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Model-Checking Games for Typed λ-Calculi

Colin Stirling1

School of Informatics
Edinburgh University

Edinburgh, UK

Abstract

We consider the transfer of verification techniques to structures with binding.

Keywords: games, typed lambda calculus, higher-order matching, higher-order schemes.

1 Introduction

A notable success in Computer Science has been the development of techniques

for the computer-assisted verification of finite and infinite-state systems. These

methods include model checking and equivalence checking. A general research goal

is to transfer them to classes of finite and infinite-state systems with binding. In this

paper we examine two problems involving typed λ-calculi, higher-order matching

and higher-order program schemes.

The basic idea for understanding both these problems is to view typed λ-terms as

models with binding, akin to transition graphs, and to understand their dynamical

behaviour (β-reduction) by playing games on them without changing them using

substitution. In the case of matching we assume we are given a potential solution

term t. The model-checking game for t decides whether it is a solution. To transform

this into a decision procedure for matching, one needs to find play unformities that

imply the small model property: if a problem has a solution then it has a small

solution [26]. Here, we present the proof for the third-order case, as the small

model property follows immediately from the tree-model property that every play

descends a branch of a solution term. In the case of a scheme, we adopt Ong’s

presentation as an infinite term (that can be wrapped into a finite graph) [17]. We
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define a scheme model checking game similar in spirit to game semantics as defined

by Ong [17] but based on the ideas introduced for defining matching games.

In Section 2 we introduce higher-order matching and its equivalent problem,

dual interpolation. The matching game is defined in Section 3 and in Section 4 we

show decidability for the 3rd-order case. Higher-order schemes are introduced in

Section 5 and their games in Section 6.

2 Matching and dual interpolation

We consider simple types that are generated from a single base type 0 using the

binary → operator. A type is 0 or A → B where A and B are types. If A �= 0 then

it has the form A1 → . . . → An → 0, assuming → associates to the right, which is

here written (A1, . . . , An,0) following Ong [17]. A standard definition of order is:

the order of 0 is 1 and the order of (A1, . . . , An,0) is k +1 where k is the maximum

of the orders of the Ais.

Terms of the simply typed λ-calculus are built from a countable set of typed

variables x, y, . . . and typed constants a, f, . . . (each variable and constant has a

unique type). The set of simply typed terms is the smallest set T such that

(i) if x (f) has type A then x : A ∈ T (f : A ∈ T ),

(ii) if t : B ∈ T and x : A ∈ T then λx.t : A → B ∈ T ,

(iii) if t : A → B ∈ T and u : A ∈ T then tu : B ∈ T .

The order of a typed term is the order of its type. A typed term is closed if it does

not contain free variables. Throughout, we assume the definitions of α-equivalence,

β and η-reduction.

Definition 2.1 A matching problem is an equation v = u where v, u : 0 and u

is closed. The order of the problem is the maximum of the orders of the free

variables x1, . . . , xn in v. A solution is a sequence of terms t1, . . . , tn such that

v{t1/x1, . . . , tn/xn} =β η u.

The decision question is: given a matching problem, does it have a solution? Match-

ing is a particular instance of higher-order unification when the term u is closed: can

v be pattern matched to u? Although higher-order unification is undecidable (even

if free variables are only second-order), higher-order matching was conjectured to

be decidable by Huet [12]. If matching is decidable then it is known to have non-

elementary complexity. Decidability has been proved for the general problem up

to order 4 using observational equivalence of λ-terms and for various special cases

[18,19]. Comon and Jurski define tree automata that characterize all solutions to a

4th-order problem, thereby, showing that they form a regular set [6]. Loader showed

that matching is undecidable for the variant definition when β-equality is the same

normal form by encoding λ-definability as matching [15], also see [13].

In [26], we describe a procedure that shows that matching is decidable that

uses finite model checking games on λ-terms. In this paper, we describe the model

checking game and how it leads to decidability for the third-order case, as a prelude
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to examining (infinite) model checking games for higher-order schemes.

We assume that all terms in normal form are in η-long form,

(i) if t : 0 then it is u : 0 where u is a constant or a variable, or u t1 . . . tk where

u : (B1, . . . , Bk,0) is a constant or a variable and each ti : Bi is in η-long form,

(ii) if t : (A1, . . . , An,0) then t is λy1 . . . yn.t′ where each yi : Ai and t′ : 0 is in

η-long form.

Throughout we use λz1 . . . zn for λz1 . . . λzn. A term is well-named if each occur-

rence of a variable y within a λ-abstraction is unique.

Assume u : 0 and each vi : Ai, 1 ≤ i ≤ n, is a closed term in normal form

and x : (A1, . . . , An,0). An interpolation equation has the form xv1 . . . vn = u

and an interpolation disequation is xv1 . . . vn �= u. A finite family of interpolation

equations xvi
1 . . . vi

n = ui, i : 1 ≤ i ≤ m, with the same free variable x is an

interpolation problem P . A finite family of interpolation equations and disequations,

xvi
1 . . . vi

n ≈i ui, i : 1 ≤ i ≤ m and each ≈i ∈ {=, �=}, with the same free variable

x is a dual interpolation problem P . The type of problem P is that of x and the

order of P is the order of x. A solution of P of type A is a closed term t : A in

normal form such that for each equation tvi
1 . . . vi

n =β ui and for each disequation

tvi
1 . . . vi

n �=β ui. We write t |= P if t is a solution of P .

Schubert shows that a matching problem of order n reduces to an interpolation

problem of order at most n+2 and Padovani shows it reduces to a dual interpolation

problem of order n [20,19]. Because of normal forms, β-equality and β η-equality

coincide. Consequently, the higher-order matching problem reduces to the following

decision question: given a (dual) interpolation problem P , is there a term t |= P?

Example 2.2 The problem xλy1y2.y1λy3.fy3y3 = faa from [6] has order 3 with

x : ((0,0,0), (0,0),0) and each yi : 0. �

Example 2.3 The problem xλz.z = f(λx1x2x3.x1(x3))a also has order 3 where x

has type ((0,0),0). This example illustrates that the closed term u : 0 may contain

bound variables: here f : (((0,0),0,0,0),0,0). �

3 Matching games

We use a game-theoretic characterization of dual interpolation inspired by model

checking games (such as in [23]) where a model, a transition graph, is traversed

relative to a property and players make choices at appropriate positions. Similarly,

in the following game the model is a putative solution term t that is traversed

relative to the dual interpolation problem P . The central motivation is to model

the dynamics, β-reduction, without changing t by substituting into it. Because of

binding play may jump around t.

A potential solution term t for P has the right type, is in normal form, is well-

named (with variables that are disjoint from variables in P ). Term t is represented

as a tree, tree(t). If t is y : 0 or a : 0 then tree(t) is the single node labelled with t.

In the case of uv1 . . . vk when u is a variable or a constant, we assume that a dummy
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(1)λy

��
(2)y

��
(3)λ

��
(4)y

��
(5)λ

��
(6)f
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��

��
�

(7)λxz1z2

��

(11)λ

��
(8)x

��

(12)a

(9)λ

��
(10)z2

Fig. 1. A solution term

λ with the empty sequence of variables is placed before any subterm vi : 0 in its

tree representation. With this understanding, if t is uv1 . . . vk then tree(t) consists

of the root node labelled u and k-successor nodes labelled with tree(vi). We use the

notation u ↓i t′ to represent that tree t′ is the ith successor of the node u. If t is

λy.v, where y is possibly empty, then tree(t) consists of the root node labelled λy

and a single successor node tree(v), λy ↓1 tree(v).

In the following we use t to be the λ-term t, its λ-tree or the label (a constant,

variable or λy) at its root node.

Example 3.1 A solution term t for the problem of Example 2.3 is

λy.y(y(f(λxz1z2.x(z2)) a)). The tree for t (without indices on the edges) is in Fig-

ure 1. For instance, in this tree (6) ↓2 (11). There are various nodes in the tree

with dummy λs such as (5) and (9). �

We assume that each node of a tree t is uniquely identifiable: for instance, in

Example 3.1 we labelled each node with a distinct natural number to distinguish

different occurrences of z and λ.

Innocent game semantics following Ong in [17] provides a possible game-theoretic

foundation. Given a potential solution term t and a (dis)equation xvi
1 . . . vi

n ≈i ui

there is the game board in Figure 2. Player Opponent chooses a branch of ui.
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Fig. 2. Illustrating game semantics

Then, there is a finite play that starts at the root of t and may repeatedly jump in

and out of t and in and out of the vi
j ’s. At a constant a : 0 play ends. At other

constants, player Proponent tries to match Opponent’s choice of branch. Proponent

wins, when the play finishes, if the sequence of constants encountered matches the

branch chosen by Opponent. Play, for example, may reach y in t and then jump

to λz in vi
j, as it is the subtree at λz that is applied to λy, and then when at

z in vi
j play may return to t to an immediate successor of y. Game semantics

models β-reduction on the fixed structure of Figure 2 without changing it using

substitution. This is the rationale for the tree-checking game. However, it starts

from the assumption that only t is the common structure for the problem P . So,

play will always be in t. Jumping in and out of the vi
j ’s is coded using states, as play

traverses t. Moreover, the game avoids the justification pointers of game semantics

by appealing to iteratively defined look-up tables.

The tree-checking game G(t, P ) is played by one participant, player ∀, the refuter

who attempts to show that t is not a solution of P . It appeals to a finite set of states

involving left terms, subterms of the vi
j ’s, and right terms, closed subterms of the

ui’s, of the matching (dis)equations in P (both modulo substitution of constants for

bound variables that are directly below a constant f , as we shall see). There are

three kinds of state: argument, value and final states. An argument state has the

form q[(l1, . . . , lk), r] where each lj is a left term (and k can be 0) and r is a right

term. Such a state will occur at a node labelled λz1 . . . zk in t where each lj has the

same type as zj : (l1, . . . , lk) are the subterms applied to λz1 . . . zk. A value state

has the form q[l, r] where l is a left term and r a right term. This state is associated

with a node labelled with a variable y in t where y and l share the same type: l is

the subterm of some vi
j that play at y would jump to in game semantics. A final

state is either q[∀ ] or q[∃ ].
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A. tm = λy1 . . . yj, tm ↓1 t′ and qm = q[(l1, . . . , lj), r].

So, tm+1 = t′, θm+1 = θm{l1ηm/y1, . . . , ljηm/yj} and qm+1, ηm+1 are defined

by cases on tm+1.

1. a : 0. So, ηm+1 = ηm. If r = a then qm+1 = q[∃ ] else qm+1 = q[∀ ].

2. f : (B1, . . . , Bk,0). So, ηm+1 = ηm. If r = fs1 . . . sk) then qm+1 = qm else

qm+1 = q[∀ ].

3. y : B. If θm+1(y) = lηi, then ηm+1 = ηi and qm+1 = q[l, r].

B. tm = f : (B1, . . . , Bk,0), tm ↓i t′i and qm = q[(l1, . . . , lj), fs1 . . . sk].

So, θm+1 = θm, ηm+1 = ηm and ∀ chooses a direction d : 1 ≤ d ≤ k.

1. tm+1 = t′d. If sd : 0, then qm+1 = q[( ), sd]. If sd is λx1 . . . xn.s then qm+1

= q[(c1, . . . , cn), s{c1/x1, . . . , cn/xn}] where the ci’s are new constants and

each ci has the same type as xi.

C. tm = y and qm = q[l, r].

If l = λz1 . . . zj .w and tm ↓i t′i then ηm+1 = ηm{t′1θm/z1, . . . , t
′
jθm/zj} else

ηm+1 = ηm. Elements tm+1, qm+1 and θm+1 are by cases on l.

1. a : 0 or λz.a. So, tm+1 = tm and θm+1 = θm. If r = a then qm+1 = q[∃ ]

else qm+1 = q[∀ ].

2. c : (B1, . . . , Bk,0). So, θm+1 = θm. If r �= cs1 . . . sk then tm+1 = tm and

qm+1 = q[∀ ]. Otherwise, ∀ chooses a direction d : 1 ≤ d ≤ k and t′m+1 = t′

where t′m ↓d t′. If sd : 0 then qm+1 = q[( ), sd]. If sd is λx1 . . . xn.s then

qm+1 = q[(c1, . . . , cn), s{c1/x1, . . . , cn/xn}] where the ci’s are new constants

and each ci has the same type as xi.

3. fw1 . . . wk or λz.fw1 . . . wk. So, tm+1 = tm and θm+1 = θm. If r �=
fs1 . . . sk then qm+1 = q[∀ ]. Otherwise, ∀ chooses a direction d : 1 ≤ d ≤ k.

If sd : 0 then qm+1 = q[wd, sd]. If sd = λx1 . . . xn.s and wd = λy1 . . . yn.w

then qm+1 = q[w{c1/y1, . . . , cn/yn}, s{c1/x1, . . . , cn/xn}] where the ci’s are

new constants and each ci has the same type as xi and yi.

4. xl1 . . . lk or λz.xl1 . . . lk. If ηm+1(x) = t′θi then tm+1 = t′, θm+1 = θi and

qm+1 = q[(l1, . . . , lk), r].

Fig. 3. Game moves

As play proceeds in t, there are two kinds of free variable: those in t, such as y in

Figure 2, and those in the left terms of states, such as z in Figure 2. Free variables

in t are associated with left terms and free variables in states are associated with

nodes of t. So, the game appeals to a sequence of supplementary look-up tables

θk and ηk, k ≥ 1: θk is a partial map from variables in t to pairs lηj where l is a

left term and j < k, and ηk is a partial map from free variables in subterms of vi
j′

to pairs t′θj where t′ is a node of the tree t and j < k. A variable y in t may be

associated with a left subterm l which contains free variables: hence, the need for

θk(y) to be a pair lηj as ηj records the values of the free variables in l and j < k.

Similarly, a variable in a left subterm may be associated with a subtree of t which

contains free variables. Initially, at the beginning of play when there are no free

variables, θ1 and η1 are both empty.
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(1) q[(λz.z), u] θ1 η1

(2) q[λz.z, u] θ2η2 θ2 = θ1{(λz.z)η1/y} η2 = η1 A3

(3) q[( ), u] θ3η3 θ3 = θ2 η3 = η2{(3)θ2/z} C4

(4) q[λz.z, u] θ4η4 θ4 = θ3 η4 = η1 A3

(5) q[( ), u] θ5 η5 θ5 = θ4 η5 = η4{(5)θ4/z} C4

(6) q[( ), u] θ6 η6 θ6 = θ5 η6 = η5 A2

Fig. 4. Initial moves

A play of G(t, P ) is a sequence of positions t1q1θ1η1, . . . , tnqnθnηn where each ti
is (the label of) a node of t, t1 = λy is the root node of t, each qi is a state and

qn is a final state. A node t′ of the tree t may repeatedly occur in a play. The

initial state is decided as follows: ∀ chooses a (dis)equation x(vi
1, . . . , v

i
n) ≈i ui from

P and q1 = q[(vi
1, . . . , v

i
n), ui]. This is the same as an initial position in the game

semantics, except the terms vi
j and ui are now part of the state (and the choice of

branch in ui takes place as play proceeds).

If the current position is tmqmθmηm and qm is not a final state, then the next

position tm+1qm+1θm+1ηm+1 is determined by a unique move in Figure 3. Moves

are divided into three groups that depend on tm. Group A covers the case when

it is a λy, group B when it is a constant f (whose type is not 0) and group C

when it is a variable y. We assume standard updating notation for θm+1 and ηm+1:

β{α1/y1, . . . , αm/ym} is the partial function similar to β except that β(yi) = αi. In

the case of rules B1, C2 and C3 we assume that the constants ci are new: their role

is to replace bound variables directly beneath a constant f . These are also the only

rules where ∀ can exercise choice, by carving out a branch. The look-up tables are

used in rules A3 and C4 to interpret the two kinds of free variables. If tm is a λ

node, tm ↓1 tm+1 and tm+1 is the variable y, then ηm+1 and qm+1 are determined by

the entry for y in θm+1: if it is lηi, then l is the left element of qm+1 and ηm+1 = ηi.

In C4, if tm = y, qm = q[l, r] and l = x(l1, . . . , lk) or λz.x(l1, . . . , lk), then θm+1 and

tm+1 are determined by the entry for x in the table ηm+1: if it is t′θi then tm+1 = t′

and θm+1 = θi. It is this rule that allows play to jump elsewhere in the term tree

(always to a node labelled with a λ). In contrast, for A1-A3, B1 and C2 (unless

play finishes) control passes down the term tree while it remains stationary in the

case of C1 and C3.

A play of G(t, P ) finishes with a final state q[∀ ] or q[∃ ]. Player ∀ wins the play

if the final state is q[∀ ] and she loses it if the final state is q[∃ ].

Example 3.2 Let P be the problem of Example 2.3 and let t be the term tree

of Figure 1. G(t, p) consists of two plays that descend t. Both plays start as in

Figure 4 where we have supplied which move is applied to produce the next position.

The initial state is an argument state q[(λz.z), u] and control is at node (1). Play

descends from node (1) to (2) calling the value λz.z by A3. Next, by C4, because

z is the head variable in the body of λz.z, has no arguments and is associated with

node (3), the next state is the argument state q[( ), u] and control is at (3). Play

descends from (3) to (4) calling the value λz.z by A3. Again by C4, z is the head

variable in the body of λz.z, has no arguments and is now associated with (5), the

C. Stirling / Electronic Notes in Theoretical Computer Science 172 (2007) 589–609 595



next state is the argument state q[( ), u] and control is at (5). A2 is then applied

(because the right term u in the state has f as head constant) and control passes

from (5) to (6). Move B1 is now applied and there is a ∀ choice as to which branch

of u to take. If direction 1 is chosen then play continues as follows.

(7) q[(c1, c2, c3), c1(c3)] θ7 η7 θ7 = θ6 η7 = η6 B1

(8) q[c1, c1(c3)] θ8 η8 θ8 = θ7{c1η7/x, c3η7/z2} η8 = η7 A3

(9) q[( ), c3] θ9 η9 θ9 = θ8 η9 = η8 C2

(10) q[c3, c3] θ10 η10 θ10 = θ9 η10 = η7 A3

(10) q[ ∃ ] θ11 η11 θ11 = θ10 η11 = η10 C1

New constants are introduced for replacing x1, x2, x3 in the body of u to give the

right term c1(c3) and as arguments (c1, c2, c3) for the variables x, z1, z2 bound at

(7). At (8) the value c1 is called and by C2, control proceeds to (9) where the right

term is reduced to c3. Finally, at (10), the value c3 is called, and by C1, ∀ loses the

play. She also loses if direction 2 is chosen. �

Example 3.3 A solution to Example 2.2, x v1v2 = faa, is depicted in Figure 5

where v1 = λy1y2.y1 and v2 = λy3.fy3y3. The moves are also shown. In fact there

are two plays here: at position 4 there is a ∀-choice: however, both choices lead to

the same position 5. �

If P is an interpolation problem then ∀ loses the game G(t, P ) if she loses every

play: for each equation she loses every play whose initial state is from it. When P is

a dual interpolation problem, ∀ loses the game G(t, P ) if for each equation she loses

every play whose intial state is from it and if for each disequation she wins at least

one play whose initial state is from it. The game characterizes dual interpolation

and is proved in [25].

Proposition 3.4 ∀ loses G(t, P ) if, and only if, t |= P .

The number of different plays in G(t, P ) is bounded by the sum of the number

of branches in the right terms ui of P . We let π range over subplays that are

consecutive subsequences of positions of any play of G(t, P ).

Definition 3.5 The length of π, |π|, is the number of positions in π. The ith

position of π, for 1 ≤ i ≤ |π|, is π(i) and π(i, j), i ≤ j, is the interval π(i), . . . , π(j).

For ease of notation, we write t ∈ π(i), q ∈ π(i), θ ∈ π(i) and η ∈ π(i) if π(i) = tqθη

and t �∈ π(i) means that π(i) = t′qθη and t �= t′. If q = q[(l1, . . . , lk), r] or q[l, r]

then its right term is r.

Definition 3.6 A subplay π is ri, right term invariant, if q ∈ π(1) and q′ ∈ π(|π|)
share the same right term r. It is nri if it is not ri and q′ ∈ π(|π|) is not final.

Definition 3.7 If π ∈ G(t, P ) and π(i)’s look-up table is called when move A3 or

C4 produces π(j), j > i, then position π(j) is a child of position π(i). If π(i + 1) is

the result of move B1 or C2, then π(i + 1) is a child of π(i).

Fact 3.8 If π ∈ G(t, P ), j > 1, π(j) is not a final position and λy or y ∈ π(j),

then there is a unique π(i), i < j, such that π(j) is a child of π(i).
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(1) q[(v1, v2), faa] θ1 η1

(2) q[v1, faa] θ2 = θ1{v1η1/x1, v2η1/x2} η2 = η1 A3

(3) q[( ), faa] θ3 = θ2 η3 = η2{(3)θ2/y1, (15)θ2/y2} C4

(4) q[v2, faa] θ4 = θ3 η4 = η1 A3

(4) q[y3, a] θ5 = θ4 η5 = η4{(5)θ4/y3} C3

(5) q[( ), a] θ6 = θ4 η6 = η5 C4

(6) q[v1, a] θ7 = θ6 η7 = η1 A3

(7) q[( ), a] θ8 = θ7 η8 = η7{(7)θ7/y1, (13)θ7/y2} C4

(8) q[v1, a] θ9 = θ8 η9 = η1 A3

(9) q[( ), a] θ10 = θ9 η10 = η9{(9)θ9/y1, (11)θ9/y2} C4

(10) q[ ∃ ] θ11 = θ10 η11 = η10 A1

Fig. 5. Plays of a solution term to Example 2.2

Definition 3.9 A look-up table β′ extends β if for all x ∈ dom(β), β′(x) = β(x).

Fact 3.10 If π(j) is a child of π(i) then θj ∈ π(j) extends θi ∈ π(i) and ηj ∈ π(j)

extends ηi ∈ π(i).

4 Deciding third-order matching

We describe how the game-theoretic characterization of matching, Proposition 3.4,

underpins decidability of third-order matching. The idea is to show the small model

property : if t0 |= P then there is a small term t′ |= P . First, we relate the static
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structure of a solution tree t0 with the dynamics of playing.

Definition 4.1 Assume B = (B1, . . . , Bk,0).

(i) λ is an atomic leaf of type 0.

(ii) If xj : Bj , 1 ≤ j ≤ k, then λx1 . . . xk is an atomic leaf of type B.

(iii) If u : 0 is a constant or variable then u is a simple tile.

(iv) If u : B is a constant or a variable and tj : Bj, 1 ≤ j ≤ k, are atomic leaves

then u(t1, . . . , tk) is a simple tile.

The term tree t0 without its very top λy consists of simple tile occurrences. In

Figure 5, nodes (2),(3) and (15) form the simple tile x1(λ, λ) with atomic leaves λ

and λ, (8), (9) and (11) form x1(λ, λ). Nodes such as (10) and (12) are also simple

tiles without atomic leaves. The node (2) by itself or (2) with (3) are not simple

tiles.

Throughout, our use of tile in t0 means “tile occurrence” in t0. We write

t(λx1, . . . , λxk) if t is a simple tile with atomic leaves λx1, . . . , λxk.

Definition 4.2 Assume t and t′ are simple tiles.

(i) t′ is j-below t(λx1, . . . , λxk) in t0 if there is a branch in t0 from λxj to t′.

(ii) t′ is an immediate j-dependent of tile t in t0 if t′ is j-below t and the head

variable of t′ is bound by a λy in t.

(iii) t′ is a j-dependent of t if it is an immediate j-dependent of t or there is a t′′

that is an immediate j-dependent of t and t′ is a j′-dependent of t′′ for some

j′.

(iv) t′ is a dependent of t if it is a j-dependent of t for some j.

In Figure 1, the tile x(λ) rooted at (8) is 1-below f(λxz1z2, λ) rooted at (6) and is,

therefore, also an immediate 1-dependent of it

Definition 4.3 Assume t = t(λx1, . . . , λxk) is a simple tile in t0.

(i) t is a top tile in t0 if its free variable y is bound by the initial lambda λy of t0.

(ii) t is j-end in t0, if every free variable below λxj in t0 is bound above t. It is an

end tile in t0 if it is j-end for all j : 1 ≤ j ≤ k.

(iii) t is a constant tile in t0 if its head is a constant or it is a dependent of a

constant tile.

The tiles x1(λ, λ) rooted at (2), (6) and (8) are top and end tiles in Figure 5. Tiles

f(λxz1z2, λ) and x(λ) in Figure 1 are constant tiles.

Tiles can also be categorized in terms of their dynamic properties by appealing

to subplays of G(t0, P ).

Definition 4.4 A subplay π is a play on the simple tile u(λx1, . . . , λxk) in t0 if

u ∈ π(1), λxi ∈ π(|π|) for some i and π(|π|) is a child of π(1). It is a j-play if

λxj ∈ π(|π|).

C. Stirling / Electronic Notes in Theoretical Computer Science 172 (2007) 589–609598



A play on a simple constant tile u(λx1, . . . , λxk) is a pair of positions π(i, i + 1)

with u ∈ π(i) and λxj ∈ π(i + 1) for some j (by moves B1 or C2 of Figure 3). If π

is the play in Example 3.2, then π(6, 7) is a 1-play on f(λxz1z2, λ) of Figure 1.

Fact 4.5 If π is a play on a simple constant tile then |π| = 2.

In the general higher-order matching case, a play π on a simple non-constant

tile y(λx1, . . . , λxk) in t0 can be of arbitrary length. It starts at y and finishes at

a leaf λxj. In between, flow of control can be almost anywhere in t0 (including y).

However, because of paucity of binding, play is very restricted in the third-order

case. In a play π ∈ G(t0, P ), it is not possible for there to be more than one subplay

on a simple tile of t0: in [26], it is shown that if π(i,m) and π(i, n), n > m, are

plays on the simple tile y(λx1, . . . , λxk) and λxj ∈ π(m) then there is a position

π(m′), m′ < n, that is a child of π(m). Therefore, the following is an immediate

corollary because a top tile in a third-order term tree has no dependent tiles.

Proposition 4.6 If π ∈ G(t0, P ), P is third-order and t is a simple tile in t0 then

there is at most one subplay on t within π.

Assume P is a 3rd-order problem and t0 |= P . If we inspect t0 top-down, starting

beneath the initial λ, then it is a tree of simple tiles: each is a constant or a top tile

that is also an end tile. The tree in Figure 1 consists of two initial top tiles y(λ)

that are also end tiles and the constant tiles f(λxz1z2, λ), x(λ), z2 and a. Assume

that Π = {π1, . . . , πp} are the plays of G(t0, P ). We define a partition of each π ∈ Π

in stages. At each stage n we examine a simple tile tn in t0 and a position π(in)

whose control is at the head of tn. We formalize that the subplay π(in, jn) is a play

on tn or jn = |π|. With each π ∈ Π we associate a unique colour c(π).

For stage 1, we identify the initial simple tile t1 = u(λx1, . . . , λxk) in t0 which

is a constant or top tile (and possibly k = 0). We examine the play on t1, if there

is one, consisting of moves π(i1, j1) where i1 = 2. If there is no play we let j1 = |π|,
so q ∈ π(j1) is final, and for all i : i1 ≤ i ≤ j1 it follows that u ∈ π(i): so, control

never reaches beyond this initial tile. Tile t1 is then final for π and we terminate at

this stage. Otherwise, the play on t1 ends at one of its atomic leaves λxj and t2 is

the simple tile directly below λxj in t0 and i2 = j1 + 1. If the play π(i1, j1) on t1 is

nri then t1 is coloured c(π). At stage n, for any subsequent simple tile tn we assume

that the play π(in, jn) is the play on tn, if there is one. If there is not a play then

jn = |π| and tn is final for π. If π(in, jn) is an nri play on tn then tn is coloured

c(π). In this way, the partition of π descends a branch of t0 until it reaches a final

tile.

Example 4.7 For the tree of Figure 1 and the play π of Example 3.2 there is the

following partition of π.

y λ y λ f λxz1z2 x λ z2

π(2, 3) π(4, 5) π(6, 7) π(8, 9) π(10, 10)

Tiles f(λxz1z2, λ) and x(λ) are coloured c(π) and z2 is final for π. For the other
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play π′ in this example, there is a similar partition.

y λ y λ f λ a

π′(2, 3) π′(4, 5) π′(6, 7) π′(8, 8)

where only f(λxz1z2, λ) is coloured c(π′) and the tile a is final for π′. �

Consider partitioning with respect to all plays π ∈ Π. We slightly abuse notation:

if π and π′ are two plays we let π(in, jn), π′(in, jn) be subplays at stage n of their

partition even when these intervals have different ranges. Instead of a sequence of

simple tiles there is a tree of simple tiles, as they all share the initial tile. We select

three kinds of simple tile in the tree. Tile t is coloured if it has at least one colour

and t is final if it is final for at least one play. Each play at stage 1 that ends at the

same atomic leaf of t1 shares t2 at stage 2 and so on. Therefore, branching occurs at

tm at stage m if there are plays that ended at the same atomic leaves of tk, k < m,

and at stage m plays end at different atomic leaves of tm: tile tm is then a (play)

separator. In Example 4.7, f(λxz1z2, λ) separates the plays. If a simple tile in t0 is

coloured, final or a separator then it is special.

A simple tile in t0 with atomic leaves that is not special is superfluous. Either

every play avoids it or every subplay that passes through it is ri and ends at the

same atomic leaf λxj. If every play avoids the simple tile u(λx1, . . . , λxk) then we

can replace the subtree rooted at u in t0 with the simple constant tile b : 0. If every

subplay that passes through u(λx1, . . . , λxk) is ri and ends at the same atomic leaf

λxj and tj is the subtree beneath λxj of t0, then we can replace the subtree rooted

at u in t0 by tj . Clearly, both these transformations preserve solution trees. For

instance, the two occurrences of y(λ) in Example 4.7 are both redundant: the tree

in Figure 1 is transformed by moving node (6) directly beneath node (1). The only

significant tiles with atomic leaves are special. However, the number of coloured and

final tiles is bound by the sum of the depths of the right terms ui and the number

of separators is at most p− 1 (where p is the number of plays). So, the small model

property follows where s(P ) is the appropriate measure.

Fact 4.8 If t0 is a smallest solution to third-order P , then |t0| ≤ s(P ).

For Example 4.7 the term whose tree is in Figure 1 is reduced by partitioning to

λy.f(λxz1z2.x(z2))a. Similarly, the term in Figure 5 is reduced to λx1x2.x2(a).

The decidability proof exploits a key feature of game playing on a potential

solution term t0 for third-order P , the tree-model property: each play π ∈ G(t0, P )

descends a branch of t0 until a final state is reached. Because there is only one level

of simple non-constant tiles, so, they are both top and end, game playing is heavily

constrained. With a 4th or 5th-order tree there are two levels of simple non-constant

tiles: top tiles y(λx1, . . . , λxk) and end tiles z(λz1, . . . , λzl) where z is bound by a

λxj . The number of levels increases with order: at 8th or 9th-order there are four

levels. As soon as there is more than one level, game playing may jump around the

tree. To show decidability of matching for the general case, the argument is much

more involved and appeals to unfolding which is analogous to unravelling in modal
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logic. Unfolding induces the tree-model property. The proof of decidability uses

unfolding followed by selective refolding (the inverse of unfolding) and from their

combinatorial properties the small model property holds, see [26]. Here, instead we

wish to consider infinite games on infinite λ-terms.

5 Higher-order program schemes

Assume 0 is the domain of finite and infinite F-trees where each node is labelled by

a basis function (constant) f ∈ F = {f1, . . . , fk}. Each fi has an arity which is its

degree of branching: if fi : 0 then it has arity 0 and f : (0, . . . ,0,0) has arity the

number of 0’s less one 2 . A higher-order program scheme, following Damm [8], is

defined relative to a set of basis functions.

Definition 5.1 A scheme is a finite family Fi x
i
1 . . . xi

ni

def
= ti, 1 ≤ i ≤ m, of

definitions where each Fi is typed and distinct, and each ti : 0 is built from the

typed variables, xi
1, . . . , x

i
ni

, basis functions and the Fi’s using application. There is

also a start configuration S : 0 without free variables built from the basis functions

and Fi’s using application. The order of a scheme is the highest order of a variable

xi
j that occurs on the left hand side of a definition 3 .

Example 5.2 Fx
def
= fF (g(x))g(x) with start configuration Fa is first-order as

x : 0: here, a has arity 0, g arity 1 and f arity 2. �

Example 5.3 The following with start configuration F g ha is second-order.

Fx1x2x3
def
= f (F (Gx1)(Hx2)x3)x1(x2(x3))

Gy1y2
def
= g(y1(y2))

Hz1z2
def
= h(z1(z2))

Variables x1, x2, y1, z1 : (0,0), x3, y2, z2 : 0, constant a has arity 0, g, h arity 1 and

f arity 2. �

A scheme is an abstracted functional program whose interpretation is the F-

tree generated by S. For instance, Fa of Example 5.2 becomes fF (ga)ga, then

f(fF (g(g(a)))g(g(a)))g(a) and so on, thereby generating the infinite tree whose

initial part is depicted in Figure 6. Operationally, the following transition rules

generate the tree when applied to S.

(i) Fi s1 . . . sni −→ ti{s1/x
i
1, . . . , sni/xni}

(ii) If sj −→ s′j for 1 ≤ j ≤ k then fi s1 . . . sk −→ fi s
′
1 . . . s′k

(iii) If a : 0 then a −→ a

2 The domain ordering is: ⊥� t and tj � t′j for each j implies fit1 . . . tk � fit
′
1 . . . t′k.

3 The matching literature assumes 0 is of order 1, following first-order logic, whereas the scheme literature
assumes 0 is of order 0 following λ-calculus literature. However, the definition of the order of a scheme is
then the highest order of any Fi which coincides with the definition here when 0 has order 1.
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Fig. 6. The tree for Example 5.2

Denotationally, the meaning of a scheme is the least fixed point with respect to

the free interpretation of basis functions, following Damm [8]. For Example 5.2,

F 0a =⊥ and F i+1a = f(F i(ga))ga. So F 2(a) = f(f(⊥)g(g(a)))g(a). The resulting

F-tree is Fω(a) =
⊔

i≥0 F i(a) which is the meaning of Y (λF. λx. f(F (gx))g(x))a.

Clearly, operational and denotational views coincide exactly. In the following we

restrict attention to schemes that do not generate F-trees with undefined subtrees.

The definition of scheme, Definition 5.1, is slightly more generous than Damm’s

for order greater than 1. Damm’s definition coincides with the safe schemes intro-

duced by Knapik, Niwiński and Urzyczyn [14]: see [1,10] for a detailed discussion

of this restriction and the proof that it indeed coincides with Damm’s. An open

question is whether safety restricts expressive power.

The classical higher-order scheme problem is: given two (possibly safe) schemes

do they generate the same F-tree? One approach to understand this problem is to re-

late schemes to formal languages. Each basis function f ∈ F with arity n > 1 can be

split into terminal symbols f1, . . . , fn reflecting the different directions that can be

taken. The branch language for an F-tree is the deterministic set of words which are

paths from the root to a terminal node a : 0: for Figure 6, f1f2gga is such a word.

Courcelle showed that the equivalence problem for first-order schemes is interre-

ducible to the equivalence checking problem for determinisitic pushdown automata

[7]. This problem was subsequently positively solved by Sénizergues [21,22,24]. For

n > 1, equivalence of safe nth-order recursion schemes coincides with equivalence

between determinisitic nth-order pushdown automata [9,14].

Indeed, an open question is whether the branch language of an F-tree gener-

ated by a higher-order scheme is (deterministic) context-sensitive. For a first-order

scheme, Courcelle shows it is a deterministic context-free language. Figure 8 illus-

trates that expressive power reaches beyond the context-free for schemes of order

more than one. The family of languages recognized by second-order pushdown au-

tomata is the indexed languages, introduced by Aho in 1968 [2,3], which permit

some context-dependency. Aho offers a grammatical method for generating them

as well as an automata theoretic method (using nested stack automata) which turns

out to be equivalent to the second-order pushdown automata, as shown by Maslov
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Fig. 7. The tree for Example 5.3

[16] who also defined a hierarchy of higher-order indexed languages characterized by

higher-order pushdown automata, [16]. A more detailed account is given by Damm

and Goerdt [9]. Aho also shows that the indexed languages are context-sensitive.

They form an AFL and are a proper subset of the context-sensitive languages. It

therefore follows that the branch languages of the F-trees generated by second-

order safe schemes are deterministic context-sensitive. Aelig, de Miranda and Ong

show that the branch language for an arbitrary second-order scheme is context-

sensitive [1]. However, their proof simulates such a scheme using nondeterministic

second-order pushdown automata: so, it is an open question whether the language

is deterministic.

One area where there has been recent success in developing decision procedures

for schemes is the model checking problem: given a scheme, does its F-tree have

a decidable monadic second-order theory? Knapik, Niwiński and Urzyczyn proved

decidability of model checking for safe schemes by transforming them into infinite

terms of typed λ-calculus [14]. Ong has extended this result to all schemes. His

proof also transforms a scheme into an infinite (regular) term of typed λ-calculus

[17]. He then appeals to innocent game semantics to understand how it generates

an F-tree (and how an alternating parity automaton that runs on its tree can be

transformed into one that runs on the term instead). This provides a third account

of the semantics of schemes using games. Our intention is to reformulate the game-

theoretic interpretation using a similar game to that for matching.

6 Games for schemes

Knapik, Niwiński and Urzyczyn transform (safe) schemes into infinite terms of typed

λ-calculus [14]. Here, we follow Ong’s construction of the long transform of a scheme
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into typed λ-calculus [17] except that we delay the introduction of dummy λ’s until

its tree representation (as we did in Section 3). For each definition Fx1 . . . xn
def
= t

or start configuration S in a scheme we do the following.

1. Expand t or S to its η-long form (as in Section 2). One hereditarily η-expands

every subterm if it occurs in an operand position (that is, as the second argu-

ment of the implicit application operator of λ-calculus).

2. Insert formal apply symbols @A. Replace each ground type subterm of t and

S of the form Fie1 . . . en where Fi : A = ((A1, . . . , An,0), A1, . . . , An,0) by

@AFie1 . . . en.

3. Lambda abstract the definition. If Fx1 . . . xn
def
= t′ after stage 2 and n > 0,

then replace it with F
def
= λx1 . . . xn.t′.

4. Rename bound variables so the set of equations and the start configuration are

well named with respect to each other.

Wherever possible we omit the type A from @.

Example 6.1 Stage 1 does not apply to Example 5.2. For stage 2, the start con-

figuration becomes @Fa and the single equation becomes Fx
def
= f(@F (g(x)))g(x).

After λ-abstraction, F
def
= λx.f(@Fg(x))g(x). �

Example 6.2 Example 5.3 is transformed into @F (λu.g(u))(λw.h(w))a as start

configuration, where the constants g and h are η-expanded, with the following

equations.

F
def
= λx1x2x3.f(@F (λx.@G(λv.x1(v))x)(λy.@H(λs.x2(s))y)x3) (x1(x2(x3)))

G
def
= λy1y2.g(y1(y2))

H
def
= λz1z2.h(z1(z2))

In the first equation, the operand subterms Gx1 and Hx2 are η-expanded. �

This reformulation does not affect the tree generated using β-reduction and replace-

ment of the Fi’s by their definitions: for instance @Fa = @(λx.f(@Fg(x))(g(x)))a

which β-reduces to f(@Fg(a))(g(a)) assuming the standard interpretation of @.

The next step is to represent a scheme as a tree with backedges by system-

atically replacing all the Fi’s with their definitions. The idea is a simple gener-

alization of the representation of terms in Section 3. First, we treat @A when

A = ((A1, . . . , An,0), A1, . . . , An,0) as a constant with arity n + 1. To represent

uv1 . . . vk when u is a variable or a constant (which now includes @), we assume

that a dummy λ with the empty sequence of variables is placed before any subterm

vi : 0. Moreover, any Fi is replaced with its definition. We use the notation u ↓i t′

to represent that tree t′ is the ith successor of the node u as in Section 3.

For Example 6.1 we start with the initial term tree in Figure 8 where a dummy

λ is introduced above a. This is then expanded to the second term tree in the

figure, again with dummy λ’s. We could continue by replacing F with the subtree
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Fig. 8. The term tree for Example 6.1

rooted at (2) and so on, to produce an infinite λ-term (which only contains finitely

many variables). Instead, we assume that there is an edge from (5) to (2): that is

(5) ↓1 (2). So the scheme produces a tree with backedges.

The aim is to understand the way a term generates an F-tree using games. Ong

provides such a foundation using game semantics [17]. Again, to avoid justification

pointers, the key is an appeal to iteratively defined look-up tables. However, the

situation is simpler than for matching as there are only free variables in the tree.

We appeal to single look-up tables θk: θk is a partial map from variables in t to

pairs t′θj where t′ is a node of the tree and j < k.

The basic game G(S) is played by one participant, player ∀. A play of G(S) is

an infinite sequence of positions t1θ1, . . . or a finite sequence t1θ1, . . . , tnθn where

tn = a : 0. For the initial position, t1 is the root of the tree representation of S and

θ1 is ∅, the initial empty look-up table. If the current position is tmθm and tm is not

a constant a : 0 then the next position tm+1θm+1 is determined by a unique move

in Figure 9. If play is at λy then it descends the tree. At @, play proceeds to the

first successor λx1 . . . xn and the look-up table is updated accordingly (the other

successors ti+1 with the curent look-up table is associated with xi). At a constant f

with arity more than 0, ∀ chooses a successor. If play is at a variable y : 0 and the

entry in the current look-up table is t′θk then play jumps to t′ and θk becomes the

look-up table. If y is higher-order and its entry is t′θk in the current look-up table

θm where t′ = λz1 . . . zn then play jumps to t′ and the look-up table is θk together

with the association of t′iθm for each zi when y ↓i t′i.
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A. tm = λy and tm ↓1 t′. Then tm+1 = t′ and θm+1 = θm.

B. tm = @A, A = ((A1, . . . , An,0), A1, . . . , An,0), tm ↓i t′i for 1 ≤ i ≤ n + 1 and

t′1 = λx1 . . . xn. Then tm+1 = t′1 and θm+1 = θm{t′2θm/x1, . . . , t
′
n+1θm/xn}.

C. tm = f , f has arity n > 0 and tm ↓i t′i for 1 ≤ i ≤ n. Then ∀ chooses a

direction j : 1 ≤ j ≤ n and tm+1 = t′j and θm+1 = θm.

D. tm = y : 0 and θm(y) = t′θk. Then tm+1 = t′ and θm+1 = θk.

E. tm = y : (A1, . . . , An,0), tm ↓i t′i for 1 ≤ i ≤ n and θm(y) = t′θk where

t′ = λz1 . . . zn. Then tm+1 = t′ and θm+1 = θk{t
′
1θm/z1, . . . , t

′
nθm/zn}

Fig. 9. Game moves

Example 6.3 Consider G(S) when S is the tree in Figure 8. The first moves are

as follows.

(1)θ1 (2)θ2 = θ1{(15)θ1/x} (3)θ2

At this point there is a ∀-choice. If play takes the right branch then play continues.

(11)θ2 (12)θ2 (13)θ2 (14)θ2

Now x is called: θ2(x) = (15)θ1. So play continues with a jump: (15)θ1 and ends at

(16)θ1. The branch associated with this play is f2ga. If the other choice is taken

at position (3) then it continues.

(4)θ2 (5)θ2 (2)θ3 = θ2{(7)θ2/x} (3)θ3

And again there is a ∀-choice. If the right branch is taken then play continues.

(11)θ3 (12)θ3 (13)θ3 (14)θ3

Again x is called: θ3(x) = (7)θ2. So play now jumps to (7) and proceeds to (10)

before jumping to (15) and finishing at (16): the branch associated with this play

is f1f2gga. There is just one infinite play in G(S) when the left branch at (3) is

always chosen. �

Example 6.4 We now examine plays of G(S) for S in Figure 10. Play starts as

follows.

(1)θ1 (2)θ2 = θ1{(42)θ1/x1, (46)θ1/x2, (50)θ1/x3} (3)θ2

If ∀ chooses the right branch of f then play continues.

(36)θ2 (37)θ2 (42)θ3 = θ1{(38)θ2/u}

Because θ2(x1) = (42)θ1, when play jumps to (42) the look-up table associates

(38)θ2 with u. Play proceeds to (45) and returns to (38).

(43)θ3 (44)θ3 (45)θ3 (38)θ2 (39)θ2

C. Stirling / Electronic Notes in Theoretical Computer Science 172 (2007) 589–609606



(1)@

������������

�� �����������

�������������������

(2)λx1x2x3

��

(42)λu

����������� (46)λw

����������� (50)λ

����
��

��
��

�

(3)f

���������������������

��������������������� (43)g

����������� (47)h

����
��

��
��

� (51)a

(4)λ

��

(36)λ

��

(44)λ
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��

��
��

� (21)@

�� ������������

��������������������� (35)x3 (39)x2

��
(8)λy1y2

��

(14)λv

��

(18)λ

��

(22)λz1z2

��

(28)λs

��

(32)λ

��

(40)λ

��
(9)g

��

(15)x1

��

(19)x (23)h

��

(29)x2

��

(33)y (41)x3

(10)λ

��

(16)λ

��

(24)λ

��

(30)λ

��
(11)y1

��

(17)v (25)z1

��

(31)s

(12)λ

��

(26)λ

��
(13)y2 (27)z2

Fig. 10. The term tree for Example 6.2

Now it jumps to (46)

(46)θ4 = θ1{(40)θ2/w} (47)θ4 (48)θ4 (49)θ4

and returns to (40).

(40)θ2 (41)θ2 (50)θ1 (51)θ1

The branch associated with this play is f2gha. �

Given a scheme S, the F-tree generated from the game G(S) is the tree with

internal nodes f and subtrees determined by ∀’s choice when position C of Figure 9

is encountered, and leaf nodes a when play finishes at this constant.

Proposition 6.5 The F-tree generated by S is the F-tree generated by G(S).
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Proof. We show that each prefix of the F-tree generated by S is the same prefix

of the F-tree generated by G(S) and that the remaining subtrees are the same. To

do this we show that the operational semantics of a scheme S that is expanded into

normal form when look-up tables θi are interpreted as delayed substitutions is iso-

morphic to game playing. Initially, the scheme operationally is S and the intial move

in G(S) is Sθ1 where θ1 is the empty look-up table: consequently the same. Assume

current branch f i1
1 . . . f ik

k in the prefix of the F-tree and tmθm is the current position

in the play. We proceed by cases on tm. If tm = @, so @(λx1 . . . xn.t′)t2 . . . tn+1θm

is the current unfolding in the operational semantics: this generates the F-tree

t′θm{t2θm/x1, . . . , tn+1θm}. Game theoretically, play first goes to the node labelled

λx1 . . . xn with θm+1 = θm{t2θm/x1, . . . , tn+1θm} and then play goes to t′θm+1, as

required. If tm = f and so ft1 . . . tnθm is the current unfolding in the operational

semantics then the branch f i1
1 . . . f ik

k is expanded with f j for 1 ≤ j ≤ n, and the jth

subtree is tjθm. Clearly, in the game if ∀ chooses direction j then the next position

is tjθm. If f : 0 then it is a leaf of the F-tree and tmθm is a final position in a play.

If tm = y and so yt1 . . . tnθm is the current unfolding in the operational semantics

then this generates the F-tree θm(y)t1θm . . . tnθm: if θm(y) = λz1 . . . zn.t′θk then

this reduces to t′θk{t1θm/z1, . . . , tnθm/zn} and the game follows suit. A similar

argument holds for the case y : 0. �

The issue is whether the game-theoretic characterization of the F-tree gener-

ated by a scheme can underpin useful decision procedures. Ong [17], using game-

semantics, shows how an alternating parity automaton that runs on the F-tree can

be transformed into one that runs on the term tree. The idea is to include as-

sumptions about play jumping with the descent of an automaton down a leftmost

successor of @: these assumptions are then checked by spawning auxiliary automata

that descend the other successors of the @. We can employ the tile classification

of regions of the scheme tree, and their subplays as described for matching, as an

alternative basis for this decidability proof. Much more work is needed to discover

relationships between the static structure of a scheme and the dynamics of game

playing.
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