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Abstract  
A balanced adaptive scheme is proposed for the numerical solution of the coupled non-linear shallow 
water equations and depth-averaged advection-diffusion pollutant transport equation. The scheme uses 
the Roe approximate Riemann solver with centred discretization for advection terms and the Vazquez 
scheme for source terms.  It is designed to handle non-uniform bed topography on triangular 
unstructured meshes, while satisfying the conservation property. Dynamic mesh adaptation criteria are 
based on the local pollutant concentration gradients. The model is validated for steady flow over 
irregular bed topography, recirculation due to a sidewall expansion in a frictionless channel, and 
pollution advection in a flat-bottomed channel. An idealised application to the simulation of pollution 
dispersion in the Bay of Tangier, Morocco is presented, which demonstrates the capability of the 
dynamically adaptive grid model to represent water quality scenarios in a bay of non-uniform bed 
topography and complicated shoreline.  

 
Keywords : Shallow water equations; Pollutant transport; Finite volume method; Roe solver; Dynamic 
mesh adaptation; Unstructured meshes 

 

1.  Introduction 
Pollution of the Strait of Gibraltar has increased significantly in recent decades as a by-
product of the growth of maritime transportation activities. Pollution is particularly hazardous 

to ecologically sensitive coastal regions, such as the Bay of Tangier located on the southern 
coast of the Strait of Gibraltar.  The environment of the Bay of Tangier is subjected to human 

impacts from nearby urban development, industry, agriculture, fisheries, and ports (including 
the newly operational Tangier Mediterranean Port). These activities release toxic effluent that 
is causing ecological damage to the bay. 

Predictions of the risk posed to the water quality of the Bay of Tangier due to pollution 
from different sources could play an essential part in establishing guidelines for 

environmental remediation and protection. In particular, numerical models of flow 
hydrodynamics could aid decision makers in establishing effective countermeasures focused 
on reducing the pollutant discharges from particular sources. The numerical model presented 

herein solves the bay hydrodynamics in conjunction with passive species transport, enabling 
the user to estimate pollutant transport, concentration distribution, and basin residence time.  

The hydrodynamic module solves the two-dimensional depth-averaged shallow water 
equations and hence is used to investigate the forcing mechanism responsible for circulation 
patterns in the Bay of Tangier.  Pollutant transport is modelled by means of an advection-

diffusion equation for the depth-averaged concentration of substances contaminating the 
seawater. Herein, the resulting system of equations is formulated so that it constitutes a 

hyperbolic system of non-linear conservation laws with source terms.  
In recent years, there has been increasing interest in the design of numerical schemes 

based on non-linear conservation laws. A particular challenge is to obtain high-order accurate 

solutions in space and time for flows over complicated bed topography. Various finite volume 
schemes developed for general systems of hyperbolic conservation laws have been applied to 

the non-linear shallow-water equations (NLSWEs), utilising upwind methods based on 
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approximate Riemann solvers. Such solvers include Roe’s method [1], monotonic upstream 

schemes for conservation laws (MUSCL) in curvilinear coordinate systems [2][3], essentially 
non-oscillatory (ENO) schemes [5][6], the weighted essentially non-oscillatory method [6], 

and the Harten, Lax and van Leer (HLL) solver [7]. Most of these methods are capable of 
capturing shock-like behaviour to a high degree of accuracy and perform particularly well for 
steep-fronted flows like discontinuous, trans-critical flows over flat bed topography.   

However, for spatially varying bed topography, special treatment is required in order to 
discretise the component of the source term stemming from the bed gradient so that it 

properly balances the relevant flux gradient term and ensures water at rest remains so.  In a 
well-balanced solver, the discrete source terms balance the discrete flux terms. For example, 
Bermudez and Vazquez [8] proposed an upwind method for the non-linear shallow water 

equations with bed slope source terms, which was applied by Vazquez-Cendon [9] to a range 
of shallow water flow problems.  LeVeque [4] proposed a Riemann solver that balanced the 

source terms and flux gradients in each cell of a regular computational mesh.  However, the 
extension of this scheme for unstructured meshes is not trivial.  Hubbard and Garcia-Navarro 
[3] proposed a further numerical treatment, in which the upwind method of Bermudez and 

Vazquez is used for source terms.  Mention … Zhou …  Rogers et al.  … 
The present paper describes a finite volume shock-capturing scheme for the high-

resolution solution of the non-homogenous hyperbolic system of equations that represent 
shallow flow pollutant transport processes.  The computational mesh is unstructured, 
triangular, and dynamically adaptive.  Roe’s approximate Riemann solver is used for 

advective fluxes.  Time integration is by means of a Runge-Kutta algorithm.  The method is 
high resolution and aimed at representing 2DH domains with complicated boundary and bed 

geometry, such as the Bay of Tangier.  The paper is organized as follows.  Section 2 briefly 
outlines the governing equations.  Section 3 deals with the construction of an efficient well-
balanced high-order finite volume scheme for implementation on unstructured meshes. 

Section 4 describes the unstructured mesh generator???  Section 5 provides details of model 
validation.  Section 6 presents the demonstration study of hypothetical pollutant dispersion in 

the Bay of Tangier.  Conclusions are summarised in Section 7. 
 

2.  Governing Equations 

In conservation form, the two-dimensional non-linear shallow water equations are given by 
Equations (1) to (3) below [Give reference …].  The depth-averaged continuity equation is 
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where h is the total depth from the sea bed to the free surface, u and v are the depth-averaged 

velocity components in the Cartesian x and y directions, bz  is the bed elevation above a fixed 
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horizontal datum, g the acceleration due to gravity, and fxS  and fyS  are the bed shear stress 

components, defined as 

2222 , vuvCSvuuCS bfybfx      ,    (4) 

 

where   is the water density and 
bC  is the bed friction coefficient, which may be estimated 

from 
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bC  , where 
Mn  is the Manning coefficient.  Assuming the water pollutant mixture 

is fully mixed in the vertical direction, the depth-averaged pollution dispersion equation may 
be written in advection-diffusion form for a passive contaminant as, 
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where C is pollutant concentration, and Dx and Dy are pollutant diffusion coefficients in the x 

and y directions. Using matrix-vector notation, the coupled pollutant transport system can be 
written: 
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where W is the vector of dependent variables, F1, F2 are the inviscid flux vectors, 
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~
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~
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diffusive flux vectors, S is the vector of source terms, and the subscripts x, y, and t denote 

partial differentiation.  In full, the vectors are 
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3.  Numerical Model  

The flow domain is partitioned into a set of triangular cells or finite volumes, 
2iV .  Let 

ij  be the common edge of two neighbouring cells iV  and jV , with ij  its length, )(iN  is the 
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set of neighbouring triangles of cell 
iV , and ijn̂  is the unit vector normal to the edge ij  and 

points toward the cell jV  (see Fig. 1). A cell-centred finite volume method is then formulated 

where all dependent variables are represented as piecewise constant in the cell as follows, 
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Figure 1 

 
For the triangular elements used here, the integral around the element is written as the sum of 

the contributions from each edge, such that 
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i txWW  is the vector of conserved variables evaluated at time level tntn  , n 

is the number of time steps, t  is the time step, and iV is the area of cell iV . To evaluate the 

state n

iW , an approximation is required of the convective and diffusive flux terms at each 

edge of the cell. The integral along the i–j edge of a control volume of the normal flux 
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where Φ  is the numerical flux vector and ijL  is the edge length of ij . Herein, the following 

upwind scheme based on Roe’s approximate Riemann solver is employed to determine Φ  on 

the control volume surfaces.  At each cell edge [10],  
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( ijnWA  is the flux Jacobian evaluated using Roe’s average state, R and L are the 

right and left eigenvector matrices of A, and Λ is a diagonal matrix of the absolute values of 

the eigenvector of A.  For the system given by Equation (6), the flux Jacobian is given by, 
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which has real and distinct eigenvalues (confirming hyperbolicity) given by:  
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where c~  is the wave celerity, and u~ , v~  and h
~

are Roe average values defined as [10][11]:  
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A four point finite volume interpolation is used to evaluate the diffusion flux through an inner 

edge ij , so one has: 
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where ),() ,(ij ijjiji ΓxdΓxdd  , and ix  is the intersection of the orthogonal bisectors of the 

edges of iV  [Check this ???].  

 The source terms are balanced by means of a two-dimensional implementation of the 

upwind scheme proposed by Vazquez et al. [9] [12] for treating the homogeneous part of 
Saint-Venant equations, and which satisfies the exact conservation C-property. Integration of 
the source term on the control volume Vi is written, 
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Following Bermudez [13], this approximation is upwinded and the source term n
S replaced by 

a numerical source vector n
ψ , such that 
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At each cell interface ij , the contribution of the source term at the point ijX  is defined as the 

projection of the source term vector in the basis of eigenvectors of the Jacobian matrix. Thus 

the function source term is, 
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where I is the identity matrix, )ˆ,
~

( ijnWA  is the Roe flux Jacobian,  and )ˆ,,,,( ijjiji

n
nWWXXS


 

represents an approximation of the source term on the cell interface ij .  Its choice is crucial 

to obtain accurate results.  Using states Wi and  Wj the approximation n
S


 is defined by 
[13] as: 
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Define Hi, Hj, 
1

ijn  and 
2

ijn . 

To obtain higher-order spatial accuracy, the fluxes at each edge are calculated using a 

piecewise linear function of the state variable W inside the control volume. For the cell-
centred mesh, the MUSCL (Monotone Upstream Centred Scheme for Conserved Laws) 

approach is adopted, whereby the left and right values of the states variable are evaluated 
from:  
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in which ijN is the vector distance between the barycentre coordinates of cells iV  and jV . The 

normal gradients of the state variables are calculated by minimizing the quadratic functional 

[11]:  
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in which the vectors X and Y are …. The MUSCL approach gives a second-order spatial 

approximation. However, numerical oscillations can occur when evaluating the normal 
gradients of the state variables, and so a slope limiter is usually applied.  Here we consider 

two candidate limiters: (1) the van Albada limiter, 
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For the purpose of time integration, Equation (6) is expressed as 
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where   is an operator that includes the transport, diffusion and source terms of the system.  

For implicit time integration, TVD Runge–Kutta methods [14] or other ODE solvers can be 
applied to (18) to achieve a suitable order of accuracy in time. For the present work the 
second-order Runge–Kutta method has been adopted, given by,  

)(
2

1
WWW 

tnn 
        (23) 

in which 

)( nn t WWW     . 

 

To ensure stability of the present explicit scheme, the time step is set according to the 

Courant-Friedrichs-Lewy (CFL) criterion [14], giving: 
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where CFL  is the Courant number ( 10 CFL ).For all numerical solutions presented here, 
the Courant number is set to CFL = 0.65.  

The boundary conditions are as follows.  At a slip wall boundary, the velocity is 
projected tangentially onto the wall and there is no flux through the solid boundary. At a non-

slip wall boundary, 0nu  and 0nv . Open boundary conditions are set by the outgoing 

Riemann invariants for sub-critical inflow and outflow.  

 

4. Dynamically Adaptive Triangular Mesh 
To improve computational performance, an optimal mesh is used that is refined in regions of 

high gradient in the physical variables (e.g. at a flow discontinuity).  An adaptive procedure 
based on multilevel coarsening and refinement is implemented, aimed at constructing an 
adaptive mesh that dynamically follows the unsteady solution of the physical problem.  

Initially, a coarse mesh covers the computational domain.  From then on, using the solution as 
it evolves, we establish a criterion function that identifies volumes that should be refined.  The 

adaption criterion is based on the normalized concentration of the pollutant or water level, 
 

)(max

)(
/

)(max

)(
)(Crit

Kh

h

KC

C

ii VK

i

VK

i
i






        (25) 

 

where )( iC  and )( ih  are the pollutant concentration and the water depth at cell i . A list (L) 

is then established of triangles that must either be refined or coarsened based on the value of 
the adaptation criterion.  An array of integers is used to define, for each triangle of the coarse 

mesh, the level, m, of required adaptation.  For example, during refinement a hierarchical 
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multi-level of triangles is created (see Figure 2). For more details about the algorithm, we 

refer the reader to references [15][16][17]. 

 
Figure 2 

 
 

5.  Model Validation 
The numerical scheme has been validated against several benchmark tests, including 1D 

steady open channel flow over irregular bed topography, recirculation promoted by a side 
wall expansion in a frictionless canal, and pollutant advection in a flat-bottomed channel. In 

all cases, g = 9.81 m/s2. 
 

5.1  Validation Test 1: Steady flow over irregular bed topography   

FV solvers of the non-linear shallow water equations that do not balance the flux gradient and 
source terms, spurious results are obtained in cases involving non-uniform bed topography.  
To validate the present numerical model for a severe case of spatially varying bed terrain, the 

model is applied to the benchmark problem devised by Goutal [18] of steady flow over the 
bed topography listed in Table 1 and illustrated in Figure 3.  The bed slope is discontinuous, 

so this test problem provides an excellent indication as to how well a solver copes with the 
bed source term discretisation, and is particularly useful for testing schemes before practical 
application to natural watercourses. The same test case has also been used by Vazquez-

Cendon [9] and Tseng [19], among others.   
 

Table 1 

 

Figure 3  

 
The rectangular channel is 1500 m long and 40 m wide. The triangular mesh generated herein 

consists of 1619 elements and 1000 nodes.  The initial conditions are that the free surface 
elevation is prescribed to be 15 m above the zb = 0 datum level, and the discharge per unit 
breadth is q = 0.75 m2/s throughout the channel.  For all time t > 0, the boundary conditions 

are q = 0.75 m2/s at the upstream open boundary and h = 15 m at the downstream open 
boundary.  Bottom friction is neglected so that the test focused on checking the treatment of 

the source terms related to bed slopes.  
Figures 4, 5 and 6 present the numerically predicted and analytical [18] free surface 

elevation, velocity and discharge profiles along the channel.  An inset showing a close-up 

view is included in each figure.  In general, satisfactory agreement is achieved between the 
numerical predictions and analytical solutions. Moreover, a qualitative comparison with the 

results of Le Dissez et al. [19], who used an implicit finite volume method, indicates that the 
relative errors in the present model are very low.  
 

Figure 4  

 

Figure 5 
 

Figure 6  

 
5.2  Validation Test 2: Recirculation due to sidewall expansion in frictionless channel  

Two-dimensional laminar flow past a sudden expansion in a sidewall is next considered, in 
order to test the ability of the numerical model to reproduce the recirculation zone that 
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develops behind a step due to flow separation at a step.  The results will be compared against 

data obtained by Denham and Patrick [] who carried out an experimental and numerical study 
of recirculation in a water channel containing a sidewall expansion. The channel width was 2 

m before and 3 m after the expansion.  The dimension of the sidewall expansion was 
therefore, b = 1 m. The mean inflow velocity is U1 = 0.5 m/s, the flow depth at the 
downstream outlet is 1 m, and the eddy viscosity   = 0.00685 m2/s corresponding to a step 

Reynolds number 73Re 1 


bU
. The bottom friction is set to zero, and a no-slip boundary 

condition is imposed on the side walls.  The numerical experiments are performed on a quasi-
structured triangular mesh of 2048 cells with 1105 nodes.  

 

Figure 7 

 

Figure 8 

 

Figure 9 

 
The figures require some discussion! 

 
5.3  Validation Test 3:  Pollutant advection in a flat-bottomed channel 

For a coarse mesh, the Roe approximate scheme can be numerically dissipative, and this can 
have a serious negative impact on the accurate prediction of fronts when the simulation time 
is long.  This test examines how well the present adaptive scheme manages to reproduce pure 

convection of a pollutant by considering the choice of limiter and mesh adaptation criterion.   

The initial conditions throughout the channel are as follows : water depth )0,(0 xh  = 

0.05 m, depth-averaged velocity )0,(0 xu  = 1 m/s, and discharge per unit breadth 0q  = 0.05 

m2/s.  The channel is frictionless, with a flat horizontal bed.  Figure 10 shows the initial 

pollution concentration profile, given by a Gaussian pulse centred at x = 0.25 m. 
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Figure 10  

 

where 1C  = 10 and a = 0.01.  As time progresses, the pollutant concentration propagates as a 

wave of constant profile that moves along the channel to the right at constant speed u = 0.5 
m/s. In the numerical tests, we consider the propagation of this wave over several different 

meshes and using the van Albada and minmod limiters. The simulation results are grouped 
under three scenarios depending on the type of mesh used (Figure 11): 

I- Coarse fixed mesh (279 volumes, 180 nodes) without adaptation (Figure 11a) 

II- Coarse mesh with adaptation (Figure 11b) 
III- Fine fixed mesh (2174 volumes, 1198 nodes) without adaptation (Figure 11c) 

Open boundary conditions are applied at the inlet and outlet of the channel.  The lateral walls 
are slip.  
 Figures 12, 13, and 14 present comparisons of the numerical predictions with the 

analytical solution of the evolving concentration profile along the channel for the different 
limiters on a coarse fixed mesh, an adapted initially coarse mesh, and a refined fixed mesh.  

From Figure 12, it can be seen that the numerical prediction obtained using the van Albada 
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limiter is significantly less diffusive (and hence more accurate) than that using the minmod.  

The diffusive effect increases progressively with simulation time, with the amplitude of the 
initial concentration hump reducing by ~27 % for the van Albada limiter and ~ 60 % for the 

minmod limiter at time t = 25 s.  Small non-physical oscillations can be discerned 
immediately in front and behind the evolved concentration hump obtained using the van 
Albada limiter on the coarse fixed mesh (see the close-up inset of Figure 12).  These 

drawbacks are much less evident in the results obtained on the fine fixed mesh using the van 
Albada limiter.   Figure 14 shows that the amplitude of the concentration profile is better 

maintained and non-physical oscillations are almost eliminated. However, the CPU time 
(Table 2) required on the fine fixed mesh is 28 times longer than on the fixed coarse mesh for 
the van Albada limiter.  Figure 13 shows the results obtained on an adaptive mesh, 

commencing from a coarse mesh and refining according to Equation () ???  In this case, the 
numerical predictions obtained by the Roe scheme coupled with the van Albada limiter are 

much improved over those on the fixed coarse mesh, with the concentration wave amplitude 
remaining within 5% of the analytical solution.  Numerical dissipation is greatly reduced, and 
the CPU simulation time is more than 3 times faster than on the fine fixed mesh (Table 2). 
 

Figure 11  

 

Figure 12  

 

Figure 13  

 

Figure 14  
 

Table 2 

 

  

6.  Simulation of Pollutant Plume in the Bay of Tangier  
 

Figure 15 

 
The Bay of Tangier (Figure 15) is a semi-enclosed shallow basin located on the west coast of 

the southern Strait of Gibraltar.  The Moroccan city of Tangier is located immediately inland 
of the shore of the bay.  The bed topography is spatially quite non-uniform, with the mean 
water depth increasing progressively from 0 m at the shore to about 50 m at the interface with 

the greater Mediterranean Sea. The vertical flow structure in the Bay of Tangier consists of an 
upper layer of incoming cold fresh surface Atlantic water overlying a deep current of 

outgoing warmer salt water [9][18].  [But this seems stratified – then should you be using a 
3D model to incorporate this???]  The bay is heavily used by shipping, whose volume has 
grown since the recent development of a Mediterranean port at Tangier.  Assessment of the 

environmental risk is therefore required, and the present numerical tool is being developed 
with this longer-term aim in mind. 

The simulations presented herein test the dynamically adaptive scheme for an idealised 
version of the Bay of Tangier, noting its complicated geometry and non-uniform bathymetry.  
An initial mesh of 5702 volumes and 3000 nodes was created according to the boundary 

geometry for the Bay of Tangier shown in Figure 15.  Then the hydrodynamic module was 
used to simulate the flow field within the bay.  At a prescribed time, pollutant was injected 

into the fully established flow field.  The concentration of the injected pollutant is given by: 



 11 








 


2

2

1

2

1
10

)()(
exp

r

yyxx
CC  

where the initial pollutant concentration is 101 C  (units ???), x1 = 500 m, y1 = 4500 m, and  

r = 150 m. We assume a constant diffusion coefficient yyxx DD  = 0.001 m2/s and 

0 yyxx DD .  The Manning coefficient is set to n = 0.001 s/m1/3.  The flow is forced by a 

constant velocity profile on the western boundary of the domain, which decreases linearly 

from 1 m/s at the northwest corner of the domain to 0 at the western shoreline.  There is no 
wetting and drying.  Figure 16 shows the results obtained using the van Albada limiter on the 

adaptive mesh at times t = 3h (when the pollutant is released), 3.76 h, and 5h.  The Figure has 
three columns.  The first presents the adapted mesh, the second the velocity vector field, and 
the third the pollutant concentration distribution.  A close-up is also included of the local 

mesh in the vicinity of the pollutant plume.  The results show the convection of the pollutant 
from the time of its injection, as it advects with the water currents in the bay. The mesh adapts 

according to the pollutant concentration gradient (???), in order to capture the frontal 
behaviour of the plume. The maximum pollutant concentration reduces by 5%  by t = 0.76 h 
and 20% by t = 5 h.  The CPU time required to simulate the results at t = 3, 3.76 and 5 h is 

respectively 1.8, 4.2, and 8.45 h (including the hydrodynamic simulation time required to 
establish the flow field before injection of the pollutant).  The simulation was run on the same 

PC Pentium (Dual Core CPU - 1.5GHz) as the previous examples.  It is therefore found that 
the Roe-Vazquez approach coupled with the van Albada limiter on a dynamically adaptive 
mesh has facilitated a PC based model of pollution in the Bay of Tangier that runs at about 

half real-time giving plausible results at high resolution in regions where the gradients of 
concentration and flow variables are locally high.  [Formal mesh convergence tests need to be 

undertaken.  Is the computational domain sufficiently large?  Can you justify the western 
boundary condition?  Are there any field measurements you can use to corroborate your 
results?  What about tides?] 

 
Figure 16  

 
 

7.  Conclusions 
This paper has described a numerical model for simulating pollutant transport in the Bay of 
Tangier on the south side of the Strait of Gibraltar.  The numerical model solves the coupled 

non-linear shallow water and advection–diffusion equations by means of a second-order 
Godunov-type finite volume method on dynamically adaptive unstructured meshes. Attention 
has been given to ensuring that the flux gradient and source terms are properly balanced.  

Excellent agreement is achieved between the model predictions and Goutal.’s [18] analytical 
solution for steady unidirectional flow over irregular bed topography, confirming that the 

scheme is correctly handling spatial bed gradients in the vector of source terms.  Results in 
close agreement with experimental data by Denham and Patrick [] confirm that the model 
simulates advective and diffusive processes that characterise separation and recirculation 

effects in a channel with a sidewall expansion. The third validation test of pollutant advection 
in a flat-bottomed channel demonstrated that use of the van Albada limiter led to less 

diffusive but slightly more oscillatory results than for the minmod limiter.  For the same case, 
it was demonstrated that the use of a dynamically adaptive mesh led to a significant speed up 
in computational time over a fixed fine mesh, while retaining accuracy.  The application to the 

Bay of Tangier, though highly idealised, indicates the potential of the model in simulating 
pollutant transport at field scale for a situation involving complicated coastal geometry and 
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beach topography.  The method provides a relatively quick simulation (at about half real-time 

on a PC) that, with better input data and after proper calibration to field measurements, could 
be used in practice to provide water quality predictions useful in the environmental 

assessment of the Bay of Tangier.  Further studies should be performed in future, 
investigating chemical reactions and the influence of wind intensities and direction. 
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APPENDIX:  Notation list 

 

)ˆ,
~

( ijnWA  flux Jacobian evaluated using Roe’s average state 

c~   wave celerity  
C  pollutant concentration (give units) 
Cb  bed friction coefficient 
CFL  Courant number 

)(Crit i  adaptation criterion for cell i  

d  description needed 

dij  description needed … ),() ,(ij ijjiji ΓxdΓxdd   

Dx, Dy  pollutant diffusion coefficients in x- and y- directions (m2/s) 
F1, F2   inviscid flux component vectors 

1

~
F , 

2

~
F   diffusive flux component vectors 

g  acceleration due to gravity (m/s2) 
h  total depth from the sea bed to the free surface (m) 

h
~

  Roe average depth 

L  list of triangles for coarsening or refinement 
L  left eigenvector matrix of A 

ijL   edge length of ij  

m  required adaptation level 

)(meas
ji  description needed 

n  time step counter 
nM  Manning coefficient (give units) 

ijn̂   unit vector normal to ij , pointing towards cell jV  

yx nn ˆ,ˆ   Cartesian components of unit normal vector ijn̂  

N(i)  set of neighbouring triangles of cell iV  

ijN   distance vector between barycentre coordinates of cells iV  and jV . 

R  right eigenvector matrix of A 
S  vector of source terms 

n
S


   approximation to the source term on the cell interface ij  

Sfx, Sfy  bed shear stress components 
t  time (s) 

tn  time, tntn   (s) 

u, v  Cartesian components of depth-averaged velocity (m/s) 

u~ , v~    Roe average velocity components 

V  volume 

Vi  volume of i-th computational cell 
W  vector of dependent variables  

x, y  Cartesian horizontal distances from origin 
zb  bed elevation above a fixed horizontal datum (m) 
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t   time step 

1 , 
2 , 

3  eigenvalues 

ij   common edge of two neighbouring cells 
iV  and jV  

   water density (kg/m3) 

Φ   numerical flux vector 

Λ   diagonal matrix of the absolute values of the eigenvector of A 

n
ψ   numerical source vector   

),(θ YXi
 quadratic functional 

 

Define Hi, Hj, 
1

ijn  and 
2

ijn . 

Define X and Y 

Define   
 

 


