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Abstract

Focused wave groups offer a means for coastal engineers to determine extreme run-up and
overtopping events. Numerical predictions and laboratory measurements are presented for
NewWave-type focused wave groups generated by a piston-type paddle generator, and in-
teracting with a plane beach and a seawall in a wave basin. The numerical wave tank is
based on the Boussinesq equations for non-breaking waves, and the non-linear shallow water
equations for broken waves. Good agreement is achieved between the numerical predictions
and laboratory measurements of free surface elevation, run-up distances and overtopping
volumes for the test cases driven by linear paddle signals. Errors in run-up distance and
overtopping volume are then assessed by repeating the test cases using second-order accurate
wave generation signals. Focused wave groups generated using first-order wave-maker the-
ory are found to be substantially contaminated by a preceding long error wave, resulting in
erroneously enhanced run-up distances and overtopping volumes. Thus, the use of second-
order wave-maker theory for wave group run-up and overtopping experiments is instead
recommended.

Keywords: wave-maker theory, spurious error wave, run-up, overtopping, focused wave
groups, numerical wave tank, Boussinesq modelling

1. Introduction

Accurate prediction of coastal wave run-up and overtopping is very important in scenario-
driven analysis of likely flood events (see e.g. Kobayashi (1999), Borthwick (2009), Baldock
et al. (2012)). Considerable effort has been put into deriving empirical run-up and over-
topping formulae (see e.g. Hunt (1959), Hedges and Mase (2004), Hedges and Reis (2004),
Allsop et al. (2005), De Rouck et al. (2005), Burcharth and Hughes (2006), Pullen et al.
(2007)), supplemented by a great number of wave tests in different flumes and coastal basins
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(see e.g. Pearson et al. (2002), van der Meer et al. (2009) and Hunt-Raby et al. (2011)).
There have also been major developments in coastal wave simulation methods, some based on
the non-linear shallow water equations (e.g. Hu et al. (2000), Hubbard and Dodd (2002)),
Boussinesq-type equations (see for example Fuhrman and Madsen (2008) or review doc-
uments by Dingemans (1997), Kirby (1997), Madsen and Schäffer (1999), Kirby (2003),
Brocchini (2013)), hybrid Boussinesq-shallow flow equations (Watson et al. (1994), Borth-
wick et al. (2006a), Tonelli and Petti (2009), Tissier et al. (2011), Orszaghova et al. (2012),
McCabe et al. (2013)), potential flow theory (Fructus and Grue (2007)), and the Navier-
Stokes equations (see e.g. Hsiao and Lin (2010) for volume-of-fluid method, Ingram et al.
(2009) for free surface tracking implementation, and Rogers and Dalrymple (2008) for a
smoothed particle hydrodynamics solver).

For almost 20 years, focused wave groups have been increasingly used by offshore engi-
neers to represent the average shape of the extreme event in a Gaussian sea state (Tromans
et al. (1991), Jonathan and Taylor (1997), Taylor and Williams (2004)). Pioneering labora-
tory experiments on focused wave groups have been carried out in water of uniform depth
(Rapp and Melville (1990), Baldock et al. (1996) and Johannessen and Swan (2001)), demon-
strating that ocean waves are dispersive and can evolve into transient, localised but energetic
groups that focus in shallow coastal waters (Baldock (2006)). It is also plausible that similar
focused-wave analysis could be useful in assessing storm-induced wave run-up maxima at
beaches and overtopping volumes at coastal defences. Focused wave group laboratory tests
have the advantage that they are quick to perform, with all important data obtained before
any waves reflected at the coast reach the paddle, thus avoiding the gradual contamination
of flumes by long wave reflections. However, it should be noted that there remain several
important questions to be answered regarding the applicability of focused wave groups as
design waves for extreme storm events at the coast. In reality, wave run-up at beaches and
sea defence overtopping are strongly influenced by the preceding swash motions, and it is
not necessarily the case that the peak run-up or overtopping is associated with the largest
wave. Moreover, the near-shore wave energy spectrum is not the same as the corresponding
offshore spectrum. Even so, there is a sound rationale for investigating systematically the
behaviour of focused wave groups in coastal waters.

The present paper examines a preliminary question concerning the order of accuracy
required for the paddle signal used to generate focused waves in a basin or flume. In
particular, we examine the importance of the correct reproduction of second-order bound
components in focused wave groups, and study their influence on wave group run-up at a
plane beach and overtopping of a seawall. To this end, results are compared from laboratory
and numerical tests, the latter utilising linear and second-order wave generation methods.
The numerical wave flume is based on the Madsen and Sørensen (1992) set of Boussinesq
equations and the non-linear shallow water equations. As direct comparisons with laboratory
experiments are carried out, waves are introduced into the numerical domain via an in-built
moving piston wave-maker, which mimics a mechanical laboratory wave generator. Details
of the numerical scheme are given in Orszaghova et al. (2012).

The paper is structured as follows. Section 2 provides an introduction to wave-maker
theory, NewWave focused wave groups, and the numerical wave tank. Section 3 describes a
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numerical model investigation into focused wave group evolution over a flat bed, using linear
and second-order wave generation. Major discrepancies are identified in the resulting wave
forms, these arising from error waves when only first-order wave generation is used. The
numerical model is validated against experimental measurements involving wave group run-
up at a plane beach (Section 4) and overtopping of a trapezoidal wall (Section 5). In both
sections, the effect of second-order wave generation on focused wave run-up distances and
overtopping volumes is examined numerically. Section 6 summarises the major conclusions.

2. Methods and background theory

2.1. Laboratory wave generation

Piston paddles are often used for mechanical wave generation in shallow water laboratory
flumes and basins. In practice, a suitable wave-maker theory is used to compute the paddle
displacement time series used to control the horizontal motion of the paddle. The wave-
maker theory for irregular waves utilises a Stokes-like perturbation technique, whereby the
dependent variables (velocity potential Φ, free surface elevation ζ, paddle displacement
xp) are expressed as a power series, and the boundary conditions at the free surface and
at the wave-maker are expanded using Taylor series. This results in the original non-linear
boundary value problem being expressed as an infinite set of ordered linear partial differential
equations. First-order wave-maker theory considers the linearised problem, whose solution
consists of the desired progressive harmonic waves and evanescent modes. Evanescent modes
are local non-propagating disturbances that arise due to a uniform velocity field with depth
being forced at the piston paddle, but die out away from the wave-maker. The relationship
between the amplitude of the generated progressive wave and the amplitude of the paddle
displacement is also derived, and is known as the Biésel paddle transfer function. Detailed
descriptions of linear wave-maker theory are given by Dean and Dalrymple (1991) and
Hughes (1993).

Full wave generation theory correct to second order, for normally propagating waves and
applicable to both piston and hinged wave-makers, was derived by Schäffer (1996), who
extended earlier analysis by Barthel et al. (1983). Schäffer’s theory aims to suppress gener-
ation of second-order spurious free waves, also known as parasitic or error waves, which are
unintentionally generated when linear paddle signals are used. A brief outline of Schäffer’s
theory follows. Using the superposition principle, the second-order problem is split into
three sub-problems, each governed by the Laplace equation and a specific set of boundary
conditions. The first sub-problem considers the wave in the absence of the wave-maker,
and is solved to give the bound second-order sub- and super-harmonics. The other two
sub-problems bear resemblance to the first-order problem, and give rise to second-order free
waves. The second sub-problem solves to give second-order error waves owing to the linear
paddle signal deviating from the mean paddle position, and second-order bound waves not
satisfying the paddle boundary condition. The third sub-problem describes the compensat-
ing second-order free waves generated by the second-order paddle signal, which is chosen to
cancel out the error waves from the second sub-problem. In this way only the appropriate

3
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bound second-order waves are generated. Note, however, that the evanescent modes from
the second and third sub-problems do not cancel each other out.

Simplistically, the use of linear wave generation results in the following situation. The
desired weakly non-linear waves have both linear energy-bearing components and higher,
mostly second-order, bound components. If these higher harmonics are not accounted for
by the paddle motion, the resulting wave field consists of the correct bound non-linear
components and locally cancelling sum and difference components. These are free error
waves but locally (at the paddle) cancel the necessary bound components. Since these free
waves have different propagation speeds than the main linear waves in the desired wave
group, they escape and contaminate the overall wave field.

2.2. Numerical wave tank

A one-dimensional numerical model of a shallow-water flume with an in-built piston
paddle moving boundary wave-maker is used for all simulations in this work. The model is
based on a set of enhanced Boussinesq equations derived by Madsen and Sørensen (1992) and
the non-linear shallow water equations. Wave breaking is described approximately, by locally
switching to the non-linear shallow water equations when specified threshold wave steepness
is reached. Broken waves are described as bores. The moving shoreline is calculated as part
of the solution, utilising a wetting and drying approach devised by Brufau et al. (2002).
Detailed description of the model’s characteristics, including numerical implementation, is
given by Orszaghova et al. (2012). The model is suitable for simulating propagation of
weakly dispersive waves and can additionally model any associated inundation, overtopping
or inland flooding within the same simulation. Note that the in-built piston paddle wave-
maker mimics a real-world laboratory wave-maker in that it moves according to a supplied
paddle displacement time series calculated using appropriate wave-maker theory (see Section
2.1 above). The paddle operates on a local movable grid, which is Lagrangian on the paddle
face and Eulerian away from the paddle. The governing equations are, however, evolved
on a fixed mapped grid, and the newly calculated solution is transformed back onto the
moving grid via a domain mapping technique. Inclusion of the paddle in the numerical
code allows for simulations of complete shallow water laboratory experiments, including the
wave generation process, by utilising the actual paddle displacement time series used in the
laboratory.

Orszaghova et al. (2012) provide a detailed account of tests used to verify the numerical
model, encompassing movement of the wet/dry front, wave generation by means of the
numerical paddle, and discretisation of the governing equations. Orszaghova et al. (2012)
also report preliminary validation of the code against a range of laboratory experiments.
The present paper provides additional validation of the numerical model, before embarking
on the assessment of the use of linear paddle signals in run-up and overtopping studies
involving wave groups.

It should be noted that the chosen set of Boussinesq equations used in the numerical
wave tank is suitable for weakly dispersive and weakly non-linear waves. Numerous improved
versions of Boussinesq-type equations have also been derived extending their validity both
offshore and inshore (see e.g. Wei et al. (1995), Agnon et al. (1999), Gobbi et al. (2000),
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Madsen et al. (2003)). The validation tests, described later, show that the Madsen and
Sørensen (1992) Boussinesq equations are sufficient to assess the importance of second-order
wave generation for the focused wave groups considered herein.

2.3. NewWave focused wave groups

A focused wave group is composed of a number of individual sinusoidal wave components
that come into phase at a single point in time and space. The surface elevation, using linear
wave theory, at any time and any point in space can be described by

ζ(x, t) =
N∑

n=1

an cos(kn(x− xf )− ωn(t− tf ) + φ), (1)

where x is horizontal distance, t is time, an is the wave amplitude, kn is the wave number,
and ωn is the angular frequency of the nth component, φ is the phase angle at focus, xf and
tf are the focus location and focus time, and N is the number of the Fourier components.
At x = xf and t = tf all wave components are in-phase. A crest-focused wave group is given
by φ = 0, whereby wave crests come into phase at the focus point. A trough-focused wave
group, with wave troughs aligning at the focus location, is defined by φ = π. Note in passing
that this is equivalent to replacing an by −an in Equation (1), which shall be utilised in the
separation of harmonics presented in Sections 3 - 5. When focused, constructive interference
between individual components occurs and the wave group produces a large energetic event.
Due to frequency dispersion, away from focus, the wave group is less compact and less
violent. In the laboratory, to create a focused wave group with desired xf and tf one
needs to offset correctly the individual wave components at the paddle to account for their
different propagation speeds along the tank. Using Equation (1), a phase shift of −knxf +φ
is applied to each nth component, assuming that the wave-maker is located at x = 0 m and
that tf = 0 s.

NewWave focused wave group is consistent with the mathematical description of the
expected shape of extreme wave events in a linear random sea, as shown by Jonathan and
Taylor (1997) and Taylor and Williams (2004). The underlying statistical theory originates
from Lindgren (1970) and Boccotti (1983), and was first applied to extreme wave events in
ocean engineering by Tromans et al. (1991). According to the theory (see e.g. Tucker and
Pitt (2001)), the most probable shape of the free surface near an arbitrary crest is given by
the normalised autocorrelation function pre-multiplied by the crest height. The NewWave
time history, for a crest-focused wave, therefore reads as

ζ(t) = AN

∑

n

Sn(ω)∆ωn cos(ωn(t− tf ))

∑

n

Sn(ω)∆ωn

, (2)

where AN is the linear amplitude of the NewWave group at focus, Sn is the discretised
underlying energy spectrum from which the extreme wave packet is derived and ∆ωn is the

5
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angular frequency resolution. In Equation (2) the numerator represents the autocorrelation
function, given by the inverse Fourier transform of the underlying spectrum, and the de-
nominator represents the normalising factor. In the NewWave representation, the individual
wave amplitudes an are thus given by

an =
ANSn(ω)∆ωn∑

n

Sn(ω)∆ωn

. (3)

Note that the choice of AN is arbitrary as it represents the amplitude of the largest wave in
a sea surface time series of N waves in a narrow-banded linear random sea. In other words,
the return period of a wave packet with amplitude AN is 1 in N waves within the sea state.
Therefore, assuming Rayleigh wave height distribution, AN is given by

AN =
(
2σ2 lnN

)1/2
, (4)

where σ2 denotes the variance of the free surface time series. Laboratory experiments and
numerical simulations involving NewWaves benefit from the complete spectral information
contained in the single wave group, and so investigations are relatively quick and inexpen-
sive compared to their random wave time domain counterparts. Additionally, due to their
transient nature, active wave absorption at the wave-maker is not required for focused wave
investigations.

2.4. UKCRF experiments

The experimental measurements used to validate the present model were obtained from
laboratory-scale tests undertaken at the U.K. Coastal Research Facility (UKCRF) at HR
Wallingford comprising a 72 paddle wave basin with a plane beach of bed slope 1:20. The
mean water depth at the paddles was set to 0.5 m, with horizontal bed extending 8.33 m
from the paddles to the toe of the plane beach. The experimental measurements were
undertaken as part of an EPSRC-funded investigation undertaken jointly by the Universities
of Manchester and Oxford in 2001/2002 into the run-up and overtopping of focused wave
groups. Details of the experiments are reported by Hunt (2003), Borthwick et al. (2006b) and
Hunt-Raby et al. (2011). As part of the experimental programme, a total of eight normally-
incident NewWave focused wave groups were considered, involving four crest-focused and
four trough-focused wave groups, covering a range of group amplitudes and focus locations.
Table 1 summarises the wave group properties. There is a shift in the observed focus
location away from the input focus location predicted by linear theory. Note that in the
experiments, the focus location was defined as the point in space where the troughs either
side of the central crest, for a crest-focused wave group, are of equal depth. The underlying
energy spectrum used in the experiments was a Pierson-Moskowitz spectrum given by

S(ω) =
(ωp

ω

)5

exp
(
− 1.25

(ωp

ω

)4)
, (5)

6
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with peak angular frequency ωp ≈ 2.91 rad s−1. The truncated spectrum (ωmin ≈ 2.07 rad s−1,
ωmax ≈ 6.06 rad s−1) was discretised into N = 53 components with a uniform angular fre-
quency increment of ∆ω ≈ 0.077 rad s−1. In the UKCRF laboratory experiments the paddle
motion was governed by linear wave-maker theory, and active wave absorption was not ap-
plied.

Table 1: Properties of normally-incident NewWave focused wave groups in UKCRF (Hunt (2003)).

Wave Input Input Observed Phase angle
group amplitude focus location focus location at focus

AN (m) xf (m) (m) φ (rad)
WG1 0.114 9.00 8.33 0
WG2 0.114 10.90 10.83 0
WG3 0.090 12.90 13.33 0
WG4 0.057 8.80 8.33 0
WG5 0.114 9.00 8.33 π
WG6 0.114 10.90 10.83 π
WG7 0.090 12.90 13.33 π
WG8 0.057 8.80 8.33 π

3. NewWave propagation on a flat bed

Before considering NewWave run-up and overtopping, we first investigate the effect of
second-order error waves on the evolution over a flat bed of two focused wave groups, whose
properties correspond to WG2 and WG6 (Table 1). Two simulations per wave group are
carried out using the numerical wave tank; the first governed by the linear paddle signal
recorded from the experiments, the second repeated using the corresponding second-order
paddle signal calculated according to the method derived by Schäffer (1996). A symmetry-
based method for separation of harmonics from the calculated free surface time series is used
to identify the second-order error waves (for examples of the application of this method see
e.g. Baldock et al. (1996), Jonathan and Taylor (1997), Johannessen and Swan (2001), Hunt
et al. (2004) and Borthwick et al. (2006b)). The effectiveness of second-order paddle signals
in eliminating the contaminating error waves is also examined.

Figure 1 shows first- and second-order paddle displacement time series, denoted by xp, for
the WG2 crest-focused and corresponding WG6 trough-focused wave groups. The second-
order signal requires a much larger paddle sweep. Due to the finite number of frequency
components (N = 53 for the present wave groups), the paddle signals have a finite repeat
period given by 1

∆f
, with ∆f being the frequency increment. The repeat period for the

present wave groups is 81.92 s.
It is useful to recall that the Schäffer (1996) second-order wave-maker theory is based on

second-order solutions to the full Laplace equation water wave problem (together with the
appropriate boundary conditions), rather than the Madsen and Sørensen (1992) Boussinesq
equation set used herein. The Boussinesq equations are a weakly dispersive and weakly

7
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non-linear approximation of the full water wave problem. Therefore for relatively low-
amplitude waves in shallow water, the second-order paddle signals calculated according to
Schäffer (1996) should satisfactorily eliminate the spurious second-order error waves in the
Boussinesq numerical tank. Figure 2 shows the time series of the theoretically derived bound
sub-harmonics and super-harmonics for the WG2 crest-focused wave group. The time series
are calculated at the paddle (x = 0 m) in the absence of evanescent modes. Both the Laplace
equation and the Boussinesq equations second-order bound solutions are shown. Note that
the second-order bound components for the Boussinesq equations are calculated according to
Madsen and Sørensen (1993). In order to suppress formation of second-order error waves, the
bound harmonics need to be correctly accounted for at the paddle. From Figure 2 it follows
that the Laplace super-harmonic components are larger than the Boussinesq super-harmonic
components. Therefore, it might be expected that some small excess sum frequency waves
will be generated and propagate as free waves when the calculated second-order signal is
fed into the present model. On the other hand, the Laplace sub-harmonic components are
marginally smaller than the Boussinesq long wave components, suggesting that the long
error wave will be almost perfectly eliminated.

−0.2
−0.1

0
0.1
0.2 1st order xp

x
p
(m

)

30 35 40 45 50

−0.2
−0.1

0
0.1
0.2 2nd order xp

t(s)

x
p
(m

)

Figure 1: Paddle displacement time series for the WG2 crest-focused wave group (blue line) and
the WG6 trough-focused wave group (green line). First-order paddle signals are shown in the top
plot. Corresponding second-order paddle signals are shown in the bottom plot.
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0
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ζ
+ 2
(m

)
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−0.04
−0.02

0
0.02
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t(s)

ζ
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Figure 2: Second-order bound super-harmonic (top plot) and sub-harmonic (bottom plot) time series
at x = 0 for the WG2 crest-focused wave group. Comparison between the second-order components
for the Laplace equation (black line) and the Boussinesq equations (red line for super-harmonics,
green line for sub-harmonics).

Figures 3, 5, 6 and 7 present a comparison between using first- (left plot) and second-
order paddle signals (right plot) for wave groups WG2 and WG6 propagating over a flat bed.
Each figure comprises an x− t contour plot of stacked free surface time series calculated by
the model. The free surface deviation from the still water level is expressed by the colour:
whereby positive elevation is shown by yellow, orange and red; and depression is shown by
different shades of blue. Note that the units of the colour scale are meters. It is emphasised
that each plot shows an evolving wave group (in a flume), and does not represent a snapshot
of a two-dimensional sea-state (in a basin).

Figure 3 presents the x− t propagation plot for the WG2 crest-focused wave group. In
both cases, the group is initially compact around the focus and spans roughly 7 s. As it
propagates further away from the paddles, the group disperses, expanding over the remaining
20 s shown. However, there are stark visual differences between the results obtained using
a first- and a second-order paddle signal. Remember that the two plots refer nominally to
the same wave group. The left and central crests are higher in the first-order case for the
entire propagation. On the other hand, the left trough is deeper in the second-order case
throughout the record. Plots for WG6, the corresponding trough-focused group, are omitted
for brevity.
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Figure 3: NewWave propagation on a flat bed - total free surface for the WG2 crest-focused wave
group. Model predictions using a first-order paddle signal (left plot) and a second-order paddle
signal (right plot).

An approximate separation of harmonics is performed in order to carry out a more
detailed analysis of the structure of the wave packet. Let the free surface time series of the
crest-focused wave be denoted by ζc and that of the trough-focused wave by ζt. Recall that a
crest-focused group and a corresponding trough-focused group are related via a phase shift
of π rad, which is of course equivalent to pre-multiplying each an by -1 in Equation (1).
Therefore, addition 1

2
(ζc + ζt) gives the even-order harmonics as the linear components and

other odd-order harmonics cancel out. Subtraction 1
2
(ζc−ζt) results in the linear components

and all the odd-order harmonics. Frequency filtering can be additionally used to extract
the required harmonics from the addition and subtraction time series. Suitable cut-off
frequencies for the applied high-pass and low-pass filters are obtained from the frequency
spectra. Figure 4 displays the amplitude spectra associated with the crest-focused time
series (top plot), the addition time series (middle plot) and the subtraction time series
(bottom plot) from x = 8.33 m, which is the location of the beach toe in the run-up and
overtopping studies later. Amplitude spectra are shown for the wave group generated with
the first-order paddle signal (black line) and the second-order paddle signal (red line). From
the figure, it follows that for the addition time series, which contains the even harmonics,
a cut-off frequency of 0.5 Hz can be used to separate the sub-harmonics (denoted by 2−)
from the super-harmonics (denoted by 2+). For the subtraction time series, which contains
the odd harmonics, a cut-off frequency of 1 Hz is used to separate the linear terms (denoted
by 1) from the third- (denoted by 3+) and higher-order odd harmonics. Amplitude spectra
are obtained by applying a Fast Fourier Transform (FFT) algorithm to the time series.
After frequency filtering is performed, the inverse transform recovers the filtered time series.
It should be noted that this separation of harmonics is only approximate due to non-linear
wave-wave interactions, whereby for example in the linear paddle signal case a sub-harmonic
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interaction between the linear and the free second-order sum components generates third-
order components in amplitude with frequencies lying within the primary frequencies band.
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Figure 4: Amplitude spectra associated with the total free surface elevation time series (top plot),
the addition time series (middle plot) and the subtraction time series (bottom plot) shown for the
WG2 and WG6 pair of wave groups generated with the first-order paddle signal (black line) and
the second-order paddle signal (red line).

Figure 5 shows the free surface subtraction time series, low-pass filtered at 1 Hz to isolate
the linear terms. The two contour plots are rather similar, apart from small discrepancies
at the left crest, confirming that the use of second-order paddle signals does not affect the
primary frequency components.

Figure 6 shows the free surface addition time series, low-pass filtered at 0.5 Hz to isolate
the difference frequency components. As can be seen from the two plots, the use of the
second-order paddle signal substantially alters the structure of the long wave components.
In the first-order plot, the long error wave manifests itself as a hump (positive elevation
shown in orange and red). It is governed by its own dynamics and can be seen propagating
ahead of the group due to its long wavelength. In the second-order plot, the long error
wave is eliminated and the bound long waves can be clearly seen as a localised depression
underneath the main wave group (shown in blue). These long wave plots help to explain
observations from Figure 3, where higher left crests and shallower left troughs are identified
in the first-order case. Note that a very faint yellow elevation can be seen ahead of the
bound long wave in the second-order plot in Figure 6 (at t > 50 s), suggesting that the
long error wave is not perfectly suppressed. This is most likely due to the second-order
wave-maker theory from Schäffer (1996) being applied to the Boussinesq numerical solver.
As noted earlier, the set-down for the Boussinesq equation is very slightly different to that
of the non-linear potential flow equations. Nevertheless, the release of the long error wave
is minimal.

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

first order paddle signal used

t(s)

x
(m

)

40 50 60 70 80

5

10

15

20

25

30

35

40

45

50
second order paddle signal used

t(s)

x
(m

)
 

 

40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

−0.1

−0.05

0

0.05

0.1

Figure 5: NewWave propagation on a flat bed - linear terms only. Model predictions using a
first-order paddle signal (left plot) and a second-order paddle signal (right plot).
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Figure 6: NewWave propagation on a flat bed - long waves only. Model predictions using a
first-order paddle signal (left plot) and a second-order paddle signal (right plot).

Figure 7 shows the free surface addition time series, high-pass filtered at 0.5 Hz to extract
the second-order sum components (and any other higher-order even harmonics). The bound
second-order super-harmonics (denoted by b) can be seen in both plots, travelling with the
speed of the main group, thus reaching x = 50 m at t = 60 − 70 s. The free error double
frequency harmonics (denoted by e) can be seen lagging behind the main group. When using
the second-order paddle signal, these error waves are weakened but not fully eliminated. As
discussed earlier, this is probably due to the different second-order bound solution of the
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Laplace equation and the Boussinesq equations. In Sections 4.2 and 5.2, the influence of
second-order wave generation on run-up distances and overtopping volumes is investigated.
Even though the sum frequency error waves are not fully eliminated, their presence will not
spoil the investigation because they travel behind the main wave packet and arrive at the
beach as a second distinctive packet after the main interaction is over.
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Figure 7: NewWave propagation on a flat bed - even order super-harmonics only. Model
predictions using a first-order paddle signal (left plot) and a second-order paddle signal (right
plot).

Figure 8 shows spatial profiles of the WG2 crest-focused wave group at three different
times. The profiles generated by the first-order paddle signal are shown on the left, and
the wave group generated by the second-order paddle signal is shown on the right. In the
first-order plots, the long error wave (denoted by 2−) can be seen dramatically changing
the front of the wave packet, increasing wave heights of the first few crests and flattening
the leading troughs. Also in the first-order plots, the free second-order sum components
can be seen following the main wave group (denoted by 2+). In the second-order plots, the
weakened residual free second-order sum components can be seen (denoted by 2+). These
are additionally followed by triple frequency free waves (denoted by 3+), which of course are
not eliminated using second-order paddle signals.

In summary, the approximate method for separation of harmonics demonstrates that use
of linear wave-maker theory leads to the release of a long error wave of substantial amplitude
immediately ahead of the focus wave group. This error wave alters the local shape of the
leading part of the transient wave group as it evolves.
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Figure 8: NewWave propagation on a flat bed - spatial profiles for the WG2 crest-focused wave
group. Model predictions using a first-order paddle signal (left plot) and a second-order paddle
signal (right plot).

4. NewWave run-up at a plane beach

Focused wave group run-up on a plane beach is now investigated. First, the numerical
model is validated against laboratory measurements from the UKCRF, using the actual first-
order paddle signals as input data. The effect of linear wave generation is then examined
numerically by repeating the simulations with second-order accurate paddle signals.

Figure 9 shows the basin setup for the UKCRF run-up experiments, where the basin
had the following bed topography: 8.33 m horizontal bed from the paddle followed by a
1:20 plane beach, which extended to well above the still water level. Still water depth at
the paddles was 0.5 m. 44 wave gauges, measuring free surface elevation, were deployed at
0.25 m intervals starting at a distance of 6.83 m from the paddles (which is 1.5 m offshore
of the beach toe; and where the still water depth was 0.5 m) and finishing at a distance of
17.58 m (which is 0.75 m offshore of the still water line; and where the still water depth was
0.0375 m).

x(m)

z(
m
)

0.5m 1:20 beach

wave gauges

6.83 8.33 10.83 12.83 14.83 16.83 17.58 18.33

Figure 9: Basin setup and wave gauge placement for the UKCRF run-up experiments. Note that
the gauge locations shown in bold are used in Figures 14 and 18.
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4.1. Model validation

Converged, stable results were obtained for grid resolution ∆x = 2 cm and time step
∆t = 0.007 s, with recorded first-order paddle displacement signals used to drive the nu-
merical paddle. Figures 10 to 13 present the numerical (left plot) and experimental results
(right plot) for wave groups WG2 and WG6. Each figure comprises an x − t contour plot
determined from the 44 stacked free surface time series (corresponding to the locations of
the wave gauges), where the colour represents the free surface deviation from still water
depth.

Figure 10 shows the x − t propagation of the WG2 crest-focused group. Initially, the
group is rather compact, with three main crests (shown in red, orange and yellow) and two
troughs (shown in blue). As it propagates up the beach, the group disperses and becomes
less well defined. High-frequency waves can be seen trailing the main group. Shoaling is also
evident, for example by considering the first crest at x = 14 m to x = 17 m. Wave breaking
can also be deduced, for example from the sudden loss of amplitude of the central crest
(around x = 14.5 − 15 m in the numerical plot, or around x = 14 m in the experimental
plot). Long waves can be seen, reverberating along the length of the flume/basin. The
numerical model appears to capture all the main features of this propagating and evolving
wave group.
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Figure 10: NewWave run-up on a plane beach - total free surface for the WG2 crest-focused wave
group. Model predictions shown in the left plot. UKCRF measurements shown in the right plot.

Addition, subtraction and filtering are used again to isolate different frequency com-
ponents. Strictly speaking, these manipulations are not well defined inshore beyond wave
breaking or in very shallow water due to mis-alignment of crests and troughs, arising from
shallow water non-linear wave-wave interactions of the triad type. However, such analysis
can still be useful and is therefore performed at all 44 gauge locations. Figure 11 shows
the free surface subtraction time series, low-pass filtered at 1 Hz to isolate the linear terms.
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Group dispersion can be seen. There are no visible reflected waves, suggesting that the
linear components are dissipated on the beach.
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Figure 11: NewWave run-up on a plane beach - linear terms only. Model predictions shown in
the left plot. UKCRF measurements shown in the right plot.

Figure 12 shows the free surface addition time series, low-pass filtered at 0.5 Hz. The
second-order long error wave can be seen as a positive elevation (shown in yellow, orange and
red) propagating ahead of and underneath the front of the main wave packet. The second-
order bound waves, the set-down underneath the group, can be seen as a depression (shown
in blue). The initially bound long waves and the free long error waves are not dissipated at
the beach and can be seen sloshing in the flume/basin throughout the entire record, with
the bound waves being released at the beach and then propagating as free components. The
agreement between the model output and the experimental measurements is generally good.

Figure 13 shows the free surface addition time series, high-pass filtered at 0.5 Hz. These
high frequency waves, predominantly second-order sum components, are dissipated at the
beach as there are no significant reflected waves coming back from the beach to the paddles.
Both the bound and the free error sum frequency harmonics are present in the numerical
results and the experiments. The free error waves (denoted by e) can be seen following the
bound waves (denoted by b) as they propagate more slowly than the main group.
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Figure 12: NewWave run-up on a plane beach - long waves only. Model predictions shown in the
left plot. UKCRF measurements shown in the right plot.
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Figure 13: NewWave run-up on a plane beach - Even-order super-harmonics only. Model
predictions shown in the left plot. UKCRF measurements shown in the right plot.

Figure 14 shows the predicted and measured free surface time series at five locations
(highlighted with bold lines in Figure 9). In the crest-focused case, there is a mismatch
between the predicted and measured values of the central crest height and the second trough
depth at the first two locations. Wave breaking and bore formation appear to be well
captured by the model, apart from a slight time shift in some of the broken waves. Turning
to the trough-focused case, there is a mismatch in the predicted and measured values of
the first crest height and the central trough depth at the first location. Overall, although
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there are small differences, it is clear that the numerical model reproduces adequately the
evolution of both the crest-focused and trough-focused wave groups as they propagate up
the beach.
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Figure 14: NewWave run-up on a plane beach - free surface time series for the WG2 crest-focused
wave (left) and the WG6 trough-focused wave (right). Model predictions shown in thin black line.
UKCRF measurements shown in thick grey line.

Figure 15 and Table 2 show the good agreement achieved between the measured and
predicted values of horizontal run-up obtained for the eight NewWave cases considered,
although it should be noted that the predicted run-up values are all slightly larger than
those measured. The maximum error in the model run-up prediction is about 15 %, whereas
the average error (of the eight simulations) is about 6 %. The inferred experimental error
in the measured run-up values is about 5 % (see Hunt-Raby et al. (2011)). In general,
run-up increases with linear amplitude of the wave group, with crest-focused wave groups
producing smaller values of run-up compared to their trough-focused counterparts. The
numerical model mirrors this behaviour.
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Figure 15: Horizontal run-up of NewWave. Comparison between the model predictions and the
UKCRF measurements.

Table 2: Horizontal run-up of NewWave. Comparison between the model predictions and the
UKCRF measurements.

Wave Horizontal R Horizontal R % error
group measured (m) predicted (m)
WG1 1.96 2.25 14.8
WG2 2.20 2.39 8.6
WG3 1.80 1.97 9.4
WG4 1.17 1.19 1.7
WG5 2.71 2.79 3.0
WG6 2.73 2.77 1.5
WG7 2.28 2.29 0.4
WG8 1.30 1.43 10.0

4.2. Effect of long error wave on NewWave run-up

The influence of the error waves, induced by first-order wave generation, on the run-up
of NewWave focused wave groups is now investigated numerically. The error waves comprise
a low-frequency hump travelling ahead of the main group and high-frequency waves trailing
the main group. As shown in Section 3, the long error wave can be almost completely
eliminated by the use of a second-order paddle displacement signal calculated according to
Schäffer (1996). The second-order sum frequency error waves can only be partially weakened,
but as they travel behind the main wave packet, they will not affect the maximum run-up.
The eight run-up simulations involving NewWave groups are reproduced numerically again,
this time using paddle signals correct to second order.

Figures 16 and 17 present a comparison between using a first- (left plot) and a second-
order paddle signal (right plot) for wave groups WG2 and WG6. Each figure comprises an
x− t contour plot of the numerically calculated free surface deviation from still water depth.
The figures are centred on the propagating wave group to investigate the effect of the error
waves on the resulting wave form, which ultimately influences the run-up distance.
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The difference between using a first- and a second-order paddle signal is evident in Figure
16 which shows the x − t propagation of the WG2 crest-focused group. In the first-order
case, the left crest is much more pronounced throughout the entire record and breaks further
inshore. The central crest, similarly, is higher in the first-order case, and propagates further
up the beach. The right crest and the high frequency waves trailing the main group do not
appear to be significantly affected by the use of the second-order paddle signal.

Figure 17 shows the extracted long wave components. Use of the second-order paddle
signal has a profound effect on the long waves. The free wave, previously traveling ahead of
the group, is eliminated when second-order signal is used. The bound long wave can now be
clearly seen as a depression underneath the main wave packet. The pronounced left crests
and flatter left troughs observed in the first-order cases in Figure 16 are due to this spurious
long wave hump.

The free surface time series from five locations along the beach, presented in Figure
14, are revisited in Figure 18 with the wave groups created using a second-order paddle
signal superimposed in red. At x = 8.33 m and 10.83 m, the WG2 crest-focused wave group
(shown on the left) created using the second-order wave-maker has a smaller left crest and
deeper left and right troughs. Also, the second-order generated crests lag slightly behind
the corresponding first-order generated crests which experience contamination from the long
error wave, an advection effect as the wiggles ride on the long error wave. As the WG2 group
propagates further up the beach, the left crest is consistently smaller and the central crest
breaks earlier. For this reason, in the second-order case, the waves reaching the top of
the beach are considerably smaller. This leads to the significantly reduced run-up values
listed in Table 3. The WG6 trough-focused wave group (shown on the right) generated
with a second-order paddle signal also exhibits deeper troughs and delayed crests. The left
crest, which in the first-order case leads to the maximum run-up, is smaller throughout the
propagation process, resulting in a much shorter run-up distance.

Figure 19 and Table 3 indicate that the predicted maximum horizontal run-up values
obtained using second-order paddle displacement signals are on average about 40 % lower
than those obtained using first-order signals. This is a significant difference, indicating that
it is undesirable to use linear paddle signals to generate transient focused wave groups for
wave run-up estimates.
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Figure 16: NewWave run-up on a plane beach - total free surface for the WG2 crest-focused wave
group. Model predictions using a first-order paddle signal (left plot) and a second-order paddle
signal (right plot).
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Figure 17: NewWave run-up on a plane beach - long waves only. Model predictions using a
first-order paddle signal (left plot) and a second-order paddle signal (right plot).
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Figure 18: NewWave run-up on a plane beach - free surface time series for the WG2 crest-focused
wave (left) and the WG6 trough-focused wave (right). Model predictions when using a first-order
paddle signal (black line) and a second-order paddle signal (red line). For reference, UKCRF
measurements, using first-order paddle signals, plotted as blue area.
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Figure 19: Horizontal run-up of NewWave. Comparison between using first-order (black diamond
markers) and second-order (red star markers) paddle displacement signals.
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Table 3: Horizontal run-up of NewWave. Comparison between using first- and second-order paddle
displacement signals.

Wave Horizontal R (m) Horizontal R (m) predicted % difference
group using 1st order xp using 2nd order xp between using

measured, predicted predicted 1st and 2nd order xp
WG1 1.96, 2.25 1.27 -43.6
WG2 2.20, 2.39 1.25 -47.7
WG3 1.80, 1.97 1.15 -41.6
WG4 1.17, 1.19 0.97 -18.5
WG5 2.71, 2.79 1.19 -57.3
WG6 2.73, 2.77 1.29 -53.4
WG7 2.28, 2.29 1.39 -39.3
WG8 1.30, 1.43 0.97 -32.2

5. NewWave overtopping a seawall

In order to study wave group-induced overtopping, the focused wave tests listed in Table
1 are repeated for the same offshore bathymetry as for the run-up tests, except for a model
seawall mounted on the beach. As for the previous run-up cases in Section 4, the laboratory
experiments are reproduced by the numerical model to validate its accuracy in predicting
overtopping volumes. The recorded experimental paddle displacement signals, calculated
according to linear wave-maker theory, are again used in the numerical reproductions. Af-
ter validation, the overtopping simulations are repeated with second-order accurate wave
generation in order to study the effect of the long error wave on overtopping volumes.

For the UKCRF overtopping experiments, the bathymetry was as follows: 8:33 m of flat
bed from the paddles, followed by a 1:20 plane beach with a seawall, such that the offshore
toe of the seawall was constructed at a distance of 8.125 m from the beach toe, where the
still water depth was approximately 9.4 cm. Wave gauges were placed along the centre line
of the basin at 0.5 m intervals in the deeper sections of the beach and at smaller intervals
directly in front of and across the seawall. The gauges on the seawall were sunk in small
PVC tubes set into the seawall to allow recording of the overtopping flow. Figure 20 shows
the basin setup with the gauge layout (top) and details of the seawall dimensions (bottom).
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Figure 20: Top plot: basin setup and wave gauge placement for the UKCRF overtopping experi-
ments. Note that the gauge locations shown in bold are used in Figures 21 and 24. Bottom plot:
detailed sketch of the seawall and the sunken wave gauges for the UKCRF overtopping experiments.

5.1. Model validation

The Boussinesq numerical model is used to simulate the UKCRF overtopping experi-
ments, with grid resolution ∆x = 2 cm and time step ∆t = 0.007 s, as used for the run-up
investigations. A numerical filter is applied in the model to treat potential instabilities aris-
ing from sharp reflected waves (off the seawall) re-entering the finite-difference Boussinesq
part of the computational domain. First-order paddle displacement signals recorded directly
from the laboratory experiments are again used to drive the numerical paddle.

Figure 21 provides a comparison between the numerical and experimental free surface
time series at six locations (highlighted with bold lines in Figure 20), starting at the beach
toe (x = 8.33 m) and finishing at the seawall crest (x = 17.12 m). The initial stages
of group propagation appear to be well captured by the model. Agreement during the
breaking process is not particularly good, but the broken waves are modelled relatively
well. Water elevation on the seawall crest associated with overtopping flow is captured in
the bottom plots. The initial overtopping (resulting from the central crest for the WG4
crest-focused wave group; and from the left crest for the WG8 trough-focused wave group)
is satisfactorily predicted. However, any subsequent overtopping is much less accurately
forecast by the model. Note that the model prediction of overtopping volume (per unit
length of the seawall) is the worst for the pair WG4 and WG8, as can be seen in Table 4.
The maximum error in overtopping volume prediction is about 43 % (noting that this is for
small values of overtopping volume), whereas the average error (for the eight simulations) is
about 14 %. Values in Table 4 represent the overall overtopped volumes (per unit length of
the seawall) after 90 s, and therefore in some cases contain additional overtopping from re-
reflected waves. It should also be noted that the inferred experimental error in the measured
values of overtopping volume is about 5 %, as calculated from repeat measurements of
volumes in the experimental programme.
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Figure 21: NewWave overtopping a seawall - free surface time series for the WG4 crest-focused
wave (left) and the WG8 trough-focused wave (right). Model predictions shown in thin black line.
UKCRF measurements shown in thick grey line. Note the vertical scale in the bottom plot (top of
the seawall) is magnified.
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Figure 22: NewWave overtopping volume per unit length of the seawall. Comparison between the
model predictions and the UKCRF measurements.

Table 4: NewWave overtopping volume per unit length of the seawall. Comparison between the
model predictions and the UKCRF measurements.

Wave V measured V predicted % error
group (l/m) (l/m)
WG1 16.10 16.41 1.9
WG2 13.92 14.10 1.3
WG3 7.78 7.57 -2.7
WG4 6.51 3.71 -43.0
WG5 16.71 15.05 -9.9
WG6 17.29 15.71 -9.1
WG7 14.05 10.71 -23.7
WG8 5.04 3.70 -26.6

Figure 23 displays the water surface elevation time series at the seawall crest associ-
ated with the overtopping flow for all the NewWave tests, and allows visual comparison of
wave-by-wave overtopping events. In all cases, the model captures the main features of the
overtopping flow, but at times fails to predict some of the smaller successive overtopping
events. As shown in Table 4 and Figure 22, the large volume overtopping cases are well pre-
dicted numerically, with the biggest percentage errors occurring for the smaller overtopping
groups.
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Figure 23: NewWave overtopping a seawall - time variation of the water elevation on the seawall
crest (x = 17.12 m) associated with the overtopping flow for all eight NewWave groups. Model
predictions shown in thin black line. UKCRF measurements shown in thick grey line.

5.2. Effect of long error wave on overtopping

To investigate the effect of the wave-maker second-order error waves on focused wave
group overtopping volumes, the eight NewWave overtopping simulations are repeated with
second-order paddle displacement signals.

Figure 24 presents a direct comparison between using first- and second-order paddle
signals. Free surface time series of the WG1 crest-focused wave group are shown on the left,
and of the WG5 trough-focused group on the right. For each wave group, numerical results
when using a second-order paddle signal, and numerical and experimental results when
using a first-order paddle signal are plotted. When using a second-order signal, the crest-
focused wave group has deeper troughs. The left crest is smaller at all locations depicted.
The central crest is narrower, lags behind, and breaks earlier the the first-order case. At
x = 16.08 m, which is 0.375 m offshore of the seawall, the waves are significantly lower in the
second-order case, ultimately leading to a limited overtopping flow over the seawall (see the
bottom plot at x = 17.12 m which is on the seawall crest). The trough-focused wave group
generated with a second-order paddle signal also exhibits delayed crests and deeper troughs.
The left crest is thinner (meaning it contains less volume) and breaks considerably earlier.
Unsurprisingly, it results in a much lower overtopping surge over the seawall. For both wave
groups, the underlying long error wave, when using linear wave generation, greatly deforms
the wave groups and leads to much larger overtopping.
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Figure 24: NewWave overtopping a seawall - free surface time series for the WG1 crest-focused
wave (left) and the WG5 trough-focused wave (right). Model predictions when using a first-order
paddle signal (black line) and a second-order paddle signal (red line). For reference, UKCRF
measurements, using first-order paddle signals, plotted as blue area.

Figure 25 displays the wave-by-wave overtopping flow at the seawall crest for all eight
NewWave tests. For each wave group, the numerical results obtained using a second-order
paddle signal, and numerical and experimental results obtained using a first-order paddle
signal are plotted. The overtopping flow is substantially smaller for the second-order paddle
signals, which eliminate the long error wave.
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Figure 25: NewWave overtopping a seawall - time variation of the water elevation on the seawall
crest (x = 17.12 m) associated with the overtopping flow for all eight NewWave groups. Model
predictions when using a first-order paddle signal (black line) and a second-order paddle signal
(red line). For reference, UKCRF measurements, using first-order paddle signals, plotted as blue
area.

Table 5 summarises the overtopping volume per unit length of the seawall for the eight
NewWave focused wave groups. The predicted volumes resulting from using second-order
paddle displacement signals are compared to the predicted volumes obtained using first-order
paddle signals. Recall that this comparison is between nominally the same wave groups,
bar the contaminating second-order error waves. The volumes from simulations with the
corrected paddle signals are on average around 60% smaller. This is a very large difference;
much larger than the model inaccuracies (see Section 5.1 on model validation) or variation
in nominally repeated experiments. Figure 26 shows that the resulting overtopping volumes
are greatly reduced, and there is much less variation amongst the eight wave groups, when
second-order paddle signals are used.
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Figure 26: NewWave overtopping volume per unit length of the seawall. Comparison between
using first-order (black diamond markers) and second-order (red star markers) paddle displacement
signals.
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Table 5: NewWave overtopping volume per unit length of the seawall. Comparison between using
first- and second-order paddle displacement signals.

Wave Overtopping V (l/m) Overtopping V (l/m) predicted % difference
group using 1st order xp using 2nd order xp between using

measured, predicted predicted 1st and 2nd order xp
WG1 16.10, 16.41 2.79 -83.0
WG2 13.92, 14.10 3.07 -78.2
WG3 7.78, 7.57 2.41 -68.1
WG4 6.51, 3.71 2.79 -24.8
WG5 16.71, 15.05 3.28 -78.2
WG6 17.29, 15.71 4.07 -74.1
WG7 14.05, 10.71 5.43 -49.3
WG8 5.04, 3.70 2.51 -32.2

6. Summary and conclusions

Numerical predictions and laboratory measurements have been presented for NewWave
focused wave group run-up at a plane beach and overtopping of a seawall. The numerical
model was based on an enhanced version of the Boussinesq equations derived by Madsen and
Sørensen (1992) and a balanced form of the non-linear shallow water equations solved using
a shock-capturing scheme. The numerical wave tank featured an in-built moving piston
wave-maker, which was governed by paddle signals either taken directly from laboratory
experiments or calculated according to an appropriate wave-maker theory.

Simulations were made of the evolution of transient wave groups based on NewWave
theory propagating over a flat bed. The wave groups were generated according to linear and
Schäffer (1996) second-order wave-maker theory. It was found that use of first-order theory
gave rise to a significant sub-harmonic error wave that travelled at the front of the group,
substantially contaminating the shape of the transient group as it evolved.

The numerical wave tank has been validated extensively against laboratory data obtained
from focused wave group run-up and overtopping tests conducted in the U.K. Coastal Re-
search Facility. Close agreement was achieved between predicted and measured propagating
wave group profiles, free surface elevation time series, maximum run-up values, and over-
topping volumes obtained using the same paddle displacement signals (based on first-order
wave-maker theory). By repeating the numerical simulations using a second-order accurate
paddle generator, it was possible to assess the likely effect of the error waves induced by
the previous first-order wave-maker. Corresponding crest-focused and trough-focused cases
were considered in order to interpret the underlying wave groups harmonics. It was found
that the long error wave due to linear wave-maker theory spuriously enhanced the wave
heights of the leading crests and flattened the troughs. This led to delayed breaking and
increased substantially the maximum run-up distances and overtopping volumes. Use of
second-order wave generation reduced the predicted maximum horizontal run-up distances
by between 18 and 57% and the overtopping volumes by between 25 and 83% over the range
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of cases considered. It is therefore concluded that linear wave generation is inadequate for
wave group run-up and overtopping studies.
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