THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Instance Compression for the Polynomial Hierarchy and beyond

Citation for published version:

Chakraborty, C \& Santhanam, R 2012, Instance Compression for the Polynomial Hierarchy and beyond. in Parameterized and Exact Computation: 7th International Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings. vol. 7535, Springer Berlin Heidelberg, pp. 120-134. DOI:
10.1007/978-3-642-33293-7_13

Digital Object Identifier (DOI):
10.1007/978-3-642-33293-7_13

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:
Parameterized and Exact Computation

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Instance Compression for the Polynomial Hierarchy and Beyond

Chiranjit Chakraborty
Rahul Santhanam
School of Informatics, University of Edinburgh, UK

Abstract

We define instance compressibility ([1], [7], [5], [6]) for parametric problems in PH and PSPACE. We observe that the problem $\Sigma_{i} C i r c u i t S A T$ of deciding satisfiability of a quantified Boolean circuit with $i-1$ alternations of quantifiers starting with an existential quantifier is complete for parametric problems in Σ_{i}^{p} with respect to W-reductions, and that analogously the problem QBCSAT (Quantified Boolean Circuit Satisfiability) is complete for parametric problems in PSPACE with respect to W -reductions. We show the following results about these problems: 1. CircuitSAT is non-uniformly compressible within $N P$ implies Σ_{i} CircuitSAT is non-uniformly compressible within $N P$, for any $i \geq 1$. 2. If $Q B C S A T$ is non-uniformly compressible (or even if satisfiability of quantified Boolean CNF formulae is non-uniformly compressible), then PSPACE \subseteq $N P /$ poly and PH collapses to the third level. Next, we define Succinct IP and show that QBFormulaSAT (Quantified Boolean Formula Satisfiability) is in Succinct $I P$.

1 Introduction

An NP problem is said to be instance compressible if there is a polynomial-time reduction mapping instances of size m and witness length n to instances of size $\operatorname{poly}(n)$ (possibly of a different problem). The notion of instance compressibility for $N P$ problems was defined by Harnik and Naor ([1]) motivated by applications in cryptography. This notion is closely related to the notion of polynomial kernelizability in parametrized complexity ([7], [5], [6]), which is motivated by algorithmic applications. Fortnow and Santhanam showed ([2]) that the compressibility of the satisfiability problem for Boolean formulae (even non-uniformly) is unlikely, since it would imply that the Polynomial Hierarchy collapses. Since then, there's been a very active stream of research extending this negative result to other problems in $N P$ ([7], [8], [9] etc.). Instance compressibility is a useful notion from the point of view of complexity theory as well - Buhrman and Hitchcock [10] use it to study the question of whether $N P$ has sub-exponentially-sparse complete sets.

Given different possibilities of application of this notion, it is a natural question whether we can extended it to other complexity classes, such as $P H$ and $P S P A C E$. Our first contribution here is to define such an extension. The key to defining instance compressibility for $N P$ problems is that there is a notion of "witness" for instances of $N P$ problems, and in general the witness size can be much smaller than the instance size. We observe that the characterisation of $P H$ and $P S P A C E$ using alternating time Turing machines yields a natural notion of "guess size" - namely the total number of non-deterministic or co-non-deterministic bits used during the computation.

We use this characterisation to extend the definition of compressibility in a natural way to parametric problems in $P H$ and $P S P A C E$.

There have been proposals made in the parametrized complexity setting ([12] [11]) for defining in general the parametrized complexity analogue of a classical complexity class. Our definition seems similar in spirit, but there are important differences. All the problems we consider are in fact fixed-parameter tractable. What we're interested in is whether they are instance-compressible, or equivalently whether they have polynomial-size kernels. The theory developed so far has dealt with problems which are in $N P$ - we'd like to extend it to the Polynomial Hierarchy and beyond.

One of our main motivations is to provide a structural theory of compressibility, analogous to the theory in the classical setting. Intuitively, instance compressibility provides a different, more relaxed notion of "solvability" than the traditional notion So it is of interest to study what kinds of analogues to classical results hold for the new notion. The result of Fortnow and Santhanam [2] can be thought of as an analogue of the Karp-Lipton theorem, since non-uniform compressibility is a weakening of the notion of non-uniform solvability. Other well-known theorems in the classical setting are that $N P$ has polynomial-size circuits iff all of $P H$ does, as well as the Karp-Lipton theorem for $P S P A C E$. The main results we prove here are analogues of these results for instance compressibility.

Our first main result is, if the language CircuitS AT is non-uniformly compressible within $N P$ (i.e., the reduction is to an $N P$ problem), then so is the language Σ_{i} CircuitSAT, which is in some sense complete for parametric problems in Σ_{i}^{p}. Note that we need a stronger assumption that in the Fortnow-Santhanam result: they need only to assume that $S A T$ is compressible. This reflects the fact that the result is technically much harder - it relies on the Fortnow-Santhanam result as well as on the techniques used in the classical case. In addition, the code used by the hypothetical compression for CircuitSAT shows up not just in the resulting compression algorithm for Σ_{i} CircuitS $A T$, but also in the instance generated - this is why we need to work with circuits, as they can simulate any polynomial-time computation. This ability to interpret code as data is essential to our proof. We give more intuition about the proof in Section 3, where the detailed proof can also be found. We also make the observation that under the assumption that $\Sigma_{3} C$ ircuit $S A T$ is compressible (we make no assumption about the complexity of the set we are reducing to, nor do we require the compression to be non-uniform), it follows that all of the Polynomial Hierarchy is as well.

Our second main result is that if $Q B C N F S A T$ is non-uniformly compressible, the Polynomial Hierarchy collapses to the third level. The proof of this is easier, and is an adaptation of the Fortnow-Santhanam technique to $P S P A C E$. As they do, we consider an "OR" version of the problem, and derive the collapse of the hierarchy from the assumption that the OR version is compressible. In the case of $N P$, showing that compressing the OR version is at least as easy as compressing SAT is trivial; however, this is not the case for $P S P A C E$ and this is where we need to work a little harder.

In the next section, we have defined Succinct $I P$. This is actually the extension of the complexity class $I P$. Then we have shown that, not just $Q B C N F S A T$, $Q B F$ ormulaSAT (Quantified Boolean Formula Satisfiability) is in Succinct IP.

There are many open problems in the compressibility theory for $N P$ such as whether there any unlikely consequences of $S A T$ being probabilistically compressible, and whether the problem $A N D-S A T$ is deterministically compressible. Our hope is that extending the theory to larger classes such as $P H$ and $P S P A C E$ will give us more "room" to work with, and that if we manage to settle these questions for the larger classes the techniques used can then be translated back to $N P$.

2 Some Complexity Theory Notions

Definition 1. Parametric problem: A parametric problem is a subset of $\left\{<x, 1^{n}\right\rangle$ $\left.\mid x \in\{0,1\}^{*}, n \in \mathbb{N}\right\}$. The term n is known as the parameter of the problem.

NP problems in parametric form: Let's consider some well known $N P$ problems in parametric form.
$\mathbf{S A T}=\left\{\left\langle\varphi, 1^{n}\right\rangle \mid \varphi\right.$ is a satisfiable formula, and n is the number of variables in $\left.\varphi\right\}$. $\mathbf{V C}=\left\{\left\langle G, 1^{k} \operatorname{log(m)}\right\rangle \mid G\right.$ has a vertex cover of size at most k, where $\left.m=|G|\right\}$.
Clique $=\left\{\left\langle G, 1^{k \log (m)}\right\rangle \mid G\right.$ has a clique of size at least k, where $\left.m=|G|\right\}$.
DominatingSet $=\left\{\left\langle G, 1^{k \log (m)}\right\rangle \mid G\right.$ has a dominating set of size at most k, where $m=|G|\}$.
$\mathbf{O R - S A T}=\left\{\left\langle\left\{\varphi_{i}\right\}, 1^{n}\right\rangle \mid\right.$ At least one φ_{i} is satisfiable, and each φ_{i} has size at most $n\}$.

In our work, we insist on the parameter being interpretable as the witness size for a natural $N T M$ deciding the language. For example in $S A T$, the number of variables, which captures the witness of satisfiability problem, is taken as the parameter. Note that in the definitions of the Clique, VC and DominatingSet problems, the parameter is $k \log (m)$ rather than k as in the typical parametrized setting.
Definition 2. Compression of parametric problem: Suppose here L is a parametric problem. L is said to be compressible within a complexity class A if there is a polynomial $p($.$) , and a polynomial-time computable function f$, such that for each $x \in$ $\{0, I\}^{*}$ and $n \in N,\left|f\left(\left\langle x, 1^{n}\right\rangle\right)\right| \leq p(n)$ and $\left|\left(\left\langle x, 1^{n}\right\rangle\right)\right| \in L$ iff $\left|f\left(\left\langle x, 1^{n}\right\rangle\right)\right| \in L_{A}$ for some language L_{A} in the complexity class A.

Definition 3. Non-uniform Compression: A language L is said to be compressible with advice s(., .) if the compression function is computable in deterministic polynomial time when given access to an advice string of size $s(m, n)$ which depends only on m and n but not on the actual instance. L is non-uniformly compressible if s is polynomially bounded in m and n.

In other words, we can say that the machine compressing the language in the preceding definition takes advice in case of Non-uniform Compression.
Definition 4. W-Reduction: [1] Given parametric problems L_{1} and $L_{2}, L_{1} W$ reduces to L_{2} (denoted $L_{1} \leq_{w} L_{2}$) if there is a polynomial-time computable function f and polynomials p_{1} and p_{2} such that:

1. $f\left(\left\langle x, 1^{n_{1}}\right\rangle\right)$ is of the form $\left\langle y, 1^{n_{2}}\right\rangle$ where $|y| \leq p_{1}\left(n_{1}+|x|\right)$ and $n_{2} \leq p_{2}$ $\left(n_{1}\right)$.
2. $f\left(\left\langle x, 1^{n_{1}}\right\rangle\right) \in L_{2}$ iff $\left\langle x, 1^{n_{1}}\right\rangle \in L_{1}$.

The semantics of a W-reduction is that if $L_{1} \mathrm{~W}$-reduces to L_{2}, it's as hard to compress L_{2} as it is to compress L_{1}. If $L_{1} \leq_{w} L_{2}$ and L_{2} is compressible, then L_{1} is compressible. One can easily prove that $O R-S A T \leq_{w} S A T$.
As we have already mentioned, our primary objective is to extend the idea of compression to higher classes, namely Polynomial Hierarchy and PSPACE. So, we have considered the standard definitions of the complexity classes Σ_{i}^{p} and Π_{i}^{p} [15] from Polynomial Hierarchy and the class $P S P A C E$. Let us now take some standard $P H$ and $P S P A C E$ languages but in parametric form.

CircuitSAT $=\left\{\left\langle C, 1^{n}\right\rangle \mid C\right.$ is a satisfiable Circuit, and n is the number of variables in $C\}$
$\Sigma_{i} \mathbf{S A T}=\left\{\left\langle\varphi, 1^{n}\right\rangle \mid \varphi\right.$ is a satisfiable quantified boolean formula where odd position quantifiers are \exists and even position quantifiers are \forall, and $n=\left(n_{1}+n_{2}+\ldots+n_{i}\right)$ where n_{i} is the number of the variables corresponding to $i_{t h}$ quantifier $\}$
Σ_{i} CircuitSAT $=\left\{\left\langle C, 1^{n}\right\rangle \mid C\right.$ is a satisfiable quantified Circuit where odd position quantifiers are \exists and even position quantifiers are \forall, and $n=\left(n_{1}+n_{2}+\ldots+n_{i}\right)$ where n_{i} is the number of the variables corresponding to $i_{t h}$ quantifier $\}$ Similarly we can define $\Pi_{i} S A T$ and Π_{i} CircuitS AT in parametric form.
QBCNFSAT $=\left\{\left\langle\varphi, 1^{n}\right\rangle \mid \varphi\right.$ is a satisfiable quantified boolean formula in CNF, and n is the number of variables $\}$
QBFormulaSAT $=\left\{\left\langle\varphi, 1^{n}\right\rangle \mid \varphi\right.$ is a satisfiable quantified boolean formula (not necessarily in $C N F)$, and n is the number of variables $\}$ If φ is replaced by the circuit C, then similarly we can define $Q B C S A T$.
OR-QBCNFSAT $=\left\{\left\langle\left\{\varphi_{i}\right\}, 1^{n}\right\rangle \mid\right.$ Each φ_{i} is a quantified boolean formula in $C N F$ and at least one φ_{i} is satisfiable, and each φ_{i} has size at most $\left.n\right\}$.

Here we would like to mention that $\Sigma_{i} S A T$ and Σ_{i} CircuitSAT are complete for Σ_{i}^{p} according to Cook-Levin reduction. Similarly QBCNFSAT, QBFormulaSAT and $Q B C S A T$ are complete for $P S P A C E$.

Now, We can define a parametric problem corresponding to any language L in Σ_{i}^{p}, or more precisely to the $i+1$-ary polynomial-time computable relation R defining L, as follows.

Definition 5. For any \sum_{i}^{p} language L_{R}, we can write $L_{R}=\left\{\left\langle x, 1^{n}\right\rangle \mid \exists u_{1} \in\right.$ $\{0,1\}^{n_{1}} \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{i} u_{i} \in\{0,1\}^{n_{i}} R\left(x, u_{1}, \ldots, u_{i}\right)=1$ and $n=$ $\left(n_{1}+n_{2}+\ldots+n_{i}\right)$ where n_{i} is the parameter corresponding to $i_{\text {th }}$ quantifier $\}$
We can do essentially the same thing for any language $L \in P S P A C E$.
So using the general definition of compression of any language in parametric form given above, we can define the compression for all the $P H$ and $P S P A C E$ languages where the "witness length" or "guess length" is the parameter of the problem.

Proposition 1. Σ_{i} CircuitS AT is a complete language with respect to W-reduction for $i_{t h}$ level of Polynomial Hierarchy.

Proof. Let $L \in \Sigma_{i}^{p}$. Then there exists a polynomial-time computable relation R such that,
$x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{n_{1}} \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{i} u_{i} \in\{0,1\}^{n_{i}} R\left(x, u_{1}, \ldots, u_{i}\right)=$ 1 , where Q_{i} denotes \exists or \forall depending on whether i is odd or even respectively.

Now consider the parametric problem corresponding to L where the parameter is the number of guess bits used by R. We know that any polynomial time computable relation has uniform polynomial size circuits. Let C_{m} be the circuit on inputs of length m - we can generate C_{m} from 1^{m} in polynomial time. Hence, $x \in L \Leftrightarrow \exists$ $u_{1} \in\{0,1\}^{n_{1}} \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{i} u_{i} \in\{0,1\}^{n_{i}} C\left(x, u_{1}, \ldots, u_{i}\right)=1$, where Q_{i} denotes \exists or \forall depending on whether i is odd or even respectively. This gives a W-reduction from the parametric problem corresponding to L to Σ_{i} CircuitSAT, since the length of the parameter is preserved.

A similar proposition holds for Π_{i} CircuitSAT as well. We can also show, using essentially the same proof, a completeness result for $P S P A C E$.
Proposition 2. $Q B C S A T$ is a complete language for $P S P A C E$ with respect to W-reductions.
We note that all the parametric problems we have defined so far are in fact fixedparameter tractable, simply by using brute force search.
Proposition 3. $Q B C S A T$ is solvable in time $O\left(2^{n} p o l y(m)\right)$ by brute force enumeration.

3 Instance Compression for Polynomial Hierarchy

3.1 Instance Compression in second level

In this section, we are going to show that non-uniform compression of CircuitSAT within $N P$ implies the non-uniform compression of $\Sigma_{2} \operatorname{CircuitSAT}$ within $N P$ as well. In the next subsection, essentially by using induction and relating this consequence, we show how to extend this to the entire Polynomial Hierarchy.

Theorem 1. CircuitSAT is non-uniformly compressible within the class NP implies

 Σ_{2} CircuitSAT is non-uniformly compressible within the class NP.Proof. Let's consider the parametric problem Σ_{2} CircuitSAT first. For the sake of convenience, we often omit the parameter when talking about an instance of this problem. According to the definition,
$C \in \Sigma_{2}$ CircuitSAT $\Leftrightarrow \exists u \in\{0,1\}^{n_{1}} \forall v \in\{0,1\}^{n_{2}} C(u, v)=1$
$C \notin \Sigma_{2}$ CircuitSAT $\Leftrightarrow \forall u \in\{0,1\}^{n_{1}} \exists v \in\{0,1\}^{n_{2}} C(u, v)=0$
where m is the length of the description of the circuit C and $n=\left(n_{1}+n_{2}\right)$ is the number of variables of C.

Let us now fix a specific $u=u_{1}$. Now, we can define a new language L^{\prime} as follows, $\left\langle C, u_{1}\right\rangle \in L^{\prime} \Leftrightarrow \forall v \in\{0,1\}^{n_{2}} C\left(u_{1}, v\right)=1$ $\left\langle C, u_{1}\right\rangle \notin L^{\prime} \Leftrightarrow \exists v \in\{0,1\}^{n_{2}} C\left(u_{1}, v\right)=0$

It's clear from the above definition that L^{\prime} is a CoNP language (of instance size $\leq O\left(m+n_{1}\right)$) and any instance of L^{\prime} can be polynomial-time reduced to an
instance of Circuit-UnSAT, say C^{\prime} (because Circuit-UnSAT, the language of all unsatisfiable circuits, is a $C O N P$-Complete language). As shown in Proposition 1, the size of the witness will be preserved in this reduction.
$C \in \Sigma_{2}$ CircuitS $A T \Leftrightarrow \exists u_{1}\left\langle C, u_{1}\right\rangle \in L^{\prime}$ and $\left\langle C, u_{1}\right\rangle \in L^{\prime} \Leftrightarrow C^{\prime} \in$ Circuit$U n S A T$. Here the instance length $|C|=m$ and $\left|C^{\prime}\right|=\operatorname{poly}(m) . \operatorname{poly}($.$) is denoting$ just an arbitrary polynomial function.

Let g be the polynomial-time reduction used to obtain C^{\prime} from C and u_{1}. Namely, $C^{\prime}=g\left(C, u_{1}\right)$. If CircuitSAT is non-uniformly compressible within $N P$, using the same compression algorithm we can now non-uniformly compress the instance C^{\prime} to an instance of size poly $\left(n_{2}\right)$ of another new language. As CircuitSAT is compressible within $N P$, clearly the new language will be a $C o N P$ language (as C^{\prime} is an instance of a $C o N P$ language). Without loss of generality, we can assume this compressed instance $C^{\prime \prime}$ is an instance of complete language Circuit-UnSAT.

Therefore, $C^{\prime} \in$ Circuit-UnSAT $\Leftrightarrow C^{\prime \prime}=f_{1}\left(C^{\prime}, w_{1}\right)=f_{1}\left(g\left(C, u_{1}\right), w_{1}\right) \in$ Circuit-UnSAT, where $\left|C^{\prime \prime}\right|=\operatorname{poly}\left(n_{2}\right)$ and the string w_{1} (of size at most poly (m)) is capturing the notion of polynomial size advice. Here the compression function f_{1} is running in polynomial(in m) time.

Now, if CircuitS $A T$ is non-uniformly compressible within $N P$ so is $S A T$ as $S A T$ is a special case of CircuitSAT. Now, $O R-S A T$ is also non-uniformly compressible as $O R-S A T W$-reduces to $S A T$. It can be proved [2] that if $O R-S A T$ is non-uniformly compressible then $C o N P \subseteq N P /$ poly .

Now combining the above statements we can say that if C ircuit $S A T$ is nonuniformly compressible within $N P$ then $C o N P \subseteq N P /$ poly. So we can now convert our $C o N P$ language (here Circuit-UnSAT) instance $C^{\prime \prime}$ into a $N P$ language instance using polynomial size advice. Let's consider that $N P$ language instance to be a CircuitSAT instance $C^{\prime \prime \prime}$. In the above procedure, the length of the instance definitely will not increase by more than a polynomial factor. So clearly $\left|C^{\prime \prime \prime}\right|=\operatorname{poly}\left(n_{2}\right)$.

So from the above arguments we can say that,
$C^{\prime} \in C$ ircuit-UnSAT $\Leftrightarrow C^{\prime \prime \prime}=f_{2}\left(C^{\prime \prime}, w_{2}\right)=f_{2}\left(f_{1}\left(g\left(C, u_{1}\right), w_{1}\right), w_{2}\right) \in$ CircuitSAT, where $\left|C^{\prime \prime \prime}\right|=\operatorname{poly}\left(n_{2}\right)$ and the string w_{2} (of size at most poly $\left(n_{2}\right)$) is capturing the notion of polynomial size advice which arises in the proof of [2]. Here the function f_{2} is computable in polynomial (in n_{2}) time.

Now we define a new circuit C_{1} as follows. C_{1} is a non-deterministic circuit whose non-deterministic input is divided into two strings: u of length n_{1} and v of length poly $\left(n_{2}\right)$. Given its non-deterministic input, C_{1} first computes $C^{\prime \prime \prime}=f_{2}$ ($\left(f_{1}\left(g(C, u), w_{1}\right), w_{2}\right)$. This can be done in polynomial size in m since the functions f_{2}, f_{1} and g are all polynomial-time computable and C, w_{1} and w_{2} are all fixed strings of size polynomial in m. It then uses its input v as non-deterministic input to $C^{\prime \prime \prime}$ and checks if v satisfies $C^{\prime \prime \prime}$. This can be done in polynomial-size since the computation of a polynomial-size circuit can be simulated in polynomial time. If so, it outputs 1 , else it outputs 0 . Now we have
$C \in \Sigma_{2}$ CircuitS AT $\Leftrightarrow \exists u \in\{0,1\}^{n_{1}} \exists v \in\{0,1\}^{n_{2}} C_{1}(u, v)=1$ $C \notin \Sigma_{2}$ CircuitS $A T \Leftrightarrow \forall u \in\{0,1\}^{n_{1}} \forall v \in\{0,1\}^{n_{2}} C_{1}(u, v)=0$

The key point is that we have reduced our original $\Sigma_{2} \operatorname{CircuitS} A T$ question to a CircuitSAT question, without a super-polynomial blow-up in the witness size.

This allows us to apply the compressibility hypothesis again. Also, note that C_{1} is computable from C in polynomial size.

After that, using the compressibility assumption for $\operatorname{CircuitSAT}$, we can nonuniformly compress C_{1} to an $N P$ language instance C_{2} of size $\operatorname{poly}\left(n_{1}+n_{2}\right)$. Our final compression procedure just composes the procedures deriving C_{1} from C and C_{2} from C_{1}, and since each of these can be implemented in polynomial size, our compression of the original Σ_{2} CircuitSAT instance is a valid non-uniform instance compression. Thus it is shown that if CircuitSAT is non-uniformly compressible within $N P, \Sigma_{2} C$ ircuit $S A T$ is also non-uniformly compressible within $N P$.

3.2 Instance Compression for higher level

Now we are going to extend the idea for higher classes. It's not difficult to see, if Σ_{2} CircuitSAT is non-uniformly compressible within $N P, \Pi_{2} C$ ircuitSAT is nonuniformly compressible within $C o N P$. We will use this in the following theorem.

Theorem 2. CircuitSAT is non-uniformly compressible within the class $N P$ implies Σ_{i} CircuitSAT is non-uniformly compressible within the class $N P$ for all $i>1$.

Proof Outline : We are going use induction here. Let's consider CircuitSAT is non-uniformly compressible within $N P$. To prove $\Sigma_{i} C i r c u i t S A T$ is compressible for all $i>1$, the base case $i=2$, directly follows from Theorem 1 . Now suppose the statement is true for all $i \leq k$. We have to prove that the statement is true for $i=k+1$ as well. So we are now assuming that $\Sigma_{i} \operatorname{CircuitSAT}$ is non-uniformly compressible within $N P$ for all $i \leq k$ and going to prove that $\Sigma_{k+1} C$ ircuit $S A T$ is also non-uniformly compressible within $N P$.
Now, fixing the first variable, u_{1} to u^{\prime} of Σ_{k+1} CircuitSAT instance C as before, we can define a new language similarly as we did in the proof of Theorem 1. Using similar argument we can introduce a circuit C_{1} as well. The key point is that we have reduced our original Σ_{k+1} CircuitSAT question to a CircuitSAT question, without a super-polynomial blow-up in the witness size. This allows us to apply the compressibility hypothesis again. Also, note that C_{1} is computable from C in polynomial size. Next, using the compressibility assumption for CircuitSAT, we can non-uniformly compress C_{1} to an $N P$ language instance C_{2} of size poly $\left(n_{1}+n^{\prime}\right)$ i.e. poly $\left(n_{1}+\ldots+\right.$ n_{k+1}). So using mathematical induction we can say if $\operatorname{CircuitSAT}$ is non-uniformly compressible within NP, $\Sigma_{i} C$ ircuitS $A T$ is also non-uniformly compressible within $N P$ for all $i>1$. (detailed proof is mentioned in the Appendix)

Corollary 1. If CircuitSAT is compressible within $N P, \Pi_{i} C$ ircuit $S A T$ is also nonuniformly compressible within $N P$ for all $i \geq 1$.

As $\Pi_{i} C$ ircuitS $A T W$-reduces to $\Sigma_{i+1} C$ ircuitSAT, Corollary 1 is trivial. Theorems 1 and 2 require an assumption on non-uniform compressibility in $N P$. But we don't need this for compressibility of a problem higher in the hierarchy.

Proposition 4. If $\Sigma_{3} C$ ircuitS AT is compressible, then $\Sigma_{i} C$ ircuitSAT is compressible for any $i>3$.

The above proposition follows from the fact that Σ_{3} CircuitS $A T$ being compressible implies that $S A T$ is compressible, which implies by the result of Fortnow and Santhanam that $P H$ collapses to Σ_{3}^{p}, and hence that every parametric problem in Σ_{i}^{p} W-reduces to Σ_{3} CircuitS $A T$.

4 Instance Compression for PSPACE

In this section, we show that $Q B C N F S A T$ is unlikely to be compressible, even nonuniformly - compressibility of $Q B C N F S A T$ implies that $P S P A C E$ collapses to the third level of the Polynomial Hierarchy. The strategy we adopt is similar to that in [2] where it shows, compressibility of $S A T$ implies $N P \subseteq$ co $N P /$ poly. To show their result, they used the $O R$ - $S A T$ problem, which is trivially W-reducible to $S A T$. Thus an incompressibility result for the $O R-S A T$ problem translates directly to a corresponding result for $S A T$.

We similarly defined $O R-Q B C N F S A T$ problem in Section 2. Unlike in the case of $O R-S A T$, it is not trivial that the language $O R-Q B C N F S A T W$-reduces to $Q B C N F S A T$. There are a couple of different issues. First the quantifier patterns for the formulae $\left\{\phi_{i}\right\}, i=1 \ldots m$ might all be different. This is easily taken care of, because we can assume quantifiers alternate between existential and universal - this just blows up the number of variables for any formula by a factor of at most 2 . The more critical issue is that nothing as simple as the OR works for combining formulae. $\exists x \forall y \phi_{1}(x, y) \vee \exists x \forall y \phi_{2}(x, y)$ is not equivalent to $\exists x \forall y\left(\phi_{1}(x, y) \vee \phi_{2}(x, y)\right)$. We're forced to adopt a different strategy as explained below. Later we have found similar strategy is used in [13], though it was in the context of $O R$ - $S A T$, not $O R$ $Q B C N F S A T$.

Lemma 1. OR-QBCNFSAT is W-reducible to QBCNFSAT

Proof. Let $\left\langle\left\{\phi_{i}\right\}, 1^{n}\right\rangle$ be an instance of $O R-Q B C N F S A T$. Assume without loss of generality that each ϕ_{i} has exactly n variables and that the quantifiers alternate starting with existential quantification over x_{1}, continuing with quantification over x_{2}, x_{3} etc. We construct in polynomial time in m an equivalent instance of $Q B C N F S A T$ with at most poly (n) variables and of size poly (m). We first check if the number of input formulae is greater than 2^{n} or not. If yes, we solve the original instance by brute force search and output either a trivial true formula or a trivial false formula depending on the result of the search. If not, then we define a new formula with $\lceil\log (m)\rceil$ additional variables $y_{1}, y_{2} \ldots y_{k}$. We identify each number between 1 and m uniquely with a string in $\{0,1\}^{k}$. Now we define the formula ψ_{i} corresponding to ϕ_{i} as follows. Let the string $w_{i} \in\{0,1\}^{k}$ correspond to the number i. Then $\psi_{i}=z_{1} \wedge z_{2} \ldots \wedge z_{k} \wedge \phi_{i}$, where $z_{r}=y_{r}$ if $w_{r}=1$ and the complement of y_{r} otherwise. The output formula ψ starts with existential quantification over the y variables followed by the standard pattern of quantification over the x variables followed by the formula which is the OR of all ψ_{i} 's, $i=1 \ldots m$. It is not hard to check that ψ is valid iff one of the ϕ_{i} 's is.
2
Theorem 3. If $Q B C N F S A T$ is compressible, then $P S P A C E \subseteq N P /$ poly, and hence $P S P A C E=\Sigma_{3}^{p}$.

Proof. Let φ be any $O R-Q B C N F S A T$ instance of size m consisting of the disjunction of Quantified Boolean Formula ($Q B F$) in $C N F$, each of size at most n. Using Lemma 1, if $Q B C N F S A T$ is compressible, $O R-Q B C N F S A T$ is also compressible. So φ is compressible. Rest of the proof follows the similar technique used by Fortnow and Santhanam [2], which more generally shows that any language L for which $O R-L$ is compressible lies in coNP/poly. Thus, since $Q B C N F S A T$ is PSPACE-complete and PSPACE is closed under complementation, a compression for it implies $P S P A C E$ is in $N P /$ poly. Hence by the result of Yap [3], it follows that $P H$ collapses to the third level. Combining this with the Karp-Lipton theorem for PSPACE, we have that $P S P A C E=\Sigma_{3}^{p}$.

5 Succinct IP and PSPACE

$I P$ is the class of problems solvable by an interactive proof system. An interactive proof system consists of two machines, a Prover, P, which presents a proof that a input string is a member of some language, and a Verifier, V, that checks that the presented proof is correct. Now we are extending this idea of $I P$ to Succinct $I P$, where the total number of bits communicated between prover and the verifier is polynomially bounded in parameter length.

We define Verifier to be a function V that computes its next transmission to the Prover from the message history sent so far. The function V has three inputs:

(1) Input String, (2) Random input and (3) Partial message history

$m_{1} \# m_{2} \# \ldots \# m_{i}$ is used to represent the exchange of messages m_{1} through m_{i} between P and V. The Verifier's output is either the next message m_{i+1} in the sequence or accept or reject, designating the conclusion of the interaction. Thus V has the function from $V: \Sigma^{*} \times \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*} \cup\{$ accept, reject $\}$.
The Prover is a party with unlimited computational ability. We define it to be a function P with two inputs:

(1) Input String and (2) Partial message history

The Prover's output is the next message to the Verifier. Formally, $P: \Sigma^{*} \times \Sigma^{*} \rightarrow$ Σ^{*}. Next we define the interaction between Prover and the Verifier. For particular input string w and random string r, we write $(V \leftrightarrow P)(w, r)=$ accept if a message sequence m_{1} to m_{k} exists for some k whereby

1. for $0 \leq i<k$, where i is an even number, $V\left(w, r, m_{1} \# m_{2} \# \ldots \# m_{i}\right)=m_{i+1}$;
2. $0<i<k$, where i is an odd number, $P\left(w, m_{1} \# m_{2} \# \ldots \# m_{i}\right)=m_{i+1}$; and
3. the final message m_{k} in the message history is accept.

In the definition of the class Succinct $I P$, the lengths of the Verifier's random input and each of the messages exchanged are $p(n)$ for some polynomial p that depends only on the Verifier. Here n is the parameter length of input instance. Besides, total bits of messages exchanged is at most $p(n)$ as well.

Succinct IP: A language $L\left(\subseteq\left\{\left\langle x, 1^{n}\right\rangle \mid x \in\{0,1\}^{*}, n \in \mathbb{N}\right\}\right)$ is in Succinct IP if there exist some polynomial time function V and arbitrary function P, with total $\operatorname{poly}(n)$ many bits of messages communicated between them and for every function $\tilde{\mathrm{P}}$ and string w,

1. $w \in L$ implies $\operatorname{Pr}[V \leftrightarrow P] \geq 2 / 3$, and
2. $w \notin L$ implies $\operatorname{Pr}[V \leftrightarrow \tilde{\mathrm{P}}] \leq 1 / 3$.

Here $\operatorname{poly}(n)$ denotes some polynomial that depends only on the Verifier and n is the parameter length of input instance w.

We know that $Q B$ Formula $S A T$ is in $I P$, as $I P=P S P A C E$. But we can even prove something more. Not only for $Q B C N F S A T$, we can construct Succinct IP protocol for $Q B F$ ormulaSAT as well.

Proposition 5. QBFormulaSAT \in Succinct IP

Proof Outline : The key idea is to take an algebraic view of boolean formulae by representing them as polynomials as follows (for $0 / 1$ values).
$x \wedge y \leftrightarrow X . Y, \bar{x} \leftrightarrow 1-X$ and $x \vee y \leftrightarrow X^{*} Y=1-(1-X)(1-Y)$
We are considering the inputs are from some finite field \mathbb{F}. So, if there is a boolean formula $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of length m, we can easily convert that into a polynomial p of degree at most m following the rules described above.
Let's consider the given a quantified Boolean formula is
$\Psi=Q_{1} x_{1} Q_{2} x_{2} Q_{3} x_{3} \ldots Q_{n} x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$, where the size of Ψ is $m . \phi$ is any boolean formula over n variables.

But because of multiplication, exponent of a variable may grow exponentially. So, to arithmetize Ψ we introduce some new terms in quantification to as follows, $\Psi^{\prime}=Q_{1} x_{1} R x_{1} Q_{2} x_{2} R x_{1} R x_{2} Q_{3} x_{3} R x_{1} R x_{2} R x_{3} \ldots Q_{n} x_{n} R x_{1} R x_{2} \ldots$ $R x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$.
Then we arithmetize the quantifiers as well in standard way [14]. We can actually follow the same $I P$ protocol [14] for $Q B C N F S A T$ and see that the degree of the polynomial exchanged at each stage between P and V is atmost 2. Coefficients of the polynomials are from the field \mathbb{F} which is in $\operatorname{poly}(n)$. So $O(\log (\operatorname{poly}(n)))$ size messages are sent in any phase. Number of such phases k are bounded by $O\left(n^{2}\right)$. So it's succinct.

Besides, we can prove, for 'yes' instance, there is no error. Otherwise, the probability $\operatorname{Pr}[V$ rejects $] \geq(1-2 /|\mathbb{F}|)^{k-1}$ which is very close to 1 for sufficiently large values of $|\mathbb{F}|$. Even, it will be sufficient for us if $|\mathbb{F}|$ is bounded by a large enough polynomial in n. So we can construct a Succinct Interactive proof protocol for $Q B$ FormulaSAT. (detailed proof is mentioned in the Appendix)

Problem in finding Succinct IP protocol for QBCSAT: In case of $Q B C S A T$, similar arithmetization technique will give polynomial of degree much larger size, actually exponential in m. As a result, for polynomial (in m) size field \mathbb{F}, the error bound will be much higher. Now, to reduce the error, we have to use Field \mathbb{F} of larger size, basically exponential in m. This will give us each coefficients of the polynomials exchanged between prover and verifier to be of size $\log \left(e^{\text {poly }(m)}\right)$, i.e. poly (m). So, it's not succinct any more. So we can construct IP protocol for $Q B C S A T$, but still don't know how to make it succinct.

6 Future Directions

There are various possible directions. Suppose CircuitSAT is compressible within a class C. Here we have considered C to be the class $N P$ and got some interesting results. For any general class C we know from [2] that the immediate consequence is the collapse of Polynomial Hierarchy at third level. But it's still not known how our results for compression at second level of Polynomial Hierarchy will be affected for compression into an arbitrary class C. Besides, one could try to work under the weaker assumption that $S A T$ or $O R$-SAT or $O R$-CircuitSAT is compressible instead of CircuitSAT. We also don't know whether there are similar implications for probabilistic compression where we allow certain amount of error in compression. One can even try to find a Succinct IP protocol for QBCSAT to show Succinct $I P=P S P A C E$ or try to find some negative implications of such protocol existing for $Q B C S A T$.

References

1. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications. In Proceedings if the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 719-728, 2006.
2. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Journal of Computer and System Sciences, 77(1):91-106, January 2011. Special issues celebrating Karp's Kyoto Prize.
3. Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science, 26: 287-300, 1983.
4. Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 20th Annual IEEE Symposium on the Foundations of Computer Science, pages 75-83, 1978.
5. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
7. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Danny Hermelin: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8): 423-434 (2009)
8. Stefan Kratsch, Magnus Wahlstrom: Preprocessing of Min Ones Problems: A Dichotomy CoRR abs/0910.4518: (2009)
9. Holger Dell, Dieter van Melkebeek: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. STOC 2010: 251-260
10. H. Buhrman, J. M. Hitchcock: NP-Hard Sets are Exponentially Dense Unless NP is contained in coNP/poly. Elect. Colloq. Comput. Complex. (ECCC) 15(022): (2008).
11. K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and completeness IV: On completeness for $\mathrm{W}[\mathrm{P}]$ and PSPACE analogs. Annals of pure and applied logic, 73:235-276, 1995.
12. J. Flum and M. Grohe. Describing parameterized complexity classes. Information and Computation 187, 291-319 (2003)
13. Y. Chen, J. Flum, M. Mller. Lower bounds for kernelizations. CRM Publications, Nov. 2008.
14. M. Sipser. Introduction to the Theory of Computation.Course Technology, 2nd edition, 2005.
15. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.

Appendix:
Theorem 2: CircuitSAT is non-uniformly compressible within NP implies that Σ_{i} CircuitSAT is non-uniformly compressible within $N P$ for all $i>1$.

Proof. Suppose C is a Σ_{i} CircuitSAT instance. So from the definition we can say that,
$C \in \Sigma_{i}$ CircuitSAT $\Leftrightarrow \exists u_{1} \in\{0,1\}^{n_{1}} \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{i} u_{i} \in\{0,1\}^{n_{i}} C\left(u_{1}\right.$ $\left., \ldots, u_{i}\right)=1$,
where Q_{i} denotes \exists or \forall depending on whether i is odd or even respectively.
Now, suppose CircuitSAT is compressible. To prove Σ_{i} CircuitSAT is compressible for all $i>1$, we have to check the base case at the first place, that is for the case when $i=2$. From the Theorem 1, we can say that if CircuitSAT is nonuniformly compressible within $N P, \Sigma_{2}$ CircuitSAT is also non-uniformly compressible within $N P$. So the statement is true for base case.

Now suppose the statement is true for all $i \leq k$. We have to prove that the statement is true for $i=k+1$ as well. So, assuming CircuitSAT is non-uniformly compressible within $N P$ implies Σ_{i} CircuitSAT is non-uniformly compressible within $N P$ for all $i \leq k$, we have to prove that $\Sigma_{k+1} C i r c u i t S A T$ is also non-uniformly compressible within $N P$.

Suppose C is a Σ_{k+1} CircuitSAT instance of size m. So from the definition we can say that,
$C \in \Sigma_{k+1}$ CircuitSAT $\Leftrightarrow \exists u_{1} \in\{0,1\}^{n_{1}} \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{k+1} u_{k+1} \in\{0,1\}^{n_{k+1}}$ $C\left(u_{1}, \ldots, u_{k+1}\right)=1$,
where Q_{k+1} denotes \exists or \forall depending on whether $(k+1)$ is odd or even respectively.
Now, let's fix u_{1} to u^{\prime}. So now we can define a new language as follows,
$\left\langle C, u^{\prime}\right\rangle \in L^{\prime} \Leftrightarrow \forall u_{2} \in\{0,1\}^{n_{2}} \ldots Q_{k+1} u_{k+1} \in\{0,1\}^{n_{k+1}} C\left(u^{\prime}, u_{2}, \ldots, u_{k+1}\right)$ $=1$,
where Q_{k+1} denotes \exists or \forall depending on whether $(k+1)$ is odd or even respectively.
So it's clear from the above definition that L^{\prime} is a Π_{k}^{p} language (of instance size $\leq O\left(m+n_{1}\right)$) and any instance of L^{\prime} can be polynomially reduced to an instance of Π_{k} CircuitSAT (because Π_{k} CircuitSAT is a Π_{k}^{p}-Complete language). As shown in Proposition 1, the size of the witness will be preserved in this reduction. So this reduction is essentially a W-reduction. Suppose this $\Pi_{k}^{p} C$ ircuitSAT instance is C^{\prime}.

So from the above arguments,
$C \in \Sigma_{k+1}$ CircuitSAT $\Leftrightarrow \exists u^{\prime}\left\langle C, u^{\prime}\right\rangle \in L^{\prime}$ and $\left\langle C, u^{\prime}\right\rangle \in L^{\prime} \Leftrightarrow C^{\prime} \in \Pi_{k}$ CircuitSAT Here the instance length $|C|=m$ and $\left|C^{\prime}\right|=$ poly (m). poly (.) is denoting just an arbitrary polynomial function.

Suppose g is the function to obtain C^{\prime} from C, running in polynomial (in m) time. Namely, $C^{\prime}=g\left(C, u^{\prime}\right)$.

From the induction hypothesis we can say, Σ_{k} CircuitSAT is non-uniformly compressible within $N P$. So any Π_{k} CircuitSAT instance, say C^{\prime} is non-uniformly compressible to a CoNP instance as Π_{k} CircuitSAT $=\operatorname{co} \Sigma_{k}$ CircuitSAT. After compression suppose the instance is $C^{\prime \prime}$ which, without loss of generality, we can take as a Circuit-UnSAT instance. Here $\left|C^{\prime \prime}\right|=\operatorname{poly}\left(n^{\prime}\right)$ where $n^{\prime}=\left(n_{2}+n_{3}+\right.$
$\left.\ldots+n_{k+1}\right)$
So, $C^{\prime} \in \Pi_{k}$ CircuitSAT $\Leftrightarrow C^{\prime \prime} \in$ Circuit-UnSAT.
So from the above arguments we can say,
$C^{\prime} \in \Pi_{k}$ CircuitSAT $\Leftrightarrow C^{\prime \prime}=f_{1}\left(C^{\prime}, w_{1}\right)=f_{1}\left(g\left(C, u^{\prime}\right), w_{1}\right) \in$ Circuit-UnSAT, where $\left|C^{\prime \prime}\right|=\operatorname{poly}\left(n^{\prime}\right)$ and the string w_{1} (of size at most $\operatorname{poly}(m)$) is capturing the notion of polynomial size advice. Here the compression function f_{1} is running in polynomial(in m) time.

Now, if CircuitSAT is non-uniformly compressible within $N P$ so is $S A T$ as $S A T$ is a special case of CircuitSAT. Now, $O R$-SAT is also non-uniformly compressible as $O R-S A T$ is W-reduced to $S A T$.

It can be proved that [2], if $O R-S A T$ is non-uniformly compressible then $\operatorname{CoN} P$ $\subseteq N P /$ poly .

Now combining the above statements we can say that if CircuitSAT is nonuniformly compressible within $N P$ then $C o N P \subseteq N P /$ poly. So we can now convert our CoNP language (here Circuit-UnSAT) instance $C^{\prime \prime}$ into a $N P$ language instance using polynomial size advice. Let's consider that $N P$ language instance to be a CircuitSAT instance $C^{\prime \prime \prime}$. In the above procedure, the length of the instance definitely will not increase. So clearly $\left|C^{\prime \prime \prime}\right|=\operatorname{poly}\left(n^{\prime}\right)$.

So from the above arguments we can say that,
$C^{\prime} \in \Pi_{k}$ CircuitSAT $\Leftrightarrow C^{\prime \prime \prime}=f_{2}\left(C^{\prime \prime}, w_{2}\right)=f_{2}\left(f_{1}\left(g\left(C, u^{\prime}\right), w_{1}\right), w_{2}\right) \in$ CircuitSAT, where $\left|C^{\prime \prime \prime}\right|=\operatorname{poly}\left(n^{\prime}\right)$ and the string w_{2} (of size at most poly $\left(n^{\prime}\right)$) is capturing the notion of polynomial size advice which arises in the proof of [2]. Here the compression function f_{2} is running in polynomial(in n^{\prime}) time.

Now we define a new circuit C_{1} as follows. C_{1} is a non-deterministic circuit whose non-deterministic input is divided into two strings: u_{1} of length n_{1} and v of length $\operatorname{poly}\left(n^{\prime}\right)$. Given its non-deterministic input, C_{1} first computes $C^{\prime \prime \prime}=f_{2}($ $\left(f_{1}\left(g\left(C, u_{1}\right), w_{1}\right), w_{2}\right)$. This can be done in polynomial size in m since the functions f_{2}, f_{1} and g are all polynomial-time computable and C, w_{1} and w_{2} are all fixed strings of size polynomial in m. It then uses its input v as non-deterministic input to $C^{\prime \prime \prime}$ and checks if v satisfies $C^{\prime \prime \prime}$. This can be done in polynomial-size since the computation of a polynomial-size circuit can be simulated in polynomial time. If so, it outputs 1 , else it outputs 0 .

Now we have,
$C \in \Sigma_{k+1}$ CircuitSAT $\Leftrightarrow \exists u_{1} \in\{0,1\}^{n_{1}} \exists v \in\{0,1\}^{n^{\prime}} C_{1}\left(u_{1}, v\right)=1$
$C \notin \Sigma_{k+1}$ CircuitSAT $\Leftrightarrow \forall u_{1} \in\{0,1\}^{n_{1}} \forall v \in\{0,1\}^{n^{\prime}} C_{1}\left(u_{1}, v\right)=0$
The key point is that we have reduced our original Σ_{k+1} CircuitSAT question to a CircuitSAT question, without a super-polynomial blowup in the witness size. This allows us to apply the compressibility hypothesis again. Also, note that C_{1} is computable from C in polynomial size.

Next, using the compressibility assumption for CircuitSAT, we can non-uniformly compress C_{1} to an $N P$ language instance C_{2} of size poly $\left(n_{1}+n^{\prime}\right)$ i.e. poly $\left(n_{1}+n_{2}+\right.$ $\ldots+n_{k+1}$). Our final compression procedure just composes the procedures deriving C_{1} from C and C_{2} from C_{1}, and since each of these can be implemented in polynomial size, our compression of the original Σ_{k+1} CircuitSAT instance is a valid non-uniform instance compression.

So using mathematical induction we can say if $\operatorname{CircuitS} A T$ is non-uniformly compressible within NP, $\Sigma_{i} C$ ircuit $S A T$ is also non-uniformly compressible within $N P$ for all $i>1$.

Proposition 5: QBFormulaSAT \in Succinct IP

We are now basically going to scrutinize the formal proof of the part, $P S P A C E$ $\subseteq I P$ [14]. So we are going to use the same arithmetization technique. Interestingly, not only for $C N F S A T$, Formula $S A T$ version (Quantified) has Succinct IP as well.

Proof. The key idea is to take an algebraic view of boolean formulae by representing them as polynomials. We are considering the inputs are from some finite field \mathbb{F}. We can see that 0,1 can be thought of both as truth values and as elements of \mathbb{F}. Thus we have the following correspondence between formulas and polynomials when the variables take $0 / 1$ values:

$$
\begin{aligned}
& x \wedge y \leftrightarrow X . Y \\
& \bar{x} \leftrightarrow 1-X \\
& x \vee y \leftrightarrow X^{*} Y=1-(1-X)(1-Y)
\end{aligned}
$$

So, if there is a boolean formula $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of length m, we can easily convert that into a polynomial p of degree at most m following the rules described above.

Let's consider the given a quantified Boolean formula is
$\Psi=Q_{1} x_{1} Q_{2} x_{2} Q_{3} x_{3} \ldots Q_{n} x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$,
where the size of Ψ is $m . \phi$ is any boolean formula over n variables.
To arithmetize Ψ we introduce some new terms in quantification and rewrite the expression in the following manner:
$\Psi^{\prime}=Q_{1} x_{1} R x_{1} Q_{2} x_{2} R x_{1} R x_{2} Q_{3} x_{3} R x_{1} R x_{2} R x_{3} \ldots Q_{n} x_{n} R x_{1} R x_{2} \ldots R x_{n}$ $\phi\left(x_{1}, \ldots, x_{n}\right)$,
We now rewrite this Ψ^{\prime} as follows : $\Psi^{\prime}=S_{1} x_{1} S_{2} x_{2} S_{3} x_{3} \ldots S_{k} x_{k}[\phi]$,
where each $S_{i} \in\{\exists, \forall, R\}$. We are going to define R very soon. We can see that value of k can be atmost $O\left(n^{2}\right)$.

For each $i \leq k$ we define the function f_{i}. We define $f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to be the polynomial p [i.e. $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$] obtained by arithmetizing ϕ. For $i<k$ we define f_{i} in terms of f_{i+1} :

$$
\begin{aligned}
& S_{i+1}=\forall: f_{i}(\ldots)=f_{i+1}(\ldots, 0) \cdot f_{i+1}(\ldots, 1) \\
& S_{i+1}=\exists: f_{i}(\ldots)=f_{i+1}(\ldots, 0)^{*} f_{i+1}(\ldots, 1) \\
& S_{i+1}=R: f_{i}(\ldots, a)=(1-a) f_{i+1}(\ldots, 0)+a f_{i+1}(\ldots, 1)
\end{aligned}
$$

Here we reorder the inputs of the functions in such a way that variable y_{i+1} is always the last argument. If S is \exists or \forall, f_{i} has one fewer input variable than f_{i+1} does. But if S is R, both of them have same number of arguments. Here ". . ." can be replace by a_{1} through a_{j} for appropriate values of j.

We can observe that operation R on polynomial doesn't change their values for boolean inputs. So $f_{0}()$ is still the truth value of Ψ. Now we can observe that these $R x$ operation produces a result that is linear in x. We added $R x_{1} R x_{2} \ldots R x_{i}$ after $Q_{i} x_{i}$ in Ψ^{\prime} in order to reduce the degree of each variable to 1 prior to the squaring due to arithmetizing Q_{i}.

We are now ready to describe the protocol. Here P is denoted to be the prover and V to be the verifier as we always use.

Phase 0: [P sends $f_{0}()$]
$P \rightarrow V: P$ sends $f_{0}()$ to $V . V$ checks that $f_{0}()=1$ and rejects if not.

Phase i : [P persuades V that $f_{i-1}\left(r_{1}, \ldots\right)$ is correct if $f_{i}\left(r_{1}, \ldots, r\right)$ is correct] $P \rightarrow V: P$ sends the coefficients of $f_{i}\left(r_{1}, \ldots, z\right)$ as a polynomial in z. (Here $r_{1} \ldots$ denotes a setting of the variables to the previously selected random values r_{1}, r_{2}, \ldots)
V uses these coefficients to evaluate $f_{i}\left(r_{1}, \ldots, 0\right)$ and $f_{i}\left(r_{1}, \ldots, 1\right)$. Then it checks that the polynomial degree is at most 2 and that these identities hold:

$$
f_{i-1}\left(r_{1}, \ldots\right)= \begin{cases}f_{i}\left(r_{1}, \ldots, 0\right) \cdot f_{i}\left(r_{1}, \ldots, 1\right) & \text { if } S_{i}=\forall \\ f_{i}\left(r_{1}, \ldots, 0\right) * f_{i}\left(r_{1}, \ldots, 1\right) & \text { if } S_{i}=\exists\end{cases}
$$

and

$$
f_{i-1}\left(r_{1}, \ldots, r\right)=(1-r) f_{i}\left(r_{1}, \ldots, 0\right)+r f_{i}\left(r_{1}, \ldots, 1\right) \text { if } S_{i}=R
$$

If either fails, V rejects.
$V \rightarrow P: V$ picks a random boolean value r from \mathbb{F} and sends it to P. If $S_{i}=R$, this r replaces the previous r
Then it goes to phase $i+1$, where P must persuade V that $f_{i}\left(r_{1}, \ldots, r\right)$ is correct.

Phase $k+\mathbf{1}$: $\left[V\right.$ checks directly that $f_{k}\left(r_{1}, \ldots, r_{n}\right)$ is correct]
V evaluates $p\left(r_{1}, \ldots, r_{n}\right)$ to compare with the value V has for $f_{k}\left(r_{1}, \ldots, r_{n}\right)$. If they are equal, V accepts, otherwise V rejects. That completes the description of the protocol.

Here polynomial p is nothing but the arithmetization of the formula ϕ, as we have already seen. It can be shown that the evaluation of this polynomial can be done in polynomial time by following ways. We can simply replace all the three or more input gates (nodes) in the formula ϕ, by equivalent two input nodes. This will introduce some extra gates (nodes), but now the number of gates in the formula is polynomially bounded in m.

Now for the evaluation of the polynomial p for r_{1}, \ldots, r_{n}, we will consider the modified ϕ and apply the arithmetization for the nodes individually. We will evaluate the nodes from lower level. Before we evaluate for any node, corresponding inputs are already evaluated and ready to use. Evaluation for each node will take constant amount of time. So total evaluation of p for r_{1}, \ldots, r_{n} through modified ϕ will take poly (m) time.

Now we can try to prove that the probability of error is bounded within the limit. If the prover P always returns the correct polynomial, it will always convince V. If P is not honest then we are going to prove that V rejects with high probability:

$$
\operatorname{Pr}[V \text { rejects }] \geq(1-d /|\mathbb{F}|)^{k}
$$

where d is the highest degree of the polynomial sent in each stage. We can see that value of k can be atmost $O\left(n^{2}\right)$. As the value of d is 2 in our case, the right hand side of the above expression is at least $(1-2 k /|\mathbb{F}|)$, which is very close to 1 for sufficiently large values of $|\mathbb{F}|$. It will be sufficient for us if $|\mathbb{F}|$ is bounded by a large enough polynomial in n.

Now we are going to see how the proof works when the proves is trying to cheat for "no" instance. In the first round, the prover P should send $f_{0}()$ which must be 1. Then P is supposed to return the polynomial f_{1}. If it indeed returns f_{1} then since $f_{1}(0)+f_{1}(1) \neq f_{0}()$ by assumption, V will immediately reject (i.e., with probability 1). So assume that the prover returns some $s\left(X_{1}\right)$, different from $f_{1}\left(X_{1}\right)$. Since the degree d non-zero polynomial $s\left(X_{1}\right)-f_{1}\left(X_{1}\right)$ has at most d roots, there are at most d values r such that $s(r)=f_{1}(r)$. Thus when V picks a random r,

$$
\operatorname{Pr}_{r}\left[s(r) \neq f_{1}(r)\right] \geq(1-d /|\mathbb{F}|) \ldots(1)
$$

Then the prover is left with an incorrect claim to prove in all the phases. So prover should lie continuously. If P is lucky, V will not understand the lie. By the induction hypothesis, the prover fails to prove this false claim with probability at least $\geq(1-d /|\mathbb{F}|)^{k-1}$. Base case is easy to see from (1). Thus we have,

$$
\operatorname{Pr}[V \text { rejects }] \geq(1-d /|\mathbb{F}|) \cdot(1-d /|\mathbb{F}|)^{k-1}=(1-d /|\mathbb{F}|)^{k}
$$

If P is not lucky, as the verifier is evaluating $p()$ explicitly in the last stage, V will anyway detect the lie.

Here in the description of the protocol, we can see that the degree of the polynomial at each stage is atmost 2 . So we need just constant number of coefficients for encoding such polynomials. coefficients are from the field \mathbb{F} which is of size poly (m). So $O(\log (\operatorname{poly}(m)))$ i.e. $O($ poly $(n))$ size messages are sent in any phase. Even, it will be sufficient for us if $|\mathbb{F}|$ is bounded by a large enough polynomial in n. Number of such phases are bounded by $(k+1)$ which is $O\left(n^{2}\right)$. So we have constructed a Succinct Interactive proof protocol for QBFormulaSAT.

