1,...,2Z) is directly
below A\Z,, in ty and y is bound within an earlier tile ¢},. The position m(ip41) is
a child of a position in the interpretation of ¢}, that is the effect of the suffix play
m(ix, ji)- The tile ¢, is [ [t} AZ] [t),, ATm,] - - - [t1,, ATmy] tny1 | where the ).
are the minimal number of tiles in ¢} ,, ..., ), that are captured in the sense that
they involve extra nri subplays or are final. The interpretation of #], , ; at position
T(int1) is [ 74 ... [ 7(ins1)] where 7! is the interpretation of the tile t),
and 7't1 is that of trn,- The play m(iny1,jn41) is the continuation, assuming
(iterated) suffix playing, on ], ; that starts at ¢,41 and finishes at an atomic

11



leaf of it or is final. The intention is that unfolding will be true by definition
assuming a non-standard interpretation of generalized tiles which includes that
their plays are suffiz plays. As with the 3rd-order case, each play 7 descends a
branch of the unfolded tree. The remainder of the proof, the refolding, is how
to extract a small term from the tree of generalized tiles. Game-theoretically,
unfolding and refolding is justified by recursive permutations, repetitions and
omisgsions of ri subplays.

Example 3. In Example 2, the term in Figure 1 is reduced to the left tree in
Figure 4. We examine its unfolding. Tile t| = z(Az, \), 7w (i1,71) = 7(2,3), th =
f(A) and 7(i2,42) = 7(4,5). Now, t3 = z, so ty = z(Az.z, \) as t} is lowered (and
there is no capture) and 7 (i3, j3) is the suffiz play 7(8,9) that starts at x and
finishes at atomic leaf A. Tile ) = ¢4 = a is final for 7 and 7 (i4, j4) = 7(20). To
make the unfolding into a term tree, the initial A of g is added and the constant
b : 0 underneath any atomic leaf that does not have a successor, the tree on the
right of Figure 4. The issue is t; whose interpretation is a suffiz play. We can
reinterpret it as a complete play on t} because (the prefix play) (i1, j1) is ri:
the complete play has a different right term in its states, here we use Fact 2.
The top z(Az, A) and basic tile z(Az.xz,\) are 1-end and 1-directed: so, by T2,
they are removed. The result is the small term Az.f(a). a

References

1. Comon, H. and Jurski, Y. Higher-order matching and tree automata. Lecture
Notes in Computer Science, 1414, 157-176, (1997).
2. Dougherty, D. and Wierzbicki, T. A decidable variant of higher order matching.
Lecture Notes in Computer Science, 2378, 340-351, (2002).
3. Dowek, G. Third-order matching is decidable. Annals of Pure and Applied Logic,
69, 135-155, (1994).
4. Huet, G. Résolution d’équations dans les langages d’ordre 1, 2, ... w. These de
doctorat d’etat, Université Paris VII, (1976).
5. Loader, R. Higher-order S-matching is undecidable, Logic Journal of the IGPL,
11(1), 51-68, (2003).
6. Ong, C.-H. L. (2006) On model-checking trees generated by higher-order recursion
schemes. Preprint.
7. Padovani, V. Decidability of all minimal models. Lecture Notes in Computer Sci-
ence, 1158, 201-215, (1996).
8. Padovani, V. Decidability of fourth-order matching. Mathematical Structures in
Computer Science, 10(3), 361-372, (2001).
9. Schubert, A. Linear interpolation for the higher-order matching problem. Lecture
Notes in Computer Science, 1214, 441-452, (1997).
10. Schmidt-Schau8, M. Decidability of arity-bounded higher-order matching. Lecture
Notes in Artificial Intelligence, 2741, 488-502, (2003).
11. Statman, R. The typed A-calculus is not elementary recursive. Theoretical Com-
puter Science, 9, 73-81, (1979).
12. Stirling, C. Modal and Temporal Properties of Processes, Texts in Computer Sci-
ence, Springer, (2001).
13. Wierzbicki, T. Complexity of higher-order matching. Lecture Notes in Computer
Science, 1632, 82-96, (1999).

12



