

Edinburgh Research Explorer

Second-Order Simple Grammars

Citation for published version:
Stirling, C 2006, Second-Order Simple Grammars. in CONCUR 2006 - Concurrency Theory: 17th
International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings. vol. 4137,
Springer Berlin Heidelberg, pp. 509-523. DOI: 10.1007/11817949_34

Digital Object Identifier (DOI):
10.1007/11817949_34

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CONCUR 2006 - Concurrency Theory

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/11817949_34
https://www.research.ed.ac.uk/portal/en/publications/secondorder-simple-grammars(ff2937a6-4ac5-4c42-af28-0af27abd6c25).html

Seond-Order Simple GrammarsColin StirlingShool of InformatisUniversity of EdinburghEdinburgh EH9 3JZ, UKemail: ps�inf.ed.a.uk1 IntrodutionHigher-order notations for trees have a venerable history from the 1970s and1980s when shemes (that is, funtional programs without interpretations) andtheir relationship to formal language theory were �rst studied. Inluded arehigher-order reursion shemes and pushdown automata. Automata and lan-guage theory study �nitely presented mehanisms for generating languages. In-stead of language generators, one an view them as proess aluli, propagatorsof possibly in�nite labelled transition systems. Reently, model-heking teh-niques have been suessfully extended to these higher-order notations in thedeterministi ase [18, 9, 8, 21℄.A long standing open question is: given two nth-order shemes do they gen-erate the same tree? Courelle [10℄ showed that for n = 1 the problem oin-ides with the language equivalene problem for deterministi pushdown au-tomata (DPDA) that was subsequently solved positively by S�enizergues [23℄.For n > 1, equivalene of safe nth-order reursion shemes oinides with equiv-alene between determinisiti nth-order pushdown automata [12, 18℄. It is notknown whether safety is a genuine restrition on expressive power: see [1℄.Seond-order pushdown automata involve �nite-state ontrol over a stakof staks. They have appliations in language theory as they haraterize theindexed languages introdued by Aho [2℄. Also, they generalize the \mildly"ontext-sensitive languages used in omputational linguistis [29℄. Aho de�nedthese languages using indexed grammars and also haraterized them in termsof nested stak automata [3℄. Their haraterization in terms of seond-orderpushdown automata is due to Maslov, who also de�ned a hierarhy of higher-order indexed languages haraterized by higher-order pushdown automata, [20℄.A more detailed aount is given by Damm and Goerdt [12℄.There has been onsiderable researh ativity on deision proedures forbisimulation equivalene between �rst-order systems, initiated with [4℄ for normedontext-free grammars and then extended to lasses of pushdown automata [26℄.Reent results show that bisimulation equivalene is undeidable [17℄.Here, we present a deidability result for equivalene of seond-order sys-tems. A on�guration of a seond-order pushdown automaton is a state and astak of staks. The operations pop staks and push staks onto it. We examine

deterministi seond-order pushdown automata whih generalize DPDA. A on-�guration of a DPDA is a state and a stak. Simple grammars are an instaneof DPDA when there is a single state and no �-transitions. So a on�guration ofa simple grammar is justa stak. Korenjak and Hoproft showed that languageequivalene is deidable between on�gurations of simple grammars [19℄. Here,we introdue seond-order simple grammars as the subset of seond-order deter-ministi pushdown automata when there is a single state and no �-transitions.A on�guration of suh a grammar is, therefore, a stak of staks. We show thatlanguage equivalene is deidable for a subset of seond-order simple grammars.The proof tehnique is based on bisimulation equivalene and some ombina-toris about repetitions of stak extensions (loosely based on ideas from [28℄).We view this result as a �rst step towards understanding the general equivaleneproblem for higher-order shemes.In Setion 2, we desribe 2nd-order (deterministi) pushdown automata andin Setion 3 we introdue 2nd-order simple grammars and the subset that westudy. Some properties of the grammars are outlined in Setion 4. In Setions 5and 6 we present the equivalene deision proedure, using tableaux.2 2nd-order pushdown automataThe following four �nite sets are ingredients of a 2nd-order pushdown automaton,a 2PDA: states P, stak symbols S, alphabet A and basi transitions T. A basitransition is pX a�! q� where p and q are states in P, X is a stak symbol in S,a 2 A [f�g and � is an operation belonging to fswap�; push; pop : � 2 S�g.A 2-stak is a sequene of non-empty staks �1 : : : : : �n, so eah �i 2 S+.We use � for the empty stak and apital greek letters � , �, : : : to range oversequenes of staks with � for the empty sequene. An operation � is de�ned ona 2-stak as follows: swap�(X� : �) = �� : �push(� : �) = � : � : �pop(� : �) = �A on�guration of a 2PDA onsists of a state p 2 P and a 2-stak � . Thetransitions of a on�guration are de�ned by the following rule from the basitransitions T.PRE If pX a�! q� 2 T then pX� : � a�! q �(X� : �)A traditional automaton interpretation is that on input a with basi transitionpX a�! q� the on�guration pX� : � in state p with X at the top of the�rst stak hanges to state q and �(X� : �) replaes X� : � . Alternatively,with respet to a generational or proess alulus perspetive the on�gurationpX� : � generates, or performs, a and beomes q�(X� : �). In both aounts�-transitions have a speial status. If a = � then the on�guration may hange

without reading an input or it may beome q�(X� : �) silently without per-forming an observable ation. In the following we abbreviate a basi transitionpX a�! q swap� to pX a�! q�.The transition graph G(p�) is generated by deriving all possible transitionsfrom p� and every on�guration reahable from it using the rule PRE.Example 1. Consider the following basi transitions.pZ a�! qZ qZ a�! qAZ qA a�! qAA qA b�! r pushrA b�! r� rZ �! s pop sA �! s� sZ ��! s popPart of the transition graph G(pZ) is depited in Figure 1. utpZ a�! qZ a�! qAZ a�! qAAZ a�! : : :# b # brAZ : AZ rAAZ : AAZ# b # bsZ � sAZ � rZ : AZ rAZ : AAZ# � " # bs� : : : ...Fig. 1. A 2PDAA 2PDA is presentable in normal form, up to isomorphism of transitiongraphs, where eah transition of the form pX a�! q� 2 T obeys the onstraintthat the length of �, j�j, is at most 2. Enforement of the normal form is easyto ahieve, by introduing extra stak symbols.De�nition 1. The language of a on�guration p�, L(p�), is the set of wordsw 2 A� suh that p� w�! q� for some q.When reognising any suh word the 2-stak is thereby emptied. For instane,L(pZ) in the ase of Example 1 is fanbnn : n � 2g whih is a ontext-sensitivelanguage. This is alled empty stak aeptane. A word w 2 A� is in L(p�) ifthere is a w-path from p� to a terminal state q� for some q in the graph G(p�).The languages reognized oinide with those reognized if �nal states were alsoinluded.Our de�nition of a 2PDA is based on [18℄ exept that it expliitly extendsa standard PDA (beause of swap transitions). It is simpler than Maslov's,Damm and Goerdt's de�nition [20, 12℄. In their ase, a 2-stak is a sequeneof pairs (Xi; �i) where Xi 2 S, with operations pop1, pop2, push1(�), push2(�)whih work as follows: pop1[(X;�1) : � ℄ = � , pop2[(X;Y �) : � ℄ = (X;�) : � ,push1(Z1Z2)[(X;�) : � ℄ = (Z1; �) : (Z2; �) : � and push2(Z1Z2)[(X;�) : � ℄

= (X;Z1Z2�) : � . There is no loss in expressive power (with respet to lan-guage equivalene) as these operations an be simulated by families of 2PDAoperations.The family of languages reognized by 2PDA is the indexed languages, intro-dued by Aho in 1968 [2, 3℄, whih permit some ontext-dependeny, as Exam-ple 1 illustrates. Aho o�ers a grammatial method for generating them as well asan automata theoreti method (using nested stak automata) whih turns outto be equivalent to the 2PDA, as shown by Maslov [20℄. An equivalent, shema-like, formalism is the OI maro-grammars of Fisher [14℄. Aho also shows thatthe indexed languages are ontext-sensitive whih is not obvious beause re-peated push transitions an inrease the size of a on�guration non-linearly.They form an AFL and are a proper subset of the ontext-sensitive languages:f(abn)n : n � 0g is not an indexed language via a pumping lemma for them[16, 5℄. The subset of linear indexed languages is the mildly ontext-sensitivelanguages generated by tree adjoining grammars [29℄.A 2PDA is deterministi if T obeys the following onditions.{ if pX a�! q� and pX a�! r� then q = r and � = �{ if pX ��! q� and pX a�! r� then a = �Example 1 is a determinisiti 2PDA. The equivalene question, whether twoon�gurations of a determinisiti 2PDA reognise the same language, general-izes the DPDA equivalene problem, that was solved positively by S�enizergues[25, 23, 24, 27, 28℄. A DPDA on�guration p� an be oded as a deterministi2PDA on�guration p�Z where Z is a new end of stak marker with the extratransitions qZ ��! q pop for eah state q.Due to empty stak aeptane, the language reognized by a deterministi2PDA has the pre�x free property: if w 2 L(p�) then no proper pre�x v of w anbelong to L(p�). However, as with DPDA and empty stak aeptane, for anydeterministi indexed languageL, when de�ned in the Maslov style [22℄ with �nalstate aeptane, there is a deterministi 2PDA that aepts fw$: w 2 Lgwhere$ is a new alphabet symbol: deterministi 2PDA oinide with deterministiMaslov pushdown automata with empty stak aeptane. The deterministiindexed languages are losed under omplement (and are therefore a propersubset of the indexed languages) and inlude inherently ambiguous ontext-freelanguages suh as faibjk : i; j; k > 0 and i = j or j = kg [22℄.3 Seond-order simple grammarsIn this setion we onsider seond-order simple grammars, 2SGs. These are de-terminisiti 2PDAs whih have just one state and no �-transitions. We an there-fore drop the state from transitions and on�gurations: transitions now have theform X a�! � and a on�guration has the form �. Reahability properties oftheir nondeterministi version, at higher-orders, have been examined in [6℄. Weonjeture that simple grammars de�ned from Maslov pushdown automata aremore expressive than 2SGs.

The DPDA orrelate of 2SGs are simple grammars. A simple grammar on-tains basi deterministi transitions X a�! �, a 2 A, and the language of aon�guration �, L(�), is the set fw : � w�! �g. Deidability of language equiv-alene between two on�gurations of a simple grammar was shown by Korenjakand Hoproft [19℄. However, language ontainment is undeidable [15℄.It is unlear if there are alternative haraterizations of 2SGs in terms ofsubsets of shema or maro-grammars. The restrition to a single state suggeststhat we should examine their monadi versions. We leave this for further work.The following example illustrates that there are interesting 2SGs.Example 2. Consider the following 2SGA a�! AA A b�! push A �! � Z �! popPart of the graph G(AZ) is depited in Figure 2. L(AZ)\a�b�� is the language� � Z � AZ b�! : : :# a " " a: : : a � AAZ b�! AAZ : AAZ b�! : : :" # Z : AAZ � AZ : AAZ b�! : : :# a: : :Fig. 2. A 2SGfanbk(k+1)(n+2) : n; k � 0g whih is not ontext-free by the pumping lemma forontext-free languages. Therefore, L(AZ) is also not ontext-free. Consequently,2SGs are stritly more expressive than simple grammars. Also, they are notsubsumed by pushdown automata. utExample 3. 2SGs even without push transitions an be omplex.X a�! Y X X b�! � Y b�! X Y �! Z Z b�! U U b�! popA a�! C A b�! � C b�! AA C �!W W b�! popHere, L(XZ) = L(AW : W). The graph G(XZ) involves in�nite indegree be-ause UXnZ b�! � for any n. utDe�nition 2. For eah stak symbol X, let �(X) be the length of a shortestword w, if it exists, suh that X w�! �, �(X) be the length of a shortest word w,if it exists, suh that X w�! � and P (X) be the length of a shortest word wa, ifit exists, suh that X w�! Z� and Z a�! push 2 T.

It is easy to ompute whether �(X), �(X) or P (X) are de�ned, and what theirvalues are when de�ned. First we start by omputing the ases of length 1: theremust be basi transitions X a�! pop, X a�! � or X a�! push. To hek forlength n, we examine basi transitions X a�! W and X a�! Y Z: if �(X) is notyet de�ned, and �(W) = n� 1 or �(Y) + �(Z) = n� 1 then �(X) = n; if �(X) isnot yet de�ned and �(W) = n� 1 or �(Y) = n� 1 or �(Y)+�(Z) = n� 1 then�(X) = n; and, similarly, for P (X) when it is urrently unde�ned. The iterationstops at the �rst length 2k + 1 suh that no �(X), �(X) or P (X) has lengthmore than k. At this point, any remaining �(X), �(X) and P (X) are unde�ned.Clearly, no �(X), �(X), P (X) an exeed 2jSj. In the ase of Example 2, �(A),�(Z) and P (Z) are not de�ned and �(Z), �(A) and P (A) are all 1. In Example 3,�(X) = 4, �(Y) = 3 and �(A) = 3.De�nition 3. A 2SG is speial if for eah X, �(X) or P (X) is de�ned.The 2SGs in Examples 2 and 3 are speial. We now state the main result of thepaper.Theorem 1. If � , � are on�gurations of a speial 2SG then it is deidablewhether L(�) = L(�).The result stritly generalizes the equivalene problem for simple grammars.Consider a simple grammar with basi transitions of the form X a�! �. Wetransform it into a speial 2SG. First, we extend the alphabet with two newsymbols $, # and add an end of stak marker Z with basi transition Z $�! pop.For eah stak symbol X we also add the transition X #�! push. For any twoon�gurations � and � of the simple grammar, L(�) = L(�) i� L(�Z) = L(�Z)in the transformed 2SG.4 Some properties of speial 2SGsWe quikly onsider why language equivalene is deidable for simple grammars.A stak symbol X is normed if �(X) is de�ned. Clearly, L(�) = ; i� � ontainsan unnormed stak symbol. So we an put a simple grammar into normal formwhere all stak symbols are normed. With this assumption language equivaleneoinides with bisimulation equivalene beause of determinism and normedness.We write � � � if L(�) = L(�).Proposition 1. �Æ � �Æ i� � � � i� Æ� � Æ�.Deidability of equivalene now follows reasonably straightforwardly via deom-position and substitutivity: for instane, if X� � �Æ and � � �0Æ then X�0 � �.Deomposition an be extended to unique prime deomposition, see [7℄ for de-tails.In the ase of 2SGs there are two notions of stak omposition: one betweenstaks and the other within a stak. Again, we an easily hek if a on�gurationL(�) = ; using the de�nitions of �(X) and �(X) from the previous setion.Proposition 1 generalizes to omposition between staks for arbitrary 2SGs.

Proposition 2. Assume L(�), L(�) and L(�) are all nonempty. It followsthat L(� : �) = L(� : �) i� L(�) = L(�) i� L(� : �) = L(� : �).Proof. Assume L(�), L(�), L(�) are nonempty and L(� : �) = L(� : �). Ifw 2 L(� : �) then w = w1w2 and w1 2 L(�) and w2 2 L(�). Let v be a shortestword in L(�). If w1 62 L(�) then there are two ases. First, a proper pre�x w11of w1 is in L(�). It follows that w11v 2 L(� : �) and w11v 62 L(� : �) whihis a ontradition. Seondly, w1w21 2 L(�) where w2 = w21w22 and w21 6= �.Therefore, w1v 2 L(� : �) and w1v 62 L(� : �) whih again is a ontradition.Arguments for all the other ases are similar. utHowever, there are not the same properties for omposition within a stak. Itis possible for L(�) = L(�) and L(�Æ) 6= L(�Æ) and for L(�Æ) = L(�Æ) andL(�) 6= L(�). A simple ase is X a�! � and X b�! pop and Y b�! pop.Although L(X) = L(Y), L(XY) 6= L(Y Y) beause of the disitinguishing wordab. We introdue an extra on�guration ; with L(;) = ;. In the following wealways assume that when we write a on�guration � 6= ; then L(�) 6= ;. Wede�ne the operation � � a as follows for a 2 A.De�nition 4. If � a�! � 0 and L(� 0) 6= ; then � � a = � 0 otherwise � � a = ;.Proposition 3. If X a�! push 2 T then ((X� : �) � a) = X� : X� : � .We extend De�nition 4 to words.De�nition 5. � � � = � and � � aw = (� � a) � w.We now ome to a key, perhaps surprizing, property of a speial 2SG whihis essential to the deidability proof.Proposition 4. Assume L(X� : �) = L(Y � : �) for on�gurations of a speial2SG. If X a�! push 2 T then Y a�! push 2 T and L(X�) = L(Y �).Proof. Suppose L(X� : �) = L(Y � : �) and X a�! push 2 T. By assumptionL(X� : �) 6= ;. If Y a�! push 62 T then Y a�! � and � = pop or swap1 .Consider the ase � = pop. Therefore, L(X� : X� : �) = L(�). But thenby Proposition 2, L(X� : X� : �) = L(X� : Y � : �) = L(�) whih is aontradition. Consequently, � = swap1 and L(X� : X� : �) = L(�1 : �)where �(Y �) = �1. Now we repeat the argument for Y1 whih is the head staksymbol of �1. We show that Y1 a�! push 62 T. Assume it is. By Proposition 2,L(X� : X� : X� : �) = L(X� : �1 : �) = L(�1 : �1 : �) and so L(X�)= L(�1). But L(X� : X� : �) = L(�1 : Y � : �) = L(�1 : �) whih is aontradition. Therefore, Y1 a�! �1 and �1 = pop or swap2 . The argumentabove shows that �1 6= pop. Therefore, L(X� : X� : X� : �) = L(�2 : �)where �2 = �1(�1). Now, we repeat the argument for Y2 whih is the head of�2. Again, X a�! push 2 T and by the arguments above Y2 a�! swap2 . Aftern steps, we have L((X�)n+1 : �) = L(�n : �). As �(X�) > 0, it follows that

�(�n) = �(�n�1) + �(X�): we now use this property to obtain a ontraditionwhen the 2SG is speial. Let n > 2� 2jSj. Consider Yn the head variable of �n.As the 2SG is speial, �(Yn) or P (Yn) is de�ned. Assume the �rst, and let w bea shortest word suh that Yn w�! �. It follows that L(((X�)n+1 : �) �w) = L(�)whih is a ontradition. Similarly, if w is a shortest word that Yn w�! pushthen �n � w = �n+1 : �n+1. However, �(�n+1) > 2jSj whih ontradits thatL(((X�)n+1 : �) � w) = L(�n+1 : �n+1 : �). utWe introdue non-standard bisimulation approximants.De�nition 6. We de�ne �n, n � 0, iteratively as follows.1. � �0 � i� � = ; = � or � 6= ; and � 6= ;.2. � �n+1 � and ; �n+1 ;3. X� : � �n+1 Y � : � just in ase(a) �(X� : �) = �(Y � : �)(b) X a�! push i� Y a�! push, and() for eah a 2 A, (X� : �) � a �n (Y � : �) � a.Built into this de�nition is the idea that an immediate bisimulation error oursif on�gurations do not agree on length of their shortest words or if push a-tions are not mathed. These non-standard approximants will be ritial to thedeidability proof later. We write � � � if for all n, � �n �.Proposition 5. 1. L(�) = L(�) i� � � �.2. If � �n � and � �n � then � �n �.3. If � 6�n � and � �n+k � then � 6�n �.5 TableauxThe deision proedure for speial 2SGs is a tableau proof system, onsisting ofproof rules whih allow goals to be redued to subgoals. Goals and subgoals areall of the form � �= �, \is � � �?", where � and � are on�gurations of aspeial 2SG. The tableau proof rules are ontained in Figure 3.The initial tableau proof rule is UNF (unfold). The goal, � �= � redues tothe subgoals (� � a) �= (� � a) for eah a 2 A. The appliation of this simple ruleis both \omplete" and \sound". Completeness is the property that if the goal,� �= �, is true then so are all the subgoals, (� � ai) �= (� � ai).Proposition 6. If � � �, then for all a 2 A, (� � a) � (� � a).Soundness is the onverse, that if all the subgoals are true then so is the goalwhih is equivalent to, if the goal is false, � 6� �, then so is at least one of thesubgoals. However, there is a �ner aount that uses approximants. We assumethat, at least, � �1 � (so push transitions have to be mathed).Proposition 7. If � �n+1 � and � 6�n+2 �, then (� �a) 6�n+1 (� �a) for somea 2 A.

UNF � �= �(� � a1) �= (� � a1) : : : (� � ak) �= (� � ak) A = fa1; : : : ; akgSIMP(L) and SIMP(R)�X�0 : � �= ��X : � �= � �(X) unde�ned � �= �X�0 : �� �= �X : � �(X) unde�nedDEC(L) and DEC(R)� : � �= � : �� : (� � w) �= � � �= (� � w) : � C � : � �= � : �� �= � : (� � w) (� � w) : � �= � Cwhere C is the ondition1. �(�) � �(�) and � 6= �2. w is a smallest word suh that � w�! �3. (� � w) 6= ; Fig. 3. Tableau proof rulesThe seond rules are SIMP (simpli�ation) that redue goals. If �(X) is notde�ned then �X�0 an be redued to �X . The following implies soundness andompleteness of SIMP.Proposition 8. If �(X) is unde�ned then for all n and � �X�0 : � �n �X : � .The �nal rules are DEC for deomposition. We only deompose � : � = � : �when � is non-empty. The following apture ompleteness and soundness.Proposition 9. Assume �(�) � �(�), w is a smallest word suh that � w�! �and (� � w) 6= ;.1. If � : � � � : �, then � : (� � w) � � and � � (� � w) : �.2. If � : � 6�n � : � then � : (� � w) 6�n � or n > jwj and � 6�n�jwj (� � w) : �.Example 4. The following is an appliation of DEC(R) to a goal whose 2SG isExample 3. XXXZ : XZ �= AAAW : AW :WXXXZ �= AAAW : UXXXZ UXXXZ : XZ �= AW :WHere, AAAW ab�! � and UXXXZ = (XXXZ � ab). ut6 Suessful tableauxIn the previous setion we presented and justi�ed tableau proof rules. We nowshow that these rules lead to an e�etive deision proedure for heking equiv-alene of on�gurations of speial 2SGs. A missing ingredient in the tableau

desription is when a urrent goal is �nal. The tableau proedure starts with aninitial goal, � �= �, \is � � �?", and one then builds a proof tree by applyingthe tableau rules. Goals are thereby redued to subgoals. Rules are not appliedto �nal goals.A 2SG is deterministi, and therefore we would prefer that there is justone tableau proof tree for any starting goal. To ahieve uniqueness of tableau,we assume a linear ordering on the alphabet A. This ordering is used in anappliation of UNF, so the subgoals are ordered relative to this ordering. It isalso used in the DEC rules to de�ne a unique smallest word suh that � w�! �:if there is more than one word of the same length with this property, we hooseamongst them the word that is lexiographially least with repet to the orderingon A. In the ase of the SIMP rules we assume that �(�) is de�ned: we always tryto �nd the �rst stak symbol X in the initial stak suh that �(X) is unde�ned.Next, we assume that the tableau proof rules are applied in the followingorder: DEC(L), DEC(R), SIMP(L), SIMP(R), UNF. Given a goal one tries �rstto apply DEC(L), and if it is not appliable then one tries DEC(R), and so on.A tableau proof tree is built breadth �rst starting with leftmost non-�nal goals.Example 5. Here is part of the tableau proof tree for the goal XZ �= AW : Wwhose 2SG is Example 3. XZ �= AW :W UNFY XZ �= CW :W UNFXXZ �= AAW :W UNFY XXZ �= CAW :W UNF: : : : : : ZXZ �=WW :W SIMP(L)Z �=WW :W SIMP(R): : : : : :
Here we have missed out subgoals of the form ; �= ;. There is an appliation ofSIMP(L) to ZXZ �=WW :W beause �(Z) is not de�ned. utTo show deidability we intend to show that assoiated with any startinggoal � �= � is a unique boundedly �nite proof tree. However, in Example 5there appears to be the following potentially in�nite branh of goals.XZ �= AW :WYXZ �= CW :WXXZ �= AAW :WYXXZ �= CAW : WXXXZ �= AAAW : W: : :This will be dealt with by the de�nition of �nal goal.

Final goals are either unsuessful or suessful. There is just one kind ofunsuessful goal: � �= � where � 6�1 �. For suessful �nal goals, �rst weinlude the identity, � �= � , whih is learly true. However, there is anotherkind based on repeating patterns of stak extensions (inspired by the extensiontheorem in [28℄ whih was generalized to the subwords lemma in [25℄).We are interested in goals � : � �= � or � �= � : � where one side onsists of asingle stak only: appliation of the DEC proof rules yield suh subgoals. Givena goal ��1 : � �= ��1, where � and � are not �, we say that �1�1 : � �= ��1�1is an (1; �1)-extension of it and (1; �1) is the extension. We now ome to thekey property that will limit the size of a proof tree.Proposition 10. If � and � are not � and(1) ��1 : � �n ��1 and (5) ��2 : � �n ��2(2) �1�1 : � �n ��1�1 and (6) �1�2 : � �n ��1�2(3) �21�1 : � �n ��2�1�1 and (7) �21�2 : � �n ��2�1�2(4) �121�1 : � �n ��1�2�1�1then (8) �121�2 : � �n ��1�2�1�2.Proof. Assume (1) � (7) but (8) is false. So, �121�2 : � 6�n ��1�2�1�2.Beause of (1)� (7), the bisimulation error in (8) annot be aused by the heads� and �. Therefore, by repeated appliation of Proposition 7 there is a w suhthat one of the following hold. (An easy argument shows that w annot involvea push transition.)A) � � w = �, � � w is de�ned and � 6�n�jwj (� � w)�1�2�1�2.B) � � w = �, � � w is de�ned and 121�2 : � 6�n�jwj (� � w)�1�2�1�2.C) � � w = �, � � w is de�ned and (� � w)121�2 : � 6�n�jwj �1�2�1�2.Consider B): the others are similar. Beause of (1)� (7) we know that(11) �1 : � �n�jwj (� � w)�1 (51) �2 : � �n�jwj (� � w)�2(21) 1�1 : � �n�jwj (� � w)�1�1 (61) 1�2 : � �n�jwj (� � w)�1�2(31) 21�1 : � �n�jwj (� � w)�2�1�1 (71) 21�2 : � �n�jwj (� � w)�2�1�2(41) 121�1 : � �n�jwj (� � w)�1�2�1�1We now onsider � � w = �, � � w is de�ned and 121�2 : � 6�n�jwj (� �w)�1�2�1�2 and (21), (41) and (61). There are two ases depending on whether(� � w) = �. Assume it is not. The bisimulation error annot be aused by theheads 1 and (� �w). Therefore there is a word w1 suh that one of the followinghold.BA) 1 � w1 = �, � � ww1 is de�ned and � 6�n�jww1j (� � ww1)�1�2�1�2.BB) 1 � w1 = �, � � ww1 is de�ned and 21�2 : � 6�n�jww1j (� � ww1)�1�2�1�2.BC) � � ww1 = �, 1 � w1 is de�ned and (1 � w1)21�2 : � 6�n�jww1j �1�2�1�2.

In the ase of BA) we also know(211) � �n�jww1j (� � ww1)�1�1(411) � �n�jww1j (� � ww1)�1�2�1�1(611) � �n�jww1j (� � ww1)�1�2Thus, we now get a ontradition using these beause from Proposition 5(� � ww1)�1�2�1�1 6�n�jww1j (� � ww1)�1�2�1�2(� � ww1)�1�1 �n�jww1j (� � ww1)�1�2In the ase of BB) we also know that(212) �1 : � �n�jww1j (� � ww1)�1�1(412) 21�1 : � �n�jww1j (� � ww1)�1�2�1�1(612) �2 : � �n�jww1j (� � ww1)�1�2Now via Proposition 5, we an use (71), (11), (31) and (51) and derive a ontra-dition from the following.(� � w)�2�1�2 6�n�jww1j (� � ww1)�1�2�1�2(� � w)�1 �n�jww1j (� � ww1)�1�1(� � w)�2�1�1 �n�jww1j (� � ww1)�1�2�1�1(� � w)�2 �n�jww1j (� � ww1)�1�2All remaining ases are similar. utWe use Proposition 10 to identify when a goal is �nal via extensions.De�nition 7. Assume a family of not neessarily distint goalsg(1) ��1 : � �= ��1 h(1) ��2 : � �= ��2g(2) �1�1 : � �= ��1�1 h(2) �1�2 : � �= ��1�2g(3) �21�1 : � �= ��2�1�1 h(3) �21�2 : � �= ��2�1�2g(4) �121�1 : � �= ��1�2�1�1 h(4) �121�2 : � �= ��1�2�1�2(or their symmetri versions) in a branh of a proof tree involving extensions(1; �1), (2; �2). If h(4) is below all the g(i)'s and the other h(i)'s, is distintfrom g(4) and h(3) and there is an appliation of UNF between h(3) and h(4)then h(4) is a suessful �nal goal.Example 6. Consider the following goals in the initial part of the potentiallyin�nite branh of Example 5.g(1) XZ �= AW :Wg(2) = h(1) XXZ �= AAW :Wg(3) = h(2) XXXZ �= AAAW :Wg(4) = h(3) XXXXZ �= AAAAW :Wh(4) XXXXXZ �= AAAAAW : W

Here � = X and � = Y and the extensions are (X;A). There is at least oneappliation of UNF between h(3) and h(4) in the proof tree. Consequently, thebranh stops at the �nal goal XXXXXZ �= AAAAAW :W . utExample 7. If there is a repeat goal in the proof tree(g) � : � �= �...(h) � : � �= �with an appliation of UNF inbetween, then h is �nal. Here g(1) � g(4) andh(1)� h(3) is the goal g with extension (�; �) and �1 = �2 = �1 = �. utDe�nition 8. A suessful tableau for � �= � is a �nite proof tree with root� �= � and all of whose leaves are suessful �nal goals. Otherwise a tableau isunsuessful: that is, if it is not a �nite proof tree or if it ontains an unsu-esssful �nal goal.We now ome to the main results, whih show deidability of language equiv-alene for speial 2SG. The deision proedure is to build the tableau with root� �= � breadth �rst starting with leftmost non-�nal goals. If an unsuessful �nalgoal is met then the proedure terminates with a �nite unsuessful tableau.Theorem 2. There is a unique �nite tableau for goal � �= �.Proof. Uniqueness is lear beause rules are applied in a partiular order. Theimportant part of the proof is to show �niteness. Initially, we have � �= �. TheDEC rules are applied �rst in the order DEC(L) then DEC(R). Clearly, in theappliation of a DEC rule if w is the smallest word suh that � w�! � then thereis no push transition in this sequene of transitions. If (� � w) involves a pushtransition then the tableau onstrution will terminate with an unsuesful �nalgoal. Assume the rule is DEC(L), so � : (� � w) �= �. Consequently, w = w1aw2and � �w1 = �1 and � �w1 = �1 and �1 �a = �1 : �1. The subgoal �1 : (� �w) �= �1is, therefore, an unsuessful �nal goal. There an not be an in�nite sequene ofonseutive appliations of DEC as eah appliation dereases the the numberof staks in both subgoals. Consequently, non-�nal subgoals to whih DEC andSIMP do not apply have the form X� : � �= � or � �= X� : � . First, onsiderthe ase of an appliation of UNF where X a�! push. If � 6= � then the goal(X� : �) �a �= (� �a) is an unsuessful �nal goal (and similarly for its symmetriversion). If � = �, then X� � a �= � � a is X� : X� �= � : � and by DEC(L) thisredues to the two ourrenes of suessful �nal goals X� �= � by Example 7.Consequently, without loss of generality, assume there is an in�nite subbranhof goals of the form �i : � �= �i, i � 0 involving appliations of UNF and SIMPonly. We show that there is a suessful �nal goal. The size of the goals (thatis the sum, j�ij + j�ij) must be eventually inreasing, otherwise a repeat goal

ours ensuring a suessful �nal goal. Now we examine the �rst \low point" withrespet to the left stak �i: �i = X� is a low point if for all j � i, �j = �0j�.With respet to the left side we will �nd in�nitely many repeating patterns ofthe form Z�0, Z�01�0, Z�02�01�0 and Z�01�02�01�0 where �01 or �02 an be �. Now weonsider the right hand staks with respet to these repeating patterns. Clearly,we will also eventually �nd repeating patterns too, and onsequently a suessful�nal goal. utTheorem 3. The tableau for � �= � is suessful i� � � �.Proof. Suppose there is a suessful tableau for � �= � but � 6� �. By Theorem 2this tableau is �nite. There is a least approximant n suh that � 6�n �. Weonstrut an o�ending path of false goals through the tableau within whih theapproximant indies derease whenever UNF is applied (by Proposition 7). Theother rules preserve falsity indies. Beause the tableau is �nite and suessfulthis means that the path of false goals must onlude with a �nal goal. But thisis impossible. Clearly it is not possible to reah a �nal goal of the form � �= � .Moreover it is not possible to reah a �nal goal whih is a result of extensionsbeause of Proposition 10.For the other diretion, one just builds the tableau for � �= �. By Propo-sitions 6, 8 and 9, the appliations of rules preserve truth. Therefore it is notpossible to reah an unsuessful �nal goal, and by Theorem 2 the tableau for� �= � is �nite, and therefore suessful. utMore work needs to be done to asertain the exat omplexity bound of thedeision proedure.Aknowledgements: Many thanks to Luke Ong for imparting his inisive un-derstanding of higher-order shemes and the safety restrition, to Wong Karientofor a opy of the Maslov paper and to the referees for suggesting improvements.Referenes1. Aehlig, K., De Miranda, J., and Ong C.-H. L. (2005) Safety is not a restrition atlevel 2 for string languages. Leture Notes in Computer Siene, 3411, 490-511.2. Aho, A. (1968). Indexed grammars{an extension of ontext-free grammars. Jour-nal of ACM, 15, 647-671.3. Aho, A. (1969). Nested stak automata. Journal of ACM, 16, 383-406.4. Baeten, J., Bergstra, J., and Klop, J. (1993). Deidability of bisimulation equiv-alene for proesses generating ontext-free languages. Journal of ACM, 40, 653-682.5. Blumensath, A. (2004). A pumping lemma for higher-order pushdown automata.Preprint.6. Bouajjani, A. and Meyer, A. (2004). Symboli reahability analysis of higher-orderontext proesses. Leture Notes in Computer Siene, 3328, 135-147.7. Burkart, O., Caual, D. Moller, F., and Ste�en, B. (2001). Veri�ation on in�-nite strutures. In Handbook of Proess Algebra, ed. Bergstra, J., Ponse, A., andSmolka, S., 545-623, North-Holland.

8. Cahat, T. (2003). Higher order pushdown automata, the Caual hierarhy ofgraphs and parity games. Leture Notes in Computer Siene, 2719, 556-569.9. Caual, D. (2002). On in�nite terms having a deidable monadi theory. LetureNotes in Computer Siene, 2420, 165-176.10. Courelle, B. (1978). A representation of trees by languages I and II. TheoretialComputer Siene, 6, 255-279 and 7, 25-55.11. Damm, W. (1982). The IO- and OI-hierarhy. Theoretial Computer Siene, 25,95-169.12. Damm, W., and Goerdt, A. (1986). An automata-theoretial haraterization ofthe OI-hierarhy. Information and Control, 71, 1-32.13. Engelfriet, J. (1991). Iterated stak automata and omplexity lasses. Informationand Computation, 95, 21-75.14. Fisher, M. (1968). Grammars with maro-like produtions. Pros. 9th AnnualIEEE Symposium on Swithing and Automata Theory, 131-142.15. Freidman, E. (1976). The inlusion problem for simple languages. TheoretialComputer Siene, 1, 297-316.16. Gilman, R. (1996). A shrinking lemma for indexed languages. Theoretial Com-puter Siene, 163, 277-281.17. Jan�ar, P., and Srba, J. (2006). Undeidability results for bisimilarity on pre�xrewrite systems. Leture Notes in Computer Siene, 3921, 277-291.18. Knapik, T., Niwi�nski, D., and Urzyzyn, P. (2002). Higher-order pushdown treesare easy. Leture Notes in Computer Siene, 2303, 205-222.19. Korenjak, A and Hoproft, J. (1966). Simple deterministi languages. Pros. 7thAnnual IEEE Symposium on Swithing and Automata Theory, 36-46.20. Maslov, A. (1976). Multilevel stak automata. Problems of Information Trans-mission, 12, 38-43.21. Ong, C.-H. L. (2006) On model-heking trees generated by higher-order reursionshemes. Preprint.22. Parhmann, R., Duske, J. and Speht, J. (1980). On deterministi indexed lan-guages. Information and Control, 45, 48-67.23. S�enizergues, G. (2001). L(A) = L(B)? deidability results from omplete formalsystems. Theoretial Computer Siene, 251, 1-166.24. S�enizergues, G. (2002). L(A) = L(B)? a simpli�ed deidability proof. TheoretialComputer Siene, 281, 555-608.25. S�enizergues, G. (2003). The equivalene problem for t-turn DPDA is o-NP. Le-ture Notes in Computer Siene, 2719, 478-489.26. S�enizergues, G. (2005). The bisimulation problem for equational graphs of �niteout-degree. SIAM Journal of Computing, 34, 1025-1106.27. Stirling, C. (2001). Deidability of DPDA equivalene. Theoretial Computer Si-ene, 255, 1-31.28. Stirling, C. (2002) Deiding DPDA equivalene is primitive reursive. LetureNotes in Computer Siene, 2380, 821-832.29. Vijay-Shanker, K. and Weir, D. (1994). The equivalene of four extensions ofontext-free grammars. Mathematial Systems Theory, 27, 511-546.

