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Separation of large-scale structure and ripples on sand mounds

By  P. H. Taylor1, J. Huang2,  M. I. García-Hermosa3, P. K. Stansby4,  

A. G. L. Borthwick1 and R.L. Soulsby5

1 Professor, Dept. of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, U.K.
2 Career Development Fellow, Dept. of Engineering Science, Oxford University
3 PhD student, Dept. of Engineering Science, Oxford University and Research Assistant, School of 
Mechanical, Aerospace and Civil Engineering, Manchester University
4 Professor, School of Mechanical, Aerospace and Civil Engineering, Manchester University
5Technical Director, HR Wallingford and Visiting Professor, Dept. of Engineering Science, Oxford 
University

Keywords: morphodynamics, ripples, bed forms, Hermite functions

ABSTRACT

A simple method is proposed for the separation of large-scale structure from small-scale ripples 

during the evolution of an isolated sand hill or spoil heap eroded by an oscillatory or steady 

flow by bed-load transport. This method is based on Hermite functions, a mother Gaussian hill 

and derivatives modified to be orthogonal. It is straightforward to apply and could be used to 

characterise the geometric properties of any isolated localised hill-like feature such as pollution 

concentration levels away from an outfall.

1. INTRODUCTION

The evolution of the sea-bed and the beds of rivers due to the motion of sediment is a complex 

problem coupling hydrodynamics with morphological changes. Even the description of the 

geometric structure resulting from flow over an isolated sand mound is difficult. This paper 

presents a method for separating large and small-scale geometric features on a sand mound 

exposed to steady and oscillatory flows. This separation is required to permit characterisation 

and modelling of the evolution of the bulk properties of a mound and also the development of 

the ubiquitous smaller-scale ripple features.

Whilst 2-D Fourier or wavelet filtering could achieve a reasonable extraction of the large-scale 

structure, we wanted a clean separation with a minimum of computational effort. A simple 

methodology was developed to analyse the experimental data for comparison with numerical 

predictions.  The methodology is based on using the set of Hermite orthogonal functions (a 

Main Text
Click here to download Main Text: ICEpaperTaylor.doc
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2

Gaussian mound and its derivatives, modified to be orthogonal) that fit the experimental data, 

and help separate the bed mound from the smaller-scale laboratory features and noise. Examples 

of the successful separation achieved for sand banks in large-scale experiments at the U.K. 

Coastal Research Facility.

The proposed method is suitable for the characterisation of any isolated hill-like feature and 

would aid the comparison of numerical simulations and physical experiments by treating each in 

an identical manner.

2. CHOICE OF FUNCTIONS TO DESCRIBE LARGE-SCALE STRUCTURES

Amongst the requirements to fit the large-scale shape of an isolated mound are that a suitable 

fitting function g(x) (where x is distance in the horizontal) should have the following properties:

 g(x) has its peak value when x is near to 0;

 g(x) > 0 so the basic shape is a single strongly localised hump

 g(x)  0 as |x|  

 The set of functions based on g(x)  and used for the fitting should be orthogonal. 

Because of these requirements and for simplicity, a simple Gaussian profile was adopted as 

g(x).  Initially we consider 1-D fits to the height of a hill along a horizontal slice in the x-

direction. The generalisation to a hill in 2-D is given later. The orthogonality requirement is 

necessary so that there should be no ambiguity in the identification of components contained 

within the mound. Since the aim is to fit arbitrarily shaped mounds as they evolve, a simple and 

robust representation is required.

If the well behaved function g(x) and all its derivatives decay smoothly to zero as |x|  , then 

the integral    0
2

1
2

 








dx)x(g
dx

d
dx)x(g

dx

dg
 for any g(x) .  

Similar results hold for the product of g(x) multiplied by any other odd order derivatives and the 

product of any even and odd derivatives, as can be shown simply by integration by parts. 

However, the integrals of g(x) and even derivatives, odd with other odd derivatives and even 

with other even derivatives are not automatically zero unless the function has special properties.  

Thus, we choose a convenient simple form for g(x) and then insert small modifications to the 

derivatives to enforce orthogonality.
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3

For an arbitrary localised function, including a simple Gaussian, the integral 

dx
dx

gd
)x(g




2

2

, yields a non-zero quantity.  Hence, the function and its 2nd derivative are 

not orthogonal. 

However, if the function 
2

2

dx

gd
is replaced by a new function g

dx

gd
g2d 202

2

 , then a 

value for the parameter 20  can be found such that orthogonality is imposed. We modify this 

2nd derivative using the function g(x) that we have already chosen. Thus, we actually subtract a 

small Gaussian contribution from the original 2nd derivative. This small Gaussian contribution is 

best associated with the leading order of g(x) approximation to the shape of the mound (the 

subscript 20 in 20  denoting the modification of the 2nd derivative by the subtraction of a 

Gaussian contribution, the 0th derivative).

In a similar manner for the 3rd derivative, there is automatic orthogonality with g(x), but the 

term has to be modified to enforce the orthogonality requirement with the slope of the Gaussian 

hill. For the 4th derivative, orthogonality with both the original function g(x) and also its now 

modified 2nd derivative is enforced, via constants 40  and 42 . 

Hence g2dg
dx

gd
g4d 42404

4

  .

This pattern of modified orthogonal functions is simple to extend to arbitrary order with the aid 

of MATHEMATICA™ to perform the manipulations.

A Gaussian function was used for g(x) for two reasons. Firstly it is a well-studied smooth 

function, and is versatile and ubiquitous in its applications and, secondly, it was chosen to be the 

initial shape of the sand mound in much of our experimental work, García-Hermosa et al.1,2. 

With the choice of the Gaussian function, our derivation produces what are known in the 

mathematical literature as Hermite functions for integer 0n  (Kreyszig3 section 5.9, 

Gradshteyn and Ryzhik4 section 8.95). There are easily accessed discussions of Hermite 

functions at the websites: http://en.wikipedia.org/wiki/Hermite_polynomials,

http://mathworld.wolfram.com/HermitePolynomial.html. The identification of our modified derivatives 

with Hermite functions provides mathematical legitimacy and rigour to our analysis technique. 

http://en.wikipedia.org/wiki/Hermite_polynomials
http://mathworld.wolfram.com/HermitePolynomial.html
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However, our method of derivation is valid for any reasonable choice for g(x) so long as it is 

differentiable, not just for the Gaussian bell-shaped curve used here.

The Hermite functions are defined as )x(H]xexp[
!n

)x( nnn 2
2

1 2



  ,

such that our previously derived modified Gaussian derivatives dng =  )x(n . As required, 

these functions are orthogonal on the entire x-axis:

nmmn dx)x()x(  



,  where nm 1 for m = n, else 0. 

The Hermite polynomials within the functions are defined as   

])x(exp[
dx

d
]xexp[)()x(H

n

n
n

n
221   .

The first three terms are: .2x4)x(H,x2)x(H,1)x(H 2
210 

All the following terms can be obtained using the recurrence relation 

)x(Hn)x(Hx)x(H nnn 11 22   .

For the fitting procedure, we choose to use a Gaussian mound and its first 6 modified 

derivatives, or equivalently the first 7 Hermite functions ( 60 HH  ), to perform fits to the 

physical experiments on evolving sand mounds. The basic Gaussian is taken as 

4/12
x

2/xs )/s(e)x,s(g
22

x  where xs  is an inverse width parameter. 

The shapes of the first 7 Hermite functions are shown in Figure 1, the Gaussian mother hill at 

the top. As the order of the term is increased, each function captures finer scale structure whilst 

remaining relatively well restricted to the region covered by the mother Gaussian hill. Also clear 

in the figure is the alternating symmetric, skew-symmetric pattern of the terms. Note that all 

Hermite functions other than the mother Gaussian hill are shown in positive and negative forms 

to emphasise that their amplitudes may be of either sign, each higher order term representing a 

particular perturbation away from the positive hill form for the mother Gaussian. Clearly a 

simple summation of a set of functions of this type should be able to represent quite 

complicated mound profiles in 1-D and also surface shapes in 2-D via products of Hermite 

functions in the two horizontal coordinates. 
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FIGURE 1 

The choice of how far along a Hermite series expansion to go is, of course, specific to each 

application. The same problem of truncation occurs for Fourier or wavelet decomposition. For 

our application to the U.K.C.R.F. sand mound data, the overall mound is initially ~ 4 m across, 

with ripples developing with a characteristic wavelength scale of ~0.7 m. Hence, we choose to 

go up to the 6th derivative (7th Hermite function) for terms to describe the overall hill shape. 

Some justification for this choice is provided later.

3. FITTING METHOD

The functional form outlined in the previous section is simple to generalise to allow the fitting 

of a hill described as a height in two horizontal co-ordinates, here )y,x(h . We choose to 

model the hill form as products of Hermite functions of the mean flow (x-) direction and the (y-) 

direction orthogonal to this. Whilst, in principle any Cartesian co-ordinate system could be 

used, we choose to use one orientated to match the geometric layout of the physical 

experiments.

The fitting procedure starts by finding the centre of gravity of the mound in the horizontal plane. 

This point becomes the origin of the co-ordinate system and the centre of the Gaussian mother 

hump. Then the height of the mound above the reference plane is written as:

)y,s()x,s(A)y,x(h yjxi
6

0i
6

0j ij     ,

where )y,x(h  is the measured shape of the mound, )y,s(),x,s( yjxi   are Hermite 

functions of order i and j in the x- and y-directions, and xs  and ys  correspond to measures of 

the inverse widths of the mound in these same directions. Note again that we take the x-

direction parallel to the mean flow, and y is the transverse direction. 

The first stage of the fitting process is to estimate the global mound parameters xs  and through 

a simple least squares shape fit of the single mother Gaussian mound to the actual mound. There 

are then 49 ijA coefficients to be determined by simple numerical integration

      dxdyy,xhy,sx,sA yjxiij    .



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6

The first term and its coefficient 00A  capture global information about the mound, as well as 

almost all the volume. The second term 10A  describes the leading order contribution to front-

back asymmetry along the flow direction and is particularly important in steady flow. The terms 

with j odd describe asymmetric features across the mound perpendicular to the mean flow 

direction.

4. EXPERIMENTAL SET-UP FOR THE STUDY OF SAND MOUND EVOLUTION

Figure 2 shows the experimental set-up. The mound of sand was located at the centre of a wide 

flow channel constructed in the U.K. Coastal Research Facility at HR Wallingford. The working 

section of the channel was 8 m across and had a smooth horizontal concrete floor. An array of 

pumps was used to drive either a sinusoidal oscillatory or a steady flow through the working 

section with a peak velocity of 0.5 m/s. Most experiments were performed for an isolated 

mound on a bare concrete base although a few cases of the mound surrounded by a uniform 

depth sand layer on the concrete were also performed. Further details are given in García-

Hermosa et al. 1,2,5

FIGURE 2

In this paper we present detailed results for the oscillatory flow case of an initially fully 

submerged sand mound on the bare concrete and then some results for comparison for the same 

initial shaped mound in a steady flow. The first experiment is akin to the erosion and dispersal 

of a sand hill or spoil heap dumped offshore in a tidal stream on a non-erodible bed, the second 

to a sand hill in a wide river. In both cases the undisturbed water depth was 20 cm. The initial 

shape of the mound was Gaussian and its height 15 cm. 

In the first experiment the oscillation period of the bulk flow was 20 min and the experiment 

was ended after 61 cycles when the bulk features of the bank had been almost completely 

washed away. Periodically the flow was stopped and the water level gradually lowered, 

allowing contours of the sand mound to be recorded at different times using a high-resolution 

digital camera mounted directly above the centre of the mound. The water level was then raised 

to the original level and the flow re-started. The contours were then manually digitised, a slow 

and laborious process but one which gave much more accurate results than automatic 
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digitisation. These contours are then analysed to separate out the large-scale mound features 

from the small-scale ripples using the methodology presented in this paper.

5. SEPARATION OF LARGE-SCALE FEATURES FROM SMALL-SCALE RIPPLES

Figure 3 shows a succession of views of the physical bathymetry for the oscillatory flow after 0, 

1, 6, 12 and 61 cycles. The initial profile is a simple Gaussian shape, albeit truncated at a 

distance of a radius of 2.5 m from the peak where the depth of sand on the concrete bed was 2 

mm. The views on the left hand side are projections re-created using the PC graphics package 

SURFER™ of the complete hill shape based on the raw contours, the middle views are of the 

bulk mound shape extracted by Hermite fitting, the right-hand side views are of the small-scale 

remainder, which we infer to be ripple structure. Each horizontal line of 3 projections has the 

same vertical scale.

The separation of the large-scale and small-scale features is clear and unambiguous. It is self-

evident that the extraction method is working well. The only artefact visible is in the small-scale 

structure after 0 and 1 cycles, a ring is visible in the ripple plot around the hump. This is related 

to the spacing of the contours at vertical intervals of 1 cm above the concrete bed. Thus, the thin 

sand layer beyond this out to the physical cut-off of the original Gaussian shaped mound at a 

distance of 2.5 m from the mound centre is missed in the digitisation. At the physical cut-off, 

the depth of the sand layer is ~2 mm. At later times this artificial feature associated with an 

apparent step from 1 cm to the ground plane is washed out as sand is transported out and laid 

down onto the bare concrete bed. Also visible initially are the very small 8-way irregularities 

arising because the hill was constructed as a combination of 8 45� ‘cake-slices’ using wooden 

templates. 

As the experiment progresses and the hill evolves, it loses the initial simple Gaussian form. At 

61 cycles, the centre of the remaining mound has moved ~2 m from its original location, 

denoting either a very slight asymmetry in the forwards and backwards flow velocities or, less 

likely, resulting from the direction of flow in the first half-cycle as a long-term memory effect.

FIGURE 3

Further details of the separation of large- and small-scale features are shown in Figure 4 as 

vertical sections along the centre-line of the mound. The dashed horizontal lines denote the 
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heights used for the contour plots in Figure 6. This Figure shows both the measured data and 

also the Hermite fits to the large-scale mound structure only. Clearly, the fits do a satisfactory 

job at scale separation for the vertical sectional plots even at later times when the ripples are as 

large as the underlying sand hump. The only artefact of the fit is a slight undershoot outside the 

sand humps where the fits go slightly negative. This can be associated with a Gibbs-like 

behaviour, familiar from Fourier theory when smooth fitting functions are used to model a slope 

near-discontinuity. Here this occurs because the concrete bed is non-erodible. Within the mound 

itself, the ripples are clearly visible. It is interesting to note that the largest ripple height at ~7 

cm occurs early on in the evolution of the sand mound and persists for long times as the large-

scale features are washed away. Even after 61 cycles when the ripple half-height is similar to 

the height of the overall hill and some of the deepest ripple troughs expose bare concrete, this 

large ripple height is only reduced to 5 cm. Huang et al.6 presents more detailed analysis on the 

ripple structure.

FIGURE 4 

The question of how many terms that should be included in the Hermite function fit is 

considered in Figure 5. This shows fits at various levels of approximation: from a single mother 

Gaussian hump (the 0th order with just 1 coefficient), to 2nd (3�3 coefficients), 4th (5�5), 6th

(7�7) and 10th order Hermite terms (11�11). In our view the mound shown here, after 12 

cycles in the form of vertical sections through the centre along the flow direction, is reasonably 

well captured by the 6th order (7�7) Hermite fits. The highest order fit is including some of the 

ripple structure. 

FIGURE 5  

Table 1 shows the relative magnitudes of ijA  for10th order (11�11) Hermite fits to the sand 

mound after 12 and 61 cycles. Obviously the 00A contribution from the mother Gaussian is 

dominant in each but at both times there are significant contributions to the overall shape from 

higher order terms. These tail off beyond ~ the 6th order terms. At both times, a cut-off criterion 

in the range 5-10 applied to the ijA coefficients justifies the choice of the 6th order fit. However, 

we note that the coefficients beyond this are small but non-zero. Sufficiently high-order Hermite 
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function fits will start to resolve the ripple structure. As with all 2-D fitting methods, there is a 

question as to how to treat all coefficients further than a distance of N steps from the mother 

Gaussian (e.g. the ijA terms with Nji  , N  being the fit order) once the order of the fit is 

chosen. Here we simply weight these terms �1 for Nji 22  , linearly down to �0 for the 

diagonal term )Nj,Ni(   furthest from the Gaussian mother hill. This is analogous to the 

smoothing commonly applied to the results of digital filtering in FFTs to mitigate anisotropy 

and ringing-type effects when transformed back into the physical domain. 

TABLE 1

FIGURE 6

Figure 6 shows contour plots at three stages during the experiments. Being horizontal slices 

through the sand mound at 1 cm and 3 cm above the concrete bed, these show the geometric 

complexity of the ripples superimposed on top of the large-scale mound. The Hermite function 

Gaussian-based fits do a satisfactory job at smoothing these out without the loss of bulk 

information even for the highest contour at 3cm after 61 cycles, when the top of inferred large-

scale mound is only just higher than this level. Although the original mound and the bulk 

oscillatory flow are symmetric, or as close to symmetric as experimentally possible, symmetry 

across the mound is completely lost for the ripples and degraded even for the large-scale 

structure. Further detailed analysis of the geometric changes for a wider range of experimental 

cases will be reported elsewhere.

We now turn to the steady flow case with an erodible sand hill on a concrete bed. Figure 7 

shows the temporal evolution of the hill. Clearly there is a net migration of the hill downstream 

with time. Also the large-scale hill appears to be evolving towards the well-known crescent or 

barchan shape. This is particularly clear after 1 and 2 hours of flow. Now the second Hermite 

coefficient 10A , describing the leading order contribution to front-back asymmetry along the 

flow direction, is particularly important. As for the oscillatory flow case, we achieve a clear 

separation of local small-scale ripples from the overall shape.  
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At later times in the steady flow, the downstream slip-face of the hill approaches and passes 

outside the observation window used for the digitisation. This leads to the artefact of a linear 

vertical discontinuity at the edge of the window apparent after 3 hours. However, within the 

main body of the visible portion of the mound we still achieve satisfactory scale separation.

FIGURE 7

6. CONCLUSION

An efficient and robust method has been proposed for the separation of large-scale and small-

scale features on an evolving sand mound in both oscillatory and steady flows. The large-scale 

features are described using a Gaussian shape and associated orthogonal Hermite functions. 

This works well both at fits over the horizontal plane to the whole hill and also when either 

vertical or horizontal sections (height contours) are considered. The analysis makes use of large-

scale datasets obtained in the U.K. Coastal Research Facility at HR Wallingford. 

The analysis method used here to extract large-scale features from the highly complex forms 

seen in experiments on an evolving hill is also directly applicable to the results of numerical 

simulations such as Apsley and Stansby7, Stansby et al.8, Huang et al.9 where the small-scale 

ripple features are not usually resolved. Experimental comparison to and validation of numerical 

simulations could be greatly improved if all the results were processed in the same way using 

the Hermite functions. 

We also consider that this approach could be helpful to model other problems in civil 

engineering such as involving spreading away from a point where a separation of large-scale 

and small-scale structure might yield useful information – an example could be pollutant 

concentration variations away from an outfall in a tidal flow.
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FIGURE 1. The first 7 Hermite functions, with the mother Gaussian hill at the top.
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FIGURE 2. Experimental layout of the sand hill in the U.K.Coastal Research Facility.
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FIGURE 3. 
Example of physical bathymetry (left), its 7×7 Hermite fit (centre) and inferred ripple structure 
(right), shown as isometric projections for the oscillatory flow case.
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FIGURE 4 
Examples of scale separation using Hermite functions for an initially submerged Gaussian hill -
vertical profiles along the mean flow x- direction with y=0 after 5, 12 and 61 cycles of 
oscillatory flow. 

TABLE 1. Variation of amplitude coefficient ijA with order of the Hermite functions for 2-D 

fits after 12 and 61 cycles of oscillatory flow.
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FIGURE 5. Examples of the effect of the order of the Hermite functions retained to describe the 
large-scale structure. Vertical profile of the hill along the mean flow x- direction with y=0 after 
12 cycles of oscillatory flow, fits from (1�1) up to (11�11). 

Horizontal contour z = 1cm

Horizontal contour z = 3cm
             Cycle 6                                       Cycle 12                               Cycle 61
FIGURE 6 
Examples of scale separation using Hermite functions for horizontal contours (z-fixed) of the 
measured hill and extracted large-scale structure in oscillatory flow. 
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FIGURE 7 
Examples of scale separation using Hermite functions for an initially submerged Gaussian hill 
in a steady flow. 


