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Abstract – Numerical simulations are presented of the flow hydrodynamics and hypothetical contaminant 

dispersion patterns in Nador Lagoon, a shallow lagoon with a barrier island situated on the coast of Morocco.  

It is found that the natural circulation forced by the tidal flow in the lagoon is greatly affected by the 

development of an artificial inlet in the barrier island. The case study demonstrates the potential use of modern 

computational hydraulics as a tool integrated in the decision support system designed to manage a lagoon 

ecosystem.  

 

Keywords: Contaminant transport, Finite volume method, Nador lagoon, Shallow water equation, Unstructured 

mesh.  

 

 

I. Introduction 

The Nador Lagoon (Fig 1) is located on the eastern coast of Morocco.  It is a barrier lagoon of plan area about 

115 km
2
, and horizontal dimensions about 25 km by 7.5 km.  The lagoon is shallow with a water depth not 

exceeding 8 m. Its barrier island is 25 km long with an average width of 300-400 m (reaching 2 km in certain 

places) and is cut by an artificial inlet. The lagoon is nourished by several tributaries which nowadays serve as 

receiving waters for sewage discharged from upstream outfalls. There are three main urban centres in the 

surrounding area (which contribute to the sewage discharge), and two saline workings on the banks of the 

lagoon. The lagoon also hosts a fish farm that is of considerable importance to the local economy. 

 

The lagoon ecosystem is particularly sensitive to water contamination; and its evaluation and analysis is 

vitally important from both environmental and socio-economic points of view.  Reliable and computationally 

efficient estimates of the likely deterioration in water quality due to contamination could inform government 

regulations concerning environmental protection of the lagoon. Moreover, the implementation of 

countermeasures is  impossible without an accurate picture of various key processes, including the stage-

discharge inflow conditions from the feeder river system, the transport of contaminants within the lagoon itself, 

and its capacity for self-cleansing.  To this end, computational shallow flow simulations supplemented by 

species advection-diffusion models (representing the transport, dispersion, and fate of contaminants) are useful 

both for the design of long-term prevention and mitigation measures, and for the day to day management of the 

lagoon.   Although no field data are presently available for the Nador Lagoon, several non -validated theoretical 

studies have been undertaken into contaminant and bed-load transport in the lagoon.[1,2]  

 

 In this study, a two-dimensional finite volume model is constructed of the Nador Lagoon, which couples the 

shallow water equations and the species transport equation to simulate the transport of passive contaminants by 

tidal and river circulation within the lagoon.  The resulting coupled equations are expressed as a hyperbolic 

system of conservation laws with source terms [3,4], and discretized spatially using a finite volume scheme [5] 

such that mass and momentum are conserved in each computational cell, even in the presence of flow 

discontinuities.  A Godunov-type shock-capturing scheme is used to provide high-resolution solution of the non-

homogenous hyperbolic system of equations on a triangular unstructured computational mesh that is boundary 

fitted to the Nador Lagoon.  Roe’s approximate Riemann solver is used to determine the advective fluxes at cell 

interfaces [6].  Time integration is by means of a second order Runge-Kutta algorithm.  The method is high 

resolution, well-balanced, and aimed at representing 2D domains with complicated boundary and bed geometry.  

The main advantages of the finite volume method used herein are: (i) its implementation on unstructured meshes  

that fit a complicated 2D domain; (ii) the simultaneous advection in time of the water flow and the pollutant 

concentration, solving both problems to with the same order of accuracy; (iii) the ability to handle calculations of 

slowly varying flows or concentrations as well as rapidly varying flows containing shocks and/or fronts, and (iv) 

satisfaction of the exact C-property; and (v) guaranteed positivity of water levels and pollutant concentrations in 

the transient simulations.  All computations are undertaken on a personal computer with Core 2 Duo processor of 

2.10GHz CPU.  



 

 

This short paper is structured as follows.  Section II states the governing shallow water and species transport 

equations.  Section III briefly describes the numerical solver. The Nador Lagoon simulations are presented in 

Section III, and the results interpreted in terms of the impact of an artificial inlet on the lagoon circulation system 

and its flushing characteristics.  The results provide insight into the likely behavior of pollutan ts in the Nador 

Lagoon, and indicate hydrodynamic flow structures due to its complicated bed topography and friction.  Finally, 

the water quality renewal capacity of the Nador Lagoon is investigated by considering the self-cleansing 

processes for two artificial inlet options.  Section IV concludes the paper. 

 

 

 
Fig 1: Map of the Nador Lagoon with inset view of the bathymetry contours, and showing the triangular mesh used by the numerical model. 

 

II. Mathematical Model 

For shallow flow domains, such as the Nador Lagoon, where the flow is mainly horizontal the vertical 

acceleration can be ignored and hydrostatic pressure is assumed.  This implies that all waves simulated are long 

waves, whose amplitude is much smaller than both the depth and the wavelength.  Moreover, the domain is 

sufficiently small that the effect of Coriolis acceleration owing to the Earth’s rotation can also be ignored.  In 

such cases, an adequate mathematical description of the flow hydrodynamics is provided by the two -dimensional 

(2D) shallow water equations.  These are coupled with advection-diffusion equation to represent the transport of 

waterborne contaminants.  The resulting equation system is written in tensor notation as [7]  
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where i  and j  are indices and the Einstein summation convention is used, i.e. repeated indices mean a 

summation over the space coordinates;  ix  is the Cartesian coordinate;  h  is water depth; t  is time;  iu  is the 

depth-averaged velocity component in the i-th direction;  bZ  is the bed elevation above a fixed horizontal datum;  

9.81 /g m s is gravitational acceleration;    is water density,  C  is depth-averaged concentration,  iD  is the 

dispersion coefficient in the i-th direction,  cS  is the depth-averaged source term;  bi  is bed shear stress in the i-

th direction defined by bi b i j jC u u u    in which bC
 is the bed friction coefficient, which may be either 

constant or estimated from 
2/b zC g C

  , where 
1/6 /z bC h n

  is the Chézy constant ( bn
 is the Manning coefficient) 

and wi
 the  wind stress components   defined by

wi w i j jC w w w 
with wC

 the coefficient of wind friction 



 

defined by 
  30.75 0.067 10w a j jC w w   

 
where a is the air density and iw

 
is the velocity of wind in the i-th 

direction. 

 

Equations (1), (2) and (3) are written in the following conservative form: 
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where W  and S are the vectors of conserved variables and source terms, F  is the advective flux vector, and 
G  is the diffusion flux vector. 
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III. Numerical formulation 

The integral of Equation (4) over a triangular element is written as the sum of each edge contribution, 
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where ( , )n n
i iW W x t  is the vector of conserved variables evaluated at time level 

nt n t  , n  is the number of 

time steps, t  is the time step, and i
V

is the cell area iV
.  To evaluate the state 

n
iW , an approximation is 

required of the convective and diffusive flux terms at each cell edge.  The integral along the 
i j

 edge of a 

control volume of the normal flux 1 2( , )n
x yF W F F n n n

 can be written, 
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where  is the numerical flux vector and ijL
 is the edge length of ij

.  Herein, the following upwind scheme 

based on Roe’s approximate Riemann solver is employed to determine   on the control volume surfaces. At 

each cell edge and at time t n t   [8], 
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in which 
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where 
( , )ijnA W

is the flux Jacobian evaluated using Roe’s average state, R  and L  are the right and left 

eigenvector matrices of A , and 
A

 is a diagonal matrix of the absolute values of the eigenvector of A .  A four-

point finite volume interpolation is used to evaluate the diffusion flux through an inner edge ij
, so that:  
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where 
( , ) ( , )ij i ij j ijd d x d x   

, and ix
 is the intersection of the orthogonal bisectors of the edge i  and 

( , )i ijd x 
 is the distance between ix

 and the edge i  , and ( )ijmeas  is the length of the edge. 

The source terms are balanced by means of a two-dimensional implementation of the upwind scheme proposed 

by Vazquez et al. [9, 10] for treating the homogeneous part of shallow water equations, which satisfies the exact 

conservation C-property.  Integration of the source term over the control volume iV
 gives, 
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Following Bermudez et al. [11], this approximation is upwinded, and the source term 
nS replaced by a numerical 

source vector 
n , such that 
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Here, the point ijX
 [Should this be Xi or Xj ???] is defined as the projection of the source term vector in the basis 

of eigenvectors of the Jacobian matrix. Thus the function source term is, 
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where I is the identity matrix, 
( , )ijA W n

is the Roe flux Jacobian, and 
( , , , , )

n

i j i j ijs X X W W n
 represents an 

approximation of the source term at the cell interface ij
. 

To obtain higher-order spatial accuracy, the fluxes at each edge are calculated using a piecewise linear 

function of the state variable W  inside the control volume. For the cell-centred mesh, the MUSCL (Monotone 

Upstream Centred Scheme for Conserved Laws) approach is adopted [12], whereby the left and right values of 

the state variables are evaluated from: 
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in which ijN
 is the vector distance between the barycenter coordinates of cells iV and  jV

, and iW  and jW

represent the gradients on the triangles , respectively, iV
 
and  jV

. 

 

  Time integration is undertaken using the second-order Runge–Kutta method [13], 
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in which   

( )n t W W W  . 

For stability, the global time step must satisfy the CFL stability condition given by: 
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t

CFL u c
x


 
  

where c gh  is the wave celerity.  The Courant number CFL is set to 0.8 for all cases considered herein. 

IV. Simulations of the Nador Lagoon 

Fig. 1 shows the computational mesh fitted to the Nador Lagoon, based on interpolated measurements of the 

lagoon bed terrain.  The mesh comprises a total of 9240 traingles, and is refined according t o boundary and bed 

gradient criteria, in order that the mesh density be more concentrated in the more complicated  bed and nearshore 

regions of the lagoon.  Initially, the flow conditions are quiescent and the contaminant is distributed uniformly 

throughout the domain; i.e.  
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At river flow inlet nodes, the contaminant concentration inletC time history is specified. The water depth is set 

so that it is invariably positive, with mean value h0 and fluctuating free surface elevation 
fh such that  

0( ) fh t h h 
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 in which kA
 is the wave amplitude, k  is the angular frequency and k  is the tide phase of the k-th tidal 

constituent, noting that k = M2, S2, N2 or K1 in the present simulations.  

For water exiting the lagoon, the contaminant concentration is treated as having a transmissive boundary 

condition. For water entering the lagoon, the concentration at the open boundary nodes is set to zero, assuming 

that the incoming tide contains clean water. The water flow is forced with the main semidiurnal M2 tide, of 



 

amplitude 2
25MA cm

 which produces a maximum current speed of approximately 1.45 m/s through the lagoon 

inlet. Table I lists the physical and numerical parameters for this test case. 

 

 
TABLE I 

PARAMETERS AND REFERENCE QUANTITIES CONSIDERED IN THE PRESENT STUDY.  
 

Q uantity Symbol Unit Reference 

value  
Water density    kg/m

3
 1  

Gravitational acceleration g m/s
2
 9.81  

Manning coefficient  nb s/m
1/3

 0.001 

Wind velocity components wx, wy m/s 0 

T idal parameters at the 

lagoon inlet  
2MA
 

m 0.253 

2M  
rad/s 1.405E-4 

2M  
° -50 

 

 

The numerical model is used to assess the relative performance of two tidal inlet options in terms of certain key 

hydrodynamic characteristics of the Nador Lagoon, including water renewal and contamination dispersion.  The 

existing inlet is denoted Inlet O.  The proposed new inlet is denoted N.  Wind effects are neglected.  Uniform 

contamination at a concentration c = 1 is imposed throughout the domain. 

 

Fig. 2 shows the time-dependent decay in average concentration over the entire lagoon, where the 

average concentration is defined by: 
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For both inlet options, about 70% of the contaminant (by mass or volume ???) has been remov ed by the end of 

the sixth day.  At all times, the average concentration obtained for Option N remains consistently below that of 

Option O.  The results show that the tidal flushing is initially effective at decontaminating the lagoon, but that a 

residual level of contamination persists after a week.  

Next, we define the normalized concentration as  / maxC C  , where maxC
 denotes the maximum value of 

the initial released concentration distribution C0(X,Y). Table II presents the predicted results for water 

decontamination at three stations, owing to the tidal flushing through either Inlet O or Inlet N at three different 

times t = 1h, 3 days, and 6 days after the initial contamination has occurred.  Station 1 is located towards the 

north-west of the lagoon in a relatively stagnant sub-basin, and it is not surprising that tidal flushing through 

either inlet has a much reduced effect.   Stations 2 and 3 are located in the main basin, with Station 2 located 

nearer both Inlet O and Inlet N than Station 3.  The normalized contaminant concentrations are quite similar 

between Stations 2 and 3 indicating that the tidal flushing at both inlets has a fairly uniform effect throughout the 

main body of the lagoon.  

  
TABLE II  

NORMALIZED CONTAMINANT CONCENTRATIONS OBTAINED AT  THREE HYPOTHETICAL SAMPLING STATIONS FOR 
THE TWO INLET OPTIONS O AND N, AT DIFFERENT TIMES. 

 

 Inlet  
Option 

C/Cmax 
t = 1h 

C/Cmax 
t = 3d 

C/Cmax 
t = 6d 

Station 1 (m) 
(X = 7.24E+5, Y = 5.07E+5) 

O 1.005 0.919 0.546 

N 1.006 0.831 0.519 

Station 2 (m) 
(X = 7.29E+5, Y = 5.00E+5) 

O 0.990 0.603 0.354 

N 0.998 0.432 0.225 

Station 3 (m) 
(X = 7.37E+5, Y= 4.94E+5) 

O 1.014 0.647 0.353 

N 1.015 0.550 0.265 

 

 



 

 
Fig. 2: T ime evolution of predicted average contaminant concentration CA. 

 

Fig. 3 and Fig.4 present predicted contamination concentration contours and depth -averaged velocity vectors 

for Inlet O and Inlet N respectively.  In both cases, the intial effect of decontamination in the lagoon due to the 

tidal forcing is evident in a zone near the inlet(s).  Later, the decontamination occurs quite uniformly in the main 

basin, but zones of high concentration are evident in the northwest sub -lagoon region.  Option N seems better at 

reducing this contamination than Option O.  By the sixth day, the contamination has been considerably reduced 

throughout the basin, regardless of which Inlet is considered.  The tidal circulation patterns generated by Inlet O 

comprise three primary counter-rotating gyres in the main basin, with secondary gyres in the northwest and 

southeast basins.  For Inlet N, the situation is similar, except that there are four counter rotating gyres in the main 

basin, and this tends to contribute rather more to mixing in the basin.  In both cases, Station 1 is located near the 

middle of the northwest sub-basin, and close to a nearly stagnant zone within a gyre.  Station 2 is near the shear 

layers delineating the boundary of one of the primary gyres in the main basin.  Station 3 is in the shear layer 

between two counter rotating gyres, perhaps demarking a southwestern sub -basin.  The flow patterns are quite 

similar at each of the Stations, as are the concentrations. 

The numerical simulations indicate that Inlet N is more effective at water renewal in the lagoon than Inlet O.  

Obviously, the distribution of contaminants depends strongly on the tidal characteristics and the domain 

geometry.  The present test cases demonstrate the effectiveness o f the present finite volume model at 

representing steep horizontal gradients in the shallow flow and the plume like behavior of the initial 

decontamination zone within a complicated domain both in terms of bed terrain and boundary configuration.    

The present finite volume solver required CPU time of 3 days and 11 hours to simulate tidal flows lasting 6 

days on a personal computer (whose configuration is described above).  



 

 
Fig. 3: Spatial distributions of predicted (a) contaminant concentrations and (b) depth-averaged velocity vectors at three different 

simulation times (from top to bottom t = 1 h, 3 days and 6 days) for tidal flushing through Inlet O  



 

 
Fig. 4: Spatial distributions of predicted (c) contaminant concentrations and (d) depth-averaged velocity vectors at three different 

simulation times (from top to bottom t = 1 h, 3 days and 6 days) for tidal flushing through Inlet N 

 



 

V. Conclusions 

A numerical model based on the conservative form of a coupled system of two-dimensional shallow water 

flow and advection-diffusion equations has been used to simulate contaminant transport in the Nador lagoon, 

which has complicated bathymetry and an irregular coastal geometry.  The simulations, though highly idealized, 

indicate the potential of the model in predicting contaminant transport at field-scale, and in evaluating the 

relative impacts on tidal flushing of two inlet options, O and N. It is found that situating inlet N to the northwest 

of inlet O leads to an additional gyre being created in the lagoon to the benefit of its decontamination by tidal 

flushing.  
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