

Edinburgh Research Explorer

Second-Order Simple Grammars

Citation for published version:
Stirling, C 2006, Second-Order Simple Grammars. in CONCUR 2006 - Concurrency Theory: 17th
International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings. vol. 4137,
Springer Berlin Heidelberg, pp. 509-523. DOI: 10.1007/11817949_34

Digital Object Identifier (DOI):
10.1007/11817949_34

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CONCUR 2006 - Concurrency Theory

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/11817949_34
https://www.research.ed.ac.uk/portal/en/publications/secondorder-simple-grammars(ff2937a6-4ac5-4c42-af28-0af27abd6c25).html

Se
ond-Order Simple GrammarsColin StirlingS
hool of Informati
sUniversity of EdinburghEdinburgh EH9 3JZ, UKemail:
ps�inf.ed.a
.uk1 Introdu
tionHigher-order notations for trees have a venerable history from the 1970s and1980s when s
hemes (that is, fun
tional programs without interpretations) andtheir relationship to formal language theory were �rst studied. In
luded arehigher-order re
ursion s
hemes and pushdown automata. Automata and lan-guage theory study �nitely presented me
hanisms for generating languages. In-stead of language generators, one
an view them as pro
ess
al
uli, propagatorsof possibly in�nite labelled transition systems. Re
ently, model-
he
king te
h-niques have been su

essfully extended to these higher-order notations in thedeterministi

ase [18, 9, 8, 21℄.A long standing open question is: given two nth-order s
hemes do they gen-erate the same tree? Cour
elle [10℄ showed that for n = 1 the problem
oin-
ides with the language equivalen
e problem for deterministi
 pushdown au-tomata (DPDA) that was subsequently solved positively by S�enizergues [23℄.For n > 1, equivalen
e of safe nth-order re
ursion s
hemes
oin
ides with equiv-alen
e between determinisiti
 nth-order pushdown automata [12, 18℄. It is notknown whether safety is a genuine restri
tion on expressive power: see [1℄.Se
ond-order pushdown automata involve �nite-state
ontrol over a sta
kof sta
ks. They have appli
ations in language theory as they
hara
terize theindexed languages introdu
ed by Aho [2℄. Also, they generalize the \mildly"
ontext-sensitive languages used in
omputational linguisti
s [29℄. Aho de�nedthese languages using indexed grammars and also
hara
terized them in termsof nested sta
k automata [3℄. Their
hara
terization in terms of se
ond-orderpushdown automata is due to Maslov, who also de�ned a hierar
hy of higher-order indexed languages
hara
terized by higher-order pushdown automata, [20℄.A more detailed a

ount is given by Damm and Goerdt [12℄.There has been
onsiderable resear
h a
tivity on de
ision pro
edures forbisimulation equivalen
e between �rst-order systems, initiated with [4℄ for normed
ontext-free grammars and then extended to
lasses of pushdown automata [26℄.Re
ent results show that bisimulation equivalen
e is unde
idable [17℄.Here, we present a de
idability result for equivalen
e of se
ond-order sys-tems. A
on�guration of a se
ond-order pushdown automaton is a state and asta
k of sta
ks. The operations pop sta
ks and push sta
ks onto it. We examine

deterministi
 se
ond-order pushdown automata whi
h generalize DPDA. A
on-�guration of a DPDA is a state and a sta
k. Simple grammars are an instan
eof DPDA when there is a single state and no �-transitions. So a
on�guration ofa simple grammar is justa sta
k. Korenjak and Hop
roft showed that languageequivalen
e is de
idable between
on�gurations of simple grammars [19℄. Here,we introdu
e se
ond-order simple grammars as the subset of se
ond-order deter-ministi
 pushdown automata when there is a single state and no �-transitions.A
on�guration of su
h a grammar is, therefore, a sta
k of sta
ks. We show thatlanguage equivalen
e is de
idable for a subset of se
ond-order simple grammars.The proof te
hnique is based on bisimulation equivalen
e and some
ombina-tori
s about repetitions of sta
k extensions (loosely based on ideas from [28℄).We view this result as a �rst step towards understanding the general equivalen
eproblem for higher-order s
hemes.In Se
tion 2, we des
ribe 2nd-order (deterministi
) pushdown automata andin Se
tion 3 we introdu
e 2nd-order simple grammars and the subset that westudy. Some properties of the grammars are outlined in Se
tion 4. In Se
tions 5and 6 we present the equivalen
e de
ision pro
edure, using tableaux.2 2nd-order pushdown automataThe following four �nite sets are ingredients of a 2nd-order pushdown automaton,a 2PDA: states P, sta
k symbols S, alphabet A and basi
 transitions T. A basi
transition is pX a�! q� where p and q are states in P, X is a sta
k symbol in S,a 2 A [f�g and � is an operation belonging to fswap�; push; pop : � 2 S�g.A 2-sta
k is a sequen
e of non-empty sta
ks �1 : : : : : �n, so ea
h �i 2 S+.We use � for the empty sta
k and
apital greek letters � , �, : : : to range oversequen
es of sta
ks with � for the empty sequen
e. An operation � is de�ned ona 2-sta
k as follows: swap�(X� : �) = �� : �push(� : �) = � : � : �pop(� : �) = �A
on�guration of a 2PDA
onsists of a state p 2 P and a 2-sta
k � . Thetransitions of a
on�guration are de�ned by the following rule from the basi
transitions T.PRE If pX a�! q� 2 T then pX� : � a�! q �(X� : �)A traditional automaton interpretation is that on input a with basi
 transitionpX a�! q� the
on�guration pX� : � in state p with X at the top of the�rst sta
k
hanges to state q and �(X� : �) repla
es X� : � . Alternatively,with respe
t to a generational or pro
ess
al
ulus perspe
tive the
on�gurationpX� : � generates, or performs, a and be
omes q�(X� : �). In both a

ounts�-transitions have a spe
ial status. If a = � then the
on�guration may
hange

without reading an input or it may be
ome q�(X� : �) silently without per-forming an observable a
tion. In the following we abbreviate a basi
 transitionpX a�! q swap� to pX a�! q�.The transition graph G(p�) is generated by deriving all possible transitionsfrom p� and every
on�guration rea
hable from it using the rule PRE.Example 1. Consider the following basi
 transitions.pZ a�! qZ qZ a�! qAZ qA a�! qAA qA b�! r pushrA b�! r� rZ
�! s pop sA
�! s� sZ ��! s popPart of the transition graph G(pZ) is depi
ted in Figure 1. utpZ a�! qZ a�! qAZ a�! qAAZ a�! : : :# b # brAZ : AZ rAAZ : AAZ# b # bsZ
 � sAZ
 � rZ : AZ rAZ : AAZ# � "
 # bs� : : : ...Fig. 1. A 2PDAA 2PDA is presentable in normal form, up to isomorphism of transitiongraphs, where ea
h transition of the form pX a�! q� 2 T obeys the
onstraintthat the length of �, j�j, is at most 2. Enfor
ement of the normal form is easyto a
hieve, by introdu
ing extra sta
k symbols.De�nition 1. The language of a
on�guration p�, L(p�), is the set of wordsw 2 A� su
h that p� w�! q� for some q.When re
ognising any su
h word the 2-sta
k is thereby emptied. For instan
e,L(pZ) in the
ase of Example 1 is fanbn
n : n � 2g whi
h is a
ontext-sensitivelanguage. This is
alled empty sta
k a

eptan
e. A word w 2 A� is in L(p�) ifthere is a w-path from p� to a terminal state q� for some q in the graph G(p�).The languages re
ognized
oin
ide with those re
ognized if �nal states were alsoin
luded.Our de�nition of a 2PDA is based on [18℄ ex
ept that it expli
itly extendsa standard PDA (be
ause of swap transitions). It is simpler than Maslov's,Damm and Goerdt's de�nition [20, 12℄. In their
ase, a 2-sta
k is a sequen
eof pairs (Xi; �i) where Xi 2 S, with operations pop1, pop2, push1(�), push2(�)whi
h work as follows: pop1[(X;�1) : � ℄ = � , pop2[(X;Y �) : � ℄ = (X;�) : � ,push1(Z1Z2)[(X;�) : � ℄ = (Z1; �) : (Z2; �) : � and push2(Z1Z2)[(X;�) : � ℄

= (X;Z1Z2�) : � . There is no loss in expressive power (with respe
t to lan-guage equivalen
e) as these operations
an be simulated by families of 2PDAoperations.The family of languages re
ognized by 2PDA is the indexed languages, intro-du
ed by Aho in 1968 [2, 3℄, whi
h permit some
ontext-dependen
y, as Exam-ple 1 illustrates. Aho o�ers a grammati
al method for generating them as well asan automata theoreti
 method (using nested sta
k automata) whi
h turns outto be equivalent to the 2PDA, as shown by Maslov [20℄. An equivalent, s
hema-like, formalism is the OI ma
ro-grammars of Fis
her [14℄. Aho also shows thatthe indexed languages are
ontext-sensitive whi
h is not obvious be
ause re-peated push transitions
an in
rease the size of a
on�guration non-linearly.They form an AFL and are a proper subset of the
ontext-sensitive languages:f(abn)n : n � 0g is not an indexed language via a pumping lemma for them[16, 5℄. The subset of linear indexed languages is the mildly
ontext-sensitivelanguages generated by tree adjoining grammars [29℄.A 2PDA is deterministi
 if T obeys the following
onditions.{ if pX a�! q� and pX a�! r� then q = r and � = �{ if pX ��! q� and pX a�! r� then a = �Example 1 is a determinisiti
 2PDA. The equivalen
e question, whether two
on�gurations of a determinisiti
 2PDA re
ognise the same language, general-izes the DPDA equivalen
e problem, that was solved positively by S�enizergues[25, 23, 24, 27, 28℄. A DPDA
on�guration p�
an be
oded as a deterministi
2PDA
on�guration p�Z where Z is a new end of sta
k marker with the extratransitions qZ ��! q pop for ea
h state q.Due to empty sta
k a

eptan
e, the language re
ognized by a deterministi
2PDA has the pre�x free property: if w 2 L(p�) then no proper pre�x v of w
anbelong to L(p�). However, as with DPDA and empty sta
k a

eptan
e, for anydeterministi
 indexed languageL, when de�ned in the Maslov style [22℄ with �nalstate a

eptan
e, there is a deterministi
 2PDA that a

epts fw$: w 2 Lgwhere$ is a new alphabet symbol: deterministi
 2PDA
oin
ide with deterministi
Maslov pushdown automata with empty sta
k a

eptan
e. The deterministi
indexed languages are
losed under
omplement (and are therefore a propersubset of the indexed languages) and in
lude inherently ambiguous
ontext-freelanguages su
h as faibj
k : i; j; k > 0 and i = j or j = kg [22℄.3 Se
ond-order simple grammarsIn this se
tion we
onsider se
ond-order simple grammars, 2SGs. These are de-terminisiti
 2PDAs whi
h have just one state and no �-transitions. We
an there-fore drop the state from transitions and
on�gurations: transitions now have theform X a�! � and a
on�guration has the form �. Rea
hability properties oftheir nondeterministi
 version, at higher-orders, have been examined in [6℄. We
onje
ture that simple grammars de�ned from Maslov pushdown automata aremore expressive than 2SGs.

The DPDA
orrelate of 2SGs are simple grammars. A simple grammar
on-tains basi
 deterministi
 transitions X a�! �, a 2 A, and the language of a
on�guration �, L(�), is the set fw : � w�! �g. De
idability of language equiv-alen
e between two
on�gurations of a simple grammar was shown by Korenjakand Hop
roft [19℄. However, language
ontainment is unde
idable [15℄.It is un
lear if there are alternative
hara
terizations of 2SGs in terms ofsubsets of s
hema or ma
ro-grammars. The restri
tion to a single state suggeststhat we should examine their monadi
 versions. We leave this for further work.The following example illustrates that there are interesting 2SGs.Example 2. Consider the following 2SGA a�! AA A b�! push A
�! � Z
�! popPart of the graph G(AZ) is depi
ted in Figure 2. L(AZ)\a�b�
� is the language�
 � Z
 � AZ b�! : : :# a "
 " a: : : a � AAZ b�! AAZ : AAZ b�! : : :"
 #
Z : AAZ
 � AZ : AAZ b�! : : :# a: : :Fig. 2. A 2SGfanbk
(k+1)(n+2) : n; k � 0g whi
h is not
ontext-free by the pumping lemma for
ontext-free languages. Therefore, L(AZ) is also not
ontext-free. Consequently,2SGs are stri
tly more expressive than simple grammars. Also, they are notsubsumed by pushdown automata. utExample 3. 2SGs even without push transitions
an be
omplex.X a�! Y X X b�! � Y b�! X Y
�! Z Z b�! U U b�! popA a�! C A b�! � C b�! AA C
�!W W b�! popHere, L(XZ) = L(AW : W). The graph G(XZ) involves in�nite indegree be-
ause UXnZ b�! � for any n. utDe�nition 2. For ea
h sta
k symbol X, let �(X) be the length of a shortestword w, if it exists, su
h that X w�! �, �(X) be the length of a shortest word w,if it exists, su
h that X w�! � and P (X) be the length of a shortest word wa, ifit exists, su
h that X w�! Z� and Z a�! push 2 T.

It is easy to
ompute whether �(X), �(X) or P (X) are de�ned, and what theirvalues are when de�ned. First we start by
omputing the
ases of length 1: theremust be basi
 transitions X a�! pop, X a�! � or X a�! push. To
he
k forlength n, we examine basi
 transitions X a�! W and X a�! Y Z: if �(X) is notyet de�ned, and �(W) = n� 1 or �(Y) + �(Z) = n� 1 then �(X) = n; if �(X) isnot yet de�ned and �(W) = n� 1 or �(Y) = n� 1 or �(Y)+�(Z) = n� 1 then�(X) = n; and, similarly, for P (X) when it is
urrently unde�ned. The iterationstops at the �rst length 2k + 1 su
h that no �(X), �(X) or P (X) has lengthmore than k. At this point, any remaining �(X), �(X) and P (X) are unde�ned.Clearly, no �(X), �(X), P (X)
an ex
eed 2jSj. In the
ase of Example 2, �(A),�(Z) and P (Z) are not de�ned and �(Z), �(A) and P (A) are all 1. In Example 3,�(X) = 4, �(Y) = 3 and �(A) = 3.De�nition 3. A 2SG is spe
ial if for ea
h X, �(X) or P (X) is de�ned.The 2SGs in Examples 2 and 3 are spe
ial. We now state the main result of thepaper.Theorem 1. If � , � are
on�gurations of a spe
ial 2SG then it is de
idablewhether L(�) = L(�).The result stri
tly generalizes the equivalen
e problem for simple grammars.Consider a simple grammar with basi
 transitions of the form X a�! �. Wetransform it into a spe
ial 2SG. First, we extend the alphabet with two newsymbols $, # and add an end of sta
k marker Z with basi
 transition Z $�! pop.For ea
h sta
k symbol X we also add the transition X #�! push. For any two
on�gurations � and � of the simple grammar, L(�) = L(�) i� L(�Z) = L(�Z)in the transformed 2SG.4 Some properties of spe
ial 2SGsWe qui
kly
onsider why language equivalen
e is de
idable for simple grammars.A sta
k symbol X is normed if �(X) is de�ned. Clearly, L(�) = ; i� �
ontainsan unnormed sta
k symbol. So we
an put a simple grammar into normal formwhere all sta
k symbols are normed. With this assumption language equivalen
e
oin
ides with bisimulation equivalen
e be
ause of determinism and normedness.We write � � � if L(�) = L(�).Proposition 1. �Æ � �Æ i� � � � i� Æ� � Æ�.De
idability of equivalen
e now follows reasonably straightforwardly via de
om-position and substitutivity: for instan
e, if X� � �Æ and � � �0Æ then X�0 � �.De
omposition
an be extended to unique prime de
omposition, see [7℄ for de-tails.In the
ase of 2SGs there are two notions of sta
k
omposition: one betweensta
ks and the other within a sta
k. Again, we
an easily
he
k if a
on�gurationL(�) = ; using the de�nitions of �(X) and �(X) from the previous se
tion.Proposition 1 generalizes to
omposition between sta
ks for arbitrary 2SGs.

Proposition 2. Assume L(�), L(�) and L(�) are all nonempty. It followsthat L(� : �) = L(� : �) i� L(�) = L(�) i� L(� : �) = L(� : �).Proof. Assume L(�), L(�), L(�) are nonempty and L(� : �) = L(� : �). Ifw 2 L(� : �) then w = w1w2 and w1 2 L(�) and w2 2 L(�). Let v be a shortestword in L(�). If w1 62 L(�) then there are two
ases. First, a proper pre�x w11of w1 is in L(�). It follows that w11v 2 L(� : �) and w11v 62 L(� : �) whi
his a
ontradi
tion. Se
ondly, w1w21 2 L(�) where w2 = w21w22 and w21 6= �.Therefore, w1v 2 L(� : �) and w1v 62 L(� : �) whi
h again is a
ontradi
tion.Arguments for all the other
ases are similar. utHowever, there are not the same properties for
omposition within a sta
k. Itis possible for L(�) = L(�) and L(�Æ) 6= L(�Æ) and for L(�Æ) = L(�Æ) andL(�) 6= L(�). A simple
ase is X a�! � and X b�! pop and Y b�! pop.Although L(X) = L(Y), L(XY) 6= L(Y Y) be
ause of the disitinguishing wordab. We introdu
e an extra
on�guration ; with L(;) = ;. In the following wealways assume that when we write a
on�guration � 6= ; then L(�) 6= ;. Wede�ne the operation � � a as follows for a 2 A.De�nition 4. If � a�! � 0 and L(� 0) 6= ; then � � a = � 0 otherwise � � a = ;.Proposition 3. If X a�! push 2 T then ((X� : �) � a) = X� : X� : � .We extend De�nition 4 to words.De�nition 5. � � � = � and � � aw = (� � a) � w.We now
ome to a key, perhaps surprizing, property of a spe
ial 2SG whi
his essential to the de
idability proof.Proposition 4. Assume L(X� : �) = L(Y � : �) for
on�gurations of a spe
ial2SG. If X a�! push 2 T then Y a�! push 2 T and L(X�) = L(Y �).Proof. Suppose L(X� : �) = L(Y � : �) and X a�! push 2 T. By assumptionL(X� : �) 6= ;. If Y a�! push 62 T then Y a�! � and � = pop or swap
1 .Consider the
ase � = pop. Therefore, L(X� : X� : �) = L(�). But thenby Proposition 2, L(X� : X� : �) = L(X� : Y � : �) = L(�) whi
h is a
ontradi
tion. Consequently, � = swap
1 and L(X� : X� : �) = L(�1 : �)where �(Y �) = �1. Now we repeat the argument for Y1 whi
h is the head sta
ksymbol of �1. We show that Y1 a�! push 62 T. Assume it is. By Proposition 2,L(X� : X� : X� : �) = L(X� : �1 : �) = L(�1 : �1 : �) and so L(X�)= L(�1). But L(X� : X� : �) = L(�1 : Y � : �) = L(�1 : �) whi
h is a
ontradi
tion. Therefore, Y1 a�! �1 and �1 = pop or swap
2 . The argumentabove shows that �1 6= pop. Therefore, L(X� : X� : X� : �) = L(�2 : �)where �2 = �1(�1). Now, we repeat the argument for Y2 whi
h is the head of�2. Again, X a�! push 2 T and by the arguments above Y2 a�! swap
2 . Aftern steps, we have L((X�)n+1 : �) = L(�n : �). As �(X�) > 0, it follows that

�(�n) = �(�n�1) + �(X�): we now use this property to obtain a
ontradi
tionwhen the 2SG is spe
ial. Let n > 2� 2jSj. Consider Yn the head variable of �n.As the 2SG is spe
ial, �(Yn) or P (Yn) is de�ned. Assume the �rst, and let w bea shortest word su
h that Yn w�! �. It follows that L(((X�)n+1 : �) �w) = L(�)whi
h is a
ontradi
tion. Similarly, if w is a shortest word that Yn w�! pushthen �n � w = �n+1 : �n+1. However, �(�n+1) > 2jSj whi
h
ontradi
ts thatL(((X�)n+1 : �) � w) = L(�n+1 : �n+1 : �). utWe introdu
e non-standard bisimulation approximants.De�nition 6. We de�ne �n, n � 0, iteratively as follows.1. � �0 � i� � = ; = � or � 6= ; and � 6= ;.2. � �n+1 � and ; �n+1 ;3. X� : � �n+1 Y � : � just in
ase(a) �(X� : �) = �(Y � : �)(b) X a�! push i� Y a�! push, and(
) for ea
h a 2 A, (X� : �) � a �n (Y � : �) � a.Built into this de�nition is the idea that an immediate bisimulation error o

ursif
on�gurations do not agree on length of their shortest words or if push a
-tions are not mat
hed. These non-standard approximants will be
riti
al to thede
idability proof later. We write � � � if for all n, � �n �.Proposition 5. 1. L(�) = L(�) i� � � �.2. If � �n � and � �n � then � �n �.3. If � 6�n � and � �n+k � then � 6�n �.5 TableauxThe de
ision pro
edure for spe
ial 2SGs is a tableau proof system,
onsisting ofproof rules whi
h allow goals to be redu
ed to subgoals. Goals and subgoals areall of the form � �= �, \is � � �?", where � and � are
on�gurations of aspe
ial 2SG. The tableau proof rules are
ontained in Figure 3.The initial tableau proof rule is UNF (unfold). The goal, � �= � redu
es tothe subgoals (� � a) �= (� � a) for ea
h a 2 A. The appli
ation of this simple ruleis both \
omplete" and \sound". Completeness is the property that if the goal,� �= �, is true then so are all the subgoals, (� � ai) �= (� � ai).Proposition 6. If � � �, then for all a 2 A, (� � a) � (� � a).Soundness is the
onverse, that if all the subgoals are true then so is the goalwhi
h is equivalent to, if the goal is false, � 6� �, then so is at least one of thesubgoals. However, there is a �ner a

ount that uses approximants. We assumethat, at least, � �1 � (so push transitions have to be mat
hed).Proposition 7. If � �n+1 � and � 6�n+2 �, then (� �a) 6�n+1 (� �a) for somea 2 A.

UNF � �= �(� � a1) �= (� � a1) : : : (� � ak) �= (� � ak) A = fa1; : : : ; akgSIMP(L) and SIMP(R)�X�0 : � �= ��X : � �= � �(X) unde�ned � �= �X�0 : �� �= �X : � �(X) unde�nedDEC(L) and DEC(R)� : � �= � : �� : (� � w) �= � � �= (� � w) : � C � : � �= � : �� �= � : (� � w) (� � w) : � �= � Cwhere C is the
ondition1. �(�) � �(�) and � 6= �2. w is a smallest word su
h that � w�! �3. (� � w) 6= ; Fig. 3. Tableau proof rulesThe se
ond rules are SIMP (simpli�
ation) that redu
e goals. If �(X) is notde�ned then �X�0
an be redu
ed to �X . The following implies soundness and
ompleteness of SIMP.Proposition 8. If �(X) is unde�ned then for all n and � �X�0 : � �n �X : � .The �nal rules are DEC for de
omposition. We only de
ompose � : � = � : �when � is non-empty. The following
apture
ompleteness and soundness.Proposition 9. Assume �(�) � �(�), w is a smallest word su
h that � w�! �and (� � w) 6= ;.1. If � : � � � : �, then � : (� � w) � � and � � (� � w) : �.2. If � : � 6�n � : � then � : (� � w) 6�n � or n > jwj and � 6�n�jwj (� � w) : �.Example 4. The following is an appli
ation of DEC(R) to a goal whose 2SG isExample 3. XXXZ : XZ �= AAAW : AW :WXXXZ �= AAAW : UXXXZ UXXXZ : XZ �= AW :WHere, AAAW a
b�! � and UXXXZ = (XXXZ � a
b). ut6 Su

essful tableauxIn the previous se
tion we presented and justi�ed tableau proof rules. We nowshow that these rules lead to an e�e
tive de
ision pro
edure for
he
king equiv-alen
e of
on�gurations of spe
ial 2SGs. A missing ingredient in the tableau

des
ription is when a
urrent goal is �nal. The tableau pro
edure starts with aninitial goal, � �= �, \is � � �?", and one then builds a proof tree by applyingthe tableau rules. Goals are thereby redu
ed to subgoals. Rules are not appliedto �nal goals.A 2SG is deterministi
, and therefore we would prefer that there is justone tableau proof tree for any starting goal. To a
hieve uniqueness of tableau,we assume a linear ordering on the alphabet A. This ordering is used in anappli
ation of UNF, so the subgoals are ordered relative to this ordering. It isalso used in the DEC rules to de�ne a unique smallest word su
h that � w�! �:if there is more than one word of the same length with this property, we
hooseamongst them the word that is lexi
ographi
ally least with repe
t to the orderingon A. In the
ase of the SIMP rules we assume that �(�) is de�ned: we always tryto �nd the �rst sta
k symbol X in the initial sta
k su
h that �(X) is unde�ned.Next, we assume that the tableau proof rules are applied in the followingorder: DEC(L), DEC(R), SIMP(L), SIMP(R), UNF. Given a goal one tries �rstto apply DEC(L), and if it is not appli
able then one tries DEC(R), and so on.A tableau proof tree is built breadth �rst starting with leftmost non-�nal goals.Example 5. Here is part of the tableau proof tree for the goal XZ �= AW : Wwhose 2SG is Example 3. XZ �= AW :W UNFY XZ �= CW :W UNFXXZ �= AAW :W UNFY XXZ �= CAW :W UNF: : : : : : ZXZ �=WW :W SIMP(L)Z �=WW :W SIMP(R): : : : : :
Here we have missed out subgoals of the form ; �= ;. There is an appli
ation ofSIMP(L) to ZXZ �=WW :W be
ause �(Z) is not de�ned. utTo show de
idability we intend to show that asso
iated with any startinggoal � �= � is a unique boundedly �nite proof tree. However, in Example 5there appears to be the following potentially in�nite bran
h of goals.XZ �= AW :WYXZ �= CW :WXXZ �= AAW :WYXXZ �= CAW : WXXXZ �= AAAW : W: : :This will be dealt with by the de�nition of �nal goal.

Final goals are either unsu

essful or su

essful. There is just one kind ofunsu

essful goal: � �= � where � 6�1 �. For su

essful �nal goals, �rst wein
lude the identity, � �= � , whi
h is
learly true. However, there is anotherkind based on repeating patterns of sta
k extensions (inspired by the extensiontheorem in [28℄ whi
h was generalized to the subwords lemma in [25℄).We are interested in goals � : � �= � or � �= � : � where one side
onsists of asingle sta
k only: appli
ation of the DEC proof rules yield su
h subgoals. Givena goal ��1 : � �= ��1, where � and � are not �, we say that �
1�1 : � �= ��1�1is an (
1; �1)-extension of it and (
1; �1) is the extension. We now
ome to thekey property that will limit the size of a proof tree.Proposition 10. If � and � are not � and(1) ��1 : � �n ��1 and (5) ��2 : � �n ��2(2) �
1�1 : � �n ��1�1 and (6) �
1�2 : � �n ��1�2(3) �
2
1�1 : � �n ��2�1�1 and (7) �
2
1�2 : � �n ��2�1�2(4) �
1
2
1�1 : � �n ��1�2�1�1then (8) �
1
2
1�2 : � �n ��1�2�1�2.Proof. Assume (1) � (7) but (8) is false. So, �
1
2
1�2 : � 6�n ��1�2�1�2.Be
ause of (1)� (7), the bisimulation error in (8)
annot be
aused by the heads� and �. Therefore, by repeated appli
ation of Proposition 7 there is a w su
hthat one of the following hold. (An easy argument shows that w
annot involvea push transition.)A) � � w = �, � � w is de�ned and � 6�n�jwj (� � w)�1�2�1�2.B) � � w = �, � � w is de�ned and
1
2
1�2 : � 6�n�jwj (� � w)�1�2�1�2.C) � � w = �, � � w is de�ned and (� � w)
1
2
1�2 : � 6�n�jwj �1�2�1�2.Consider B): the others are similar. Be
ause of (1)� (7) we know that(11) �1 : � �n�jwj (� � w)�1 (51) �2 : � �n�jwj (� � w)�2(21)
1�1 : � �n�jwj (� � w)�1�1 (61)
1�2 : � �n�jwj (� � w)�1�2(31)
2
1�1 : � �n�jwj (� � w)�2�1�1 (71)
2
1�2 : � �n�jwj (� � w)�2�1�2(41)
1
2
1�1 : � �n�jwj (� � w)�1�2�1�1We now
onsider � � w = �, � � w is de�ned and
1
2
1�2 : � 6�n�jwj (� �w)�1�2�1�2 and (21), (41) and (61). There are two
ases depending on whether(� � w) = �. Assume it is not. The bisimulation error
annot be
aused by theheads
1 and (� �w). Therefore there is a word w1 su
h that one of the followinghold.BA)
1 � w1 = �, � � ww1 is de�ned and � 6�n�jww1j (� � ww1)�1�2�1�2.BB)
1 � w1 = �, � � ww1 is de�ned and
2
1�2 : � 6�n�jww1j (� � ww1)�1�2�1�2.BC) � � ww1 = �,
1 � w1 is de�ned and (
1 � w1)
2
1�2 : � 6�n�jww1j �1�2�1�2.

In the
ase of BA) we also know(211) � �n�jww1j (� � ww1)�1�1(411) � �n�jww1j (� � ww1)�1�2�1�1(611) � �n�jww1j (� � ww1)�1�2Thus, we now get a
ontradi
tion using these be
ause from Proposition 5(� � ww1)�1�2�1�1 6�n�jww1j (� � ww1)�1�2�1�2(� � ww1)�1�1 �n�jww1j (� � ww1)�1�2In the
ase of BB) we also know that(212) �1 : � �n�jww1j (� � ww1)�1�1(412)
2
1�1 : � �n�jww1j (� � ww1)�1�2�1�1(612) �2 : � �n�jww1j (� � ww1)�1�2Now via Proposition 5, we
an use (71), (11), (31) and (51) and derive a
ontra-di
tion from the following.(� � w)�2�1�2 6�n�jww1j (� � ww1)�1�2�1�2(� � w)�1 �n�jww1j (� � ww1)�1�1(� � w)�2�1�1 �n�jww1j (� � ww1)�1�2�1�1(� � w)�2 �n�jww1j (� � ww1)�1�2All remaining
ases are similar. utWe use Proposition 10 to identify when a goal is �nal via extensions.De�nition 7. Assume a family of not ne
essarily distin
t goalsg(1) ��1 : � �= ��1 h(1) ��2 : � �= ��2g(2) �
1�1 : � �= ��1�1 h(2) �
1�2 : � �= ��1�2g(3) �
2
1�1 : � �= ��2�1�1 h(3) �
2
1�2 : � �= ��2�1�2g(4) �
1
2
1�1 : � �= ��1�2�1�1 h(4) �
1
2
1�2 : � �= ��1�2�1�2(or their symmetri
 versions) in a bran
h of a proof tree involving extensions(
1; �1), (
2; �2). If h(4) is below all the g(i)'s and the other h(i)'s, is distin
tfrom g(4) and h(3) and there is an appli
ation of UNF between h(3) and h(4)then h(4) is a su

essful �nal goal.Example 6. Consider the following goals in the initial part of the potentiallyin�nite bran
h of Example 5.g(1) XZ �= AW :Wg(2) = h(1) XXZ �= AAW :Wg(3) = h(2) XXXZ �= AAAW :Wg(4) = h(3) XXXXZ �= AAAAW :Wh(4) XXXXXZ �= AAAAAW : W

Here � = X and � = Y and the extensions are (X;A). There is at least oneappli
ation of UNF between h(3) and h(4) in the proof tree. Consequently, thebran
h stops at the �nal goal XXXXXZ �= AAAAAW :W . utExample 7. If there is a repeat goal in the proof tree(g) � : � �= �...(h) � : � �= �with an appli
ation of UNF inbetween, then h is �nal. Here g(1) � g(4) andh(1)� h(3) is the goal g with extension (�; �) and �1 = �2 = �1 = �. utDe�nition 8. A su

essful tableau for � �= � is a �nite proof tree with root� �= � and all of whose leaves are su

essful �nal goals. Otherwise a tableau isunsu

essful: that is, if it is not a �nite proof tree or if it
ontains an unsu
-
esssful �nal goal.We now
ome to the main results, whi
h show de
idability of language equiv-alen
e for spe
ial 2SG. The de
ision pro
edure is to build the tableau with root� �= � breadth �rst starting with leftmost non-�nal goals. If an unsu

essful �nalgoal is met then the pro
edure terminates with a �nite unsu

essful tableau.Theorem 2. There is a unique �nite tableau for goal � �= �.Proof. Uniqueness is
lear be
ause rules are applied in a parti
ular order. Theimportant part of the proof is to show �niteness. Initially, we have � �= �. TheDEC rules are applied �rst in the order DEC(L) then DEC(R). Clearly, in theappli
ation of a DEC rule if w is the smallest word su
h that � w�! � then thereis no push transition in this sequen
e of transitions. If (� � w) involves a pushtransition then the tableau
onstru
tion will terminate with an unsu

esful �nalgoal. Assume the rule is DEC(L), so � : (� � w) �= �. Consequently, w = w1aw2and � �w1 = �1 and � �w1 = �1 and �1 �a = �1 : �1. The subgoal �1 : (� �w) �= �1is, therefore, an unsu

essful �nal goal. There
an not be an in�nite sequen
e of
onse
utive appli
ations of DEC as ea
h appli
ation de
reases the the numberof sta
ks in both subgoals. Consequently, non-�nal subgoals to whi
h DEC andSIMP do not apply have the form X� : � �= � or � �= X� : � . First,
onsiderthe
ase of an appli
ation of UNF where X a�! push. If � 6= � then the goal(X� : �) �a �= (� �a) is an unsu

essful �nal goal (and similarly for its symmetri
version). If � = �, then X� � a �= � � a is X� : X� �= � : � and by DEC(L) thisredu
es to the two o

urren
es of su

essful �nal goals X� �= � by Example 7.Consequently, without loss of generality, assume there is an in�nite subbran
hof goals of the form �i : � �= �i, i � 0 involving appli
ations of UNF and SIMPonly. We show that there is a su

essful �nal goal. The size of the goals (thatis the sum, j�ij + j�ij) must be eventually in
reasing, otherwise a repeat goal

o

urs ensuring a su

essful �nal goal. Now we examine the �rst \low point" withrespe
t to the left sta
k �i: �i = X� is a low point if for all j � i, �j = �0j�.With respe
t to the left side we will �nd in�nitely many repeating patterns ofthe form Z�0, Z�01�0, Z�02�01�0 and Z�01�02�01�0 where �01 or �02
an be �. Now we
onsider the right hand sta
ks with respe
t to these repeating patterns. Clearly,we will also eventually �nd repeating patterns too, and
onsequently a su

essful�nal goal. utTheorem 3. The tableau for � �= � is su

essful i� � � �.Proof. Suppose there is a su

essful tableau for � �= � but � 6� �. By Theorem 2this tableau is �nite. There is a least approximant n su
h that � 6�n �. We
onstru
t an o�ending path of false goals through the tableau within whi
h theapproximant indi
es de
rease whenever UNF is applied (by Proposition 7). Theother rules preserve falsity indi
es. Be
ause the tableau is �nite and su

essfulthis means that the path of false goals must
on
lude with a �nal goal. But thisis impossible. Clearly it is not possible to rea
h a �nal goal of the form � �= � .Moreover it is not possible to rea
h a �nal goal whi
h is a result of extensionsbe
ause of Proposition 10.For the other dire
tion, one just builds the tableau for � �= �. By Propo-sitions 6, 8 and 9, the appli
ations of rules preserve truth. Therefore it is notpossible to rea
h an unsu

essful �nal goal, and by Theorem 2 the tableau for� �= � is �nite, and therefore su

essful. utMore work needs to be done to as
ertain the exa
t
omplexity bound of thede
ision pro
edure.A
knowledgements: Many thanks to Luke Ong for imparting his in
isive un-derstanding of higher-order s
hemes and the safety restri
tion, to Wong Karientofor a
opy of the Maslov paper and to the referees for suggesting improvements.Referen
es1. Aehlig, K., De Miranda, J., and Ong C.-H. L. (2005) Safety is not a restri
tion atlevel 2 for string languages. Le
ture Notes in Computer S
ien
e, 3411, 490-511.2. Aho, A. (1968). Indexed grammars{an extension of
ontext-free grammars. Jour-nal of ACM, 15, 647-671.3. Aho, A. (1969). Nested sta
k automata. Journal of ACM, 16, 383-406.4. Baeten, J., Bergstra, J., and Klop, J. (1993). De
idability of bisimulation equiv-alen
e for pro
esses generating
ontext-free languages. Journal of ACM, 40, 653-682.5. Blumensath, A. (2004). A pumping lemma for higher-order pushdown automata.Preprint.6. Bouajjani, A. and Meyer, A. (2004). Symboli
 rea
hability analysis of higher-order
ontext pro
esses. Le
ture Notes in Computer S
ien
e, 3328, 135-147.7. Burkart, O., Cau
al, D. Moller, F., and Ste�en, B. (2001). Veri�
ation on in�-nite stru
tures. In Handbook of Pro
ess Algebra, ed. Bergstra, J., Ponse, A., andSmolka, S., 545-623, North-Holland.

8. Ca
hat, T. (2003). Higher order pushdown automata, the Cau
al hierar
hy ofgraphs and parity games. Le
ture Notes in Computer S
ien
e, 2719, 556-569.9. Cau
al, D. (2002). On in�nite terms having a de
idable monadi
 theory. Le
tureNotes in Computer S
ien
e, 2420, 165-176.10. Cour
elle, B. (1978). A representation of trees by languages I and II. Theoreti
alComputer S
ien
e, 6, 255-279 and 7, 25-55.11. Damm, W. (1982). The IO- and OI-hierar
hy. Theoreti
al Computer S
ien
e, 25,95-169.12. Damm, W., and Goerdt, A. (1986). An automata-theoreti
al
hara
terization ofthe OI-hierar
hy. Information and Control, 71, 1-32.13. Engelfriet, J. (1991). Iterated sta
k automata and
omplexity
lasses. Informationand Computation, 95, 21-75.14. Fis
her, M. (1968). Grammars with ma
ro-like produ
tions. Pro
s. 9th AnnualIEEE Symposium on Swit
hing and Automata Theory, 131-142.15. Freidman, E. (1976). The in
lusion problem for simple languages. Theoreti
alComputer S
ien
e, 1, 297-316.16. Gilman, R. (1996). A shrinking lemma for indexed languages. Theoreti
al Com-puter S
ien
e, 163, 277-281.17. Jan�
ar, P., and Srba, J. (2006). Unde
idability results for bisimilarity on pre�xrewrite systems. Le
ture Notes in Computer S
ien
e, 3921, 277-291.18. Knapik, T., Niwi�nski, D., and Urzy
zyn, P. (2002). Higher-order pushdown treesare easy. Le
ture Notes in Computer S
ien
e, 2303, 205-222.19. Korenjak, A and Hop
roft, J. (1966). Simple deterministi
 languages. Pro
s. 7thAnnual IEEE Symposium on Swit
hing and Automata Theory, 36-46.20. Maslov, A. (1976). Multilevel sta
k automata. Problems of Information Trans-mission, 12, 38-43.21. Ong, C.-H. L. (2006) On model-
he
king trees generated by higher-order re
ursions
hemes. Preprint.22. Par
hmann, R., Duske, J. and Spe
ht, J. (1980). On deterministi
 indexed lan-guages. Information and Control, 45, 48-67.23. S�enizergues, G. (2001). L(A) = L(B)? de
idability results from
omplete formalsystems. Theoreti
al Computer S
ien
e, 251, 1-166.24. S�enizergues, G. (2002). L(A) = L(B)? a simpli�ed de
idability proof. Theoreti
alComputer S
ien
e, 281, 555-608.25. S�enizergues, G. (2003). The equivalen
e problem for t-turn DPDA is
o-NP. Le
-ture Notes in Computer S
ien
e, 2719, 478-489.26. S�enizergues, G. (2005). The bisimulation problem for equational graphs of �niteout-degree. SIAM Journal of Computing, 34, 1025-1106.27. Stirling, C. (2001). De
idability of DPDA equivalen
e. Theoreti
al Computer S
i-en
e, 255, 1-31.28. Stirling, C. (2002) De
iding DPDA equivalen
e is primitive re
ursive. Le
tureNotes in Computer S
ien
e, 2380, 821-832.29. Vijay-Shanker, K. and Weir, D. (1994). The equivalen
e of four extensions of
ontext-free grammars. Mathemati
al Systems Theory, 27, 511-546.

