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Abstract. We show that the category FinVectk of finite dimensional
vector spaces and linear maps over any field k is (collectively) complete
for the traced symmetric monoidal category freely generated from a sig-
nature, provided that the field has characteristic 0; this means that for
any two different arrows in the free traced category there always exists
a strong traced functor into FinVectk which distinguishes them. There-
fore two arrows in the free traced category are the same if and only if
they agree for all interpretations in FinVectk.

1 Introduction

This paper is affectionately dedicated to Professor B. Trakhtenbrot on the occa-
sion of his 85th birthday. Cyclic networks of various kinds occur in computer sci-
ence, and other fields, and have long been of interest to Professor Trakhtenbrot:
see, e.g., [15, 9, 16, 8]. In this paper they arise in connection with Joyal, Street
and Verity’s traced monoidal categories [6]. These categories were introduced to
provide a categorical structure for cyclic phenomena arising in various areas of
mathematics, in particular knot theory [17]; they are (balanced) monoidal cate-
gories [5] enriched with a trace, a natural generalization of the traditional notion
of trace in linear algebra that can be thought of as a ‘loop’ operator.

In computer science, specialized versions of traced monoidal categories nat-
urally arise as recursion/feedback operators as well as cyclic data structures. In
particular, Hyland and Hasegawa independently observed a bijective correspon-
dence between Conway (Bekič, or dinatural diagonal) fixpoint operators [1, 11]
and traces on categories with finite products [2, 3]. Thus, the notion of trace very
neatly characterises the well-behaved fixpoint operators commonly used in com-
puter science. More generally, traced symmetric monoidal categories equipped
with the additional structure of a cartesian center can be used for modelling
recursive computation created from cyclic data structures, see ibid. In this con-
text, freely generated traced symmetric monoidal categories can be characterised
as categories of cyclic networks, and so are of particular interest (see [14] for a
related treatment).

We characterise the equivalence of arrows in free traced symmetric monoidal
categories via interpretations in the very familiar setting of linear algebra: the



category FinVectk of finite dimensional vector spaces and linear maps over a
field k. Specifically, we show (Theorem 4) that if k has characteristic 0 then
FinVectk is (collectively) complete for the traced symmetric monoidal category
freely generated from a signature; this means that for any two different arrows in
the free traced category there always exists a structure-preserving functor into
FinVectk which distinguishes them. Therefore two arrows in the free traced cat-
egory are the same if and only if they agree for all interpretations in FinVectk.

In order to show this, we present the freely generated traced symmetric
monoidal category in terms of networks modulo suitable isomorphisms, and re-
duce the problem to that of finding suitable interpretations of these networks in
FinVectk. This problem is then further reduced to considering a certain class
of networks: those over a one-sorted signature and with no inputs or outputs.
Finally, given any two such networks X and Y , we construct interpretations
[[−]]µX and [[−]]µY such that, ignoring some trivial cases, [[X]]µX = [[Y ]]µX and
[[X]]µY = [[Y ]]µY jointly imply that X and Y are isomorphic.

One motivation for our work was previous completeness results for the carte-
sian case, where the monoidal product is the categorical one. As remarked above,
in that case trace operators correspond to Conway fixpoint operators. However,
the mathematically natural model categories, such as that of pointed directed
complete posets and continuous functions, obey further equations, and the rele-
vant notion is that of an iteration operator [1, 11]. It is shown in [11] that any
category with an iteration operator satisfying a mild non-triviality condition is
collectively complete for the theory of iteration operators. It would be inter-
esting to investigate conditions for the collective completeness of a symmetric
monoidal category for trace operators. Another direction which may be of in-
terest would be to look for completeness results for various classes of symmetric
monoidal categories equipped with some natural combinations of (co)units and
(co)diagonals; see [4] for a discussion of possible such combinations.

A closely related research thread is that of higher-order structures. Con-
cerning coherence problems in category theory, Mac Lane conjectured that the
category of vector spaces over a field is complete for the symmetric monoidal
closed category freely generated by a set of atoms. This was proved in a more
general form by Soloviev [12]; his proof-theoretic approach differs substantially
from our model-theoretic one. In the cartesian case one considers the typed λ-
calculus, where there is a good deal of work, starting with Friedman’s complete-
ness theorem: see [10] and the references given there for further developments.
The combination of higher-order structure and traces could be an interesting
subject for investigation; specifically one might consider the case of traced sym-
metric monoidal closed categories.

Organisation of this paper The rest of this paper is organised as follows. In
Sect. 2 we recall the notion of traced symmetric monoidal category, and describe
the trace on FinVectk. Section 3 is devoted to a theory of cyclic networks,
which provide a characterisation of the traced symmetric monoidal category
freely generated over a monoidal signature. In Sect. 4 we study the interpretation
of networks in FinVectk, and, in particular, the interpretations needed for our



completeness results. These are presented in the concluding Sect. 5, which also
gives a completeness theorem for interpretations with finite fields (Theorem 5), a
discussion of some open problems, and a completeness result for compact closed
categories (Corollary 5), obtained using the biadjunction of [6] between such
categories and traced symmetric monoidal categories.

2 Preliminaries

2.1 Traced Symmetric Monoidal Categories

A monoidal category is a category C equipped with a bifunctor ⊗ : C2 → C,
an object I and natural isomorphisms aA,B,C : (A ⊗ B) ⊗ C

∼→ A ⊗ (B ⊗ C),
lA : I ⊗ A

∼→ A and rA : A ⊗ I
∼→ A satisfying standard conditions [7, 5].

It is strict if these natural isomorphisms are identities. A symmetric monoidal
category is a monoidal category equipped with a specified natural isomorphism
cX,Y : X ⊗ Y

∼→ Y ⊗ X, again subject to standard axioms. A trace on such a
symmetric monoidal category is a family of functions:

TrX
A,B : C(A⊗X, B ⊗X) → C(A,B)

subject to the following conditions:

– tightening (naturality): TrX
A′,B′((k ⊗ 1X) ◦ f ◦ (h⊗ 1X)) = k ◦ TrX

A,B(f) ◦ h

– yanking: TrX
X,X(cX,X) = idX

– superposition: TrX
C⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrX

A,B(f)
– exchange:

TrX
A,B(TrY

A⊗X,B⊗X(f)) = TrY
A,B(TrX

A⊗Y,B⊗Y ((1B ⊗ cX,Y )◦f ◦ (1A⊗ cY,X)))

where, for ease of presentation, the associativity isomorphisms a have been omit-
ted in the last two conditions. For example, the unabbreviated exchange axiom
is:

TrX
A,B(TrY

A⊗X,B⊗X(f)) =
TrY

A,B(TrX
A⊗Y,B⊗Y (
a−1

B,Y,X ◦ (1B ⊗ cX,Y ) ◦ aB,X,Y ◦ f ◦ a−1
A,X,Y ◦ (1A ⊗ cY,X) ◦ aA,Y,X))

where f : (A ⊗ X) ⊗ Y → (B ⊗ X) ⊗ Y . Note that this axiomatisation is not
quite the same as the original axiomatisation [6] or another popular formulation
(see e.g., [2, 3]); however, it is not hard to see that they are all equivalent.4 A
traced symmetric monoidal category is a symmetric monoidal category equipped
with a (specified) trace.

The following graphical notation for the trace may help the reader. Given
f : A⊗X → B ⊗X, its trace TrX

A,B(f) : A → B is shown as a feedback:

4 The vanishing condition for the unit TrI(f) = f was redundant in the original
axiomatisation. The vanishing condition for tensor TrX⊗Y (f) = TrX(TrY (f)) and
the sliding condition TrX((1 ⊗ h) ◦ f) = TrY (f ◦ (1 ⊗ h)) can all be derived from
the axioms presented here.
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Fig. 1. Axioms for Trace
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The above axioms are presented using this notation in Figure 1.

2.2 Finite Dimensional Vector Spaces

Finite dimensional vector spaces over a field k and linear maps form a traced
symmetric monoidal category FinVectk. The monoidal structure is given by
the standard tensor product, and the trace is a natural generalization of the
standard ‘sum of diagonal elements’ trace, sometimes called the ‘partial trace’;
the trace TrW

U,V (f) : U → V of a linear map f : U ⊗k W → V ⊗k W is given by:(
TrW

U,V (f)
)
i,j

= Σkfi⊗k,j⊗k



where i, j run over bases of U and V . If U = V = k, we have TrW (f) =
∑

k fk,k

as expected. If {e1, . . . , en} is a basis of W , this is the same as
∑

i〈f(ei)|ei〉
where 〈−|−〉 is the canonical scalar product such that 〈ei|ej〉 = δij .

The partial trace is the unique trace for this monoidal structure on FinVectk.
This is because FinVectk is compact closed, and every compact closed category
has a unique trace with respect to its monoidal structure.

3 Cyclic Networks

We present a theory of cyclic networks similar to the theory of cyclic sharing
graphs given in [3].

3.1 Sorts and Signatures

We introduce a notion of multisorted signature suitable for interpretation over
monoidal categories. If S is our set of sorts we call elements of S∗, the set of
finite sequences of sorts, arities. Given such an arity v, we write |v| for its length
and vi for its i-th component (for 1 ≤ i ≤ |v|).

Definition 1. An S-sorted signature is a triple (F, arin , arout) where F is a set
whose elements are called function symbols, and where arin , arout : F → S∗ are
mappings assigning to each function symbol f two arities: an input arity arin(f)
and an output arity arout(f).

We may refer to a signature by the set F alone, leaving the arity functions
implicit.

Definition 2. We define F• to be the extension of F with additional function
symbols •s for each sort s ∈ S, with arin(•s) = arout(•s) = ε.

The function symbol •s will be used to represent the trivial cycle of sort s (the
trace of the identity at s).

3.2 Networks

Definition 3. Let F be an S-sorted signature. A network from v to w in S∗

over F is a tuple N of the form (X, ϕ, π), where:

– X is a finite set (of nodes)
– ϕ is a function from X to F• (the labelling function, assigning a function

symbol to each node)
– π is a bijection between

ON = {〈x, i〉 | x ∈ X, 1 ≤ i ≤ |arout(ϕ(x))|} ∪ {j | 1 ≤ j ≤ |v|}

and

DN = {〈x, i〉 | x ∈ X, 1 ≤ i ≤ |arin(ϕ(x))|} ∪ {j | 1 ≤ j ≤ |w|}



such that the following constraints on arities are satisfied:

– π〈x, i〉 = 〈y, j〉 implies arout(ϕ(x))i = arin(ϕ(y))j

– π〈x, i〉 = j implies arout(ϕ(x))i = wj

– π(i) = 〈y, j〉 implies vi = arin(ϕ(y))j

– π(i) = j implies vi = wj

We say that v and w are the input and output arities of the network, and write
N : v → w.

It may help the reader to think of O as the set of ports from which flow originates
and D as the set of ports to which flow goes. The function π then shows how
the ports are linked.

Example 1. Let S = {A,B} be the set of sorts. We consider the following signa-
ture (F, arin, arout) on S, where F = {f, g} and:

arin(f) = AB arout(f) = AA
arin(g) = A arout(g) = B

B

A f
-A

-A
A g -B

Then, for instance, ({f, g, a}, ϕ, π) : A → A with ϕ(f) = f, ϕ(g) = g, ϕ(a) = •A

and:
π〈f, 1〉 = 1
π〈f, 2〉 = 〈g, 1〉
π〈g, 1〉 = 〈f, 2〉
π(1) = 〈f, 1〉

is a network which may be pictured as follows:

�
 �	�A�
 �	�

A f A-

g

3.3 Homomorphisms

Definition 4. Let N = (X, ϕ, π) : v → w and N ′ = (X ′, ϕ′, π′) : v → w be
networks with the same input and output arities. A homomorphism from N to
N ′ is given by a function f : X → X ′ such that:

– ϕ′(f(x)) = ϕ(x)
– π〈x, i〉 = 〈y, j〉 implies π′〈f(x), i〉 = 〈f(y), j〉
– π〈x, i〉 = j implies π′〈f(x), i〉 = j
– π(i) = 〈y, j〉 implies π′(i) = 〈f(y), j〉



– π(i) = j implies π′(i) = j

The first condition just says that f does not change the function symbol assigned
to each node. The other four requirements are equivalent to the commutation of
the following diagram:

ON DN

ON ′ DN ′

-π

?

fO

?

fD

-
π′

where fO and fD send 〈x, i〉 to 〈f(x), i〉 and j to j.
We evidently have a category with objects the networks of given input and

output arities and morphisms the homomorphisms. Since, as one easily sees, the
inverse of a bijective homomorphism is also a homomorphism, the isomorphisms
are the bijective homomorphisms. Note that we deal with trivial cycles as nodes
and hence homomorphisms must send trivial cycles to trivial cycles.

3.4 Interpretations in Traced Categories

Let us fix a traced symmetric monoidal category C. We are mainly interested in
the case of finite dimensional vector spaces and linear maps over a field, but it
is natural to state the general case, and necessary if we want to say something
about the classifying category built from networks.

Definition 5. Let F be an S-sorted signature. Then an interpretation µ of F
in C consists of the following data:

– an object [[s]]µ of C for each sort s ∈ S

– an arrow [[f ]]µ : [[arin(f)]]µ → [[arout(f)]]µ for each function symbol f ∈ F ,
while for •s we put [[•s]]µ = Tr[[s]]µ(id[[s]]µ)

where we define the interpretation of arities by [[ε]]µ = I and [[sw]]µ = [[s]]µ⊗[[w]]µ.

Definition 6. Let F be an S-sorted signature and let µ be an interpretation of
F . Then the value [[(X, ϕ, π)]]µ : [[v]]µ → [[w]]µ of a network (X, ϕ, π) : v → w
with respect to µ is defined to be the trace of:(⊗

x∈X [[arout(ϕ(x))]]µ
)
⊗ [[v]]µ π̂→

(⊗
x∈X [[arin(ϕ(x))]]µ

)
⊗ [[w]]µ

(
N

[[ϕ(x)]]µ)⊗[[w]]µ−−−−−−−−−−−−→
(⊗

x∈X [[arout(ϕ(x))]]µ
)
⊗ [[w]]µ

where π̂ is the isomorphism induced by π.

Proposition 1. If two networks are isomorphic, they have the same value.



3.5 The Traced Monoidal Category of Networks

Fixing an S-sorted signature F , we now define several constructions on networks
over F .

Definition 7. – Identity Networks. The identity network on arity v is defined
to be (∅, ∅, id) : v → v, where id is the identity permutation.

– Sequential Composition of Networks. For networks N = (X, ϕ, π) : v → w
and N ′ = (X ′, ϕ′, π′) : w → u, their sequential composition N ′ ◦N : v → u
is the network (X ] X ′, ϕ ] ϕ′, π′′) : v → u, where (ϕ ] ϕ′)(x) = ϕ(x) for
x ∈ X and (ϕ ] ϕ′)(y) = ϕ′(y) for y ∈ X ′, and π′′ sends (i) p ∈ ON to
π′(π(p)) if π(p) ∈ N, otherwise to π(p), and (ii) 〈y, j〉 ∈ ON ′ to π′〈y, j〉.

– Parallel Composition of Networks. For networks N = (X, ϕ, π) : v → w and
N ′ = (X ′, ϕ′, π′) : v′ → w′, their parallel composition N ⊗ N ′ : vv′ → ww′

is the network (X ]X ′, ϕ ] ϕ′, π′′) : vv′ → ww′ where (i) π′′(p) = π(p) for
p ∈ ON , (ii) π′′(|v| + i) = |w| + π′(i) (1 ≤ i ≤ |v′|) if π′(i) ∈ N, otherwise
π′′(|v|+ i) = π′(i), and (iii) π′′〈y, i〉 = |w|+π′〈y, i〉 if π′〈y, i〉 ∈ N, otherwise
π′′〈y, i〉 = π′〈y, i〉.

– Symmetry Networks. The symmetry network on arities v and w is defined
to be (∅, ∅, c|v|,|w|) : vw → wv where cm,n(i) = i + n for 1 ≤ i ≤ m and
cm,n(m + i) = i for 1 ≤ i ≤ n.

– Traces of Networks. The trace Trs
v,w(N) : v → w of N = (X, ϕ, π) : vs → ws

is the network:

• (X ] {a}, ϕ′, π′) : v → w if π(|v|+ 1) = |w|+ 1, where ϕ′(x) = ϕ(x) for
x ∈ X and ϕ′(a) = •s, and π′ = π \ {〈|v|+ 1, |w|+ 1〉}.

• (X, ϕ, π′) : v → w if π(|v| + 1) 6= |w| + 1, where π′(p) = π(|v| + 1) if
p = π−1(|w|+ 1) and π′(p) = π(p), otherwise..

This definition is extended to non-primitive arities by setting Trε
v,w(N) = N

for N : v → w and Trsu
v,w(N) = Trs

v,w(Tru
vs,ws(N)) for N : vsu → wsu.

Lemma 1. The constructions above are well-defined on equivalence classes of
networks up to network isomorphism.

We can now introduce the traced symmetric monoidal category Net(S,F ).
Its objects are the arities (elements of S∗) and an arrow from v to w is an
equivalence class of networks over F with input arity v and output arity w, up
to network isomorphism. Composition is given by sequential composition, and
the identity arrows by the identity networks. The tensor of two objects is their
concatenation and the tensor of two arrows is given by parallel composition; the
symmetry maps are given by the symmetry networks. Finally, trace is given by
the trace on networks. Using the above lemma it is now straightforward to show:

Proposition 2. Net(S,F ) forms a traced strict symmetric monoidal category.



3.6 Net(S,F ) as a Classifying Category

Just as in traditional functorial model theory, it is not hard to see that giving
an interpretation of an S-sorted signature F in a traced symmetric monoidal
category C is equivalent to giving a structure-preserving functor (traced functor)
from Net(S,F ) to C. This observation can be strengthened to be an equivalence
of the category Mod((S, F ),C) of interpretations of F in C and the category
TrMon(Net(S,F ),C) of traced functors from Net(S,F ) to C and monoidal natural
transformations, where we define a morphism between interpretations µ and µ′ to
be a family of arrows hs : [[s]]µ → [[s]]µ

′
which commutes with the interpretations

of function symbols, that is, for f with arin(f) = s1 . . . sm and arout(f) =
t1 . . . tn, the following diagram commutes:

[[s1]]µ ⊗
(
· · · ⊗ [[sm]]µ

)
[[t1]]µ ⊗ (· · · ⊗ [[tn]]µ)

[[s1]]µ
′
⊗

(
· · · ⊗ [[sm]]µ

′)
[[t1]]µ

′
⊗

(
· · · ⊗ [[tn]]µ

′)

-[[f ]]µ

?

hs1⊗ (···⊗hsm )

?

ht1⊗ (···⊗htn )

-
[[f ]]µ

′

Proposition 3. There is an equivalence of categories:

Mod((S, F ),C) ' TrMon(Net(S,F ),C)

Proof (Outline). Given an interpretation in a traced (possibly non-strict)
symmetric monoidal category C, we can extend it to a strong traced func-
tor from Net(S,F ) to C. This also sends morphisms between interpretations to
monoidal natural transformations, and we obtain a fully faithful functor from
Mod((S, F ),C) to TrMon(Net(S,F ),C). In addition, given a strong traced func-
tor from Net(S,F ), we can construct an isomorphic strong traced functor which
comes from an interpretation. ut

4 Networks, Homomorphisms and Interpretations in
Finite Dimensional Vector Spaces

We have seen that to give a strict traced functor from Net(S,F ) to a traced
symmetric monoidal category C is to give an interpretation of the signature
(S, F ) in C. We are particularly interested in interpretations in FinVectk, for
various fields k; we call such interpretations interpretations over k. Proposition
1 gives us the soundness of such interpretations:

If two networks are isomorphic, they have the same value for all inter-
pretations over any field k.

Our aim is to establish the converse when k has characteristic 0:



If two networks have the same value under all interpretations over k then
they are isomorphic.

To this end a number of simplifying assumptions will prove convenient:

– We consider only the single-sorted case. This will involve no loss of generality,
due to the following: any signature F has an associated single-sorted signa-
ture Fo obtained by identifying all its sorts; any network N over F then has
an associated network No over Fo; and for any networks N,N ′ : u → v over
F , if No and N ′

o are isomorphic, so are N and N ′. In the single-sorted case
we identify arities with non-negative integers and write • for the (unique)
function symbol for trivial cycles.

– In the single-sorted case, we consider only closed networks, those with no
inputs and outputs and so of the form N : 0 → 0. We will later reduce
the case of non-closed networks to that of closed ones: introducing extra
(dummy) function symbols fm : 0 → m and fn : n → 0 for all m,n > 0,
one has that two networks N,N ′ : m → n are isomorphic if and only if their
compositions with (the networks consisting of) fm and fn are isomorphic.

– Finally, we consider only non-empty networks without trivial cycles, i.e.,
those which do not contain any •-labelled node. The more general case will
not present significant additional difficulties.

So, in the rest of this section, by a network we mean, unless otherwise stated, a
non-empty closed network without trivial cycles over a single-sorted signature.

4.1 Basic Facts about Networks and Homomorphisms

We recall the definition of parallel composition (Definition 7) for closed networks
N = (X, ϕ, π) and N ′ = (X ′, ϕ′, π′). The network N ⊗ N ′ is (N ] N ′, ϕ′′, π′′)
where:

– ϕ′′(x) = ϕ(x) for x ∈ X and ϕ′′(y) = ϕ′(y) for y ∈ X ′,
– π′′〈x, i〉 = π〈x, i〉 for x ∈ X and π′′〈y, i〉 = π′〈y, i〉 for y ∈ X ′.

For closed networks, parallel composition N ⊗ N ′ and sequential composition
N ◦ N ′ agree. We also note that N ⊗ N ′ is the coproduct of N and N ′ in the
category of networks and homomorphisms.

Definition 8. Let x and x′ be nodes in a network N = (X, ϕ, π). They are
directly connected, written x ∼ y, if either π〈x, i〉 = 〈x′, j〉 or π〈x′, i〉 = 〈x, j〉,
for some i and j. Connectedness (of nodes) is the equivalence relation generated
by ∼.

A non-empty equivalence class of nodes with respect to connectedness is called
a connected component. A network is connected if any two of its nodes are
connected, i.e., if it is itself a connected component.

In the following, we may refer to a network just by its set of nodes, leaving ϕ
and π implicit. This convention is helpful as we are interested in decomposing a



network into its connected components. We notice that a connected component
is itself a (connected) network when equipped with the restrictions of ϕ and π.
Each network X can be decomposed as:

X ∼= X1 ⊗ · · · ⊗Xn

where the Xi are the connected components of X.
We need some information on homomorphisms and connectedness. First, they

clearly preserve connection, and so connectedness. Next:

Lemma 2. Let f : X → Y be a homomorphism, and suppose that we have
f(x) = y ∼ y′. Then there is an x′ such that x ∼ x′ and f(x′) = y′.

We then have the following proposition:

Proposition 4. Let f : X → Y be a homomorphism. For each connected com-
ponent C of X, the image f(C) ⊆ Y is a connected component of Y .

Corollary 1. Let f : X → Y be a homomorphism. If Y is connected, then f is
a surjection.

The following immediate consequence will be important later.

Corollary 2. Let f : X → Y be a homomorphism and suppose that Y is con-
nected and |X| = |Y |. Then f is an isomorphism.

Lemma 3. Let f, g : X → Y be homomorphisms. Suppose that f(x) = g(x) and
x ∼ x′. Then f(x′) = g(x′).

This yields:

Proposition 5. Let f, g : X → Y be homomorphisms. If X is connected and
f(x) = g(x) for some x ∈ X, then f = g.

The following upper bound on the number of homomorphisms is a direct
consequence of this proposition.

Corollary 3. Let X and Y be networks, and suppose that X is connected. Then
|hom(X, Y )| ≤ |Y |.

Proposition 6. Let f : X → Y be a homomorphism. Then, for any y ∼ y′ in
Y , |f−1(y)| = |f−1(y′)|.

Proof. We may suppose, without loss of generality, that for some i and j,
πY 〈y, i〉 = 〈y′, j〉. Then we may define a bijection θ : f−1(y) ∼= f−1(y′) by
θ(x) = (πX〈x, i〉)1; its inverse is given by θ−1(x′) = (π−1

X 〈x′, j〉)1. ut

The following corollary is then immediate:

Corollary 4. If f : X → Y is a homomorphism and Y is connected, then |X|
is a multiple of |Y |.



4.2 Interpretations over a Field k

An interpretation µ of a (one-sorted) signature over a field k is specified by
a vector space V µ and a linear map [[f ]]µ : [[arin(f)]]µ → [[arout(f)]]µ for each
function symbol f , where [[m]]µ = V µ ⊗ · · · ⊗ V µ︸ ︷︷ ︸

m

. Let X be a closed network

over this signature, possibly empty or with trivial cycles. Its value with respect
to the interpretation µ is then the trace of:⊗

x∈X

[[arout(ϕ(x))]]µ π̂−→
⊗
x∈X

[[arin(ϕ(x))]]µ
N

x∈X [[ϕ(x)]]µ

−−−−−−−−−→
⊗
x∈X

[[arout(ϕ(x))]]µ

where π̂ is the linear map induced by π, and for • we put [[•]]µ = dim V µ.
Note that for any two closed networks X, Y over this signature we have that

[[X ⊗ Y ]]µ = [[X]]µ[[Y ]]µ. It follows that the value of a network X with t trivial
cycles and non-trivial connected components X1, . . . , Xn is given by:

[[X]]µ = dt[[X1]]µ · · · [[Xn]]µ

where d is the dimension of the interpretation of the sort by µ.

Definition 9. Let µ1, µ2 be two interpretations. The interpretation µ1 + µ2 is
defined by:

– V µ1+µ2 = V µ1 ⊕ V µ2 ,
– [[f ]]µ1+µ2

( ⊗
1≤i≤arin(f)

vi +ui

)
= [[f ]]µ1

( ⊗
1≤i≤arin(f)

vi

)
+ [[f ]]µ2

( ⊗
1≤i≤arin(f)

ui

)
where the evident inclusions of [[m]]µ1 and [[m]]µ2 in [[m]]µ1+µ2 have been
omitted.

Proposition 7. Let µ1, µ2 be two interpretations. If X is a connected network,
then [[X]]µ1+µ2 = [[X]]µ1 + [[X]]µ2 .

Proof. Let

m :
⊗
x∈X

⊗
1≤j≤arout (ϕ(x))

V µ1 ⊕ V µ2 −→
⊗
x∈X

⊗
1≤j≤arout (ϕ(x))

V µ1 ⊕ V µ2

be the linear map whose trace determines the value of X under µ1 + µ2. Also,
let m1, m2 be the maps whose trace determines the value of X under µ1 and
µ2 respectively. Suppose that v =

⊗
x∈X

⊗
1≤j≤arout (ϕ(x)) v〈x,j〉 is a basis vector

such that 〈v|m(v)〉 6= 0. Since v is assumed to be a basis vector, we have that
each v〈x,j〉 is either in V µ1 or V µ2 , and is a basis vector of the respective space.
We claim that all the v〈x,j〉 must lie in the same space. First, we notice that for
given x all the vπ−1

X 〈x,i〉 for i < arinx must lie in the same space, for otherwise
[[ϕ (x)]]µ1+µ2

(⊗
i v〈x,i〉

)
= 0 and hence m(v) = 0. Thus each x is associated

to either V µ1 or V µ2 , and its directly connected nodes are also associated to
the same space. Hence either v ∈ V µ1 and m(v) = m1(v) or v ∈ V µ2 and
m(v) = m2(v). As the trace of m is obtained by summing up all such 〈v|m(v)〉,
we have the required result. ut



4.3 The Counting Interpretation

Let us fix a field k. We now describe the key part of the proof: given a connected
network X we define an interpretation µ(X, λ) over k which, in essence, counts
the contribution of each function symbol in the network X.

Definition 10. Let X be a connected network and λ ∈ k\{0} be a non-zero
scalar. The interpretation µ (X, λ) is defined as follows:

– The (unique) sort 1 is interpreted as the vector space V µ(X,λ) with basis
the input ports of X, i.e., the set {〈x, i〉 | 1 ≤ i ≤ arin(ϕ(x))}. (Hence
dim V µ(X,λ) =

∑
x∈X arin(ϕ(x)).)

– [[f ]]µ(X,λ) : [[arin(f)]]µ(X,λ) → [[arout(f)]]µ(X,λ) is given by:

[[f ]]µ(X,λ)
( ⊗

1≤i≤arin(f)

pi

)
= λ

∑
x:ϕ(x)=f
pi=〈x,i〉

⊗
1≤j≤arout (f)

π〈x, j〉

Notice that if arin (f) > 0 then the sum consists of at most one summand. In
this case we have:

[[f ]]µ(X,λ)
( ⊗

i

pi

)
=

λ
⊗

j

π〈x, j〉 if pi = 〈x, i〉 for all i

0 otherwise

That is to say, [[f ]]µ(X,λ) is non-zero if it is applied to the input of an f -labelled
node in X and in this case returns the output of that node. The semantics of an
input-less function symbol (a constant) is λ times the sum over all its outputs
occurring in X. We also notice that all function symbols that do not actually
occur in X receive zero meaning. If F contains a symbol f with arin(f) =
arout(f) = 0 then, since X is connected, either X does not contain f -labelled
nodes at all, hence [[f ]]µ(X,λ) = 0, or X consists of a single f -labelled node, in
which case V µ = k and [[f ]]µ(X,λ) = λ.

Theorem 1. Let X and Y be networks, and assume that X is connected. Then,
for any λ ∈ k\{0}, we have:

[[Y ]]µ(X,λ) = λ|Y ||hom(Y, X)|

Proof. Recall that V µ(X,λ) is the vector space with basis vectors the input ports
of X, i.e., the set {〈x, i〉 | 1 ≤ i ≤ arin(ϕ(x))}. Let

m :
⊗
y∈Y

⊗
1≤j≤arout (ϕ(y))

V µ(X,λ) −→
⊗
y∈Y

⊗
1≤j≤arout (ϕ(y))

V µ(X,λ)

be the linear map so that [[Y ]]µ(X,λ) = Tr(m). Unfolding the definition yields:

m
( ⊗

y∈Y

⊗
1≤j≤arout (ϕ(y))

〈x(y,j), i(y,j)〉
)

= λ|Y |
⊗
y∈Y

∑
x

⊗
1≤j≤arout (ϕ(y))

πX〈x, j〉



where the sum ranges over those x ∈ X satisfying ϕX(x) = ϕY (y) and also
〈xπY 〈y,i〉, iπY 〈y,i〉〉 = 〈x, i〉 for all 1 ≤ i ≤ arin(ϕY (y)).

Now the trace of m equals λ|Y | times the number of the basis vectors v of
the space

⊗
y∈Y

⊗
1≤j≤arout (ϕ(y)) V µ(X,λ) which occur in m(v), i.e., for which

〈v | m(v)〉 = λ|Y |. We show that these basis vectors are in 1-1 correspondence
with homomorphisms from Y to X. If v =

⊗
y∈Y

⊗
1≤j≤arout (ϕ(y))〈x(y,j), i(y,j)〉

satisfies 〈v | m(v)〉 6= 0 then for each y the sum in m(v) must contain a summand
corresponding to v. More precisely:

∀y ∈ Y ∃x ∈ X
ϕY (y) = ϕX(x) (a)
∀i 〈xπ−1

Y 〈y,i〉, iπ−1
Y 〈y,i〉〉 = 〈x, i〉 (b)

∀j 〈x〈y,j〉, i〈y,j〉〉 = π〈x, j〉 (c)

As explained above, either X is a singleton set or it does not contain function
symbols with neither inputs nor outputs. In each case, we have that for each
y ∈ Y there exists a unique x ∈ X satisfying (b) and (c). In the former case,
there is only one x anyway; in the latter case either (b) or (c) is a nonempty
conjunction and establishes uniqueness.

We have thus determined a function f : Y → X such that (b) and (c)
hold with x replaced with f(y). We claim that f is a homomorphism. Indeed, if
π−1

Y 〈y, i〉 = 〈y′, j〉 then by (b) we have 〈f(y), i〉 = 〈x〈y′,j〉, i〈y′,j〉〉. On the other
hand, (c) shows 〈x〈y′,j〉, i〈y′,j〉〉 = πX〈f(y′), j〉, thus 〈f(y), i〉 = πX〈f(y′), j〉 or
π−1

X 〈f(y), i〉 = 〈f(y′), j〉 establishing homomorphism.
Conversely, if f : Y → X is a homomorphism, we define a basis vector

v =
⊗

y∈Y

⊗
1≤j≤arout (ϕ(y))〈x〈y,j〉, i〈y,j〉〉 by:{

x〈y,j〉 = f(y′)
i〈y,j〉 = i

when πY 〈y, j〉 = 〈y′, i〉 (1)

Now, towards showing (a), (b), (c) above, given y ∈ Y we put x = f(y). Condi-
tion (a) follows directly from the homomorphism property; condition (b) is direct
from the definition of 〈x〈y,j〉, i〈y,j〉〉; for condition (c), we assume πY 〈y, j〉 = 〈y′, i〉
hence πX〈f(y), j〉 = 〈f(y′), i〉 = 〈x〈y,j〉, i〈y,j〉〉 using the homomorphism property
and the definition of 〈x〈y,j〉, i〈y,j〉〉.

It is obvious that going back and forth starting with a homomorphism f
yields that homomorphism back. To show the converse, assume that we are
given a basic vector determined by a family {〈x̂〈y,j〉, î〈y,j〉〉}〈y,j〉. We define a
homomorphism f : Y → X by letting f(y) be the unique x satisfying conditions
(a), (b), (c) above. We then define another basic vector {〈x〈y,j〉, i〈y,j〉〉}〈y,j〉 by
(1).

Given y ∈ Y and 1 ≤ j ≤ arout(ϕ(y)) we have:

〈x̂〈y,j〉, î〈y,j〉〉 = πX〈f(y), j〉

by condition (b) above. On the other hand, if πY 〈y, j〉 = 〈y′, i〉 then:

πX〈f(y), j〉 = 〈f(y′), i〉 = 〈x〈y,j〉, i〈y,j〉〉



by the homomorphism property and (1), thus:

〈x̂〈y,j〉, î〈y,j〉〉 = 〈x〈y,j〉, i〈y,j〉〉

as required. ut

Theorem 1 and Proposition 7 immediately yield:

Theorem 2. Let X be a network with connected components X1,. . . , Xn, let λ1,
. . . , λn be non-zero scalars, and let Y be a network with connected components
Y1, . . . , Ym. Then we have:

[[Y ]]
Pn

i=1 µ(Xi,λi) =
m∏

j=1

n∑
i=1

λ
|Yj |
i |hom(Yj , Xi)|

5 Completeness Results

We begin by considering closed networks over a one-sorted signature. In the fol-
lowing definition we assume a standard enumeration of (the isomorphism classes)
of the connected non-empty and non-trivial such networks.

Definition 11. Let X be a closed network over a one-sorted signature, and
suppose its non-trivial connected components are X1, . . . , Xn (n ≥ 0), and let
λ1, . . . , λn be distinct variables (taken from some standard enumeration of vari-
ables). Then the interpretation µX over Q(λ1, . . . , λn) is given by:

µX = µ(X1, λ1) + · · ·+ µ(Xn, λn) + ζ2

where ζ2 is the interpretation interpreting 1 by a two-dimensional space and
assigning all function symbols the value 0.

Now if Y is any closed network over the same signature as X, with non-trivial
connected components Y1, . . . , Ym and with t trivial cycles, we have by the above
remarks on the interpretation of such networks, Proposition 7 and Theorem 2
that:

[[Y ]]µX = dt
m∏

j=1

n∑
i=1

λ
|Yj |
i |hom(Yj , Xi)| (2)

where d ≥ 2 is the dimension of the interpretation of 1 by µX . Note that this
is a polynomial in λ1, . . . , λn with positive integer coefficients, and non-zero in
case n > 0 and X and Y have the same non-trivial connected components up
to isomorphism. Writing deg(λi, [[Y ]]µX ) for the largest exponent of λi in [[Y ]]µX ,
we have:

deg(λi, [[Y ]]µX ) =
∑

j:hom(Yj ,Xi) 6=∅

|Yj | (3)

where Y1, . . . , Ym are the components of Y .



Lemma 4. Let X and Y be closed networks over a one-sorted signature, at least
one of which has a non-trivial connected component. If

[[X]]µX = [[Y ]]µX

and
[[X]]µY = [[Y ]]µY

then X and Y are isomorphic.

Proof. Let X1, . . . , Xm and Y1, . . . , Yn be the standard enumerations of the non-
trivial connected components of X and Y, respectively.

Let U be a connected component in X or Y . The height of U is defined as
the length of the longest sequence of homomorphisms

U0
f0−→ U1

f1−→ U2 −→ . . .
fk−1−−−→ Uk = U

where Ui are connected components in X or Y , and none of the fi are isomor-
phisms. Notice that the height is well-defined by Corollaries 1 and 2.

The multiplicity of component U in X (or Y ) is defined as the number of
isomorphic copies of U in X (or Y ). We show by course-of-values induction on h
that each component of X or Y of height h has the same multiplicity in X and
in Y .

So assume that U is a connected component of height h and that components
of height less than h have equal multiplicities in X and Y . Let us write x and y
for the multiplicity of U in X and Y respectively. By the definition of height we
have: ∑

i:hom(Xi,U) 6=∅

|Xi| = x|U |+
∑

i:hom(Xi,U) 6=∅∧height(Xi)<h

|Xi|

and: ∑
j:hom(Yj ,U) 6=∅

|Yi| = y|U |+
∑

i:hom(Yi,U) 6=∅∧height(Yi)<h

|Yi|

Now, supposing without loss of generality that U occurs in X as X1, we conclude
by equation 3 that:∑

i:hom(Xi,U) 6=∅

|Xi| = deg(λ1, [[X]]µX ) = deg(λ1, [[Y ]]µX ) =
∑

j:hom(Yj ,U) 6=∅

|Yi|

Combining this with the induction hypothesis shows x|U | = y|U |, hence x = y.
So X and Y have the same non-trivial connected components, up to isomor-

phism. So, as [[X]]µX = [[Y ]]µX , we see by equation 2 above and the following
remark that they have the same number of trivial cycles, which concludes the
proof. ut



Theorem 3. If two networks over a given signature have equal value under all
interpretations over fields of the form Q(λ1, . . . , λn) then they are isomorphic.

Proof. We have already described how the general case can be reduced in turn
to that of one-sorted signatures and then to that of closed such networks. The
previous lemma deals with all such cases except the trivial one where both
networks consist only of trivial cycles. ut

In order to strengthen our completeness result to fields of characteristic 0,
we encode polynomials with positive integer coefficients as natural numbers:

Proposition 8. Let d and C be positive integers. There exist natural numbers
k1, . . . , kn such that for any polynomials p, q ∈ N[λ1, . . . , λn] with total degree
less or equal to d and coefficients smaller than C we have:

p = q ⇐⇒ p(k1, . . . , kn) = q(k1, . . . , kn)

We then have:

Theorem 4. Let k be a field of characteristic 0. If two networks over a given
signature have equal value under all interpretations over k then they are isomor-
phic.

A number of natural questions arise on considering this theorem. As regards
generalisations, we do not know if the corresponding result is true for any field
of positive characteristic. Nevertheless, a small refinement of our proof yields the
following weaker result:

Theorem 5. If two networks have equal value under all interpretations over all
finite fields then they are isomorphic.

Proof. For this, one makes use of the fact that for positive integers d, C there
always exists a finite field k and l1, . . . , ln ∈ k such that for any two polynomials
p, q ∈ N[λ1, . . . , λn] with total degree less or equal to d and coefficients smaller
than C one has p = q iff p(l1, . . . , ln) = q(l1, . . . , ln) in k, and then simply
proceeds as in the proof of Theorem 4, taking a finite field with characteristic
large enough so that no undesired cancellations occur. ut

One may also ask if Theorem 4 can be strengthened. Perhaps there is a
uniform bound on the dimensions of the vector spaces needed for completeness.
Alternatively there may be a result similar to those of Statman for the simply
typed λ-calculus [13]. This might associate to each network N a bound on the
dimensions of the vector spaces needed to decide whether any other network is
isomorphic to N ; there may even a be single interpretation such that another
network is isomorphism to N iff it has the same value as N in that interpretation.



5.1 Completeness for Compact Closed Categories

The category FinVectk is not only traced symmetric monoidal but also compact
closed. So it is natural to ask if our completeness result also holds for compact
closed categories. This is indeed the case: it is a corollary of the result for the
traced case and the structure theorem of Joyal, Street and Verity [6].

As noted before, every compact closed category has a unique trace. The struc-
ture theorem says that the forgetful 2-functor from the 2-category CompCat
of compact closed categories to the 2-category TrMon of traced symmetric
monoidal categories has a left biadjoint whose unit is fully faithful. More con-
cretely, given a traced symmetric monoidal category C, there is a compact
closed category IntC whose objects are pairs of objects of C and whose ar-
rows from (A+, A−) to (B+, B−) are the arrows from A+ ⊗ B− ro B+ ⊗ A−

in C. The identity arrow on (A+, A−) is idA+⊗A− , and the composition of
f : (A+, A−) → (B+, B−) with g : (B+, B−) → (C+, C−) is given by:�� ��

�

�
�@
@

f

�
�@
@

g
�

�@
@C−

A+ B+

-A−

-

C+

As regards the compact closed structure, the interested reader is referred to [6]
(but our symmetric case is much simpler than the original braided case). In
the case C = Net(S,F ), we regard IntNet(S,F ) as a category of ‘bi-directional
networks’ modulo isomorphism, where a bi-directional network from (v+, v−) to
(w+, w−) is just a network from v+w− to w+v−.

There is a fully faithful strong traced functor N : C → IntC sending A to
(A, I). Furthermore, for any compact closed category D and any strong traced
functor F :C → D, there is a unique (up to isomorphism) strong monoidal functor
F : IntC → D such that F ◦ N is isomorphic to F; explicitly, F sends (A+, A−)
to FA+ ⊗ (FA−)∗, and f : (A+, A−) → (B+, B−) to:

FA+ ⊗ (FA−)∗
id⊗η⊗id−−−−−→ FA+ ⊗ FB− ⊗ (FB−)∗ ⊗ (FA−)∗

'−→ F(A+ ⊗B−)⊗ (FB−)∗ ⊗ (FA−)∗
(Ff)⊗id−−−−−→ F(B+ ⊗A−)⊗ (FB−)∗ ⊗ (FA−)∗

'−→ FB+ ⊗ (FB−)∗ ⊗ (FA−)∗ ⊗ FA−

id⊗ε−−−→ FB+ ⊗ (FB−)∗

In particular, TrMon(C,D) is equivalent to CompCat(IntC,D).
We can routinely define the notion of interpretations of signatures in a com-

pact closed category D and morphisms between them, but this is the same as
giving interpretations of signatures in D regarded as a traced monoidal cate-
gory and morphisms between them. From this, we note that IntNet(S,F ) is the



free compact closed category over the signature (S, F ) because, for any compact
closed D, we have the following equivalences:

Mod((S, F ),D) ' TrMon(Net(S,F ),D) ' CompCat(IntNet(S,F ),D)

So we can speak of the value of a bidirectional net given an interpretation of
its signature over k, i.e., in FinVectk: one simply applies the functor obtained
from the interpretation by the above chain of equivalences to the isomorphism
class of the net.

Corollary 5. Let k be a field of characteristic 0. If two bidirectional nets have
equal value under all interpretations over k then they are isomorphic.

For the proof, one uses the definition of F to reduce the question to the case of
Net(S,F ) and the result is then immediate from Theorem 4.
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