

Edinburgh Research Explorer

The foundational legacy of ASL

Citation for published version:
Sannella, D & Tarlecki, A 2015, 'The foundational legacy of ASL'. in Software, Services and Systems: :
Essays Dedicated to Martin Wirsing on the Occasion of His Emeritation. vol. 8950, Lecture Notes in
Computer Science, Springer Japan.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Software, Services and Systems:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/the-foundational-legacy-of-asl(5877d173-c5b9-486d-b3f5-5df56b06872d).html

The foundational legacy of ASL

Donald Sannella1 and Andrzej Tarlecki2

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, University of Warsaw

Abstract. We recall the kernel algebraic specification language ASL and outline
its main features in the context of the state of research on algebraic specification
at the time it was conceived in the early 1980s. We discuss the most significant
new ideas in ASL and the influence they had on subsequent developments in the
field and on our own work in particular.

1 Introduction

One of Martin Wirsing’s most important contributions to the field of algebraic specifi-
cation was his work on the ASL specification language. ASL is one of the milestones of
the field and is one of Martin’s most influential lines of work. It was also the highlight
of our long-term collaboration and friendship with him — many thanks, Martin!!!

ASL is a simple algebraic specification language containing a small set of orthog-
onal constructs. Preliminary ideas were sketched in [Wir82], then modified and further
developed in [SW83], with [Wir86] offering a complete, extended presentation. At the
time, the first fully-fledged algebraic specification languages had recently been defined
(Clear [BG80], CIP-L [BBB+85] etc.). In contrast, ASL was conceived as a kernel lan-
guage, with stress on expressive power, conceptual clarity, and simplicity, rather than
on convenience of use. The idea was to penetrate to the essential concepts, suitable for
foundational studies and supplying a basis that could be used to define other specifica-
tion languages.

Among the key characteristics of ASL, as listed in [Wir86], are the following:

– “ASL is a language for describing classes of algebras rather than for building sets
of axioms (theories)”; in particular, “an ASL specification may be loose (mean-
ing that it may possess nonisomorphic models)”: We will discuss the semantics of
specifications in Sect. 3, including the relationship between model-class semantics
and theory-level semantics.

– “The expressive power of ASL allows the choice of a simple notion of implemen-
tation” and “parameterization in ASL is λ-abstraction”: We will discuss aspects of
the software development process, as influenced by these two ideas, in Sect. 4.

– “ASL is oriented towards a ’behavioural’ approach . . . ASL includes a very general
observability operation which can be used to behaviourally abstract from a specifi-
cation”: We will discuss the technicalities of behavioural abstraction and its role in
the software development process in Sect. 5.

This work has been partially supported by the National Science Centre, grant UMO-
2013/11/B/ST6/01381 (AT).

Further characteristics, also listed in [Wir86], are:

– “Infinite signatures and infinite sets of axioms can be described by finite ASL ex-
pressions” and “Algebras in ASL are generalized algebras . . . suitable for the de-
scription of strict and nonstrict operations”: We are not going to dwell on these
points as they are subsumed by the more general setup of [ST88a], where the se-
mantics of ASL is given for an arbitrary logical system (institution); we will follow
this approach in Sects. 2–4. The particular choices made in [Wir82], [SW83] and
[Wir86] arise from particular institutions.

– “ASL can be seen as an applicative (programming) language where the basic modes
are not only natural numbers, integers, or strings, but sorts, operation symbols,
terms, formulas, signatures, and specifications”: The novel feature here is that each
of these modes was treated as a first-class citizen in ASL. As far as we know, this
aspect of ASL has not been explicitly taken up in later work, at least not to the same
extent.

– “ASL is a universal specification language allowing to write every computable
transformation of specifications”: The power of parameterization in ASL comes
partly from the previous point. This universality property was an interesting tech-
nical point but in our view it evades the real question, concerning which semantic
entities (model classes and transformations between them) can be captured.

As indicated above, this paper discusses some of the ideas and themes that were
prominent in ASL and influenced further work. We comment on these from today’s
perspective, supported by pointers to the subsequent literature.

2 Preliminaries

We will rely here on the usual notions of many-sorted algebraic signatures Σ = 〈S,Ω〉
and signature morphisms σ : Σ → Σ′ mapping sorts in Σ to sorts in Σ′ and op-
eration names in Σ to operation names with corresponding arity and result sorts in
Σ′. This yields the category AlgSig. For each algebraic signature Σ, Alg(Σ) stands
for the usual category of Σ-algebras and their homomorphisms. We restrict attention
to algebras with non-empty carriers to avoid minor technical problems in the sequel,
which are by now well-understood, see [Tar11]. As usual, each signature morphism
σ : Σ → Σ′ determines a reduct functor σ : Alg(Σ′) → Alg(Σ). This yields a
functor Alg : AlgSigop → Cat. See [ST12] for a more detailed presentation.

Given a signatureΣ,Σ-terms,Σ-equations, and first-orderΣ-formulae with equal-
ity are defined as usual. The set of all Σ-terms with variables from X is denoted by
TΣ(X), and for sets IN ,OUT of sorts inΣ, TΣ(XIN)OUT denotes the set ofΣ-terms
of sorts in OUT with variables of sorts in IN . Given a Σ-algebra A, a set of variables
X and a valuation v : X → |A|, the value tA[v] of a Σ-term t with variables X in A
under v and the satisfaction A[v] |= ϕ of a formula ϕ with variables X in A under v
are defined as usual. The parameter v is omitted when X is empty.

A derived signature morphism δ : Σ → Σ′ maps sorts in Σ to sorts in Σ′ and
function symbols f : s1 × . . . × sn → s in Σ to Σ′-terms of sort δ(s) with variables
{x1:δ(s1), . . . , xn:δ(sn)}. This generalises “ordinary” algebraic signature morphisms

2

as recalled above. A derived signature morphism δ : Σ → Σ′ still determines a reduct
functor δ : Alg(Σ′)→ Alg(Σ).

Given a (derived) signature morphism δ : Σ → Σ′, the δ-translation of Σ-terms,
Σ-equations, and first-order Σ-formulae to Σ′-terms, Σ′-equations, and first-order Σ′-
formulae are as usual: we write δ(t) etc. For any term t ∈ TΣ(X), Σ′-algebra A′,
and valuation v′ : δ(X) → |A′|, where δ(X)s′ =

⊎
δ(s)=s′ Xs, we have t

(A′ δ)[v]
=

δ(t)A′[v′], where v : X → |A′ δ| is the valuation of variables in X that corresponds to
v′ in the obvious way. Similarly for Σ-equations and Σ-formulae ϕ with free variables
X: (A′ δ)[v] |= ϕ iff A′[v′] |= δ(ϕ).

An institution [GB92] INS consists of:

– a category SignINS of signatures;
– a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences for

each signature Σ ∈ |SignINS|;
– a functor ModINS : Signop

INS → Cat, giving a category ModINS(Σ) of Σ-
models for each signature Σ ∈ |SignINS|; and

– a family 〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS| of satisfaction re-
lations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ) of
models and SenINS(σ) of sentences preserve the satisfaction relation, that is, for any
ϕ ∈ SenINS(Σ) andM ′ ∈ |ModINS(Σ′)| the following satisfaction condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M ′) |=INS,Σ ϕ

We will omit the subscripts INS andΣ whenever they are obvious from the context. For
any signature morphism σ : Σ → Σ′, the translation Sen(σ) : Sen(Σ) → Sen(Σ′)
will be denoted by σ : Sen(Σ) → Sen(Σ′), and the reduct Mod(σ) : Mod(Σ′) →
Mod(Σ) by σ : Mod(Σ′) → Mod(Σ). Thus, the satisfaction condition may be
re-stated as: M ′ |= σ(ϕ) iff M ′ σ |= ϕ. For any signature Σ, the satisfaction relation
extends naturally to sets of Σ-sentences and classes of Σ-models.

Examples of institutions abound. The institution EQ of equational logic has the
category SignEQ = AlgSig of many-sorted algebraic signatures as its category of
signatures; its models are algebras, so ModEQ is Alg : AlgSigop → Cat; for any
signature Σ ∈ |AlgSig|, SenEQ(Σ) is the set of all (universally quantified) Σ-
equations, with SenEQ(σ) : SenEQ(Σ) → SenEQ(Σ′) being the translation of Σ-
equations to Σ′-equations for any signature morphism σ : Σ → Σ′ in AlgSig. Fi-
nally, the satisfaction relations |=EQ,Σ ⊆ |Alg(Σ)| × SenEQ(Σ) are defined as usual:
A |=EQ,Σ ∀X.t = t′ iff tA[v] = t′A[v] for all valuations v : X → |A|. The institution
FOEQ of first-order equational logic shares with EQ its category of signatures and
its model functor, with its sets of sentences extended to include all closed formulae
of first-order logic with equality, together with the standard satisfaction relations. Any
institution having the same category of signatures and the same model functor as EQ
(and FOEQ) will be called standard algebraic. See [ST12] for detailed definitions of
many other institutions.

For any signature Σ, a Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a set
of Σ-sentences Φ ⊆ Sen(Σ), written Φ |=Σ ϕ or simply Φ |= ϕ, if for all Σ-models

3

M ∈ |Mod(Σ)|, M |= ϕ whenever M |= Φ. A Σ-theory is a set of Σ-sentences that
is closed under semantic consequence.

Semantic consequence is often approximated by an entailment system, that is, a
family of relations 〈`Σ〉Σ∈|Sign| where, for Σ ∈ |Sign|, `Σ is a relation between sets
of Σ-sentences and individual Σ-sentences, subject to the usual requirements (reflex-
ivity, transitivity, weakening). An entailment system (and its presentation via a system
of proof rules) is sound for INS if for Σ ∈ |Sign|, Φ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ),
Φ `Σ ϕ implies Φ |=Σ ϕ, and it is complete if the opposite implication holds. Sound
and complete proof systems for EQ and FOEQ are well known.

Institutional structure is rich enough to enable a number of key features of logical
systems to be expressed. For instance, amalgamation and interpolation properties may
be captured as follows.

Consider the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

This diagram admits amalgamation if for any two modelsM1 ∈ |Mod(Σ1)| andM2 ∈
|Mod(Σ2)| such that M1 σ1 = M2 σ2 , there exists a unique model M ′ ∈ |Mod(Σ′)|
such that M ′ σ′2 = M1 and M ′ σ′1 = M2 and similarly for model morphisms. An
institution is semi-exact if pushouts of signature morphisms always exist and admit
amalgamation. It is well-known that any standard algebraic institution (in particular,
EQ and FOEQ) is semi-exact.

The above diagram admits parameterized interpolation if for any Φ1 ⊆ Sen(Σ1),
Φ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2), whenever σ′2(Φ1) ∪ σ′1(Φ2) |= σ′1(ϕ2) then for
some Φ ⊆ Sen(Σ) such that Φ1 |= σ1(Φ) we have Φ2 ∪ σ2(Φ) |= ϕ2. The diagram
admits Craig interpolation if it admits parameterized interpolation with “parameter set”
Φ2 = ∅. INS admits parameterized (resp. Craig) interpolation if all pushouts in the
category of signatures admit parameterized (resp. Craig) interpolation.

The above reformulation of classical (first-order) Craig interpolation [CK90] has its
source in [Tar86]. It is well-known that single-sorted first-order equational logic admits
Craig as well as parameterized interpolation. But in the many-sorted case, interpola-
tion requires additional assumptions on the signature morphisms involved: a pushout
in FOEQ admits Craig and parameterized interpolation when at least one source mor-
phism involved is injective on sorts, see [Bor05]. Interpolation properties for equational
logic are even more delicate. EQ admits Craig interpolation for pushouts in which
all morphisms are injective, but the restriction to non-empty carriers cannot be dropped
[RG00], [Tar11]. Parameterized interpolation for EQ fails, unless injectivity and strong
“encapsulation” properties are imposed on the morphisms in the pushouts considered,
see [Dia08].

4

The interpolation requirement for an institution may be parameterized by classes of
morphisms used in the pushouts considered. For simplicity of exposition we avoid this
complication here; see [Bor05], [Dia08] for details.

3 Specifications and their semantics

Taking an institution as a starting point for talking about specifications and software
development, each signature Σ captures static information about the interface of a soft-
ware system with each Σ-model representing a possible realisation of such a system,
and with Σ-sentences used to describe properties (axioms) that a realisation is required
to satisfy. As a consequence, it is natural to regard the meaning of any specification
SP built in an institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 as given by its
signature Sig [SP] ∈ |Sign| together with a class Mod [SP] of Sig [SP]-models. Speci-
fications SP with Sig [SP] = Σ are referred to as Σ-specifications.

The stress here is not only on the use of model classes to capture the semantics
of specifications, but also on the lack of restriction on the models in the class and on
the class itself — so-called “loose semantics”. This is in contrast to the approach of
ADJ [GTW76] and its followers, see e.g. [EM85], in which the meaning of an (equa-
tional) specification SP was taken to be the isomorphism class of the initial models of
SP . Similar restrictions appear in other early approaches: final models [Wan79], gen-
erated models [BBB+85], etc. The clear benefit of the loose approach is that it avoids
placing premature constraints on the semantics of specifications, leaving choices of im-
plementation details open for later stages of the development process. Although based
in earlier work — the notion of the class of models of a set of axioms is a backbone of
mathematical logic — in the context of algebraic specification this loose view was first
consequently adopted in the work on ASL.

Different formulations of ASL share a kernel where specifications are built from
basic specifications using union, translation and hiding. We use a syntax that is close
to that of CASL [BM04], rather than choosing one of the variants in the ASL literature.

basic specifications: For any signature Σ ∈ |Sign| and set Φ ⊆ Sen(Σ) of Σ-
sentences, the basic specification 〈Σ,Φ〉 is a specification with:

Sig [〈Σ,Φ〉] = Σ
Mod [〈Σ,Φ〉] = {M ∈Mod(Σ) |M |= Φ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2, their
union SP1 ∪ SP2 is a specification with:

Sig [SP1 ∪ SP2] = Σ
Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2]

translation: For any signature morphism σ:Σ→Σ′ andΣ-specification SP, SP with σ
is a specification with:

Sig [SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈Mod(Σ′) |M ′ σ ∈ Mod [SP]}
hiding: For any signature morphism σ:Σ→Σ′ andΣ′-specification SP ′, SP ′ hide via σ

is a specification with:
Sig [SP ′ hide via σ] = Σ
Mod [SP ′ hide via σ] = {M ′ σ |M ′ ∈ Mod [SP ′]}

5

Using this semantics as a basis, we can now study the expressible properties that a
specification ensures.

A Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a specification SP with
Sig [SP] = Σ if Mod [SP] |= ϕ; we write this SP |= ϕ. The set of all semantic
consequences of SP is called the theory of SP .

An alternative to the ASL model-class semantics for specifications is to assign a
theory to a specification as its meaning. This goes back to Clear [BG80], and is the
stance taken for instance in [DGS93] and [GR04]. See [ST14] for a careful analysis of
this alternative.

One standard way of presenting such a semantics is by giving a proof system for
deriving consequences of specifications. For the class of specifications described above,
the following proof rules are standard [ST88a]:

SP ` ϕ for each ϕ ∈ Φ Φ ` ψ
SP ` ψ 〈Σ,Φ〉 ` ϕ

ϕ ∈ Φ

SP1 ` ϕ
SP1 ∪ SP2 ` ϕ

SP2 ` ϕ
SP1 ∪ SP2 ` ϕ

SP ` ϕ
SP with σ ` σ(ϕ)

SP ` σ(ϕ)
SP hide via σ ` ϕ

where Φ ` ψ calls upon a sound entailment system for the underlying institution INS.
This proof system is sound: SP ` ϕ implies SP |= ϕ. Completeness (SP |= ϕ implies
SP ` ϕ) is more difficult.

Theorem 3.1 ([ST14]). Given an institution INS that admits amalgamation, and an
entailment system 〈`Σ〉Σ∈|Sign| for INS that is sound and complete, the above proof
system is sound and complete for consequences of specifications built from basic spec-
ifications using union, translation and hiding if and only if INS admits parameterized
interpolation.

The assumption that INS admits parameterized interpolation is a rather strong one,
excluding important examples like EQ except under restrictive conditions (Sect. 2).
But strengthening the proof system above in an attempt to make it complete even in
the absence of this assumption has a high price. As explained in full technical detail in
[ST14], the above proof system cannot be improved without breaking the well-known
compositionality principle, whereby consequences of a specification are inferred from
consequences of its immediate component subspecifications.

It follows that a compositional theory-level semantics for the above class of struc-
tured specifications — or any larger class — that would assign to any specification the
theory of its model class can be given only under a rather strong assumption about the
underlying logical system.

This negative conclusion shows that there is an unavoidable discrepancy between
compositional theory-level and model-class semantics for specifications. As usual, proof
theory gives an approximation to semantic truth, and where there is a difference the lat-
ter provides the definitive reference point.

6

That said, non-compositional sound and complete proof systems for consequences
of specifications can be given by collapsing the structure of specifications via normal-
isation [Bor05], even if INS does not admit interpolation. Various ways of avoiding
complete collapse of specification structure are possible, see [MAH06] and [MT14].

We may take the theory-level view a bit further and study consequence relative
to a specification. Any Σ-specification SP determines a consequence relation |=SP

where for any set Φ of Σ-sentences and any Σ-sentence ϕ, Φ |=SP ϕ if ϕ holds in all
models of SP that satisfy Φ. The corresponding semantics assigns to each specification
an entailment relation, possibly given by a proof system as in [HWB97]. The standard
proof rules for the above specifications are the following:

Φ ` ψ
Φ `SP ψ `〈Σ,Φ〉 ϕ

ϕ ∈ Φ

Φ `SP1 ϕ

Φ `SP1∪SP2 ϕ

Φ `SP2 ϕ

Φ `SP1∪SP2 ϕ

Φ `SP ϕ

σ(Φ) `SP with σ σ(ϕ)
σ(Φ) `SP σ(ϕ)
Φ `SP hide via σ ϕ

These rules are sound: Φ `SP ϕ implies Φ |=SP ϕ. Again, completeness (Φ |=SP ϕ
implies Φ `SP ϕ) holds only under strong assumptions.

Theorem 3.2 ([Dia08]). Given an institution INS that admits amalgamation, and an
entailment system 〈`Σ〉Σ∈|Sign| for INS that is sound and complete, the above proof
system is sound and complete for consequence relative to specifications built from basic
specifications using union, translation and hiding if and only if INS admits parameter-
ized interpolation.

The negative remarks above concerning compositional theory-level semantics carry
over here as well.

3.1 An example

Without complicating the semantic foundations, we may add specification-building op-
erations that are defined in terms of the ones above. For instance, in any algebraic insti-
tution, we may use the following operations:

sum: For any Σ-specification SP and Σ′-specification SP ′, their sum is:

SP and SP ′ = (SP with ι) ∪ (SP ′ with ι′)
where ι : Σ ↪→ Σ ∪Σ′ and ι′ : Σ′ ↪→ Σ ∪Σ′ are the signature inclusions.

enrichment: For anyΣ-specification SP withΣ = 〈S,Ω〉, set S′ of sort names, setΩ′

of operation names with arities and result sorts over S ∪S′, and set Φ′ of sentences
over the signature Σ′ = 〈S ∪ S′, Ω ∪Ω′〉, we define:

SP then sorts S′ ops Ω′ • Φ′ = (SP with ι) ∪ 〈Σ′, Φ′〉
where ι : Σ ↪→ Σ′ is the signature inclusion. Obvious notational variants (e.g.
omitting “sorts” when S′ = ∅) are used to enhance convenience.

7

hiding: Hiding with respect to signature inclusion may be written by listing the hidden
symbols. So, for any Σ-specification SP with Σ = 〈S,Ω〉 and signature inclusion
ι : 〈S′, Ω′〉 ↪→ Σ, we define:

SP hide sorts S \ S′ ops Ω \Ω′ = SP hide via ι

Assume given specifications BOOL of Booleans and NAT of natural numbers. Then,
working in FOEQ, we can build the following specifications:

spec NATBOOL =
NAT and BOOL then

ops > : nat × nat → bool
∀n,m : nat

• 0 > n = false
• succ(n) > 0 = true
• succ(n) > succ(m) = n > m

spec BAG =
NATBOOL then

sorts bag
ops empty : bag

add : nat × bag → bag
count : nat × bag → nat

∀x, y : nat , B : bag
• count(x, empty) = 0
• count(x, add(x,B)) = succ(count(x,B))
• x 6= y⇒ count(x, add(y,B)) = count(x,B)

spec CONTAINER =
(BAG then

ops isin : nat × bag → bool
∀x : nat , B : bag

• isin(x,B) = count(x,B) > 0)
hide ops count

It is now easy to check that, for instance,

CONTAINER |= ∀x:nat , B:bag . isin(x, add(x,B)) = true
CONTAINER |= ∀x, y:nat , B:bag . isin(x, add(y, add(x,B))) = true
CONTAINER |= ∀x:nat . isin(x, empty) = false.

Since we are working in FOEQ, which admits parameterized interpolation, by The-
orem 3.1 these can be proved using the proof system given above. We encourage the
reader to write out the details.

One may now attempt to upgrade CONTAINER to give a specification of sets, for
example:

spec EXTCONTAINER =
CONTAINER then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒B = B′

8

However, this specification has no models. To see this, note that1

BAG |= ∀x:nat . add(x, add(x, empty)) 6= add(x, empty)

from which we encourage the reader to derive EXTCONTAINER |= φ for all first-order
formulae φ.

Instead, we may define

spec SET =
NATBOOL then

sorts bag
ops empty : bag

add : nat × bag → bag
isin : nat × bag → bool

∀x, y : nat , B : bag
• isin(x, empty) = false
• isin(x, add(x,B)) = true
• x 6= y⇒ isin(x, add(y,B)) = isin(x,B)

and then

spec EXTSET =
SET then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒B = B′

We may now prove

EXTSET |= ∀x, y:nat , B:bag . add(x, add(y,B)) = add(y, add(x,B))
EXTSET |= ∀x:nat , B:bag . isin(x,B) = true⇒ add(x,B) = B

as well as

EXTSET |= ∀x:nat , B:bag . isin(x, add(x,B)) = true
EXTSET |= ∀x, y:nat , B:bag . isin(x, add(y, add(x,B))) = true
EXTSET |= ∀x:nat . isin(x, empty) = false.

We will refer to these specifications throughout the rest of the paper.

4 Implementations and parameterization

At the time when work on ASL began, one of the hottest research topics in alge-
braic specification was the search for the “right” definition of implementation of one
specification by another. The goal was to achieve the expected composability proper-
ties [GB80] while capturing practical data representation and refinement techniques.
Various approaches were proposed, of which the concept of implementation given in
[EKMP82] was probably the most influential and well developed; see [SW82] for a

1 This follows from NAT |= ∀n:nat . succ(n) 6= n.

9

contribution from Martin. “Vertical composition” (transitivity) of two such implemen-
tations was the crucial goal, but this was not always possible except under additional
assumptions about the specifications involved. In retrospect, this is no surprise, since
the definitions proposed were all based on syntactic concepts and composition required
some form of normalisation of the transition from implemented to implementing spec-
ifications. This corresponds to requiring programs to be written in a rather restricted
programming language that provides no means of composing modules without syntac-
tically merging their actual code. In addition to problems with vertical composition,
these early definitions failed to cover certain naturally arising examples, and most dis-
regarded loose specifications.

The breakthrough of ASL for implementations was to take seriously the idea that
a loose specification has all of its legal realisations as models. Proceeding from an ab-
stract specification of requirements to a more refined specification is then a matter of
making a series of design decisions, each of which narrows the class of models un-
der consideration. Thus, implementation corresponds simply to the inclusion of model
classes of the specifications involved.

Given specifications SP and SP ′ with Sig [SP] = Sig [SP ′], we say that SP ′ is
a simple implementation of SP , written SP ññòSP ′, if Mod [SP] ⊇ Mod [SP ′]. For
instance, referring to Sect. 3.1, SET ññòCONTAINER. (But CONTAINER /ññòSET.)

Vertical composition is now immediate: if SP ññòSP ′ and SP ′ ññòSP ′′ then
SP ññòSP ′′. Thus, given a chain SP0 ññòSP1 ññò· · · ññòSPn of simple imple-
mentation steps and a model M ∈ Mod [SPn], we have M ∈ Mod [SP0]. This ensures
that the correctness of the final outcome of stepwise development may be inferred from
the correctness of the individual implementation steps.

The definition of simple implementation requires the signatures of both specifica-
tions to be the same. Hiding may be used to adjust the signatures (for example, by hiding
auxiliary functions in the implementing specification) if this is not the case. This is just
one example of “wrapping” around specifications that may be needed to capture the
relationship between implemented and implementing specifications when using sim-
ple implementations. In general, such wrapping may incorporate design decisions like
definitions of types and operations in terms of other components that are yet to be im-
plemented. These are expressible using the simple specification constructs defined in
the last section, where definitions can be expressed using hiding via a derived signature
morphism. Proceeding this way, successive specifications in the chain will incorporate
more and more details arising from successive design decisions. Thereby, some parts
become fully determined, and remain unchanged as a part of the specification until the
final program is obtained. The following diagram is a visual representation of this situ-
ation, where κ1, . . . , κn label the parts that become determined at consecutive steps:'

&

$

%
SP0 ññò

κ1

'
&
$
%SP1 ññò

κ1
κ2

�
�
�
�SP2 ññò· · · ññò

κ1
κ2

· · · κn•

It is more convenient to separate the finished parts from the specification, putting them
aside, and proceeding with the development of the unresolved parts only:

10

'

&

$

%
SP0 κ1

ñññò

'
&
$
%SP1 κ2
ñññò

�
�
�
�SP2 κ3
ñññò· · · κn

ñññò• SPn = EMPTY

where EMPTY is a specification for which a standard model empty ∈ Mod [EMPTY] is
available.

Semantically, the finished parts κ1, . . . , κn are functions that map any realisation of
the unresolved part to a realisation of what is being implemented. We call such func-
tions constructors and capture the corresponding concept of implementation as follows
[ST88b]: given specifications SP and SP ′, we say that SP ′ is a constructor implemen-
tation of SP via κ, written SP κññòSP ′, if κ is a constructor from SP ′ to SP , that is,
a function κ : |Mod(Sig [SP ′])| → |Mod(Sig [SP])| such that κ(M ′) ∈ Mod [SP] for
all M ′ ∈ Mod [SP ′]. Again, vertical composition follows immediately: if SP κññòSP ′

and SP ′
κ′
ñññòSP ′′ then SP

κ′;κ
ñññññòSP ′′. Furthermore, given a chain of construc-

tor implementation steps SP0 κ1
ñññòSP1 κ2

ñññò · · · κn
ñññòSPn = EMPTY we have

κ1(κ2(. . . κn(empty) . . .)) ∈ Mod [SP0].
The general notion of a constructor above covers various constructs used in early

notions of implementation. An important class of examples is reducts with respect to
derived signature morphisms δ : Sig [SP] → Sig [SP ′] which capture definitions of
types and operations in SP terms of components in SP ′.2 By definition, this yields
SP

δ
ñññòSP ′ if M ′ δ ∈ Mod [SP] for all models M ′ ∈ Mod [SP ′], which is a semantic

statement of the correctness condition that needs to be verified.
For example, CONTAINER

δ
ñññòBAG where δ : Sig [CONTAINER] → Sig [BAG]

maps isin to the term count(x1, x2) > 0.
This successfully deals with the definition of implementation and the issue of verti-

cal composition. The other dimension, “horizontal composition” [GB80], captures the
idea that combining implementations of components of a structured specification should
yield an implementation of the whole original specification. This supposedly provides
for modular decomposition of development tasks during the stepwise development pro-
cess. Unfortunately, this does not allow for the very real possibility that there may be a
mismatch between the structure of the original requirements specification and its reali-
sation, see [FJ90]. For example, an implementation of CONTAINER would not need to
be built on top of an implementation of BAG. The requirement of horizontal composi-
tion is missing a way of distinguishing between, on the one hand, the structure of the
requirements specification used to facilitate its construction and understanding, and on
the other hand, binding decisions made during the development process concerning the
structure of the realisation. The latter fixes the design of the system architecture, and
horizontal composition with respect to this structure is what really matters, see [ST06].
CASL [BM04] provides a way to capture designs of system architecture in the form of
architectural specifications [BST02].

2 This essentially gives a simple functional programming language if one generalises the notion
of derived signature morphisms by allowing terms that involve constructs like conditionals,
local (recursive) definitions, etc., see e.g. Example 4.1.25 of [ST12].

11

Even though this crucial distinction was never pointed out in the work on ASL, and
it was not properly understood at the time, its technical roots are discernible in the ASL
notion of parameterized specification.

Before ASL, the predominant style of parameterization in algebraic specification
was in terms of pushouts in the category of specifications. These originated in Clear
[BG80] and were then taken further in [TWW82], [EM85]. There, parameterized spec-
ifications were viewed both as specification-building operations and as specifications
for the (free) functor mapping models of the parameter specification to models of the
result specification, with compatibility between the two views being a cornerstone of
this approach. This two-level view is another manifestation of the confusion between
the structure of requirement specifications and the structure of realisations.

Parameterized specifications in ASL were quite different, formed by λ-abstracting
specification expressions with respect to a specification variable. This obviously yields
a function from specifications to specifications, but in general such a function will not
correspond in any natural way to a function on the level of models, and in ASL there
was never any intention that it would.

For instance, define

spec EXT =
λX :Sig [SET] •
X then
∀B,B′ : bag
• (∀x:nat . isin(x,B) = isin(x,B′))⇒B = B′

Then EXTCONTAINER = EXT(CONTAINER) and EXTSET = EXT(SET). Clearly,
EXT does not correspond to a function on the level of individual models: CONTAINER
has models but EXT(CONTAINER) does not.

An analysis of this situation suggests that what is missing is a distinction between
parameterized specifications and specifications of parameterized models (viz. generic
modules, constructors, ML-style functors). We studied this distinction in [SST92]: pa-
rameterized specifications denote functions that map model classes to model classes,
while parameterized programs denote functions that map models to models and speci-
fications of parameterized programs denote classes of such functions. The slogan is

parameterized (program specification) 6= (parameterized program) specification.

Given this distinction, different specification constructs are appropriate for the two
kinds of specifications. We used the notationΠX:SP • SP ′[X] for the latter, following
dependent type theory, and ASL-style λ-abstraction as above for the former. There is
a Galois connection which links the two semantic domains, with closed elements cor-
responding to functions mapping models to non-empty classes of models [SST92]. A
natural example is to generalise from SET by taking the sort of elements as a parameter,
in place of nat .

This can be taken further, to higher-order parameterization mechanisms in which
objects of all kinds (parameterized specifications, parameterized programs, their spec-
ifications, etc.) are permitted as arguments and as results. This results in a complex
hierarchy with some “types” of objects in this hierarchy being more useful than others

12

[Asp97] and is closely related to issues involved in the design of module systems, see
e.g. [LB88] and [KBS91]. CASL architectural specifications, which feature parameter-
ized units and their specifications, may be viewed as providing a simple module system,
raising familiar issues of shared substructure [BST02].

5 Behavioural specifications

Probably the most novel feature of ASL, which first appeared in [SW83], was be-
havioural abstraction. If two algebras “behave the same”, and one is a model of a spec-
ification, then it is natural to consider the specification in which the other is a model as
well. Behavioural abstraction performs such a closure, with respect to an equivalence
which is chosen to reflect the desired meaning of “behaves the same”.

There had been some work on behavioural interpretation of specifications before
ASL, notably [GGM76], [Rei81], [GM82] and [Gan83]. ASL introduced behavioural
abstraction as an explicit construct, which facilitated understanding of the relationship
between behaviourally abstracted specifications and “normal” specifications in a single
language. It also proposed a general notion of behavioural equivalence, parameterized
by an arbitrary set of terms W to be regarded as observable, which covered various
notions of behavioural equivalence proposed in the literature and more.

In the previous sections, we have been working in the context of an arbitrary institu-
tion, but discussion of behavioural equivalence and behavioural abstraction is simplest
in the context of ordinary algebraic signatures and algebras. Therefore, in this section
we will restrict attention to algebraic institutions, which share signatures and models
with EQ and FOEQ. See [ST87] for a possible generalisation to the framework of an
arbitrary institution, and Sect. 8.5.3 of [ST12] for some further remarks in this direction.

Given an algebraic signature Σ = 〈S,Ω〉, an S-sorted set of variables X , and a
set W ⊆ TΣ(X) of Σ-terms, two Σ-algebras A,B are W -equivalent via X , written
A ≡ASLW (X) B, if there are surjective valuations vA : X → |A|, vB : X → |B| such that
for all terms t, t′ ∈W of the same sort, tA[vA] = t′A[vA] iff tB[vB] = t′B[vB].

The relation ≡ASLW (X) is clearly not reflexive on Alg(Σ): for algebras A with car-
rier of cardinality larger than that of X , A 6≡ASLW (X) A. This was not a problem for
ASL, where only countable algebras were considered. However, a problem that has
been overlooked so far is that, in general, ≡ASLW (X) is not transitive either.

Counterexample 5.1. Consider a signatureΣ with sorts s, bool and operations g : s→
bool and true, false : bool , with X = {x, y:s, t, f :bool} and W = {g(x), true, false};
crucially, g(y) 6∈ W . Consider Σ-algebras A,B,C such that As = Bs = Cs = {a, b}
and Abool = Bbool = Cbool = {tt ,ff }, with trueA = trueB = trueC = tt , falseA =
falseB = falseC = ff , and gA(a) = gA(b) = tt , gB(a) = tt but gB(b) = ff ,
and gC(a) = gC(b) = ff . Then A ≡ASLW (X) B via valuations vA, vB with vA(x) =
vB(x) = a, vA(y) = vB(y) = b, and B ≡ASLW (X) C via valuations wB , wC with
wB(x) = wC(x) = b, wB(y) = wC(y) = a (extended surjectively to bool). But
A 6≡ASLW (X) C.

A consequence of this is that ASL’s behavioural abstraction as a function on model
classes is not a closure operation, contrary to some of the laws in [SW83], [Wir86].

13

The source of the problem indicated by the above counterexample is that when the
set of terms considered is not closed under renaming of variables, two algebras A,B
remain in the relation defined above if for each set of terms in W that share common
variables we can identify subalgebras of A and B in which these terms have the same
behaviour. Clearly, this is quite different from requiring these terms (and all terms inW)
to have the same behaviour throughout A and B, and leads to the failure of transitivity.

To alleviate the above problems, we therefore need to allow the set of variables to
be arbitrarily enlarged and the set of terms to be closed under renaming of variables.

Given a set W ⊆ TΣ(X) of Σ-terms and another set Y of variables, the closure
of W from X to Y is W [X 7→Y] = {θ(t) | θ : X → Y, t ∈ W}. W is closed under
renaming of variables if W = W [X 7→X].

Now, we define twoΣ-algebrasA,B to beW -equivalent, writtenA ≡W B, if there
is a set Y of variables such that A ≡ASLW [X 7→Y] B. Then we define

abstraction: For any Σ-specification SP and set W ⊆ TΣ(X) of Σ-terms with vari-
ables in X , abstract SP wrt W is a specification with:

Sig [abstract SP wrt W] = Σ
Mod [abstract SP wrt W] =

{A ∈Mod(Σ) | A ≡W B for some B ∈ Mod [SP]}

Proposition 5.2. For any signature Σ and set W ⊆ TΣ(X) of Σ-terms with variables
in X , W -equivalence is indeed an equivalence on Alg(Σ).

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose A ≡W B as
witnessed by a set Y of variables with valuations vA : Y → |A| and vB : Y → |B|,
and B ≡W C as witnessed by a set Z of variables with valuations wB : Z → |B|
and wC : Z → |C|. Take YZ to be the set of variables given by a pullback v′ : YZ →
Y , w′ : YZ → Z of vB and wB . Then the equivalence A ≡W C is witnessed by
YZ with valuations v′;vA : YZ → |A| and w′;wC : YZ → |C|. First, since vB and
wB are surjective, so are v′ and w′, and hence also v′;vA and w′;wC . Then, for
any terms t, t′ ∈ W of the same sort, and θ : X → YZ , we have: θ(t)A[v′;vA] =
θ(t′)A[v′;vA] iff (θ;v′)(t)A[vA] = (θ;v′)(t′)A[vA] iff (since Y , vA, vB witness A ≡W B)
(θ;v′)(t)B[vB] = (θ;v′)(t′)B[vB] iff θ(t)B[v′;vB] = θ(t′)B[v′;vB] iff (since v′;vB =
w′;wB) θ(t)B[w′;wB] = θ(t′)B[w′;wB] iff (θ;w′)(t)B[wB] = (θ;w′)(t′)B[wB] iff (since
Z, wB , wC witness B ≡W C) (θ;w′)(t)C[wC] = (θ;w′)(t′)C[wC] iff θ(t)C[w′;wC] =
θ(t′)C[w′;wC].

We do not need to assume here that the set W is closed under renaming of variables —
the definition of W -equivalence invokes the closure now.

Furthermore, W -equivalence properly generalises the equivalence used in ASL:

Proposition 5.3. A ≡W B iff A ≡ASLW (X) B provided that W is closed under renaming
of variables and card(X) ≥ card(|A|) + card(|B|).

Proof. We take the easy direction first: if A ≡ASLW (X) B is witnessed by vA : X → |A|,
vB : X → |B| then, since W is closed under renaming of variables, A ≡W B is
witnessed by X with the same valuations.

14

For the opposite implication: suppose A ≡W B is witnessed by Y with valuations
vA : Y → |A|, vB : Y → |B|. Then, given the cardinality assumption to ensure that X
is sufficiently large, there exists θ : X → Y such that θ;vA : X → |A| and θ;vB : X →
|B| are surjective. A ≡ASLW (X) B is witnessed by θ;vA and θ;vB .

Completely arbitrary choices of W , as permitted in ASL, may yield odd equivalences.
Even closing the sets of terms under variable renaming leaves an enormous wealth of
possibilities. Only a few of these have ever been used, capturing different notions of
behavioural equivalence. The most typical situation is where we want to indicate a set
IN of sorts to be viewed as input data, and a set OUT of sorts to be viewed as observ-
able outputs. Then ≡TΣ(XIN)OUT

identifies algebras that display the same input/output
behaviour for observable computations (presented as Σ-terms) taking inputs from IN
and yielding results in OUT . Often, one identifies a single set OBS of observable sorts
and takes IN = OUT = OBS . An important twist is to select a subset of operations
that are used to build observable terms, by considering≡TΣ′ (XIN)OUT

for a subsignature
Σ′ of Σ, see for instance [BH06].

The natural choice of observable sorts for the specifications SET, EXTSET and
CONTAINER in Sect. 3.1 is OBS = {bool ,nat}; in particular, bag 6∈ OBS . One may
now check that, in this context, it is sufficient to consider as observable terms W SET all
variables of sorts nat and bool as well as all terms of the form isin(x, tbag) where x is a
variable of sort nat and tbag is a term of sort bag built using empty , add , and variables
of sort nat .

A more general interesting case arises in the following situation. We consider an
additional signature Σ̂ with sets IN and OUT of input and output sorts, together with
a derived signature morphism δ : Σ̂ → Σ. We may think of δ as defining Σ̂-operations
in terms of Σ-operations. Suppose that we want to observe Σ̂-computations carried out
in Σ-algebras according to the definitions given by δ. Then the relevant equivalence on
Σ-algebras is given by the following set of terms: Wδ(IN ,OUT) = δ(T bΣ(X̂IN)OUT),
where X = δ(X̂IN).

In ASL, the abstraction construct defined above was available for arbitrary use,
freely intermixed with other specification constructs. This is in line with the idea that
ASL is a kernel language which provides raw specification power, free from pragmatic
or methodologically-motivated constraints.

In specification practice, the use of abstraction can be limited to specific contexts
where it fits a methodological need. In particular, if SP is a requirements specification
and W captures all of the computations that the user wishes to carry out in its realisa-
tion, then any implementation of abstract SP wrt W will be satisfactory. So this is the
specification that should be used as the starting point in the development. That is, we
want to have the liberty to implement SP up to≡W . However, when using a realisation
of another specification SP ′ to implement SP , we still want to be allowed to assume
that it satisfies SP ′ “literally”. This is captured by the following definition.3

We say that SP ′ is a behavioural implementation of SP via κ wrt W , written
SP W

κññòSP ′, if abstract SP wrt W κññòSP ′. Obviously, whenever SP κññòSP ′

3 This is a special case of abstractor implementations as introduced in [ST88b]. We follow the
terminology of Sect. 8.4 in [ST12] but generalise the concept from equivalence with respect to
observable sorts to equivalence with respect to observable terms.

15

then also SP W
κññòSP ′. Hence, for instance, we have CONTAINER W SET

δ
ñññòBAG

where δ : Sig [CONTAINER] → Sig [BAG] maps isin to the term count(x1, x2) > 0
and W SET is as described above. However, we also have EXTSET W SET

δ
ñññòBAG even

though EXTSET �
δ
ñññòBAG.

The alert reader will have sensed that we are about to run into a problem: verti-
cal composability does not hold in general. SP W

κññòSP ′ and SP ′ W
′

κ′
ñññòSP ′′ does

not imply SP W

κ′;κ
ñññññòSP ′′. However, these behavioural implementations compose if

the constructor κ is stable with respect to W ′ and W , that is, ≡W ′ ⊆ κ−1(≡W). Or,
spelling this out, we require that for any A′, B′ ∈ Alg(Sig [SP ′]), whenever A′ ≡W ′
B′ then κ(A′) ≡W κ(B′) [Sch90], [ST88b]. This technical notion captures a method-
ological point: κ must not differentiate between behaviourally equivalent realisations
of SP ′. This is exactly the encapsulation principle of data abstraction and hierarchical
decomposition.

Now, given a chain of behavioural implementation steps using stable constructors

SP0
W0

κ1
ñññòSP1

W1
κ2
ñññò· · · Wn−1

κn
ñññòSPn = EMPTY

we have κ1(κ2(. . . κn(empty) . . .)) ≡W0 A0, for some A0 ∈ Mod [SP0].
The crucial stability requirement on constructors may be approached in two differ-

ent ways. On the one hand, following the ideas in [Sch90] and [BST08], we can fix
the family of behavioural equivalences considered, referring to a fixed set of observ-
able built-in sorts (booleans, etc.), and then limit constructors to those that preserve that
equivalence. This is guaranteed by use of a programming language that appropriately
enforces abstraction barriers. The other option is, at each development step, to deter-
mine the behavioural equivalence that is appropriate to the context of use. Technically,
this means that given a behavioural implementation step SP W

κññòSP ′, we need a set
W ′ of Sig [SP ′]-terms such that κ is stable with respect to W ′ and W . Picking W ′

to achieve ≡W ′ = κ−1(≡W) gives maximal flexibility for further implementations of
SP ′, since only the precise context of use in the implementation of SP by SP ′ via κ
matters.

The latter option was proposed in [ST88b] but it does not seem to have been prop-
erly explored. The following simple fact shows how this might go.

Proposition 5.4. Given a derived signature morphism δ : Σ → Σ′ and set W ⊆
TΣ(X) of Σ-terms closed under renaming of variables, let W ′ = δ(W) ⊆ TΣ′(X ′)
where X ′ = δ(X). Then for any Σ′-algebras A′, B′, A′ ≡W ′ B′ iff A′ δ ≡W B′ δ . In
particular the δ-reduct constructor is stable with respect to W ′ and W .

Proof. Suppose in Σ′, A′ ≡W ′ B′ is witnessed by Y ′ with valuations v′A′ : Y
′ → |A′|

and v′B′ : Y
′ → |B′|. Then in Σ, A′ δ ≡W B′ δ is witnessed by Y = Y ′ δ (only the

mapping on sorts matters here) with valuations v′A′ δ : Y → |A′ δ| and v′B′ δ : Y →
|B′ δ|.

Let then in Σ, A′ δ ≡W B′ δ be witnessed by Y with valuations v1 : Y → |A′ δ|
and v2 : Y → |B′ δ|. Let Y ′ be δ(Y) on sorts in the image of δ and Y ′s′ = |A′|s′] |B′|s′
for all sorts s′ not in the image of δ. Let v′A′ : Y

′ → |A′| be given by v1 on variables

16

in δ(Y), and be any surjective function on the sorts not in the image of δ; similarly, let
v′B′ : Y

′ → |B′| be given by v2 on variables in δ(Y), and be any surjective function on
the sorts not in the image of δ. Then A′ ≡W ′ B′ is witnessed by Y ′ with valuations v′A′
and v′B′ .

Stability of the reduct is just the former implication.

For instance, in the context of use of BAG taken as an implementation of EXTSET

as indicated above, EXTSET W SET

δ
ñññòBAG, the relevant set of observable terms to de-

termine equivalence up to which BAG is to be implemented is δ(W SET) which consists
of all variables of sorts nat and bool as well as all terms of the form count(x, tbag) > 0
where x is a variable of sort nat and tbag is a term of sort bag built using empty , add ,
and variables of sort nat . In particular, we do not care about keeping the exact count
of the number of occurrences in a bag, as long as we can distinguish between the cases
where it is 0 versus strictly positive.

6 Final remarks

In this essay we have presented what we see as the key characteristics of ASL and have
outlined some of the developments that later emerged from this basis. We have focused
on tracing the flow of ideas rather than on technical details or new results, although the
technicalities in Sect. 5 regarding W -equivalence seem new.

Even though there has been a lot of work on these topics, some corners are worth
further exploration.

Semantics: It seems to us that the relationship between model-class and theory-level
semantics is completely resolved by Theorem 3.1 and its consequences, as dis-
cussed in Sect. 3, even if the choice between the two may remain controversial in
some quarters. The class of specifications we consider is particularly well-understood
with clear proof techniques etc. For some other specification constructs, including
for instance behavioural abstraction, this is much less true.

Implementation: The semantic concept of implementation in Sect. 4 together with its
refinement in Sect. 5 capture what is needed. We have not discussed issues arising
from the need for proof techniques to establish the correctness of implementation
steps — see Chap. 9 of [ST12] for our summary of the state of the art.

Parameterization: All of the syntactic and semantic concepts are established but in a
raw form that is a little hard to use. We feel that this is still a somewhat open area
where more ideas are needed to limit the scope of possibilities to what is really
required and useful in practice.

Behavioural specifications: Following ASL, in Sect. 5 we sketched the “external” ap-
proach to behavioural interpretation of specifications, based on behavioural equiva-
lence between algebras. A widely-studied alternative is to re-interpret the meaning
of axioms, and hence of specifications, using the “internal” indistinguishability be-
tween values. The relationship between the two approaches is now well-understood,
see [BHW95], but only for behavioural equivalence with respect to a set of ob-
servable sorts. It would be interesting to investigate the same relationship for W -
equivalence. We also think that the methodological ideas on the use of context-
tailored behavioural equivalence at the end of Sect. 5 are worth further exploration.

17

References

[Asp97] D. Aspinall. Type Systems for Modular Programming and Specification. Ph.D. thesis,
University of Edinburgh, Department of Computer Science, 1997.

[BBB+85] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz,
E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner, B. Möller, F. Nickl,
H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H. Wössner. The Munich Project
CIP: Vol. 1: The Wide Spectrum Language CIP-L, Lecture Notes in Computer Science,
vol. 183. Springer, 1985.

[BG80] R. M. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In:
D. Bjørner, ed., Proceedings of the 1979 Copenhagen Winter School on Abstract Soft-
ware Specification, Lecture Notes in Computer Science, vol. 86, 292–332. Springer,
1980.

[BH06] M. Bidoit and R. Hennicker. Constructor-based observational logic. Journal of Logic
and Algebraic Programming, 67(1–2):3–51, 2006.

[BHW95] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifications.
Science of Computer Programming, 25(2–3):149–186, 1995.

[BM04] M. Bidoit and P. D. Mosses, eds. CASL User Manual, Lecture Notes in Com-
puter Science, vol. 2900. Springer, 2004. See also http://www.informatik.
uni-bremen.de/cofi/index.php/CASL.

[Bor05] T. Borzyszkowski. Generalized interpolation in first order logic. Fundamenta Infor-
maticae, 66(3):199–219, 2005.

[BST02] M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in CASL. Formal
Aspects of Computing, 13:252–273, 2002.

[BST08] M. Bidoit, D. Sannella, and A. Tarlecki. Observational interpretation of CASL speci-
fications. Mathematical Structures in Computer Science, 18:325–371, 2008.

[CK90] C.-C. Chang and H. J. Keisler. Model Theory. North-Holland, third edition, 1990.
[DGS93] R. Diaconescu, J. A. Goguen, and P. Stefaneas. Logical support for modularisation.

In: G. Huet and G. Plotkin, eds., Logical Environments, 83–130. Cambridge Univer-
sity Press, 1993.

[Dia08] R. Diaconescu. Institution-Independent Model Theory. Birkhäuser, 2008.
[EKMP82] H. Ehrig, H.-J. Kreowski, B. Mahr, and P. Padawitz. Algebraic implementation of

abstract data types. Theoretical Computer Science, 20:209–263, 1982.
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, EATCS Mono-

graphs on Theoretical Computer Science, vol. 6. Springer, 1985.
[FJ90] J. S. Fitzgerald and C. B. Jones. Modularizing the formal description of a database

system. In: Proceedings of the 3rd International Symposium of VDM Europe: VDM
and Z, Formal Methods in Software Development, Kiel, Lecture Notes in Computer
Science, vol. 428, 189–210. Springer, 1990.

[Gan83] H. Ganzinger. Parameterized specifications: Parameter passing and implementation
with respect to observability. ACM Transactions on Programming Languages and
Systems, 5(3):318–354, 1983.

[GB80] J. A. Goguen and R. M. Burstall. CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

[GB92] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

[GGM76] V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract data
type specifications. In: A. Mazurkiewicz, ed., Proceedings of the 5th Symposium on

18

Mathematical Foundations of Computer Science, Gdańsk, Lecture Notes in Computer
Science, vol. 45, 567–578. Springer, 1976.

[GM82] J. A. Goguen and J. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In: M. Nielsen and E. M. Schmidt, eds., Proceed-
ings of the 9th International Colloquium on Automata, Languages and Programming,
Aarhus, Lecture Notes in Computer Science, vol. 140, 265–281. Springer, 1982.

[GR04] J. A. Goguen and G. Roşu. Composing hidden information modules over inclusive
institutions. In: From Object-Orientation to Formal Methods. Essays in Memory of
Ole-Johan Dahl, Lecture Notes in Computer Science, vol. 2635, 96–123. Springer,
2004.

[GTW76] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Raymond T. Yeh, ed., Current Trends in Programming Methodology. Vol. IV (Data
Structuring), 80–149. Prentice-Hall, 1978.

[HWB97] R. Hennicker, M. Wirsing, and M. Bidoit. Proof systems for structured specifications
with observability operators. Theoretical Computer Science, 173(2):393–443, 1997.

[KBS91] B. Krieg-Brückner and D. Sannella. Structuring specifications in-the-large and in-the-
small: Higher-order functions, dependent types and inheritance in SPECTRAL. In:
Proc. Colloq. on Combining Paradigms for Software Development. Intl. Joint Conf.
on Theory and Practice of Software Development (TAPSOFT’91), Brighton, Lecture
Notes in Computer Science, vol. 494, 103–120. Springer, 1991.

[LB88] B. Lampson and R. M. Burstall. Pebble, a kernel language for modules and abstract
data types. Information and Computation, 76(2–3):278–346, 1988.

[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs — proof manage-
ment for structured specifications. Journal of Logic and Algebraic Programming,
67(1–2):114–145, 2006.

[MT14] T. Mossakowski and A. Tarlecki. A relatively complete calculus for structured hetero-
geneous specifications. In: A. Muscholl, ed., Proceedings of the 17th International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2014), Lecture
Notes in Computer Science, vol. 8412, 441–456. Springer, 2014.

[Rei81] H. Reichel. Behavioural equivalence — a unifying concept for initial and final specifi-
cation methods. In: Proceedings of the 3rd Hungarian Computer Science Conference,
27–39, 1981.

[RG00] G. Roşu and J. A. Goguen. On equational Craig interpolation. Journal of Universal
Computer Science, 6(1):194–200, 2000.

[Sch90] O. Schoett. Behavioural correctness of data representations. Science of Computer
Programming, 14(1):43–57, 1990.

[SST92] D. Sannella, S. Sokołowski, and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: Parameterisation revisited. Acta Informatica,
29(8):689–736, 1992.

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150–178, 1987.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information
and Computation, 76(2–3):165–210, 1988.

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic
specifications: Implementations revisited. Acta Informatica, 25:233–281, 1988.

[ST06] D. Sannella and A. Tarlecki. Horizontal composability revisited. In: K. Futatsugi,
J.-P. Jouannaud, and J. Meseguer, eds., Algebra, Meaning and Computation: Essays

19

Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, Lecture Notes
in Computer Science, vol. 4060, 296–316. Springer, 2006.

[ST12] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2012.

[ST14] D. Sannella and A. Tarlecki. Property-oriented semantics of structured specifications.
Mathematical Structures in Computer Science, 24(2):e240205, 2014.

[SW82] D. Sannella and M. Wirsing. Implementation of parameterised specifications. In:
M. Nielsen and E. M. Schmidt, eds., Proceedings of the 9th International Colloquium
on Automata, Languages and Programming, Aarhus, Lecture Notes in Computer Sci-
ence, vol. 140, 473–488. Springer, 1982.

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification and imple-
mentation. In: M. Karpinski, ed., Proceedings of the 1983 International Conference
on Foundations of Computation Theory, Borgholm, Lecture Notes in Computer Sci-
ence, vol. 158, 413–427. Springer, 1983.

[Tar86] A. Tarlecki. Bits and pieces of the theory of institutions. In: D. H. Pitt, S. Abramsky,
A. Poigné, and D. E. Rydeheard, eds., Proceedings of the Tutorial and Workshop on
Category Theory and Computer Programming, Guildford, Lecture Notes in Computer
Science, vol. 240, 334–360. Springer, 1986.

[Tar11] A. Tarlecki. Some nuances of many-sorted universal algebra: A review. Bulletin of
the European Association for Theoretical Computer Science, 104:89–111, 2011.

[TWW82] J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification: Parameteri-
zation and the power of specification techniques. ACM Transactions on Programming
Languages and Systems, 4(4):711–732, 1982.

[Wan79] M. Wand. Final algebra semantics and data type extensions. Journal of Computer
and System Sciences, 19:27–44, 1979.

[Wir82] M. Wirsing. Structured algebraic specifications. In: Proceedings of the AFCET Sym-
posium on Mathematics for Computer Science, Paris, 93–107, 1982.

[Wir86] M. Wirsing. Structured algebraic specifications: A kernel language. Theoretical Com-
puter Science, 42(2):123–249, 1986.

20

