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Abstract 

Several locations in the Pentland Firth have been earmarked for the deployment of separate 
farms of tidal turbines. However, recent numerical modelling suggests that these farms will 

be inter-dependent and that they must work together to optimise their collective performance 
(see Draper et al. 2013). To explain this inter-dependence, in the present paper we develop an 

electrical circuit analogy to describe flow through the Pentland Firth, in which parallel 
connections in the circuit represent different sub-channels formed by the islands of Swona, 
Stroma and the Pentland Skerries. The analogy is introduced in stages, beginning with 

turbines placed in a single channel, then turbines placed in a sub-channel connected in 
parallel to another sub-channel, and finally more complicated arrangements in which turbines 

are installed both in parallel and in series within a multiply-connected channel. The analogy 
leads to a general formula to predict the tidal power potential of turbines placed in a sub-
channel connected in parallel to another sub-channel, and a predictive model for more 

complicated multiply-connected channel arrangements. Power estimates made using the 
formula and predictive model (which may be applied using only measurements of the 

undisturbed natural tidal hydrodynamics) are shown to agree well with numerical model 
predictions for the Pentland Firth, providing useful insight into how best to develop the 
resource. 

 
Keywords: Tidal stream power, Pentland Firth, Shallow water flow.   
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1. Introduction 

The Pentland Firth, UK, is a well-known candidate site for tidal stream power generation. In 
a recent paper, Draper et al. (2013) used a numerical model based on the shallow water 

equations to estimate the maximum power that can be removed by placing turbines across the 
entire Pentland Firth and, independently, across the sub-channels formed by the islands of 
Swona, Stroma and the Pentland Skerries (see Figure 1a for locations). For the entire Firth 

Draper et al. estimated a power potential (averaged over the tidal cycle) of 4.2 GW 
accounting for both M2 and S2 tidal constituents, which they found to agree reasonably well 

with a prediction from an existing theoretical model for turbines placed in a tidal channel due 
to Garrett and Cummins (2005) (hereafter GC05).  However, when turbines are placed across 
each of the sub-channels Draper et al. found that the maximum power which can be extracted 

from one sub-channel depends on the operation (or otherwise) of tidal turbines placed in 
parallel sub-channels or in series along the Firth. This finding underlines a complexity to the 

Pentland Firth tidal resource and importantly suggests that different developers must work 
cooperatively when deciding where best to locate farms of turbines in the sub-channels, or 
when deciding on how to operate tidal turbines at the sites earmarked by the Crown Estate 

(2011).  

The complexity of the Pentland Firth tidal power resource is similar to that reported by 
Sutherland et al. (2007) for Johnstone Strait, Canada, and Polagye and Malte (2009) for 

several idealised tidal channels. In each of these studies numerical models were used to show 
that the power removed by tidal turbines placed across a sub-channel could be significantly 
reduced if parallel sub-channels existed; however neither study provided a theoretical model 

to predict this reduction. More recently Atwater and Lawrence (2010) studied an idealised 
multiply-connected channel consisting of two sub-channels connected in parallel and 

demonstrated a similar reduction in power potential. In contrast to the earlier work Atwater 
and Lawrence also presented a predictive formula for power extraction, however this formula 
assumed that the tidal flow is quasi-steady; i.e. the flow rate is in phase with the time varying 

free surface elevation difference across the multiply-connected channel. Direct application of 
the Atwater and Lawrence (2010) model to make predictions for the Pentland Firth is 

therefore difficult to justify because the flow through the Firth is not quasi-steady (Draper et 
al. (2013)). Furthermore, Atwater and Lawrence (2010) provided no guidance on how to treat 
scenarios in which tidal turbines are placed in more than one location within the channel or 

scenarios involving more than two sub-channels.  

With this in mind, the aim of the present paper is to provide insight into the apparent 
complexity of the tidal resource in the Pentland Firth, and multiply-connected channels more 

generally, through the development of a predictive theoretical model that is valid for (i) 
multiply-connected channels in which tidal flow may or may not be quasi-steady, (ii) 
scenarios when tidal turbines are placed in more than one location within the channel, and 

(iii) multiply-connected channels with more than two sub-channels. To develop the 
theoretical model we have drawn on a revealing characteristic of the numerical results 

obtained by Draper et al. (2013). This characteristic is that the flow of water through the 
Pentland Firth appears to be analogous to current flowing through an electrical circuit, with 
the sub-channels formed by the islands of Swona, Stroma and the Pentland Skerries 

representing parallel connections in the circuit. For example, the numerical results indicate 
that when tidal turbines are placed between the islands of Swona and Stroma, the flows to the 

north of Stroma and to the south of Swona increase (see Case C in Table 2). Consequently the 
flow through the central sub-channel is reduced, in an analogous manner to how the current 
would reduce through a resistor connected in parallel when its resistance is increased.  
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Guided by this observation we adopt an electrical circuit analogy in this paper and use it to 
estimate power extraction from multiply-connected channels. To make the approach as 

general as possible, we start by developing the electrical circuit analogy in the context of the 
single tidal channel model presented by GC05. Next we extend the analogy to assess the 

power potential of one sub-channel connected in parallel to another sub-channel, and finally 
we consider the more general arrangement in which tidal turbines are placed both in series 
and in parallel within a multiply-connected channel. For the last two stages we apply the 

analogy to the Pentland Firth and make comparisons between theoretical predictions drawn 
from the electrical analogy and the numerical model results of Draper et al. (2013).  

It should, of course, be noted that our use of an electrical circuit analogy to describe shallow 

water flow is not new. Miles (1971) used an electrical circuit to analyse the surface wave 
response of a harbour and Lighthill (1978) provided a detailed discussion on the application 
of the electrical analogy to flow in channels.  More recently Rainey (2009) and Cummins 

(2013) respectively used the electrical analogy to interpret the tidal power potential of the 
Severn Estuary and of parallel inlets leading to an idealised enclosed basin. The analysis 

presented herein for parallel sub-channels is consistent with that of Cummins (2013), 
although it should be noted that the predictive formula derived in Section 3.2 of the present 
paper is unique in that it represents the power potential in terms of undisturbed hydrodynamic 

quantities; specifically the volume flow rate through the channel and elevation differences 
across the channel.  

The remainder of the paper is structured as follows. Firstly Section 2 briefly presents the 

results from a 2D shallow water numerical model used by Draper et al. (2013) to estimate the 
power potential of the Pentland Firth as a whole, and of its sub-channels. Next Section 3 
describes the application of the electrical analogy to the single channel model of GC05, 

followed by turbines installed in a parallel sub-channel, and finally turbines deployed in 
parallel and in series within a multiply-connected channel; with comparisons made to Draper 

et al. (2013) where relevant. Section 4 presents the main conclusions. 

 

2. Power Potential of the Pentland Firth 

Draper et al. (2013) explore the power potential of the Pentland Firth using a depth-averaged 
numerical model. Specifically, they estimate the maximum power that can be extracted by 

placing a row of turbines across the Pentland Firth, and various combinations of the sub-
channels formed by the islands of Swona, Stroma and the Pentland Skerries. Tables 1 and 2 

reproduce the key results obtained by Draper et al. Table 1 presents the maximum power 
(averaged over a tidal cycle) removed by one or more ‘strips’ of added bed roughness 
representing fence(s) of tidal turbines. These strips are outlined in Figure 1b together with the 

numerical mesh used within the Pentland Firth to simulate tidal currents. Table 2 gives the 
fractional change in amplitude of flow rate through the Pentland Firth (at A) and the sub-

channels at maximum average power extraction, compared with natural conditions. Table 2 
also gives the fractional change in elevation difference either side of the Pentland Firth 
(defined as 𝑎 in the caption) for the same conditions.  

Implications of the estimates in Table 1 and Table 2 have been discussed by Draper et al. 
(2013). The present paper provides further insight into these results, so as to assist regulators 

in developing the tidal resource of the Pentland Firth and other candidate sites involving 
similar multiply-connected channel systems. 
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3. An equivalent circuit analysis of a tidal channel 

3.1 Tidal fences placed in a single tidal channel 

To introduce the electrical analogy we begin by reviewing the model of GC05 for tidal 

turbines installed across a single isolated tidal channel (Figure 2a). GC05 model the flow 
through a tidal channel using the one-dimensional shallow water approximation to the 

momentum equation 

𝜌

𝐴

𝜕𝑄

𝜕𝑡
+

𝜌𝑄

𝐴

𝜕

𝜕𝑥
(
𝑄

𝐴
) + 𝜌𝑔

𝜕𝜁

𝜕𝑥
= −𝜌 (

𝐶𝑑

ℎ𝐴2
+ 𝛿) 𝑄|𝑄|, (1) 

where 𝑄(𝑥, 𝑡) is the one-dimensional flow rate through the channel, 𝑥 is distance along the 
channel, 𝑡  is time, 𝜁(𝑥,𝑡)  is the free surface elevation, 𝜌 is water density (taken as 1027 

kg/m3 throughout), 𝑔 is acceleration due to gravity, 𝐴(𝑥)  is the cross-sectional area of the 

channel (assumed constant over the tidal cycle), ℎ(𝑥) is the average water depth at any point 
along the channel (also assumed constant over the cycle), 𝐶𝑑  is a drag coefficient 

parameterising background friction in the channel, and 𝛿  is a resistance introduced to 

represent tidal turbines placed across the width of the channel. The definition of this 
resistance implies that the power extracted from the channel by turbines, averaged over a 

tidal period 𝑇, is �̅� = (𝜌 ∫ 𝛿|𝑄|
𝑇

0

3
𝑑𝑡)/𝑇. 

To simplify Equation (1) GC05 assume that the channel is short compared to the 
characteristic tidal wavelength, so that the flow rate will be approximately the same 

everywhere along the channel (as is the case for the Pentland Firth; see Draper et al. 2013). 
Equation (1) can thus be integrated along the channel length 𝑙 and rearranged to give  

𝜌𝑔𝜉0 = 𝜌𝑐
𝑑𝑄

𝑑𝑡
+ 𝜌𝛿𝑄|𝑄| + 𝜌 (

1

2𝐴𝑙
2 −

1

2𝐴0
2
+ ∫

𝐶𝑑

ℎ𝐴2

𝑙

0

𝑑𝑥) 𝑄|𝑄|, (2) 

where 𝑐 = ∫ 𝐴−1𝑙

0
𝑑𝑥 , 𝜉0 = 𝜉(0, 𝑡) − 𝜉(𝑙, 𝑡)  is the time-varying elevation (or ‘head’) 

difference either side of the channel, and the parameters 𝐴𝑙 and 𝐴0 define the cross-sectiona l 

areas at the exit and entrance of the channel, respectively. These latter parameters, although 
difficult to define individually, can be combined with the unknown bed friction in the 

channel. Equation (2) then becomes  

𝜌𝑔𝜉0 = 𝜌𝑐
𝑑𝑄

𝑑𝑡
+ (𝜌𝛿|𝑄| + 𝜌𝛿1|𝑄|)𝑄, (3) 

in which 𝛿1 now captures all the natural sources of energy loss in the channel which are 

proportional to the square of the flow rate (we will refer to this collective term as ‘drag’). 
Equation (3) illustrates that the dynamic pressure (left hand term) is responsible for both 
accelerating flow through the channel and performing work against natural drag and the 

operation of tidal tubrines (GC05). GC05 assume that the dynamic pressure does not change 
when turbines are added to the channel, which simplifies the analysis. They then solve 

Equation (3) directly for various channel geometries (defined by 𝑐 and 𝛿1) and determine the 
maximum power extraction; leading eventually to the general result: 

𝑃𝑚𝑎𝑥 = 𝛾𝜌𝑔𝑎𝑄𝑝 , (4) 
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where 𝑃𝑚𝑎𝑥  is the power potential of the tidal channel (i.e. the maximum power that can be 
extracted, averaged over a tidal cycle) and is dependent on the peak undisturbed flow rate 

through the channel 𝑄𝑝 and the amplitude of the dynamic head across the channel 𝑎 (which, 

as noted above, is assumed to remain unchanged with the addition of tidal turbines). The 

multiplier 𝛾 depends on the phase lag of the flow rate behind the driving head (GC05).  

An alternative method to investigate Equation (3) is to adopt an electrical circuit analogy. To 

introduce this analogy, Equation (3) can be compared with 

𝑉 = 𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼, (5) 

which describes the time varying current 𝐼 in an electric circuit with inductance 𝐿, resistance 

𝑅, and driving voltage 𝑉. Adopting 𝑄 ≡ 𝐼, direct comparison with Equation (3) thus implies 
that the dynamic pressure can be interpreted as the voltage driving the flow through the 

channel (i.e. 𝑉 ≡ 𝜌𝑔𝜉0 ) and the mass of water in the channel introduces an inductance  
𝐿 = 𝜌𝑐. The natural drag and tidal turbines represent non- linear resistors that depend on flow 

rate, with 𝑅1 = 𝜌𝛿1|𝑄| and 𝑅𝑡 = 𝜌𝛿|𝑄| respectively. Using these definitions, a single tidal 

channel is therefore equivalent to the electrical circuit in Figure 2b. 

With the adoption of the electrical circuit analogy, GC05’s assumption that the dynamic 
pressure does not change with the addition of turbines simply implies that the applied voltage 

remains unchanged. Addition of turbines to increase 𝑅𝑡, and hence the effective impedance in 

the circuit, must therefore lead to a reduction in the current flowing through the circuit (and 
hence the flow rate in the channel). From the electrical analogy it is therefore easy to see that 
tidal turbines reduce the flow rate through the channel which, in turn, implies the existence of 

an optimum value of power extraction (GC05).   

Maximisation of the power removed by tidal turbines is equivalent to optimising the power 
dissipated in the resistor representing the turbines. For an electrical circuit with linear 

resistors this optimisation is a well-known problem and leads to the familiar requirement of 
impedance matching, in which the resistance of the turbines should be set equal to the 
magnitude of the natural impedance in the channel (e.g. Rainey, 2009). For example, if we 

consider 𝑉0 = 𝜌𝑔𝜉0 = 𝑅𝑒{𝜌𝑔𝑎𝑒𝑖𝜔𝑡}  and initially assume that the resistances 𝑅  are 
independent of the flow rate (i.e. linear), then the optimum tidal device resistance is simply 

𝑅𝑡,𝑜𝑝𝑡 = |𝑍1| = ((𝜔𝐿1)
2 + 𝑅1

2)1/2 , where 𝑍1 = 𝑖𝜔𝐿1 + 𝑅1  is the natural impedance of the 

channel. The maximum power (averaged over a tidal cycle) can then be written as: 

𝑃𝑚𝑎𝑥 =
1

4
(

1

1 + 𝑅1/|𝑍1|
) |𝑉0 ||𝐼0| =

1

4
(

1

1 + 𝑅1/|𝑍1|
)𝜌𝑔𝑎𝑄𝑝 , (6) 

where the subscript ‘0’ refers to quantities before tidal turbines are introduced (i.e. when 
𝑅𝑡 = 0 ) and 𝑄𝑝  is the magnitude of the undisturbed flow rate (i.e. |𝐼0| ≡ |𝑄0 | = 𝑄𝑝 ). 

Equation (6) indicates that for a channel with drag-dominated impedance (𝑅1/|𝑍1| → 1) and 

a channel with no natural drag (𝑅1/|𝑍1| → 0), the optimum power ranges from 0.125𝜌𝑔𝑎𝑄𝑝 

to 0.25𝜌𝑔𝑎𝑄𝑝, respectively. Hence the optimum power is dependent on dynamic pressure, 

peak natural flow rate, and the proportion of the channel’s impedance due to drag. We note 

that a similar result to (6) is presented by Cummins (2013), but in a different form. 

It is simple to alter the result in Equation (6) to allow for the non- linear dependence of the 
resistors on the flow rate, and doing so leads directly to Equation (4). Clearly the form of 

Equation (4) is very similar to Equation (6); in the non- linear case the multiplier 𝛾 depends 
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on a single parameter 𝜆 = 𝑔𝑎𝛿1/(𝑐𝜔)2, which also describes the proportion of the channel’s 

impedance due to drag (but includes the dynamic head because of the non- linear dependence 
on flow rate). For inertia-dominated channels with no natural drag (𝜆 → 0) it can be shown 

that 𝛾 →0.24, whereas for a channel dominated by natural drag (𝜆 → ∞) it can be shown that 

𝛾 →0.19 (GC05); this is higher than the fraction of 0.125 for the linear case in Equation (6) 

because the natural impedance of the channel reduces as turbines are added (due to the 
dependence of the natural resistance on flow rate), and so the dynamic pressure driving flow 
through the channel can do relatively more work on the tidal turbines.  

Before extending our analysis to multiply-connected channels it is also interesting to note that 

for single channels the electrical analogy highlights that at least two of the three parameters – 
natural flow rate (current), dynamic driving pressure (voltage), or channel geometry and 

natural drag (natural impedance) – are needed to define completely the channel (circuit) in 
the natural state and, in turn, calculate the power potential of the channel. Hence kinetic flux 
in isolation, which may be used to infer only the flow rate in the channel in the absence of 

turbines, is not sufficient to estimate power potential (explaining the doubt concerning the 
estimate made by Black and Veatch (2005), and discussed in the context of the Pentland Firth 

by Draper et al. (2013)). Likewise, the metric of natural dissipation, which has also been used 
to interpret the tidal stream resource (DTI, 2004), is not sufficient because it only provides 
information on the natural resistance (not total impedance) coupled with flow rate in the 

channel. In contrast to the metrics of kinetic flux and natural power dissipation, Equation (4) 
includes both the flow rate (current) and the driving pressure (voltage).  

 

3.2 Tidal fences placed in parallel sub-channels 

We now consider the problem of fences of tidal turbines placed across a sub-channel that is 
located within a simple multiply-connected channel (see Figure 3a). To do this we begin by 

assuming that the tidal range is small and the entire channel system is compact (so that the 
flow rate within the channel is approximately the same everywhere along the channel; i.e. the 
flow is assumed to be non-divergent). The shallow water approximation to the momentum 

equation can then be integrated along various sections of the channel, leading to the system: 

𝜌𝑐1

𝑑𝑄

𝑑𝑡
= 𝜌𝑔 𝜉0 − 𝜌𝛿1|𝑄|𝑄 − 𝜌𝑔𝜉2, 

𝜌𝑐2

𝑑𝑄2

𝑑𝑡
= 𝜌𝑔𝜉2 − 𝜌𝛿2|𝑄2|𝑄2 − 𝜌𝛿|𝑄2 |𝑄2, 

𝜌𝑐3

𝑑𝑄3

𝑑𝑡
= 𝜌𝑔𝜉2 − 𝜌𝛿3|𝑄3|𝑄3 . 

(7a) 

(7b) 

(7c) 

where 𝑐1 = ∫ 𝐴−1𝑙1
0

𝑑𝑥 + ∫ 𝐴−1𝑑𝑥
𝑙1+𝑙2+𝑙3

𝑙1+𝑙2
, 𝑐2 = ∫ 𝐴 2

−1𝑙1+𝑙2
𝑙1

𝑑𝑥 , 𝑐3 = ∫ 𝐴 3
−1𝑙1+𝑙2

𝑙1
𝑑𝑥 , the 

intermediate lengths 𝑙1, 𝑙2 and 𝑙3 are nominally defined in Figure 3a (note the lengths of the 
sub-channels could, in general, be different), and 𝐴(𝑥), 𝐴2(𝑥)  and 𝐴3(𝑥)  are the cross-

sectional areas of the main channel and sub-channels, respectively. In Equation (7) the 

parameter 𝜉0 now describes the dynamic head difference across the entire multiply-connected 
channel system, 𝜉2 is the dynamic head difference across the sub-channels, 𝛿 is a parameter 

defining the resistance offered by tidal turbines (assumed to be placed in Sub-channel 2), and 

the parameters 𝛿1, 𝛿2 and 𝛿3 describe the natural drag in individual sections of the channel. 
Finally, 𝑄 is the total flow rate through the channel system and is, by definition, equal to the 

sum of the flow rates through Sub-channel 2, defined as 𝑄2 , and the remaining sub-channel, 

defined as 𝑄3 .  
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Taking 𝐼 ≡ 𝑄 Equation (7) is now equivalent to the parallel circuit in Figure 3c with the main 

connecting channel having inductance 𝐿1 = 𝜌𝑐1  and resistance 𝑅1 = 𝜌𝛿1|𝑄| , whilst the 

smaller sub-channels have inductance 𝐿2 = 𝜌𝑐2 and 𝐿3 = 𝜌𝑐3, and resistances 𝑅2 = 𝜌𝛿2|𝑄2| 
and 𝑅3 = 𝜌𝛿3|𝑄3|, respectively. The dynamic pressure difference across the entire channel is 

𝑉 = 𝜌𝑔𝜉0  and the dynamic pressure across the sub-channels is 𝑉2 = 𝜌𝑔𝜉2. The introduction 

of fence(s) of tidal turbines into Sub-channel 2 augments its resistance by 𝑅𝑡 = 𝜌𝛿|𝑄2|.  

The electrical circuit in Figure 3c is now used to determine the power potential of turbines 

placed in Sub-channel 2. Although this solution is only directly applicable for the multiply-
connected channels in Figure 3a, we point out in some practical situations it might be 
reasonable to reduce more complicated multiply-connected channels with more than two 

parallel sub-channels (e.g. Figure 3b) to the circuit represented by Equation (7). This 
reduction to an equivalent circuit, which is well-known in electrical circuit theory, requires 

that a single effective resistance and inductance can be determined for the connecting channel 
or the principal sub-channels (i.e. Sub-channel 2 and 3) if they have secondary sub-channels 
of their own. Given the non-linearity of the resistors in the context of tidal channels,  

determination of these effective values is only strictly possible if the flow in the secondary 
sub-channels is inertia-dominated (for sub-channels without turbines), drag-dominated or 

when the impedances of the secondary sub-channels are identical. Nevertheless, for more 
general flow regimes the reduction may still be a very good first approximation. For example 
this approximation is made implicitly by Draper et al. (2013) when comparing the power 

potential of the entire Pentland Firth (which contains sub-channels) to the single channel 
model of GC05; leading to good agreement. The approximation was also assumed by 

Sutherland et al. (2008) when comparing the ‘One Channel Open’ scenario (in which flow 
still splits into sub-channels in parts of the strait) to the single channel model of GC05; also 
demonstrating good agreement.  

To analyse more complicated multiply-connected channels than those in Figure 3 without the 

need for approximations (and to recover separate estimates of power extraction in scenarios 
with more than one deployment of tidal turbines) we introduce a predictive model in Section 

3.3. 

 

3.2.1 Approximate solution  

As was the case for the single tidal channel,  we explore the power potential of the turbines in 
the equivalent electrical circuit in Figure 3c assuming that the driving tide can be well 
represented by 𝜉0 = 𝑎cos (𝜔𝑡) and that this water level difference remains unchanged as tidal 

turbines are introduced. We also assume that the resistors 𝑅𝑖 are independent of flow rate (i.e. 

they are linear). With these assumptions equating the voltage (dynamic pressure) across the 
sub channels and invoking continuity of the current (flow rate) through the sub-channels 

leads to 

𝐼2 = 𝐼 − 𝐼3 = 𝐼 − 𝐼2
𝑍2 + 𝑅𝑡

𝑍3

 ,  (8) 

where 𝑍𝑗 = 𝜔𝐿𝑗 + 𝑅𝑗 is the impedance of the 𝑗th section of the channel, and 𝐼2 and 𝐼3 are the 

currents through Sub-channels 2 and 3, respectively. Applying Kirchhoff’s voltage law 

around the left hand loop in Figure 3c leads to  

𝑉 = 𝐼 (𝑍1 +
(𝑍2 + 𝑅𝑡)𝑍3

𝑍2 + 𝑅𝑡 + 𝑍3

). (9) 
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Combining Equations (8) and (9) then gives: 

𝐼2 = 𝑉 (
𝑍3

𝑍1(𝑍2 + 𝑅𝑡 + 𝑍3) + (𝑍2 + 𝑅𝑡)𝑍3

), (10) 

and the power extracted by the tidal turbines, averaged over a tidal period, can be written as: 

�̅� =
1

2
𝑅𝑡|𝐼2 |2 =

1

2
|𝑉|2𝑅𝑡

|𝑍3 |2

|𝑍1(𝑍2 + 𝑅𝑡 + 𝑍3) + (𝑍2 + 𝑅𝑡)𝑍3|
2
. (11) 

It is easy to show that this has a maximum when 𝑅𝑡 = |𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3|/|𝑍1 + 𝑍3|,  

�̅�𝑚𝑎𝑥 =
1

4
Γ
|𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3|

|𝑍2||𝑍1 + 𝑍3|
|𝑉2,0 ||𝐼2,0|, (12) 

where the additional subscript ‘0’ again refers to undisturbed quantities before tidal turbines 
are introduced, and 

Γ−1 = 1 +
𝑅𝑒{(𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3)/(𝑍1 + 𝑍3)}

|𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3|/|𝑍1 + 𝑍3|
. (13) 

We note that this result is identical to that obtained by Cummins (2013) who considered the 
linear problem in detail. Since the resistances and inductances are all positive (to be 
physically meaningful) it follows from Equation (13) that 1/2 ≤ Γ ≤ 1. 

Equation (12) can now be further simplified to give: 

�̅�𝑚𝑎𝑥 =
1

4
Γ|𝑉2,0||𝐼2,0| × (

|𝐼0|

|𝐼3,0|

1

|1 +
𝑉2 ,0

𝑉0

𝐼2,0

𝐼3,0
|

). (14) 

The form of Equation (14) is similar to that of Equation (6) for a single channel with linear 
resistors. In particular, the power potential is again dependent on (i) a multiplier (now given 
by Γ/4), which is again bounded between 0.125 and 0.25 depending on the dynamic balance 

of the multiply-connected channel, and (ii) the natural undisturbed current and voltage, but 
this time only across the sub-channel with tidal turbines. However, a key difference between 

Equation (14) and Equation (6) is the additional term in brackets, which accounts for the 
presence of the connecting and parallel channels. As expected, this additional term tends to 
|𝑉0 |/|𝑉2 ,0|  as 𝐼2,0/𝐼3,0 → ∞  and 𝐼0/𝐼2,0 → 1 , in which case the bypassing sub-channel 

vanishes (i.e. its impedance is infinite) and Equation (14) becomes identical to Equation (6). 
Alternatively, the additional term in brackets tends to 1 in the opposite limit as 𝐼2,0/𝐼3,0 → 0 

and 𝐼0/𝐼3,0 → 1, in which case the sub-channel into which tidal turbines are to be added 

offers little net impedance to the multiply-connected channel and so, as in the case of an 

isolated channel, the addition of tidal turbines will have little effect on the voltage across the 
sub-channel (although this voltage is now 𝑉2 ,0  and may be small if the impedance in the 

bypassing sub-channel is small). Finally a third limiting condition (which cannot be directly 

deduced from (14)) results when (𝑙1, 𝑙3) → 0 so that the impedance of the connecting channel 
limits to zero (i.e. 𝑅1, 𝐿1 → 0 ). Then both sub-channels are effectively uncoupled and 

𝑉2,0 ≡ 𝑉0  so that Equation (14) is again equivalent to Equation (6). These three limiting 

conditions are the same as those examined by Cummins (2013). 
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Motivated by the close resemblance between the linear and non-linear results for a single 
tidal channel given in Section 3.1, we now seek solutions for the power potential based on the 

full non- linear Equation (7), and compare them to the result in Equation (14). Simplifying 
Equation (7), noting continuity in flowrate, and introducing the non-dimensional 

parameters 𝑡′ = 𝜔𝑡, (𝜉′, 𝜉2
′ ) = (𝜉, 𝜉2)/𝑎, and (𝑄′,𝑄2

′ , 𝑄3
′ ) = (𝑄, 𝑄2, 𝑄3)𝜔𝑐1/(𝑔𝑎) leads to: 

[
 
 
 
𝑑𝑄′

𝑑𝑡′
𝑑𝑄2

′

𝑑𝑡′ ]
 
 
 
= 𝐌−1 [

cos(𝑡′) − 𝜆1(𝑄′|𝑄′| + 𝛿12
−1(1 + 𝛿𝑡2)𝑄2

′ |𝑄2′|)

𝜆1𝛿12
−1((1 + 𝛿𝑡2)𝑄2

′ |𝑄2
′ | − 𝛿32(𝑄

′ − 𝑄2
′ )|𝑄′ − 𝑄2

′ |)
], (15) 

where 

𝐌 =

[
 
 
 1

1

𝐿12

𝐿32

𝐿12

−
𝐿32

𝐿12

−
1

𝐿12]
 
 
 

. 

This defines a system of ordinary differential equations in terms of six dimensionless 
parameters 

𝐿12 =
𝐿1

𝐿2

, 𝐿32 =
𝐿3

𝐿2

, 𝛿12 =
𝛿1 

𝛿2

, 𝛿32 =
𝛿3 

𝛿2

, 𝛿𝑡2 =
𝛿

𝛿2

, and 𝜆1 =
𝑔𝑎𝛿1 

(𝜔𝑐1)
2
.   (16) 

The first four of these ratios can be interpreted as relative inductance and drag in the circuit, 
respectively, whilst the last parameter defines the dynamic balance in the multiply-connected 
channel (with 𝜆1 → 0 implying no natural drag and 𝜆1 → ∞ indicative of quasi-steady drag-

dominated conditions, provided 𝛿12 and 𝛿32 remain finite). The ratio 𝛿𝑡2 defines relative drag 

due to tidal turbines, and in turn the power removed by the turbines. 

The system of equations defined by Equation (15) can be solved by standard methods (e.g. 
Runge-Kutta methods) for various choices of 𝛿𝑡,2  to determine the maximum extractable 

power averaged over a tidal cycle. Based broadly on the form of Equation (14), we choose to 

write the maximum average power as  

�̅�𝑚𝑎𝑥 = 𝛾3
𝑄𝑝

𝑄3,𝑝

1

(1 +
𝑎2
𝑎

𝑄2,𝑝

𝑄3,𝑝
)
𝜌𝑔𝑎2𝑄2,𝑝 , 

(17) 

where 𝛾3  is a multiplier which is a function of the parameters in Equation (16), and 𝑄𝑝, 𝑄𝑝,2  

and 𝑄𝑝,3 are the amplitudes of the undisturbed flow rates in the connecting channel and sub-

channels 2 and 3, respectively. The parameters 𝑎 and 𝑎2 are the undisturbed amplitudes of the 
head difference across the complete multiply-connected channel and the sub-channels, 

respectively.  

Adopting Equation (17), we have calculated the maximum average power and 𝛾3  for a range 

of different combinations of the non-dimensional parameters defined in Equation (16). To 
ensure the combinations of non-dimensional parameters are realistic, each combination has 
been computed in terms of physical quantities. More specifically, the connecting channel 

geometry and the sub-channel geometries have been approximated with an effective channel 
cross-sectional area 𝐴𝑒,𝑗, effective depth ℎ𝑒,𝑗 , and effective length 𝑙𝑒,𝑗 (which can be thought 

of as actual dimensions for an equivalent rectangular channel), and the bed friction parameter 
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within each channel has been defined as 𝐶𝑑,𝑗 . The first four dimensionless parameters have 

thus been calculated as: 

𝐿12 ≅ (
𝑙1 + 𝑙3

𝑙2
)
𝐴𝑒,2

𝐴𝑒,1

,        𝐿32 ≅
𝐴𝑒,2

𝐴𝑒,3

≅ (
𝐴𝑒,1

𝐴𝑒,2

− 1)

−1

, and    

𝛿12 ≅ (
𝐴𝑒,2

𝐴𝑒,1

)

2

(
𝐶𝑑,1ℎ𝑒,2

𝐶𝑑,2ℎ𝑒,1

) (
𝑙1 + 𝑙3

𝑙2
),       𝛿32 ≅ (

𝐴𝑒,1

𝐴𝑒,2

− 1)

−2

(
𝐶𝑑,3ℎ𝑒,2

𝐶𝑑,2ℎ𝑒,3

). 

(18) 

in which it has also been assumed for simplicity that (i) the sub-channels have the same 
length, (ii) differences in the entrance and exit areas of the connecting channel and sub-

channels are negligible, and (iii) the sub-channel effective areas sum to that of the connecting 
channel. Table 3 lists the different physical ratios (𝐴𝑒,1/𝐴𝑒,2, (𝑙1 + 𝑙3)/𝑙2, 𝐶𝑑,1ℎ𝑒2/𝐶𝑑,2ℎ𝑒,1 , 

and  𝐶𝑑,3ℎ𝑒2/𝐶𝑑,2ℎ𝑒,3) that have been used to calculate the range of combinations of non-

dimensional parameters via Equation (18). These combinations have then been used together 
with various values of 𝜆1 (also listed in Table 3) to calculate 𝛾3 . In total 𝛾3  has therefore been 

computed for 34×6 = 486 different combinations of input parameters spanning a realistic 

range of multiply-connected channel geometries. 

Figure 4a presents the computed values of 𝛾3 . It can be seen that the value of 𝛾3  does not vary 
significantly despite the wide variation in input parameters outlined in Table 3. A few input 

combinations give 𝛾3 > 0.3, but these cases represent the more extreme geometries for which 

𝐴𝑒,1/𝐴𝑒,2 =1.1 and (𝑙1 + 𝑙3)/𝑙2=5; i.e. a relatively long connecting channel and a free sub-

channel that is much narrower than the sub-channel with tidal turbines. For all other cases it 
appears that a value of 𝛾3 =0.22 (a rough average through the results) is a very good 

approximation. This implies that Equation (17) with this value for 𝛾3  may provide a practical 
extension of Equation (4) for sub-channels connected in parallel to other sub-channels. 

Conveniently, the application of (17) in practice only requires estimates or measurements of 
the undisturbed peak flows 𝑄𝑝 , 𝑄𝑝,2, and 𝑄3,𝑝 and amplitudes 𝑎 and 𝑎2.  

Figure 4b shows the amplitude of the flow rate in the sub-channel with tidal turbines at 
maximum average power extraction, as a fraction of the undisturbed amplitude, for each set 
of parameters listed in Table 3. It can be seen that the ratio of flow at maximum power 

extraction is reasonably well-bounded between ~0.5 and ~0.7. A similar small variation in the 
relative flow rate at maximum power extraction has also been noted by Cummins (2013) who 
used it to form a prediction of the power potential of parallel-connected sub-channels which 

terminate in an enclosed bay. Cummins’ result is broadly consistent with the findings given 
in the present paper. However, as noted in the Introduction, Equation (17) can be used 

directly to estimate power potential, provided measurements of the natural tidal 
hydrodynamics are available. It does not necessarily require any estimate of the channel 
geometry or bed friction coefficient, which might be difficult to determine. 

 

3.2.2 Quasi-steady solution 

In the case of a drag-dominated multiply-connected channel (𝜆1 → ∞), the flow through the 

channel will be quasi-steady and it is then possible to solve Equation (7), and the 

instantaneous power, algebraically. This solution for a tidal channel that splits into two sub-
channels was first discussed by Atwater and Lawrence (2010), and can be written as (noting 
that the power is normalised herein by a slightly different metric to that used by Atwater and 

Lawrence (2010))  
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𝑃

𝜌𝑔𝜉2,0𝑄2,0

= 𝛿𝑡2

((1 + 1/𝛿32
1/2)

2
+ 1/𝛿12)

3/2

((1 + (1 + 𝛿𝑡2)
1/2/𝛿32

1/2
)

2

+ (1 + 𝛿𝑡2)/𝛿12)
3/2

.    (19) 

where 𝜉2,0 and 𝑄2,0 are the elevation difference and flow rate at any instant in the absence o f 

turbines. Extracting power also leads to a reduction in flow rate through the sub-channel with 

turbines, such that  

𝑄2

𝑄2,0

=
((1 + 1/𝛿32

1/2)
2
+ 1/𝛿12)

1/2

((1 + (1 + 𝛿𝑡2)
1/2/𝛿32

1/2
)

2

+ (1 + 𝛿𝑡2)/𝛿12)
1/2

.    (20) 

Equation (19) has a maximum as 𝛿𝑡2 is varied, which is dependent on 𝛿12  and 𝛿32 . This 
maximum (denoted as 𝛾𝑠 ) can be found numerically. Furthermore, if 𝜉2,0 = 𝑎2cos (𝜔𝑡), as is 

the case if there is a sinusoidal variation in the elevation difference across the entire multiply-

connected quasi-steady channel, the flow rate in the sub-channel with turbines can be written 

as 𝑄2,0 = 𝑄𝑝,2 |cos(𝜔𝑡)|1/2. Therefore the maximum power that can be extracted (averaged 

over a tidal cycle) is simply �̅�𝑚𝑎𝑥 = 0.56𝛾𝑆𝜌𝑔𝑎2𝑄𝑝,2  (where the factor 0.56 arises from 

averaging |cos(𝜔𝑡)|3/2  over a tidal cycle; see GC05). This result for the maximum average 
power is presented in Figure 5a for 𝜆1 → ∞. The corresponding change in flow rate at peak 

extraction, from Equation (20), is also plotted in Figure 5b.   

 

3.2.3 Application to the Pentland Firth 

We now investigate how well Equation (17) (with 𝛾3 = 0.22) agrees with the 2D numerical 
model results for the Pentland Firth documented in Draper et al. (2013). To do this we 

assume that the equivalent circuit in Figure 3c is appropriate for Cases A, B, C, D and E, and 
for Cases BC, BD and CD (i.e. that Channels B, C and D are all in parallel). The undisturbed 

flow rate amplitudes 𝑄𝑝 , 𝑄2,𝑝 and 𝑄3,𝑝 are obtained from the numerical model results, where 

𝑄2,𝑝 is the sum of the flow rates in two sub-channels in Cases BC, BD and CD, and 𝑄3,𝑝 is 

the sum of the flow rates in two sub-channels in Cases B, C and D. The dynamic head across 
the entire Pentland Firth is taken to be 𝑎 = 1.32 m (Draper et al. 2013) and, as in the theory, 

we assume that this remains fixed with the addition of tidal turbines. Results given by Draper 
et al. 2013 (see also Table 2) suggest that this is a reasonable assumption, since changes in 𝑎 

are less than 8 % for all cases except CD (for which the change is 16%). Lastly the dynamic 

head across the sub-channels is calculated from the elevation difference between locations P3 
and P4, or P5 and P6 for case E (see Figure 1 for the locations of points P1 to P6). These 
elevation differences are close to sinusoidal in time (see Figure 5) and have amplitudes of 

0.53 m and 0.26 m, respectively.  

Table 4 summarises the input values and compares the predictions using Equation (17) with 

the 2D numerical model results. In general there is reasonable agreement, with predictions 
based on the expected value of  𝑎2 in agreement to within 20 % of the 2D numerical model 

results for all cases. Furthermore, in all cases except CD Equation (17) gives a result that is 
significantly better than that obtained using Equation (4) (using the peak flow rate for the 
sub-channel(s), the dynamic head for the entire Pentland Firth and 𝛾 =0.22), which ignores 
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the interaction effects of the sub-channels and the ability of the flow to divert through 
different sub-channels. 

In practice, of the five variables that must be estimated to use Equation (17), the variable 𝑎2 

is perhaps the most difficult to select. This is because 𝑎2 should be calculated using points 
located immediately either side of the sub-channels where the mean elevation difference 

laterally across the channel is small. Since these locations are often hard to define, upper and 
lower bound estimates of 𝑎2 have been considered herein by taking the locations P3 to P6 to 

be any locations within the circular regions shown in Figure 1b. Power estimates using these 
upper and lower bound values are also given in Table 4, from which it can be observed that 

variations in 𝑎2  can lead to significant variations in power predictions. However, for the 
bound values considered, the predictions made using Equation (17) are still in much better 

agreement with the 2D numerical model results than the predictions given by Equation (4).  

Finally we note that in Table 2 the numerically predicted amplitude of flow rate at maximum 

extraction, relative to that in the natural state, is within the range displayed in Figure 4b.  

 

3.3 Tidal fences placed in series and parallel 

So far the electrical analogy has been used to review single tidal channels and to analyse a 

multiply-connected channel in which tidal turbines are installed in a parallel sub-channel. We 
now consider the more general case of tidal turbines installed in series and parallel within a 
more complicated multiply-connected channel system. In this case there are many different 

combinations of channel arrangements and so it is not practical to determine approximate 
analytical solutions for all arrangements. Instead, a simple predictive model is constructed 

based on an equivalent electrical circuit for the Pentland Firth, and each of the inductors and 
resistors in the circuit are calibrated using measurements of undisturbed flow and dynamic 
head across various sections of the Firth. It should be noted that although the predictive 

model is applied to the Pentland Firth herein, a similar model could also be devised for other 
multiply-connected channels. 

Figure 6 shows the equivalent electrical circuit for the Pentland Firth, which includes two 
parallel branches in series with the connecting channel. The first parallel branch has three 
sub-channels representing Sub-channels B, C and D, which are separated by the islands of 

Stroma and Swona, and the second parallel branch has two sub-channels representing passage 
E and a second passage denoted F, which is bordered by the Pentland Skerries and the 

Scottish mainland. There is a voltage drop (or dynamic pressure) across the two parallel 
branches of 𝑉2  and 𝑉3 , respectively, and within each sub-channel there is a resistor and 

inductor which describe the impedance of the sub-channels. The connecting channel accounts 
for the channel’s net impedance over and above that due to sub-channels (i.e. all locations 
along the channel between the branches of sub-channels). The total voltage (or dynamic 

pressure) across the circuit (multiply-connected channel) is 𝑉.  

To simplify our equivalent network, impedance associated with the body of water to the north 
of Swona is neglected, since the flow rate into and out of this region is relatively small.  
Radiation impedance for the connecting channel is also ignored because it is unlikely to have 

an effect on the assumed driving voltage unless the flow through the circuit ( i.e. Pentland 
Firth as a whole) significantly reduces. This is not expected in scenarios where sub-channels 

with significant relative cross-sectional area do not contain tidal turbines (and indeed the 
change was less than 20 % for all cases modelled by Draper et al. (2013); see also Table 2). 
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To use the equivalent circuit it is first necessary to calibrate the different electrical 
components. For the sub-channels, using the same assumptions outlined in Section 3.1, the 

dynamic balance across each sub-channel leads to 

𝑉𝑘 = 𝐿𝑘,𝑗

𝑑𝐼𝑗
𝑑𝑡

+ 𝜌𝛿𝑘,𝑗|𝐼𝑗|𝐼𝑗,    (21) 

where 𝑉𝑘 ≡ 𝜌𝑔 𝜉𝑘   and  𝐼𝑗 ≡ 𝑄𝑗 , and the subscripts 𝑗  and 𝑘  represent the 𝑗 th sub-channel 

within the 𝑘th branch of parallel sub-channels. Now, if the driving voltage and current 

through each sub-channel are almost sinusoidal, so that 𝑉𝑘~𝑅𝑒{|𝑉𝑘|e𝑖(𝜔𝑡+𝛼) } =

𝜌𝑔𝑎𝑘cos (𝜔𝑡+ 𝛼) , and 𝐼𝑗~𝑅𝑒{|𝐼𝑗|e
𝑖(𝜔𝑡+𝛽)} = 𝑄𝑗,𝑝cos (𝜔𝑡+ 𝛽) , where ω is the angular 

frequency of the tidal constituent and α and β are phase lags, the non-linear term |𝐼𝑗 |𝐼𝑗 in (21) 

can be reasonably well approximated by the first term in its Fourier series. Equation (21) can 
then be rewritten approximately as,  

𝑉𝑘 ≅ 𝐼𝑗 (𝑖𝜔𝐿𝑘,𝑗 +
8

3𝜋
𝜌𝛿𝑘,𝑗|𝐼𝑗|).   (22) 

Hence, provided 𝑉𝑘  and 𝐼𝑗  can be measured, the parameters describing resistance and 

inductance can be calibrated simply as: 

𝛿𝑘,𝑗 ≅
3𝜋

8𝜌|𝐼𝑗|
𝑅𝑒 {

𝑉𝑘

𝐼𝑗
}    and   𝐿𝑘,𝑗 ≅ 

1

𝜔
𝐼𝑚{

𝑉𝑘

𝐼𝑗
}.  (23) 

Replacing the voltage and current with dynamic pressure and flow rate, Equation (23) is 
equivalent to:  

𝛿𝑘,𝑗 ≅
3𝜋𝑔𝑎𝑘

8𝑄𝑗 ,𝑝
2 cos(𝛼 − 𝛽)    and   𝜌𝑐𝑘,𝑗 ≅ 

𝜌𝑔𝑎𝑘

𝜔𝑄𝑗,𝑝

sin(𝛼 − 𝛽).  (24) 

The resistance and inductance of the connecting channel (denoted by subscript 𝐴) can also be 

calibrated. In this case the dynamical balance across the entire multiply-connected channel 

can be written as: 

𝑉 − 𝑉2 − 𝑉3 = 𝐿𝐴

𝑑𝐼𝐴
𝑑𝑡

+ 𝜌𝛿𝐴|𝐼𝐴|𝐼𝐴 ,    (25) 

so that, following the logic for the sub-channels, 

𝛿𝐴 =
3𝜋

8𝜌|𝐼𝐴|
𝑅𝑒 {

𝑉 − 𝑉2 − 𝑉3

𝐼𝐴
}    and    𝐿𝐴 = 

1

𝜔
𝐼𝑚 {

𝑉 − 𝑉2 − 𝑉3

𝐼𝐴
}.  (26) 

Or, introducing dynamic pressure and flow rate 

𝛿𝐴 ≅
3𝜋𝑔𝑎𝐴

8𝑄𝐴,𝑝
2
cos(𝜎 − 𝜓)     and    𝐿𝐴 ≅ 

𝜌𝑔𝑎𝐴

𝜔𝑄𝐴,𝑝

sin(𝜎 − 𝜓),  (27) 

where 𝜉 − 𝜉2 − 𝜉3 ≅ 𝑎𝐴cos (𝜔𝑡 + 𝜎) and 𝑄𝐴 ≅ 𝑄𝐴,𝑝cos (𝜔𝑡+ 𝜓).    
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3.3.1 Calibrating the Pentland Firth 

Figure 5 illustrates the dynamic head difference across the Pentland Firth and both branches 
of sub-channels (approximated as the elevation difference between points P3 and P4, and P5 

and P6, respectively) over a tidal period when the numerical model is forced solely by the M2 
tidal constituent. Assuming that these elevation differences are sufficiently sinusoidal 
Equations (24) and (27) can be used to calibrate each of the elements in the electrical circuit 

of Figure 6.  

To perform the calibration we first estimate the dynamic head across the entire Firth and the 
two branches of sub-channels using the simulated elevation differences at points P1 through 

P6 in the 2D numerical model. This leads to 

𝜉0 = 1.32cos(𝜔𝑡) , 𝜉2 = 0.53 cos(𝜔𝑡 + 38.5o),     𝜉3 = 0.26 cos(𝜔𝑡 + 41.9o),   (28) 

where 𝜔 = 0.00014 rad/s for the M2 tide, and the phase difference of the dynamic head 

across the branches of sub-channels has been computed relative to the dynamic head across 
the entire Pentland Firth (calculated between points 𝑃1 and 𝑃2). Similarly, estimates of the 

flow rates through the entire Pentland Firth and the various sub-channels are obtained from 
the numerical model; the resulting flow rates and phase lags are given in the second and third 

columns in Table 5, respectively. Using these inputs, the predicted inductance and resistance 
for each circuit component are computed from Equation (24) and (27) and listed in the fourth 

and fifth columns of Table 5.  

The equivalent circuit can now be used to examine the power that can be extracted by placing 
tidal turbines in parallel and series across various sub-channels. For example, consider two 
separate deployments of tidal turbines in sub-channels B and E, which are represented by the 

two additional resistors 𝑅𝑡 ,1 = 𝜌𝛿𝑡,1|𝑄𝐵 | and 𝑅𝑡 ,2 = 𝜌𝛿𝑡,2|𝑄𝐸 | in the equivalent circuit (as 

shown in Figure 6). The dynamic model describing the equivalent circuit can now be written, 
using Kirchoff’s laws, as a system of ordinary differential equations. For example:  

[
 
 
 
 
 
 
 
 
𝑑𝑄

𝑑𝑡
𝑑𝑄𝐵

𝑑𝑡
𝑑𝑄𝐶

𝑑𝑡
𝑑𝑄𝐸

𝑑𝑡 ]
 
 
 
 
 
 
 
 

= 𝐌−1

[
 
 
 
 𝜌𝑔𝑎𝐴cos(𝜔𝑡) − (𝜌𝛿𝐴𝑄𝐴|𝑄𝐴 | + 𝜌(𝛿𝑡,1 + 𝛿𝐵)𝑄𝐵|𝑄𝐵 | + 𝜌(𝛿𝑡,2 + 𝛿𝐸)𝑄𝐸|𝑄𝐸 |)

𝜌𝛿𝐶𝑄𝐶 |𝑄𝐶| − 𝜌(𝛿𝑡,1 + 𝛿𝐵)𝑄𝐵 |𝑄𝐵 |

𝜌𝛿𝐷(𝑄 − 𝑄𝐵 − 𝑄𝐶 )|𝑄 − 𝑄𝐵 − 𝑄𝐶 | − 𝜌(𝛿𝑡,1 + 𝛿𝐵)𝑄𝐵|𝑄𝐵 |

𝜌𝛿𝐹(𝑄 − 𝑄𝐸)|𝑄 − 𝑄𝐸 | − 𝜌(𝛿𝑡,2 + 𝛿𝐸)𝑄𝐸|𝑄𝐸| ]
 
 
 
 

, (29) 

where  

𝐌 = [

𝐿𝐴 𝐿𝐵

0 𝐿𝐵

0 𝐿𝐸

−𝐿𝐶 0
−𝐿𝐷 𝐿𝐵 + 𝐿𝐷

−𝐿𝐹 0
𝐿𝐷 0
0 𝐿𝐸 + 𝐿𝐹

], 
 

and the average power extracted by the two deployments of tidal turbines, for a given choice 

of 𝛿𝑡,1 and 𝛿𝑡,2, is given by �̅� = (∫ {𝜌𝛿𝑡,1|𝑄𝐵 |3 + 𝜌𝛿𝑡,2|𝑄𝐸 |3}
𝑇

𝑑𝑡) /𝑇.  

To confirm that the calibrated inductors and resistors lead to the same flow rates as predicted 

by the 2D numerical model we first solve Equation (29) for 𝛿𝑡,1 = 𝛿𝑡,2 = 0. The final two 

columns of Table 5 show that there is reasonable agreement. Next, the system is solved for 
numerous combinations of 𝛿𝑡,1 and 𝛿𝑡,2 in order to determine the maximum extracted power 
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averaged over a tidal cycle.  This calculation is repeated for turbines placed concurrently in 
sub-channels C and E, and D and E, respectively. Table 6 summarises the power estimates 

and predicted flow rates at maximum power extraction and compares them with the 2D 
numerical model. There is reasonable agreement between the estimates, with at most only 

29% and 19% differences between the equivalent circuit model and the 2D numerical model 
for predictions of maximum average power and flow rate, respectively.  

It should be noted that the values of the inductors and resistances in the equivalent circuit are 
sensitive to the flow and dynamic head estimates used for calibration. As for parallel-

connected channels, perhaps the most uncertain of these estimates is the dynamic head across 
the parallel sub-channels. To investigate further the sensitivity to the choice of this input, 

Table 6 also gives upper and lower bound predictions from the equivalent circuit model when 
𝜉2 and 𝜉3 are calculated using any points within the circles drawn in Figure 1b. Across these 

bound values the agreement is within 45% for the power prediction and within 37% for 
prediction of flow rate. These estimates agree less well with the numerical model, but they 

are nevertheless useful given that there is currently no other simple and straightforward 
means to estimate the combined power potential of tidal turbines placed in parallel and series 
within a multiply-connected channel.  

 

4. Discussion 

An equivalent electric circuit analogy has been used to unlock some of the complexity in 
predicting the power that can be extracted by tidal turbines placed within multiply-connected 

channels. This analogy has led to the development of a simple predict ive formula, Equation 
(17), which is in broad agreement with that given by Cummins (2013) but can be used to 

assess the power potential of turbines deployed in a sub-channel connected in parallel to 
another sub-channel using only measurements of natural tidal hydrodynamics. The formula 
has been shown to give predictions in reasonable agreement with results from a depth-

averaged numerical model of the Pentland Firth, and this indicates that Equation (17) could 
be used to provide an initial tidal resource assessment of other multiply-connected channels 

with parallel sub-channels. Indeed its performance is likely to be much better than Equation 
(4).  

The equivalent electric circuit analogy can also be applied to complicated scenarios, in which 

tidal turbines may be placed in series and parallel across different sub-channels of a multiply-
connected channel.  Herein, an equivalent circuit was developed for the Pentland Firth and 

the inductors and resistors within the circuit were calibrated using measurements of the 
natural tidal hydrodynamics. The effect of adding tidal turbines (i.e. resistors) to this 
multiply-connected channel system (i.e. equivalent circuit) was then examined by solving a 

system of ordinary differential equations describing the circuit. Reasonable agreement was 
obtained between the power estimates obtained using the simplified electric circuit model and 

those from the 2D numerical shallow flow solver for the Pentland Firth. This provides 
confidence in the model and also provides insight into the dynamics of tidal flow in the 
Pentland Firth and the tidal resource more generally. 

Finally, as pointed out by Draper et al. (2013) and Adcock et al. (2013) it should be noted 
that the estimates in Table 1 are only upper bounds to power generation. The useful power 

that can be removed by tidal turbines from a multiply-connected tidal channel such as the 
Pentland Firth will be necessarily lower due to environmental constraints and the fact that 
tidal turbines are not perfectly efficient based on hydrodynamic arguments alone. In the latter 

case, linear momentum actuator disc theory or a similar model could be used to represent 
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turbines so as to give a better estimate of the useful (or available) power for generation (see, 
for example, Houlsby et al. (2008), Vennell, (2010) and Adcock et al. (2013)). Importantly, 

the use of a predictive model based on an equivalent electrical circuit could be used to 
represent the multiply-connected channel in this exercise providing a more efficient means to 

account for the interaction between turbine deployments in different sub-channels than more 
computationally demanding 2D or 3D numerical models.  
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Tables 

Table 1: Maximum averaged extracted power for various combinations of tidal deployments 

in the Pentland Firth. A* is calculated with M2 and S2 tidal forcing at the boundary of the 
numerical model, all other values are with M2 tidal forcing only. Reproduced from Draper et 

al. (2013). 
 

Case 
Locations modelled (Maximum power extraction, MW) Total Power 

Extracted (MW) A B C D E 

A 3748 - - - - 3748 

A* 4187 - - - - 4187 

BCD - 320 2371 1087 - 3779 

B - 122 - - - 122 

C - - 1420 - - 1420 

D - - - 388 - 388 

E - - - - 325 325 

BC - 217 1520 - - 1737 

BD - 148 - 412 - 560 

CD - - 2228 1000 - 3228 

BE - 108 - - 314 422 

CE - - 1310 - 213 1523 

DE - - - 316 284 600 
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Table 2: M2 amplitude in flow rate through the entire Pentland Firth (at A) and the sub-
channels (B, C, D and E) at maximum power extraction, as a fraction of natural undisturbed 

M2 amplitude in flow rate. Values in bold are the locations where tidal turbines are deployed. 
Final column gives the change in amplitude of the elevation difference between points P1 and 

P2 at maximum power extraction (defined as 𝑎), relative to that in the natural state. (Note: * 
value rounded up from 0.996). Reproduced from Draper et al. (2013). 

 

Case A B C D E 

Change 

in, 𝑎 

A 0.58 0.59 0.58 0.59 0.69 + 17 % 

B 1.00* 0.56 1.02 1.02 1.00 + 0.0 % 

C 0.84 1.24 0.53 1.45 0.85 + 6.7 % 

D 0.97 1.09 1.14 0.50 0.95 + 1.6 % 

E 0.96 0.96 0.97 0.95 0.58 + 1.4 % 

BC 0.82 0.63 0.56 1.64 0.94 + 8.0 % 

BD 0.96 0.58 1.29 0.58 1.10 + 2.2 % 

CD 0.68 1.52 0.59 0.62 0.75 + 16 % 

BE 0.94 0.54 0.98 0.95 0.46 + 2.2 % 

CE 0.82 1.20 0.54 1.40 0.53 + 9.4 % 

DE 0.92 1.03 1.09 0.47 0.50 + 5.3 % 

BCD 0.61 0.57 0.56 0.61 0.67 + 17 % 
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Table 3: Parameter range explored for the multiply-connected channel with turbines installed 
in a parallel sub-channel. 

 

𝐴𝑒,1/𝐴𝑒,2 (𝑙1 + 𝑙3)/𝑙2, 
𝐶𝑑,1ℎ𝑒2/

𝐶𝑑,2ℎ𝑒,1 , 

𝐶𝑑,1ℎ𝑒2

/𝐶𝑑,2ℎ𝑒,1 
𝜆1 

1.1, 2, 10 0.2, 1, 5 0.5, 1, 2 0.5, 1, 2 
1, 2.5, 5, 10, 100, 

200, ∞ 

 

 

Table 4: Comparison of maximum power predicted by numerical model with that by 

Equation (17) and Equation (4). For 𝑎2 an expected value (Ex.), upper bound (UB) and lower 

bound (LB) are given. The UB and LB are selected by considering all points within a 1.5 km 
radius of P3 and P4 and 750 m radius of P5 and P6 (for Case E) defined in Figure 2. Numbers 
in bold are percentage differences with the model results in Table 1.  

 

Case 

Inputs Predicted Power Potential, 𝑃𝑚𝑎𝑥 

𝑄𝑝 𝑄2,𝑝 𝑄3,𝑝 𝑎 𝑎2 Eq. (17) Eq. (4) 
Table 

1 

10
6
 m

3
/s m 

m MW 
MW MW 

LB UB Ex. LB. UB Ex. 

A 1.17 1.17 0.00 1.32 NA NA NA NA NA 
3423 

9% 
3031 3748 

B 1.17 0.08 1.09 1.32 0.51 0.63 0.53 94 116 
98 

20% 
234 122 

C 1.17 0.76 0.40 1.32 0.51 0.63 0.53 1449 1628 
1481 

4% 
2223  1420 

D 1.17 0.32 0.84 1.32 0.51 0.63 0.53 439 527 
454 

17% 
936  388 

E 1.17 0.34 0.80 1.32 0.21 0.30 0.53 217 302 
264 

18% 
995  325 

BC 1.17 0.84 0.32 1.32 0.51 0.63 0.53 1724 1904 
1757 

1% 
2458  1737 

BD 1.17 0.40 0.76 1.32 0.51 0.63 0.53 578 687 
597 

7% 
1170  560 

CD 1.17 1.09 0.08 1.32 0.51 0.63 0.53 2877 2967 
2894 

10% 
3190 3228 
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Table 5: Calibration of parameters to define inductance and resistance for the different 
elements in the equivalent electrical circuit used to describe the Pentland Firth. Comparison 

of simulated undisturbed flow rates is also made between the equivalent electric circuit model 
and the 2D depth-averaged model. Note: the phase is the phase lag relative to the dynamic 

head across the entire Pentland Firth.  
 

Channel 

2D numerical model 
Inductance, 

𝐿𝑘,𝑗 
Drag, 𝛿𝑘,𝑗 

Equivalent electric 
circuit model  

𝑄𝑗,𝑝 Phase lag 
kg m-4 106 kg m-7 

𝑄𝑗,𝑝 Phase lag 

10
6
 m

3
/s deg. 10

6
 m

3
/s deg. 

Connecting 

Channel 
1.17 49.6 29.9 2.06 1.15 50.6 

Sub-channel B 0.08 37.0 200 824 0.08 37.4 

Sub-channel C 0.76 50.3 31.4 8.31 0.75 50.2 

Sub-channel D 0.32 55.3 81.4 42.5 0.32 55.0 

Sub-channel E 0.34 43.1 30.4 20.7 0.34 42.8 

Sub-channel F 0.80 55.1 16.4 3.12 0.81 54.0 

 

 
Table 6: Power estimates from the simplified electrical circuit model, compared with the 2D 

depth-averaged numerical model. An expected value (Ex.), upper bound (UB) and lower 
bound (LB) are selected by considering all points within  a 1.5 km radius of P3 and P4 and 
750 m radius of P5 and P6 (for Case E) defined in Figure 2, to calibrate the equivalent circuit. 

 

Case 

Maximum Average Power (MW) 
M2 amplitude in flow rate at maximum 

extraction (10
6
 m

3
/s) 

Electrical model 
simulated results 

2D numerical 

model 

Electrical model 
simulated results 

2D numerical 

model 
LB UB Ex. LB UB Ex. 

BE 

B 69 103 
83 

23% 
108 0.039 0.051 

0.043 
2% 

0.042 

E 186 270 
223 

29% 
313 0.164 0.209 

0.180 

17% 
0.154 

CE 

C 1069 1536 
1262 
4% 

1310 0.362 0.470 
0.411 
2% 

0.401 

E 187 270 
223 

5% 
213 0.176 0.221 

0.194  

9% 
0.178 

DE 

D 318 442 
386 
22% 

316 0.154 0.204 
0.177 
19% 

0.149 

E 187 270 
223 
21% 

284 0.166 0.216 
0.188 
12% 

0.168 
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Figure 1: (a) Numerical mesh used in the hydrodynamic model presented in Draper et al. 

(2013); main geographic features labelled. Shaded polygons indicate sites earmarked by the 
Crown Estate (2011). (b) Locations A to E where tidal turbines are placed within the Pentland 
Firth (see Table 1 for power estimates). Point locations in British Grid Easting and Northings 

(units of km) are: P1 (305,985); P2 (360,975); P3 (332,983); P4 (341.5,979); P5 (343.5,980); P6 
(349.5,981).  Figure adapted from Draper et al. (2013).  
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Figure 2: Single tidal channel and equivalent electric circuit. Dashed box highlights the 

natural channel elements. 
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Figure 3: Multiply-connected tidal channel and equivalent electric circuit. Dashed boxes 
highlight natural channel elements. 
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Figure 4: Results for the different parameters given in Table 3: (a) variation in 𝛾3 , and (b) 

ratio of peak flow rate in sub-channel 2 at maximum power extraction, compared with that in 
the natural state, plotted against the non-dimensional parameter 𝜆2. 
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Figure 5: Elevation difference calculated between: o, location P1 minus P2; ×, location P3 

minus P4; Δ, location P5 minus P6. (All locations shown in Figure 1b). Solid lines are M2 
components. 
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Figure 6: Equivalent circuit for the Pentland Firth. Additional resistors 𝑅𝑡 ,1 and 𝑅𝑡 ,2 describe 

deployments of turbines (shown in Sub-channel B and Sub-channel E, as an example). 

 

 

 

 

 

 

 
 


