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1 Introduction

Higher-order notations for trees have a venerable history from the 1970s and
1980s when schemes (that is, functional programs without interpretations) and
their relationship to formal language theory were first studied. Included are
higher-order recursion schemes and pushdown automata. Automata and lan-
guage theory study finitely presented mechanisms for generating languages. In-
stead of language generators, one can view them as process calculi, propagators
of possibly infinite labelled transition systems. Recently, model-checking tech-
niques have been successfully extended to these higher-order notations in the
deterministic case [18,9,8,21].

A long standing open question is: given two nth-order schemes do they gen-
erate the same tree? Courcelle [10] showed that for n = 1 the problem coin-
cides with the language equivalence problem for deterministic pushdown au-
tomata (DPDA) that was subsequently solved positively by Sénizergues [23].
For n > 1, equivalence of safe nth-order recursion schemes coincides with equiv-
alence between determinisitic nth-order pushdown automata [12,18]. It is not
known whether safety is a genuine restriction on expressive power: see [1].

Second-order pushdown automata involve finite-state control over a stack
of stacks. They have applications in language theory as they characterize the
indexed languages introduced by Aho [2]. Also, they generalize the “mildly”
context-sensitive languages used in computational linguistics [29]. Aho defined
these languages using indexed grammars and also characterized them in terms
of nested stack automata [3]. Their characterization in terms of second-order
pushdown automata is due to Maslov, who also defined a hierarchy of higher-
order indexed languages characterized by higher-order pushdown automata, [20].
A more detailed account is given by Damm and Goerdt [12].

There has been considerable research activity on decision procedures for
bisimulation equivalence between first-order systems, initiated with [4] for normed
context-free grammars and then extended to classes of pushdown automata [26].
Recent results show that bisimulation equivalence is undecidable [17].

Here, we present a decidability result for equivalence of second-order sys-
tems. A configuration of a second-order pushdown automaton is a state and a
stack of stacks. The operations pop stacks and push stacks onto it. We examine



deterministic second-order pushdown automata which generalize DPDA. A con-
figuration of a DPDA is a state and a stack. Simple grammars are an instance
of DPDA when there is a single state and no e-transitions. So a configuration of
a simple grammar is justa stack. Korenjak and Hopcroft showed that language
equivalence is decidable between configurations of simple grammars [19]. Here,
we introduce second-order simple grammars as the subset of second-order deter-
ministic pushdown automata when there is a single state and no e-transitions.
A configuration of such a grammar is, therefore, a stack of stacks. We show that
language equivalence is decidable for a subset of second-order simple grammars.
The proof technique is based on bisimulation equivalence and some combina-
torics about repetitions of stack extensions (loosely based on ideas from [28]).
We view this result as a first step towards understanding the general equivalence
problem for higher-order schemes.

In Section 2, we describe 2nd-order (deterministic) pushdown automata and
in Section 3 we introduce 2nd-order simple grammars and the subset that we
study. Some properties of the grammars are outlined in Section 4. In Sections 5
and 6 we present the equivalence decision procedure, using tableaux.

2 2nd-order pushdown automata

The following four finite sets are ingredients of a 2nd-order pushdown automaton,
a 2PDA: states P, stack symbols S, alphabet A and basic transitions T. A basic
transition is pX —— ¢f where p and ¢ are states in P, X is a stack symbol in S,
a € AU {e} and 6 is an operation belonging to {swap,, push,pop : a € S*}.

A 2-stack is a sequence of non-empty stacks 31 : ... : B, so each 3; € ST.
We use € for the empty stack and capital greek letters I', A, ... to range over
sequences of stacks with A for the empty sequence. An operation 6 is defined on
a 2-stack as follows:

swap, (X : I =af: T
push(g8: I') =3:8:T
pop(8:I) =TI

A configuration of a 2PDA consists of a state p € P and a 2-stack I'. The
transitions of a configuration are defined by the following rule from the basic
transitions T.

PRE If pX -5 ¢f € T then pX3: I -5 (X5 : 1)

A traditional automaton interpretation is that on input a with basic transition
pX - ¢b the configuration pXj3 : I’ in state p with X at the top of the
first stack changes to state ¢ and 8(X 3 : I') replaces X3 : I'. Alternatively,
with respect to a generational or process calculus perspective the configuration
pX B : I' generates, or performs, a and becomes ¢gf(X 3 : I'). In both accounts
e-transitions have a special status. If a = € then the configuration may change



without reading an input or it may become ¢f8(XS : I') silently without per-
forming an observable action. In the following we abbreviate a basic transition
pX = gswap, to pX - qa.

The transition graph G(pI") is generated by deriving all possible transitions
from pI" and every configuration reachable from it using the rule PRE.

Ezxample 1. Consider the following basic transitions.

pZ 5 qZ  qZ 5 qAZ  gA 5 gAA A LN r push

rA -2 re rZ - spop SA - se sZ -5 spop
Part of the transition graph G(pZ) is depicted in Figure 1. O
pZ = qZ 5 qAZ 25 qAAZ =5
b b
rAZ : AZ rAAZ : AAZ
1o b
$Z +— sAZ «—rZ: AZ rAZ: AAZ
le te 1b
sA :

Fig. 1. A 2PDA

A 2PDA is presentable in normal form, up to isomorphism of transition
graphs, where each transition of the form pX —— ga € T obeys the constraint
that the length of «, ||, is at most 2. Enforcement of the normal form is easy
to achieve, by introducing extra stack symbols.

Definition 1. The language of a configuration pA, L(pA), is the set of words
w € A* such that pA = gA for some q.

When recognising any such word the 2-stack is thereby emptied. For instance,
L(pZ) in the case of Example 1 is {a"b™c™ : n > 2} which is a context-sensitive
language. This is called empty stack acceptance. A word w € A* is in L(pA) if
there is a w-path from pA to a terminal state gA for some ¢ in the graph G(pA).
The languages recognized coincide with those recognized if final states were also
included.

Our definition of a 2PDA is based on [18] except that it explicitly extends
a standard PDA (because of swap transitions). It is simpler than Maslov’s,
Damm and Goerdt’s definition [20,12]. In their case, a 2-stack is a sequence
of pairs (X;,a;) where X; € S, with operations pop;, pops, push; (a), pushs(«)
which work as follows: pop1[(X, 1) : I'] = I', pope[(X, Y ) : 'l = (X, ) : T,
pushy (Z1Z2)[(X,a) : I'] = (Z1,0a) : (Za,a) : I' and pushy(Z12:)[(X,a) : I



= (X, Z1Z>a) : I'. There is no loss in expressive power (with respect to lan-
guage equivalence) as these operations can be simulated by families of 2PDA
operations.

The family of languages recognized by 2PDA is the indexed languages, intro-
duced by Aho in 1968 [2, 3], which permit some context-dependency, as Exam-
ple 1 illustrates. Aho offers a grammatical method for generating them as well as
an automata theoretic method (using nested stack automata) which turns out
to be equivalent to the 2PDA, as shown by Maslov [20]. An equivalent, schema-
like, formalism is the OI macro-grammars of Fischer [14]. Aho also shows that
the indexed languages are context-sensitive which is not obvious because re-
peated push transitions can increase the size of a configuration non-linearly.
They form an AFL and are a proper subset of the context-sensitive languages:
{(ab™)™ : n > 0} is not an indexed language via a pumping lemma for them
[16,5]. The subset of linear indexed languages is the mildly context-sensitive
languages generated by tree adjoining grammars [29].

A 2PDA is deterministic if T obeys the following conditions.

— if pX 5 g6 and pX - r) then ¢ =7 and 6 = A
— if pX - ¢f and pX -5 7\ then a = ¢

Example 1 is a determinisitic 2PDA. The equivalence question, whether two
configurations of a determinisitic 2PDA recognise the same language, general-
izes the DPDA equivalence problem, that was solved positively by Sénizergues
[25,23,24,27,28]. A DPDA configuration pa can be coded as a deterministic
2PDA configuration paZ where Z is a new end of stack marker with the extra
transitions ¢Z —— g pop for each state g.

Due to empty stack acceptance, the language recognized by a deterministic
2PDA has the prefix free property: if w € L(pA) then no proper prefix v of w can
belong to L(pA). However, as with DPDA and empty stack acceptance, for any
deterministic indexed language L, when defined in the Maslov style [22] with final
state acceptance, there is a deterministic 2PDA that accepts {w$ : w € L} where
$ is a new alphabet symbol: deterministic 2PDA coincide with deterministic
Maslov pushdown automata with empty stack acceptance. The deterministic
indexed languages are closed under complement (and are therefore a proper
subset of the indexed languages) and include inherently ambiguous context-free
languages such as {a'b’c* :i,5,k > 0andi = jor j =k} [22].

3 Second-order simple grammars

In this section we consider second-order simple grammars, 25Gs. These are de-
terminisitic 2PDAs which have just one state and no e-transitions. We can there-
fore drop the state from transitions and configurations: transitions now have the
form X - 6 and a configuration has the form A. Reachability properties of
their nondeterministic version, at higher-orders, have been examined in [6]. We
conjecture that simple grammars defined from Maslov pushdown automata are
more expressive than 25Gs.



The DPDA correlate of 2SGs are simple grammars. A simple grammar con-
tains basic deterministic transitions X -2 a, a € A, and the language of a
configuration 3, L(j), is the set {w : 3 — €}. Decidability of language equiv-
alence between two configurations of a simple grammar was shown by Korenjak
and Hopcroft [19]. However, language containment is undecidable [15].

It is unclear if there are alternative characterizations of 2SGs in terms of
subsets of schema or macro-grammars. The restriction to a single state suggests
that we should examine their monadic versions. We leave this for further work.
The following example illustrates that there are interesting 2SGs.

Example 2. Consider the following 2SG
A2 AA A—b>push A5 e Z-Spop
Part of the graph G(AZ) is depicted in Figure 2. L(AZ)Na*b*c* is the language

A7 & Az b

late Ta

& AAZ by AAZ o AAzZ B
e le
Z:AAZ < AZ - AAZ s .
la
Fig. 2. A 2SG

{a"bkc(k“)(”“) : n, k > 0} which is not context-free by the pumping lemma for
context-free languages. Therefore, L(AZ) is also not context-free. Consequently,
2SGs are strictly more expressive than simple grammars. Also, they are not
subsumed by pushdown automata. O

Ezample 8. 2SGs even without push transitions can be complex.

X%Syvx x%e v5Hx vSz z5Hu vU-Lpop
A% 0 Ale a4 cS5w W pop

Here, L(XZ) = L(AW : W). The graph G(X Z) involves infinite indegree be-
cause UX"Z -2 A for any n. O

Definition 2. For each stack symbol X, let A(X) be the length of a shortest
word w, if it exists, such that X —= A, e(X) be the length of a shortest word w,
if it exists, such that X — € and P(X) be the length of a shortest word wa, if
it exists, such that X — Za and Z — push € T.



It is easy to compute whether A(X), ¢(X) or P(X) are defined, and what their
values are when defined. First we start by computing the cases of length 1: there
must be basic transitions X — pop, X — € or X — push. To check for
length n, we examine basic transitions X —= W and X — Y Z: if €(X) is not
yet defined, and (W) =n—1or ¢(Y) +¢e(Z) =n —1 then (X) = n; if A(X) is
not yet defined and AW)=n—1or A(Y)=n—1ore(Y)+ A(Z) =n—1 then
A(X) = n; and, similarly, for P(X) when it is currently undefined. The iteration
stops at the first length 2k + 1 such that no A(X), €(X) or P(X) has length
more than k. At this point, any remaining A(X), ¢(X) and P(X) are undefined.
Clearly, no A(X), e(X), P(X) can exceed 2/5/. In the case of Example 2, A(A),
€(Z) and P(Z) are not defined and A(Z), €(A) and P(A) are all 1. In Example 3,
A(X) =4, A(Y) =3 and A(4) = 3.

Definition 3. A 25G is special if for each X, A(X) or P(X) is defined.

The 2SGs in Examples 2 and 3 are special. We now state the main result of the
paper.

Theorem 1. If I, A are configurations of a special 25G then it is decidable
whether L(I") = L(A).

The result strictly generalizes the equivalence problem for simple grammars.
Consider a simple grammar with basic transitions of the form X —— a. We
transform it into a special 2SG. First, we extend the alphabet with two new

symbols §, # and add an end of stack marker Z with basic transition Z LN pop.

For each stack symbol X we also add the transition X #, push. For any two
configurations « and f of the simple grammar, L(a) = L(B) iff L(aZ) = L(8Z)
in the transformed 2SG.

4 Some properties of special 2SGs

We quickly consider why language equivalence is decidable for simple grammars.
A stack symbol X is normed if €(X) is defined. Clearly, L(a) = 0 iff « contains
an unnormed stack symbol. So we can put a simple grammar into normal form
where all stack symbols are normed. With this assumption language equivalence

coincides with bisimulation equivalence because of determinism and normedness.
We write a ~ 3 if L(a) = L(f5).

Proposition 1. ad ~ (6 iff a ~ B iff da ~ §5.

Decidability of equivalence now follows reasonably straightforwardly via decom-
position and substitutivity: for instance, if Xa ~ 36 and a ~ 8’6 then X3’ ~ .
Decomposition can be extended to unique prime decomposition, see [7] for de-
tails.

In the case of 25Gs there are two notions of stack composition: one between
stacks and the other within a stack. Again, we can easily check if a configuration
L(I') = () using the definitions of A(X) and €(X) from the previous section.
Proposition 1 generalizes to composition between stacks for arbitrary 2SGs.



Proposition 2. Assume L(I"), L(X) and L(A) are all nonempty. It follows
that L(I' : A) = L(X : A) off L(I'") = L(X) iff L(A: T') = L(A : X).

Proof. Assume L(I'), L(X), L(A) are nonempty and L(I" : A) = L(X : A). If
w e L(I': A) then w = wywy and wy € L(I') and wy € L(A). Let v be a shortest
word in L(A). If wy ¢ L(X) then there are two cases. First, a proper prefix w;
of wy is in L(X). It follows that wy;v € L(X : A) and wy1v & L(I" : A) which
is a contradiction. Secondly, wijws; € L(X) where we = waiway and way # €.
Therefore, wyv € L(I" : A) and wyv ¢ L(X : A) which again is a contradiction.
Arguments for all the other cases are similar. O

However, there are not the same properties for composition within a stack. It
is possible for L(a) = L(B) and L(ad) # L(B6) and for L(ad) = L(B6) and
L(a) # L(B). A simple case is X — ¢ and X LN pop and Y LN pop.
Although L(X) = L(Y), L(XY) # L(YY) because of the disitinguishing word
ab.

We introduce an extra configuration §§ with L(#) = @. In the following we
always assume that when we write a configuration I # () then L(I") # 0. We
define the operation I" - a as follows for a € A.

Definition 4. If I' - I'" and L(I"") # 0 then T -a = I'" otherwise I' - a = §.
Proposition 3. If X - push € T then (Xa:T')-a) = Xa: Xa:TI.

We extend Definition 4 to words.

Definition 5. I'-e =T and ' -aw = (I" - a) - w.

We now come to a key, perhaps surprizing, property of a special 25G which
is essential to the decidability proof.

Proposition 4. Assume L(Xa: I') = L(Y S : A) for configurations of a special
28G. If X - push € T then Y - push € T and L(Xa) = L(Y ).

Proof. Suppose L(Xa : I') = L(YB : A) and X - push € T. By assumption
L(Xa:T)#0.fY - push ¢ T then Y -5 0 and § = pop or SWap-, .
Consider the case § = pop. Therefore, L(Xa : Xa : I') = L(A). But then
by Proposition 2, L(Xa : Xa : I') = L(Xa : Y : A) = L(A) which is a
contradiction. Consequently, 6 = swap,, and L(Xa : Xa : I') = L(5i : 4)
where 0(Y 3) = 1. Now we repeat the argument for Y; which is the head stack
symbol of ;. We show that Y3 —— push ¢ T. Assume it is. By Proposition 2,
LXa: Xa:Xa:T')=LXa:p :A) =L : f1: A) and so L(Xa)
= L(3). But L(Xa : Xa : I') = L(B, : YB : A) = L(B; : A) which is a
contradiction. Therefore, Y; 25 0, and 6; = pop or swap,,. The argument
above shows that 6; # pop. Therefore, L(Xa : Xa : Xa : I') = L(fy : A)
where B2 = 61(81). Now, we repeat the argument for Y5 which is the head of
By. Again, X —= push € T and by the arguments above Y —— swap,,. After
n steps, we have L((Xa)"t! : ') = L(B, : A). As A(Xa) > 0, it follows that



A(Br) = A(Bn-1) + A(Xa): we now use this property to obtain a contradiction
when the 2SG is special. Let n > 2 x 2/SI. Consider Y,, the head variable of 3,,.
As the 2SG is special, A(Y},) or P(Y,) is defined. Assume the first, and let w be
a shortest word such that Y, — A. It follows that L(((Xa)"t! : I')-w) = L(A)
which is a contradiction. Similarly, if w is a shortest word that Y;, — push
then B, - w = Bns1 : Bpi1. However, A(Bni1) > 2/8! which contradicts that
L((XQ)™ i 1) w) = L(Busr : fay1 : A). o

We introduce non-standard bisimulation approximants.
Definition 6. We define ~,, n > 0, iteratively as follows.

1. T~ Aiff T=0=Aor I #0 and A #£ 0.
2. ANn+1 A and@~n+1@
3. Xa: I ~pp1 YB: A just in case
(a) A(Xa:T)=AYS:A)
(b)) X % push iff Y -2 push, and
(c) for eacha € A, (Xa:T') -an~, (YB:A) a.

Built into this definition is the idea that an immediate bisimulation error occurs
if configurations do not agree on length of their shortest words or if push ac-
tions are not matched. These non-standard approximants will be critical to the
decidability proof later. We write I' ~ A if for all n, I' ~,, A.

Proposition 5. 1. L(I') = L(A) iff ' ~ A.
2 M~y Aand An~, X then I' ~,, 3.
3 T A, Aand A ~, 4y X then I' £, X.

5 Tableaux

The decision procedure for special 25Gs is a tableau proof system, consisting of
proof rules which allow goals to be reduced to subgoals. Goals and subgoals are
all of the form I' = A, “is I' ~ A?”, where I' and A are configurations of a
special 2SG. The tableau proof rules are contained in Figure 3.

The initial tableau proof rule is UNF (unfold). The goal, I' = A reduces to
the subgoals (I" - a) = (A - a) for each a € A. The application of this simple rule
is both “complete” and “sound”. Completeness is the property that if the goal,
I' = A, is true then so are all the subgoals, (I" - a;) = (4 - a;).

Proposition 6. If I' ~ A, then for alla € A, (I"'-a) ~ (A - a).

Soundness is the converse, that if all the subgoals are true then so is the goal
which is equivalent to, if the goal is false, I" £ A, then so is at least one of the
subgoals. However, there is a finer account that uses approximants. We assume
that, at least, I' ~1 A (so push transitions have to be matched).

Proposition 7. If I' ~p11 A and I' £pio A, then (['-a) #pi1 (A-a) for some
a € A.



UNF

r=A
(Fr-a))=(A-a1) ... (I'ar)=(A-ax)

A:{al,...,ak}

SIMP(L) and SIMP(R)

M €(X) undefined Ai.aiw €(X) undefined
aX:I'=A A=aX: T
DEC(L) and DEC(R)
a:I'=p:A c B:A=a:I
a:(B-w)=8 I'=(B -w):A B=a:(B-w) (B-w):A=T

where C is the condition

1. A(a) < A(B) and A # A
2. w is a smallest word such that o —» A

3.(B-w)#0
Fig. 3. Tableau proof rules

The second rules are SIMP (simplification) that reduce goals. If €(X) is not
defined then aXa' can be reduced to aX. The following implies soundness and
completeness of SIMP.

Proposition 8. Ife(X) is undefined then for alln and I' aXo' : I' ~, aX : T

The final rules are DEC for decomposition. We only decompose a : I' = §: A
when A is non-empty. The following capture completeness and soundness.

Proposition 9. Assume A(a) < A(B), w is a smallest word such that o — A

and (B - w) # 0.

1. Ma:I'~B: A thena: (f-w)~Band I' ~ (f-w) : A.

2. Ma:T oy B:Athen a: (B w) ofyn forn>|wl and I' Ay (B-w) : A.
Ezample 4. The following is an application of DEC(R) to a goal whose 2SG is
Example 3.

XXXZ:XZ7Z=AAAW : AW : W
XXXZ=AAAW :UXXXZ UXXXZ:XZ=AW:W

Here, AAAW 2% A and UXXXZ = (XXXZ - ach). O

6 Successful tableaux

In the previous section we presented and justified tableau proof rules. We now
show that these rules lead to an effective decision procedure for checking equiv-
alence of configurations of special 25Gs. A missing ingredient in the tableau



description is when a current goal is final. The tableau procedure starts with an
initial goal, I' = A, “is I' ~ A?”, and one then builds a proof tree by applying
the tableau rules. Goals are thereby reduced to subgoals. Rules are not applied
to final goals.

A 2SG is deterministic, and therefore we would prefer that there is just
one tableau proof tree for any starting goal. To achieve uniqueness of tableau,
we assume a linear ordering on the alphabet A. This ordering is used in an
application of UNF, so the subgoals are ordered relative to this ordering. It is
also used in the DEC rules to define a unique smallest word such that o —— A:
if there is more than one word of the same length with this property, we choose
amongst them the word that is lexicographically least with repect to the ordering
on A. In the case of the SIMP rules we assume that e(a) is defined: we always try
to find the first stack symbol X in the initial stack such that e(X) is undefined.

Next, we assume that the tableau proof rules are applied in the following
order: DEC(L), DEC(R), SIMP(L), SIMP(R), UNF. Given a goal one tries first
to apply DEC(L), and if it is not applicable then one tries DEC(R), and so on.
A tableau proof tree is built breadth first starting with leftmost non-final goals.

Example 5. Here is part of the tableau proof tree for the goal XZ = AW : W
whose 2SG is Example 3.

XZ = AW W
. UNF
YXZZCW:W :
. : UNF
XXZ < AAW W ZIXZ=WW : W
, UNF ‘ SIMP(L)
YXXZ = CAW : W Z=WW:W

UNF ——— SIMP(R)

Here we have missed out subgoals of the form () = (). There is an application of
SIMP(L) to ZXZ = WW : W because €(Z) is not defined. O

To show decidability we intend to show that associated with any starting
goal I' = A is a unique boundedly finite proof tree. However, in Example 5
there appears to be the following potentially infinite branch of goals.

XZ =AW W
YXZ=CW:W
XXZ=AAW : W

YXXZ=CAW : W
XXXZ=AAAW : W

This will be dealt with by the definition of final goal.



Final goals are either unsuccessful or successful. There is just one kind of
unsuccessful goal: I' = A where I' #1 A. For successful final goals, first we
include the identity, I" = I', which is clearly true. However, there is another
kind based on repeating patterns of stack extensions (inspired by the extension
theorem in [28] which was generalized to the subwords lemma in [25]).

We are interested in goals o : I' = 8 or 8 = a : I" where one side consists of a
single stack only: application of the DEC proof rules yield such subgoals. Given
a goal aay : I' = BB, where a and 3 are not ¢, we say that ayiaq : I' = SA 51
is an (y1, A1)-extension of it and (y1, A1) is the extension. We now come to the
key property that will limit the size of a proof tree.

Proposition 10. If a and 8 are not € and

(1) aay : T~y BB and  (5) aay : '~y BB

(2) [e% 551 : I ~n 6)\1[31 and (6) ay1 Qg r ~n 6)\1[32

(3) avayian : I~y BA2 A1 B and  (7) ayavian i I ~p BAaAi B2
(4) avivayiar o I~y BAI XA B

then (8) Qay1Y271Q2 r ~n ﬂ>\1>\2>\1ﬂ2.

Proof. Assume (1) — (7) but (8) is false. So, ay1yeyiae : I' #yn BA1 AL Ba.
Because of (1) — (7), the bisimulation error in (8) cannot be caused by the heads
a and . Therefore, by repeated application of Proposition 7 there is a w such
that one of the following hold. (An easy argument shows that w cannot involve
a push transition.)

A) a-w=A, 3 wis defined and I' %,y (B - w)A1 A2 A1 Ba.
B) a-w=¢, B wis defined and y1y2y100 : I" | (B w)A1 A2 A1 fa.
C) B-w=¢,a wis defined and (a - w)y1y27102 : I #p_jw] AiAaAiPa.

Consider B): the others are similar. Because of (1) — (7) we know that

(11) ag : I ~n—|w| (B-w)h (51) ag: ' ~n—|w (B-w)Ba

(21) yioq : T~ (B w) A1 By (61) v : I' ~p_ | (B w)A1 B2
(31) vomiar 1 I~y ) (B w) A2 M B (T1) yayian : T~y (B w)Aa i Ba
(41) yyayian 2 I vy (B w) X Ao i B

We now consider a - w = ¢, 8- w is defined and yi1y2v102 @ I oy (B -
w)A1 A2\ B2 and (21), (41) and (61). There are two cases depending on whether
(B -w) = €. Assume it is not. The bisimulation error cannot be caused by the
heads 7, and (8 - w). Therefore there is a word w; such that one of the following
hold.

BA) Y1 w1 = /1, ﬂ CWw1 is defined and I" ’76n7\ww1\ (ﬂ . ww1)>\1>\2>\1ﬁg.
BB) 71 -wi =€, f-ww; is defined and yoy1as @ I' o jyuy| (B - wwi)Ai Ao fa.
BC) B wwi =€, 71 -wy is defined and (y1 - wi)yayian 1 I oy jupun | M1 A2 M1 Ba.



In the case of BA) we also know

(211) r ~n—|ww | (6 ’ wwl)Alﬁl
(1) r ~n—|ww:| (B - wwi) A1 Xa A1 By
(611) r ~n—|ww: | (6 ’ ww1)>\162

Thus, we now get a contradiction using these because from Proposition 5

(B wwi) M A2 M B o jwwy| (B wwi) A A1 B2
(B - ww1 )M B1 ~p—jwun| (B wwi) B2

In the case of BB) we also know that

(212) a1 1 I ~pp gy | (B wwi) A By
(412) yoyrar : T~y (B wwi) A1 Ao By
(612) ag i I' ~py_jyuy | (B - wwr) A fa

Now via Proposition 5, we can use (71), (11), (31) and (51) and derive a contra-
diction from the following.

“W) A2 B2 | (B wwi) A2 Bo
gﬁl ~n—|ww | (6 ' ww1)>\161
)

g

- w
- w

A2 A1 81~ | (B - wwi) A A2 A By
62 ~n—|ww | (6 : wwl)/\162

All remaining cases are similar. O

T

We use Proposition 10 to identify when a goal is final via extensions.

Definition 7. Assume a family of not necessarily distinct goals

9(1) aay : I' = B h(1) aas : T = 33

9(2) amay : I'= BBy h(2) amiay : I' = A Bs

9(3) aveyiar : I' = BAaA By h(3) avayias : I' = BAaA Bo
g(4) amypyion 1 T'= Mo diBr h(4) avivenias i I' = BAi Aol fa

(or their symmetric versions) in a branch of a proof tree involving extensions
(71, A1), (2, A2). If h(4) is below all the g(i)’s and the other h(i)’s, is distinct
from g(4) and h(3) and there is an application of UNF between h(3) and h(4)
then h(4) is a successtul final goal.

Example 6. Consider the following goals in the initial part of the potentially
infinite branch of Example 5.

(1) XZ =AW W

(2)=h(l) XXZ=AAW :W
g3)=h(2) XXXZ=AAAW W

(4)=h(3) XXXXZ=AAAAW : W

(4) XXXXXZ=AAAAAW : W



Here § = X and @ = Y and the extensions are (X, A). There is at least one
application of UNF between h(3) and h(4) in the proof tree. Consequently, the
branch stops at the final goal X XXX XZ = AAAAAW - W. O

Ezample 7. If there is a repeat goal in the proof tree

(9)a:T'=p

(W) a:T'=p

with an application of UNF inbetween, then h is final. Here g(1) — g(4) and
h(1) — h(3) is the goal g with extension (e,¢) and ay = ay = 1 = €. O

Definition 8. A successful tableau for I' = A is a finite proof tree with root
I' = A and all of whose leaves are successful final goals. Otherwise a tableau is
unsuccessful: that is, if it is not a finite proof tree or if it contains an unsuc-
cesssful final goal.

We now come to the main results, which show decidability of language equiv-
alence for special 25G. The decision procedure is to build the tableau with root
I' = A breadth first starting with leftmost non-final goals. If an unsuccessful final
goal is met then the procedure terminates with a finite unsuccessful tableau.

Theorem 2. There is a unique finite tableau for goal I' = A.

Proof. Uniqueness is clear because rules are applied in a particular order. The
important part of the proof is to show finiteness. Initially, we have I' = A. The
DEC rules are applied first in the order DEC(L) then DEC(R). Clearly, in the
application of a DEC rule if w is the smallest word such that & — A then there
is no push transition in this sequence of transitions. If (8 - w) involves a push
transition then the tableau construction will terminate with an unsuccesful final
goal. Assume the rule is DEC(L), so a : (8- w) = (. Consequently, w = w;aws
and a-w; = a; and B-w; = By and By-a = B : B1. The subgoal oy : (B-w) = B4
is, therefore, an unsuccessful final goal. There can not be an infinite sequence of
consecutive applications of DEC as each application decreases the the number
of stacks in both subgoals. Consequently, non-final subgoals to which DEC and
SIMP do not apply have the form Xa : I' = 8 or 8 = Xa : I'. First, consider
the case of an application of UNF where X —= push. If I # A then the goal
(Xa:I')-a = (B-a) is an unsuccessful final goal (and similarly for its symmetric
version). If ' = A, then Xa-a=f-ais Xa: Xa =3 : 8 and by DEC(L) this
reduces to the two occurrences of successful final goals Xa = 8 by Example 7.
Consequently, without loss of generality, assume there is an infinite subbranch
of goals of the form «; : I' = 3;, i > 0 involving applications of UNF and SIMP
only. We show that there is a successful final goal. The size of the goals (that
is the sum, |a;| 4+ |3;]) must be eventually increasing, otherwise a repeat goal



occurs ensuring a successful final goal. Now we examine the first “low point” with
respect to the left stack a;: a; = Xa is a low point if for all j > i, a; = a;.a.
With respect to the left side we will find infinitely many repeating patterns of
the form Zao', Zal o/, Zaha! o' and Za)aba)a' where o or o)) can be e. Now we
consider the right hand stacks with respect to these repeating patterns. Clearly,
we will also eventually find repeating patterns too, and consequently a successful

final goal. O
Theorem 3. The tableau for I' = A is successful iff I' ~ A.

Proof. Suppose there is a successful tableau for I' = A but I # A. By Theorem 2
this tableau is finite. There is a least approximant n such that I" %, A. We
construct an offending path of false goals through the tableau within which the
approximant indices decrease whenever UNF is applied (by Proposition 7). The
other rules preserve falsity indices. Because the tableau is finite and successful
this means that the path of false goals must conclude with a final goal. But this
is impossible. Clearly it is not possible to reach a final goal of the form I = I".
Moreover it is not possible to reach a final goal which is a result of extensions
because of Proposition 10.

For the other direction, one just builds the tableau for I' = A. By Propo-
sitions 6, 8 and 9, the applications of rules preserve truth. Therefore it is not
possible to reach an unsuccessful final goal, and by Theorem 2 the tableau for
I' = A is finite, and therefore successful. O

More work needs to be done to ascertain the exact complexity bound of the
decision procedure.

Acknowledgements: Many thanks to Luke Ong for imparting his incisive un-
derstanding of higher-order schemes and the safety restriction, to Wong Kariento
for a copy of the Maslov paper and to the referees for suggesting improvements.
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