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1. Introduction

Scott discovered his remarkable domain-theoretic models of the untyped λ-calculus,
more precisely the λβη-calculus, in 1969: see the remarks in [10] and see [12] for further
references. Having a class of mathematically interesting models available, a natural com-
pleteness problem arises: if two terms are equal in the class, here that of all Scott’s models,
are they then equal in all models, equivalently, are they βη-convertible? As stated so far,
the problem is not quite precise: one should refer to a specific class of models such as
all pointed ω-cpos isomorphic to their own function space. This equational completeness
problem seems to have appeared first in the literature in [5]; a positive solution was given
in [2], but with models taken in the category with objects the pointed partial orders with
lubs of both increasing ω0- and ω1-chains, and with morphisms the monotonic functions
preserving just the lubs of the increasing ω1-chains.

A related problem exists for the λβ-calculus and, e.g., pointed ω-cpos having their own
function space as a retract. There is also a natural consistency problem: if an equation is
consistent, meaning one cannot use it to derive the equation x = y, does it have a model,
e.g., a non-trivial pointed ω-cpo isomorphic to its own function space?

In this paper we consider problems of these kinds for the λ-calculus, various classes of
models and various sets of sentences (i.e., closed formulae), not only equations. Here is
our general framework. Let T be a first-order theory, e.g., that for combinatory logic, for
the λβ-calculus or for the λβη-calculus; let C be a class of models of T ; and let F be a
set of sentences. We say that C is F-complete if the following holds:

∀ϕ ∈ F .(∀M ∈ C.M |= ϕ)⇒ (∀M |= T .M |= ϕ)

and we say that C is F-consistent if the following holds:

∀ϕ ∈ F .(∃M |= T .M |= ϕ)⇒ (∃M ∈ C.M |= ϕ)

As Scott’s methods yield models of the λβη-calculus and the λβ-calculus, we are mainly
interested in those calculi, but we also discuss combinatory logic. As regards sentences,
expanding our interest from equations to first-order sentences is mathematically natural
and enables us to take some ‘distance’ from the hard, unsolved, equational problems
but nevertheless try to cast some light on them. As a strategy it has pluses and mi-
nuses, making counterexamples easier to find but positive results harder to prove. In this
regard we take a standard approach, considering various prenex sets of sentences, and
seeking counterexamples of minimal logical complexity and positive results for sentences
of maximal logical complexity.

As regards models, we are mainly interested in very general classes, such as those
admitting pointed partial orders, or pointed ω-cpos, with corresponding results generally
going through for pointed dcpos. Despite their generality, results for these classes do
have some bearing on Scott models. On the one hand, negative results apply also to
Scott models, as F-completeness or F-consistency for a class of models implies the same
for any subclass. On the other hand, positive results can be taken as providing some
evidence that Scott models are also complete or consistent in the relevant sense.

Following [6,1], one may also look for categorical rather than partially ordered models;
it would be interesting to try to extend the results of this paper to such models, cf. [8,
Section 3]. Related work appears in [9,4]. Much of the emphasis there is on a somewhat
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different question, also generalising the equational completeness question: whether a λ-
theory is the theory of a model in a given class of models.

After some technical preliminaries in Section 2, we consider questions of completeness
in Section 3, in particular giving Theorem 4, establishing completeness for Π1-sentences
with positive matrix. Section 4 considers questions of consistency, in particular presenting
a reduction of Σ2-consistency to the consistency with the λ-calculus of certain nonlinear
equations analogous to those holding for generalized Mal’cev operators [11]. The paper
concludes with some final remarks in Section 5.

2. Preliminaries

We refer the reader to Barendregt’s book [3] for background information on the λ-
calculus and combinatory logic. We generally follow his notation, noting any significant
differences where they occur. We consider three first-order theories with equality, TCL,
Tβ and Tβη, over the signature with two constants K and S and a binary ‘application’
operation ·; the application operation is written as an infix, or even omitted entirely,
and, whether written explicitly or implicitly, applications are associated to the left. The
equational theory of combinatory logic is given by the following two equations:

Kxy = x

Sxyz = xz(yz)

We take TCL to be given by these two equations together with the sentence K 6= S, in
order to exclude trivial models. Secondly, Tβ is the extension of TCL by the following
three axioms:

(∀z. xz = yz)⇒ 1x = 1y

12K = K

13S = S

where 11 =def 1 =def S(KI) and 1n+1 =def S(K1)(S(K1n)), and where I is the iden-
tity combinator SKK. Thirdly, Tβη is the extension of TCL by the following axiom of
extensionality:

(∀z. xz = yz)⇒ x = y

Models are, as usual, interpretations M = (X,K,S, ·) satisfying the axioms. The theory
TCL axiomatises the non-trivial combinatory algebras [3, 5.1.8]; the theory Tβ axioma-
tises the non-trivial λ-models [3, 5.6.3]; and the theory Tβη axiomatises the non-trivial
extensional λ-models.

We now consider the relation between our theories and combinatory logic and the
λ-calculus. It is convenient to allow extra constants. For the theories, one extends the
signature with a given set of extra constants, but no further axioms; for the calculi one
extends the terms (and, consequently, substitution and conversion) by a given set of
constants, in the evident way.

In one direction we translate terms t of TCL (respectively, Tβ , Tβη) to terms Mt of
combinatory logic (respectively, the λβ-calculus, the λβη-calculus). In the case of com-
binatory logic, Mt is just t. In the other two cases, application is read as application, K
and S as λx.λy.x and λf.λg.λx.fx(gx), and the constants as themselves, and so Mt is
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Barendregt’s Mλ, see [3, 7.3.1], extended to handle the constants. We rely on context to
tell which of the translations is meant.

In the other direction we translate terms M of combinatory logic (respectively, the
λβ-calculus, the λβη-calculus) to terms tM of TCL (respectively, Tβ , Tβη). In the case of
combinatory logic tM is simply M and in the other two cases tM is Barendregt’s tCL, see
[3, 7.3.1], extended to handle the constants. We again rely on context to tell which of the
translations is meant. We write the Curry abstraction operator applied to a first-order
term t and variable x as λ∗x.t [3, 5.1].

One has that t = tMt is provable in the relevant first-order theory and that M and MtM

are convertible in the relevant calculus. One further has that M and N are convertible in
a given calculus if and only if tM = tN is provable in the corresponding theory and that
t = u is provable in a theory if and only if Mt and Mu are convertible in the relevant
calculus. This is trivial for combinatory logic; for the λβ- and the λβη-calculi, one uses
the results in [3, 7.3], extended to handle the constants.

We consider three kinds of equational theory Th. Combinatory logic theories are equa-
tional theories extending the above two equations for K and S; one also allows constants
in the terms and equations, taken from a given set of constants. For the λβ-calculus one
considers λ-theories in the sense of [3] and for the λβη-calculus one considers his λη-
theories, allowing additional constants in both cases. We write M =Th N to assert that
the equation M = N is in the theory Th (and so =Th is the relation {(M,N)|M =Th N})
and we write CL, λβ and λβη for, respectively, the minimal combinatory logic theory,
λ-theory and λη-theory with no constants.

Given an equationally consistent theory Th, i.e., one that does not contain the equation
x = y, one can construct the open term model MTh of the relevant theory T . The
domain of the model is the collection of equivalence classes [M ] of open terms, where
the equivalence relation is =Th, that of the relevant equational theory. Application is
defined by [M ][N ] = [MN ]; K and S are interpreted by [K] and [S] or by [λx.λy.x] and
[λf.λg.λx.fx(gx)] as appropriate. The denotation of a term t, assigning [M1], . . . , [Mn] to
its free variables x1, . . . , xn, is [Mt[M1/x1, . . . ,Mn/xn]] (we employ a different notation
for substitution than that used in [3]). Note that MCL, Mλβ and Mλβη are the usual
open term models.

One can also obtain theories from models. Let M be a model of one of our theories
which also interprets the given set of constants. Then {M = N | M |= tM = tN} is a
consistent equational theory of the corresponding kind.

Our results concern partially-ordered or po models. An interpretation is partially or-
dered (a po interpretation) if its carrier is a partial order and application is monotone;
it is further pointed (a ppo interpretation) if it has a least element, written ⊥. Strictly
speaking, po interpretations are not interpretations as they have additional structure:
we should rather speak of interpretations admitting a compatible partial order. However
the looser way of speaking will not create any difficulties and we continue with it.

A po interpretation of one of our three theories T is a model if it is in the usual first-
order sense. If it is a model of CL one has ⊥·x =⊥. It is natural to consider partially-
ordered versions of one of the axioms for 1 and of extensionality. We say that a po
interpretation of Tβ is 1-order-extensional if we have:

∀z. (xz ≤ yz)⇒ 1x ≤ 1y

and that a po interpretation of Tβη is order-extensional if we have:
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∀z. (xz ≤ yz)⇒ x ≤ y

A ppo interpretation is a pointed cpo (or cppo) interpretation if its carrier is a pointed cpo
and application is continuous in both arguments. More precisely, we consider two cases:
in the first by cpo we mean ω-cpo where lubs of increasing ω-chains exist and continuity
means preserving those lubs; and in the second we mean dcpo where lubs of all directed
sets exist and continuity means preserving those lubs. For the most part, our results do
not depend on this distinction and so we only make it when needed.

In the cases of Tβ or Tβη we define a retract model to be a cppo that has as a retract
the space of its continuous self-maps with application, K and S then given in the usual
way; in the case of Tβη the retract is then necessarily an isomorphism. Every cppo model
of CL has a least-fixed point operator, i.e., an element Y such that Y · x =

∨
xn· ⊥: one

takes Y to be
∨
n≥0 Y(n), where Y(0) =⊥ and Y(n+1) = SKY(n).

We classify sentences according to quantifier and matrix complexity. By Πn we mean
the Πn-sentences, and similarly for Σn. By Πn(POS) (respectively, Πn(EQ)) we mean
those sentences equivalent to a Πn-sentence with positive matrix (respectively, equational
matrix), and similarly for Σn(POS) and Σn(EQ). By EQ we (evidently) mean Π0(EQ),
and similarly for POS. As combinatory logic permits pairing, repeated universal or ex-
istential quantifiers can be reduced to single ones and conjunctions of equations can be
reduced to single equations. Further, when working with Tβ or Tβη, ∀x.t = u is equivalent
to λx.t = λx.u, which serves to reduce quantifier complexity for these two theories.

Finally, note that for any set F of sentences, F-consistency is equivalent to F ′-
completeness, where F ′ = {¬ϕ | ϕ ∈ F}. We therefore look for counterexamples with
positive matrix or, better, equational matrix; we also prefer natural counterexamples. For
positive results we can generally do no better than all positive matrices of some prefix
class.

3. Completeness

We begin with two counterexamples to completeness. The first is natural in that it
relates to a standard property of fixed-points; the second is, rather, of a technical nature
but it applies to a wider class of models of the λ-calculus.
Lemma 1 For any combinatory logic or λ-calculus term M and variables f, g /∈ FV(M),
the terms f(M(gf)) and M(fg) are not convertible.
Proof Any reduct of f(M(ff)) has an odd number of f ’s, but any reduct of M(ff)
has an even number.

Theorem 1 The cppo models of TCL are not Σ2(EQ)-complete and the cppo models of
Tβ or Tβη are not Σ1(EQ)-complete.
Proof Consider the following sentence:

ϕ1 ≡def ∃y.∀f, g.f(y(Bgf)) = y(Bfg)

where B =def λ
∗f.λ∗g.λ∗x.f(gx). This holds in every cppo interpretation of CL by the

above remark on least-fixed points. However, by Lemma 1, it does not hold for open term
models.

The following lemma is immediate from [11]:
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Lemma 2 There is a closed term A of the λ-calculus such that the terms:

A(xy)(xy)(xy)(xz) and A(xy)(xz)(xz)(xz)

are λβ-convertible, but the terms:

A(xM)(xM)(xM)(xN) and A(xM)(xM)(xN)(xN)

are not λβη-convertible for any non-λβ-convertible terms M,N not containing x as a
free variable.

We then have:
Theorem 2 The ppo models of Tβ or Tβη are not Σ1(EQ)-complete.
Proof Consider the following sentence:

ϕ2 ≡def ∃y.∀x, z.A(xy)(xy)(xy)(xz) = A(xy)(xy)(xz)(xz)

By the second part of Lemma 2 this is false in the λβη open term model. However it
is true in any ppo model of Tβ or Tβη as we then have for all elements x,z that:

A(x⊥)(x⊥)(x⊥)(xz)≤A(x⊥)(x⊥)(xz)(xz)

≤A(x⊥)(xz)(xz)(xz)

=A(x⊥)(x⊥)(x⊥)(xz)

with the last equality holding by the first part of the lemma.

We do not know whether the ppo models of TCL are Σ2(EQ)-incomplete, or even, for
that matter, whether they are Σ2(POS)-incomplete.

We next present some positive results on completeness, now working our way in the
opposite direction: from partially ordered models to cpo ones. We consider only the case
of Tβη in detail, contenting ourselves with remarks on the other two cases as they are very
similar. Our method is proof-theoretic: we define a λβη⊥-calculus, an ordered version
of the λβη-calculus with a least element. Its syntax is that of the λ-calculus with an
additional constant ⊥. Its axiom system has inequational judgments M ≤ N and the
following axioms and rules:

M ≤M

L ≤M M ≤ N
L ≤ N

M ≤M ′ N ≤ N ′

MN ≤M ′N ′

M ≤ N
λx.M ≤ λx.N

⊥≤M

(λx.M)N = M [N/x]

λx.Mx = M (if x /∈ FV(M))
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where M = N stands for the conjunction of the judgments M ≤ N and N ≤ M . Note
that the order-exensionality rule:

Mx ≤ Nx
M ≤ N

(if x /∈ FV(M) ∪ FV(N))

is derivable.
A λη⊥-inequational theory Th is a set of inequations M ≤ N between λ-terms, possibly

containing ⊥ and other constants from a given set, and closed under the rules and axioms
of the λβη⊥-calculus; any such theory is closed under substitution. We write M ≤Th N
to assert that M ≤ N is in Th and M =Th N to assert that M = N is in it, meaning
that both M ≤ N and N ≤ M are. Such a theory Th is (inequationally) consistent if
x ≤ y is not in it; the set of equations it contains forms a λη-theory, consistent if, and
only if, Th is inequationally consistent; and the resulting open term model MTh of Tβη
(assuming consistency) is an order-extensional ppo model, setting [M ] ≤ [N ] if and only
if M ≤Th N .

Let λη⊥ be the least λη⊥-inequational theory with ⊥ the only given constant. We
seek a characterisation of it in terms of reduction relations. Let →βη be one step of β-
or η-reduction; let →⊥ be the contextual (called compatible in [3]) closure of the δ-rule
⊥→M (where M is any term); and let →βη⊥ be their union.
Lemma 3 (i) Suppose that M →∗βη M ′ and M →∗βη⊥ M ′′. Then there is an N such

that M ′ →∗βη⊥ N and M ′′ →∗βη N .
(ii) M ≤λη⊥ N if and only if there is a term L such that M →∗βη⊥ L and N →∗βη L.

(iii) Let M and N be terms not containing ⊥. Then M ≤λη⊥ N if and only if M and
N are βη-convertible (and so λη⊥ is inequationally consistent).

Proof
(i) First of all if M →βη M

′ and M →⊥ M ′′ then there is an N such that M ′ →∗⊥ N
and M ′′ →βη N . This is obvious for the case of one step of η-reduction. For the
case of one step of β-reduction, the case of nonoverlap is trivial; if the δ-rule has
been applied to a redex (λx.L)N , then one can complete the diagram with one δ-
reduction step in case it was applied to L and with as many as there are occurrences
of x in L in case it was applied to N .

The rest of the proof of part 1 is a sequence of diagram chases. It follows first
that if M →βη M

′ and M →∗⊥ M ′′ then there is an N such that M ′ →∗⊥ N and
M ′′ →βη N ; one then has that if M →∗βη M ′ and M →∗⊥ M ′′ then there is an N
such that M ′ →∗⊥ N and M ′′ → ∗βηN ; and this yields the conclusion.

(ii) Clearly if there is a term L such that M →∗βη⊥ L and N →∗βη L then M ≤λη⊥ N .
Conversely, we need to show that the relation between terms M and N of the
existence of such an L is closed under the rules and axioms of the λβη⊥-calculus.
The only non-obvious matter is transitivity and that is immediate from part 1.

(iii) Immediate from part 2.

Theorem 3 The order-extensional ppo models of Tβη are Π1(POS)-complete.
Proof Any sentence in Π1(POS) is provably equivalent to a sentence ϕ of the form
∀x. (t1 = u1 ∨ . . . ∨ tn = un). If true in all order extensional ppo models of Tβη, ϕ is, in
particular, true inMλη⊥, and so, assigning [x] to x, we find that Mti =λη⊥ Mui for some
i. So, by the last part of Lemma 3, Mti and Mui

are βη-convertible. We then have that
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ti = ui, and so ϕ, is provable in Tβη. We conclude that ϕ is valid.

The Π1(POS)-completeness of (1-order-extensional) ppo models of TCL or Tβ is estab-
lished in much the same way. One introduces CL⊥- and λ⊥-inequational theories, proves
an analogue of Lemma 3 for the minimal such theories CL⊥ and λ⊥ and takes the open
term model of the corresponding theory.

In order to get similar positive results for the smaller class of ω-cppo models we need
a few notions concerning ideals in partial orders.
Definition 1
An ideal in a partial order P is a downwards-closed subset of P ; for any subset X of P
we write X↓ for {x ∈ P | ∃y ∈ X.x ≤ y}, the least ideal including X; and for any x ∈ P
we write x↓ for {x}↓. An ideal I is directed if it is nonempty and any two elements of
the ideal have an upper bound in the ideal; it is denumerably generated if I = X↓ for
some denumerable subset X of I. We write Iω(P ) (respectively Id(P )) for the collection
of all denumerably generated directed ideals (respectively all directed ideals) of P , and
partially order them by subset; Iω(P ) is an ω-cpo and Id(P ) is a dcpo: both are pointed
if, and only if, P is.

Now, given a ppo model M = (X,K,S, ·) of TCL, we can define an ω-cppo model
Iω(M) of TCL, viz (Iω(X),K↓,S↓, ·) where:

I · J =def {x · y | x ∈ I, y ∈ J }↓

and there is a similar dcppo model Id(M) defined using all directed ideals. Taking a
model of the form Iω(MTh), where Th is a λη⊥-inequational theory, it is not hard to see
that the denotation of a term t is [Mt[M1/x1, . . . ,Mn/xn]]↓, if we assign [M1]↓, . . . , [Mn]↓
to its free variables x1, . . . , xn.

There is no general reason why either Iω(M) or Id(M) should be order-extensional,
even if M is. Fortunately, however, the former is for suitably chosen term models. The
extension of a λη⊥-inequational theory Th by a set of constants C is the least λη⊥-
inequational theory Th(C) which includes Th and whose terms may contain elements of
C as constants; it is assumed here that C is a set not containing any constant occurring
in a term of Th. It is not hard to show that Th(C) is the set of inequations:

{M [c1/x1, . . . , cn/xn] ≤ N [c1/x1, . . . , cn/xn] |M ≤Th N, c1, . . . , cn ∈ C}

(and so, in particular, Th(C) is inequationally consistent of Th is).
Lemma 4 If Th is inequationally consistent then Iω(MTh(C)) is an order-extensional
model of Tβη.
Proof Suppose that I · K ⊆ J · K for all directed, countably generated ideals K. Let
[M ] be an element of I; we show it is in J . As J is denumerably generated, it has
the form {[Ni]}↓, and so, as there are uncountably many constants, we can choose a
constant c which does not occur in M or in any of the Ni. Taking K to be [c] ↓ we
find that [Mc] ∈ J · [c]↓ and so, for some i, we have Mc ≤Th(C) Nic. Using the above
characterisation of Th(C), it follows that Mx ≤Th Nix, where x does not appear in M
or N ; we therefore have that M ≤Th Ni and so that [M ] ∈ J , as required.

Theorem 4 The class of order-extensional ω-cppo models of Tβη is Π1(POS)-complete.
Proof If a sentence ∀x. (t1 = u1 ∨ . . . ∨ tn = un) is true in all order-extensional ω-
cppo models then, by Lemma 4, it is true in Iω(Mλη⊥(C)), choosing C to be uncountably
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infinite. But then, assigning [x]↓ to x, we find that for some i, [Mti ]↓= [Mui
]↓ holds,

i.e., that Mti =λη⊥(C) Mui
. Using the above characterisation of λη⊥(C) we then have

Mti =λη⊥ Mui and so ϕ is valid.

Similar ideal-theoretic methods establish the Π1(POS)-completeness of the 1-order-
extensional ω-cppo models of Tβ and of ω-cppo models of TCL. In the latter case one does
not have to establish any implication analogous to extensionality and so it is not necessary
to take an uncountable supply of constants. For the same reason it is straightforward to
obtain the Π1(POS)-completeness of dcppo models of TCL using the version of the ideal
construction with all directed ideals.

It may be that Iω(Mλη⊥) is order-extensional: we leave this as an open problem. We
also do not know if Id(Mλη⊥(C)), is order-extensional for some set of constants C; if it were
then Π1(POS)-completeness would also hold for order-extensional dcppo models of Tβη.
One could, presumably, then establish Π1(POS)-completeness for 1-order-extensional
dcppo models of Tβ similarly.

4. Consistency

We begin by showing the Π2(EQ)-inconsistency of proper partially ordered models
for all three theories, where a partial order is proper if it contains distinct elements x
and y such that x ≤ y. An applicative structure (X, ·) is a set X equipped with a binary
operation · termed application; every interpretation of TCL cuts down to such a structure.
Definition 2 (i) A subset A of an applicative structure (X, ·) is separable if for each

function f :A→ X there exists f ∈ X such that f(a) = f · a for all a ∈ A.
(ii) An applicative structure (X, ·) is ω-separable if each finite subset of X is separable.

It was shown in [8] that there exists an ω-separable model of Tβη.
Theorem 5 The proper partially ordered models of any of TCL, Tβ or Tβη are not
Π2(EQ)-consistent.
Proof Consider the following sentence:

ϕ3 ≡def ∀x, y.∃f.fx = y ∧ fy = x

It is evidently satisfied by any ω-separable applicative structure. On the other hand no
applicative structure which admits a proper partial order can satisfy it. For otherwise
choose x ≤ y, with x, y distinct. Then there is an f such that fx = y and fy = x and
we have y = fx ≤ fy = x, yielding a contradiction.

We now consider Σ2(EQ)-consistency for Tβη, which is the same as Σ1(EQ)-consistency
for that theory; we shall return to the other two theories later. As we shall see, whether
or not Σ1(EQ)-consistency holds depends on the consistency with Tβη of the following
critical sentences:

ϕn,m ≡def ∃a, c.∀u.Qn,m
where n ≥ 1, m ≥ 2, and a and c respectively abbreviate the lists of variables a1, . . . , an
and c1, . . . , cm, and Qn,m is the conjunction of the following equations:

I = a1(λx.u)

a1(λx.cu) = a2(λx.u)

9



. . .

an−1(λx.cu) = an(λx.u)

an(λx.cu) = u

where, for i = 1, n, we write ai(λx.cu) and ai(λx.u) to abbreviate the respective terms
ai(λx.c1u) . . . (λx.cmu) and ai(λx.u) . . . (λx.u), the latter with m occurrences of λx.u.

Note that no critical sentence ϕn,m can be satisfied by an order-extensional ppo model.
For, if it were, we would have I ≤⊥, as we could calculate, using corresponding abbrevi-
ations for ⊥:

I = a1(λx.⊥) ≤ a1(λx.c⊥)

= a2(λx.⊥) ≤ . . . ≤ an−1(λx.c⊥)

= an(λx.⊥) ≤ an(λx.c⊥)

= ⊥
and it would then follow, for any x, that x = Ix ≤⊥x =⊥, contradicting non-triviality.

The problem of determining the consistency of a critical sentence ϕn,m with Tβη seems
to be very difficult. Substituting fresh constants for the cj , one obtains an equivalent
formulation in terms of the consistency with the λβη-calculus of n + 1 equations, and
one could then try a Church-Rosser argument. However this method runs into difficulties
when, as here, there are non-linear equations: a well-known example is the failure of
confluence for the λβ-calculus with surjective pairing [13, 10.4]. On the other hand,
neither is there any obvious proof of inconsistency.

A similar situation arises with generalized Mal’cev operators which were first discussed
in the context of the λ-calculus by Selinger [11] and whose consideration helped us find
the critical sentences; these operators correspond to proper partially ordered models
rather than pointed ones. The corresponding critical sentences assert their existence:

µn ≡def ∃m1, . . . ,mn.∀x, y.R′n
where R′n is the conjunction of the following set of equations:

x = m1xyy

m1xxy = m2xyy

. . .

mn−1xxy = mnxyy

mnxxy = y

These equations are also nonlinear and it is not known if any of the µn are consistent
with TCL (it is known that the first two are inconsistent [11]). There is a connection with
our critical sentences that is worth noticing, that TCL ` µn ⇒ ψn,2.

The discussion now forks into two cases. In the first, let us assume that some critical
sentence ϕn,m is consistent with Tβη. In this case, by the above remarks, the order-
extensional ppo models are Σ1(EQ)-inconsistent for Tβη. One further then conjectures,
under the same assumption, that substituting Ω1i for ai (1 ≤ i ≤ m) and Ω2j for cj
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(1 ≤ j ≤ n) in the matrix of the critical formula, the resulting formula ϕ′n,m remains
consistent (where Ω is (SII)(SII) and k is the kth Church numeral, viz λf.λx.fkx). One
sees, as before, that ϕ′n,m is not true in any order-extensional ppo model of Tβ , and
so, under this additional assumption one has that the order-extensional ppo models are
EQ-inconsistent for Tβη. Let us remark, finally, that the discussion here a fortiori also
applies to the narrower class of order-extensional cppo models.

We now turn to the second case where all the critical sentences ϕn,m are inconsistent
with Tβη aiming to establish Σ1(EQ)-consistency. For any λη-theory Th whose terms do
not contain the constant ⊥, let Th∗be the least λη⊥-inequational theory containing all
the equations of Th, and let Th⊥ be the least λη-theory including Th whose terms may
contain ⊥; it is easily verified that it consists of all equations M [⊥/x] = N [⊥/x] where
M =Th N and x is any variable.

We next characterise Th∗ in terms of Th⊥ and a relation �, where M � N holds if
and only if for some m ≥ 0, there are terms A, C1, . . . , Cm such that:

M =Th⊥ A(λx. ⊥) . . . (λx. ⊥)

with m (λx. ⊥)’s and:
A(λx.C1⊥) . . . (λx.Cm⊥) =Th⊥ N

As will be clear, without loss of generality we can insist that the terms A, C1, . . . , Cm do
not contain ⊥. Also, by adding dummy arguments to A, we can increase m.
Lemma 5 (i) The relation � includes ≤Th⊥ ; it is closed under application and λ-

abstraction; and ⊥ �M holds for all terms M .
(ii) The relations �∗ and ≤Th∗ coincide.

Proof
(i) First � includes Th⊥ as if M =Th⊥ N then, taking m = 0 and A =def M , we

see that M �N . Next ⊥ �M holds for any term M , as we see if we take m = 1,
A =def λx.x⊥ and C1 =def λy.M , with y /∈ FV(M).

To show closure under application, suppose that M � N and M ′ � N ′ so that:

M =Th⊥ A(λx. ⊥) . . . (λx. ⊥)

N =Th⊥ A(λx.C1⊥) . . . (λx.Cm⊥)

M ′ =Th⊥ A
′(λx. ⊥) . . . (λx. ⊥)

N ′ =Th⊥ A
′(λx.C ′1⊥) . . . (λx.C ′m′⊥)

hold, for some terms A, C1, . . . , Cm and A′, C ′1, . . . , C
′
m′ . We then have:

MM ′ =Th⊥ A
′′(λx. ⊥) . . . (λx. ⊥)(λx. ⊥) . . . (λx. ⊥)

NN ′ =Th⊥ A
′′(λx.C1⊥) . . . (λx.Cm⊥)(λx.C ′1⊥) . . . (λx.C ′m′⊥)

where A′′ is λu1, . . . , um.λu
′
1, . . . , u

′
m′Au1 . . . um(A′u′1 . . . u

′
m′), and so, as desired,

we have MM ′ �NN ′.
To show closure under λ-abstraction, suppose that M �N so that:

M =Th⊥ A(λx. ⊥) . . . (λx. ⊥)

N =Th⊥ A(λx.C1⊥) . . . (λx.Cm⊥)

hold, for some terms A, C1, . . . , Cm. We then have that:

λy.M =Th⊥ A
′(λy.λx. ⊥) . . . (λy.λx. ⊥)
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λy.N =Th⊥ A
′(λy.λx.C1⊥) . . . (λy.λx.Cm⊥)

where A′ is λu1, . . . , um.λy.A(u1y) . . . (umy). But then we have that:

λy.M =Th⊥ A
′′(λz. ⊥) . . . (λz. ⊥)

λy.N =Th⊥ A
′′(λz.C1[(z)0/y, (z)1/x]⊥) . . . (λz.Cm[(z)0/y, (z)1/x]⊥)

where A′′ is λu1, . . . , um.A
′((λy.λx.u1[y, x]) . . . (λyλx.um[y, x])), and we are using

the pairing notation of [3, 6.2]. This shows that, as desired, λy.M � λy.N .
(ii) It follows at once from part 1 that �∗ is a λη⊥-theory including Th. To show it is

the least such, let Th′ be any other. Then if M �N we have:

M =Th⊥ A(λx. ⊥) . . . (λx. ⊥) ≤Th′ A(λx.C1⊥) . . . (λx.Cm⊥) =Th⊥ N

for some terms A, C1, . . . , Cm and so M ≤Th′ N . This shows that Th′ includes �

and so, as required, �∗.

It follows from this lemma that Th∗ is inequationally consistent if and only if it is not
the case that I �∗ ⊥; for the the next lemma assume that Th is consistent.
Lemma 6 If I �∗ ⊥ then some critical sentence is satisfied by the open term model of
Th.
Proof By assumption, and adding an extra reflexive link if needed, we have a chain:

I �M1 � . . .�Mn� ⊥

for some n ≥ 1. We therefore have an m ≥ 2 and terms Ai (i = 1, n) and terms Ci,j
(i = 1, n, j = 1,m) not containing ⊥ such that:

I =Th⊥ A1(λx. ⊥) . . . (λx. ⊥)

A1(λx.C0,1⊥) . . . (λx.C0,m⊥) =Th⊥ M1 =Th⊥ A2(λx. ⊥) . . . (λx. ⊥)

. . .

An(λx.Cn,1⊥) . . . (λx.Cn,m⊥) =Th⊥⊥

It follows that:

I =Th A1(λx.u) . . . (λx.u)

A1(λx.C0,1u) . . . (λx.C0,mu) =Th A2(λx.u) . . . (λx.u)

. . .

An(λx.Cn,1u) . . . (λx.Cn,mu) =Th u

We need a version of these equations in which the Ci,j do not depend on i. To that end
define A′i (for i = 1, n by:

A′1 =def λx1,1, . . . , x1,m, . . . , xn,1, . . . , xn,m.A1x1,1, . . . , x1,m

. . .

A′n =def λx1,1, . . . , x1,m, . . . , xn,1, . . . , xn,m.Anxn,1, . . . , xn,m
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take m′ =def nm and define C ′k (for k = 1,m′) by setting:

C ′1, . . . , C
′
m′ =def C1,1, . . . , C1,m, . . . , Cn,1, . . . , Cn,m

We can then rewrite our equations in the form:

I =Thu
A′1(λx.u) . . . (λx.u)

A′1(λx.C ′1u) . . . (λx.C ′m′u) =Th A
′
2(λx.u) . . . (λx.u)

. . .

A′n(λx.C ′1u) . . . (λx.C ′m′u) =Th u

and so the open term model of Th satisfies the critical sentence ϕn,m′ , which concludes
the proof.

Theorem 6 Suppose that all the critical sentences ϕn,m are inconsistent with Tβη. Then
the order-extensional ω-cppo models of Tβη are Σ1(EQ)-consistent.
Proof Let ϕ be a Σ1(EQ)-sentence. Without loss of generality, we can take it to be of
the form ∃x. t = u. If there is a model of Tβη that satisfies it, then there is one of Tβη
extended by a constant c that satisfies t[c/x] = u[c/x], and there is therefore a consistent
λη-theory Th containing the equation Mt[c/x] = Mu[c/x].

So by the assumption that all the critical sentences ϕn,m are inconsistent with Tβη, we
get, using Lemmas 5 and 6, that Th∗ is inequationally consistent. So MTh∗ is an order-
extensional ppo model of Tβη satisfying t[c/x] = u[c/x] and so ϕ. Taking an extension
Th∗(C) of Th∗ by uncountably many constants, one further has, by Lemma 4, that
Iω(MTh∗(C)) is an order-extensional ω-cppo model of Tβη satisfying ϕ.

If, as discussed above, one could establish order-extensionality for directed ideal models
one would further have Σ1(EQ)-consistency for order-extensional dcppo models under the
asme assumption.

Let us now turn to the other two theories. First, in the case of Tβ , Σ2(EQ)-consistency
is again the same as Σ1(EQ)-consistency, the same critical sentences ϕn,m serve, and the
problem of determining their consistency with Tβ again seems to be difficult. No critical
sentence can be satisfied by an 1-order-extensional ppo model and so, if some critical
sentence is consistent we have Σ1(EQ)-inconsistency and, under the same assumption,
one further conjectures EQ-inconsistency. On the other hand, if every critical sentence
is inconsistent with Tβ one deduces Σ1(EQ)-consistency for 1-order-extensional ω-cppo
models. The proof is entirely analogous to that of Theorem 6, starting from the λβ⊥-
calculus, which is just the λβη⊥-calculus minus η-conversion. Finally, as before, if one
could establish 1-order-extensionality for directed ideal models one would also have such
consistency for 1-order-extensional dcppo models.

Next, in the case of TCL, one does not have λ-abstraction and the simpler critical
sentences:

ψn,m ≡def ∃a, c.∀u.Rn,m
serve, where n ≥ 1, m ≥ 2, and a and c respectively abbreviate the lists of variables
a1, . . . , an and c1, . . . , cm, and Rn,m is the conjunction of the following equations:

I = a1u
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a1(cu) = a2u

. . .

an−1(cu) = anu

an(cu) = u

where for i = 1, n, ai(cu) and aiu abbreviate ai(c1u) . . . (cmu) and aiu . . . u, respectively,
both with m u’s. The problem of determining their consistency with TCL may be easier
than in the case of the λ-calculus, but, of course, non-linearity remains.

No critical sentence ψn,m can be satisfied by a ppo model and so, if one were consis-
tent, we would have Σ2(EQ)-inconsistency and, under the same assumption, one further
conjectures Π1(EQ)-inconsistency. On the other hand, assuming every such sentence in-
consistent, one deduces Σ2(EQ)-consistency for cppo models (both forms of ideal model
work). The proof is, as before, entirely analogous to that of Theorem 6, but is simpler
as there are no abstractions to consider: the only point is to use the Curry abstraction
operator instead, wherever necessary.

Finally, let us consider sentences with positive matrix. We have already established
Π2(EQ)-inconsistency and Σ2(EQ)-inconsistency for all three theories, assuming, in the
latter case, that some critical sentence is inconsistent. Assuming instead that every
critical sentence is consistent it may nonetheless be that Σ2(POS)- or even Π1(POS)-
inconsistency holds; we leave these as open problems. Note that Σ1(POS)-consistency
is equivalent to Σ1(EQ)-consistency as every Σ1(POS) sentence is equivalent to a finite
disjunction of Σ1(EQ) sentences.

4.1. A possible natural counterexample

We give natural Σ2(EQ)-sentences (ϕ′4 and ϕ′′4 , below) which may provide counterex-
amples to the Σ2(EQ)-consistency, or even the Π1(EQ)-consistency of cppo models. Con-
sider the following sentence:

ϕ4 ≡def ∃x, y. ∀z. x(yz) = y(xz) ∧ ∀z.xz 6= yz

As commuting continuous functions on a cppo have a common fixed-point, this sentence
is satisfied by no cppo models of TCL. However, as we now show, it is consistent with
Tβη. The following result is interesting especially because it answers (negatively) an open
question raised more than 25 years ago by Dana Scott, 2 as to whether in a formal
λ-theory commuting functions always have a common fixed point. Let Com be the λη-
theory with two constants f and g and the equation:

f(g(x)) = g(f(x))

Proposition 1 The theory Com is consistent. There is, however, no term M such that
f(M) =Com g(M).
Proof Let δ-reduction, →δ, be the contextual closure of the relation generated by
following two rules:

2 Personal communication, March, 1981.
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f(gM)→ g(fM) g(fM)→ f(gM)

We begin by showing that if M =Com N then we have that M →∗βη M ′ →∗δ N ′ and
N →∗βη N ′ for some M ′ and N ′ (the converse is evident). It is enough to show that
the relation between M and N of the existence of such an M ′ and N ′ is transitive. To
that end, one first shows that an application of a δ-rule “commutes” with one step of
β- or η-reduction in the sense that if M →δ N →βη P , then there exists Q such that
M →βη Q →n

δ P . This is clear for η-reduction. For β-reduction, if the δ-rule has been
applied to a subterm of the form f(gP ), then if the β-reduction involves only P the result
is trivial, otherwise the whole of the subterm g(fP ) is involved. But then the application
of the δ-rule can be postponed, possibly using it more than once. It then immediately
follows that if M →∗δ N →∗βη P , then there exists Q such that M →∗βη Q →∗δ P .
Transitivity follows from this result and the Church-Rosser theorem for the λβη-calculus
with extra constants.

We next need to look at δ-reduction in more detail. For any π ∈ {f, g}∗, define π ·M
recursively for terms M by: ε·M = M , (fπ)·M = f(π·M) and (gπ)·M = g(π·M). Every
term M can be analysed uniquely in the form πM ·M0 where M0 is not of either of the
forms f(M1) or g(M1); we call πM the prefix of M . If M and N are δ-convertible then
πM and πN are permutations of each other and if M →∗βη N then πM is a prefix of πN .

Now to establish the rest of proposition suppose, for the sake of contradiction, that
there exists M such that f(M) =Com g(M). From the above it follows that there exist
M ′ and M ′′, such that M →∗βη M ′, f(M ′) →∗δ g(M ′′) and M →∗βη M ′′. It follows that
fπM ′ and gπM ′′ are permutations of each other, and so, in particular, πM ′ and πM ′′ have
the same length. But by Church-Rosser M ′ and M ′′ have a common βη-reduct, and so
πM ′ = πM ′′ . But this contradicts the fact that fπM ′ and gπM ′′ are permutations of each
other, concluding the proof.

Now consider the following sentence:

ϕ′4 ≡def ∃x, y, d. ∀z.x(yz) = y(xz) ∧ ∀z.dz(xz) = T ∧ dz(yz) = F

where T is λ∗x.λ∗y.x and F is λ∗x.λ∗y.y. It implies ϕ4, relative to CL. So if we can
prove it is consistent with one of our three theories, then we have a counterexample to
Σ2(EQ)-consistency of cppo models of that theory. As before the difficulty with finding a
Church-Rosser argument is the non-linearity of the equations. Note too that if we replace
the non-linear equations with the linear d(xz) = T∧d(yz) = F then the resulting sentence
is inconsistent with TCL, so the non-linearity certainly plays a rôle. Finally if, following a
previous thought, we could prove consistency then, replacing x, y and d by Ω1, Ω2 and Ω3,
the resulting sentence ϕ′′4 might even provide a counterexample to Π1(EQ)-consistency.
Whether these sentences do indeed provide counterexamples we leave as open problems.

4.2. On quantifier-free inconsistency

We consider consistency for sentences with arbitrary matrices, but, at least for the
λ-calculus, quantifier-free. Let Th be the λη-theory generated by the equation:

Ωxx = Ω
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Lemma 7 The theory Th is consistent and, for any terms M and N , we have that
ΩMN =Th Ω holds if, and only if, M =Th N does.
Proof Consistency follows from, e.g., a Church-Rosser argument that the stronger theory
generated by the equation ΩMN = Ω is consistent with the λβη-calculus. The rest is
Lemma 3.1 of [9], but adapted to the λβη-calculus; the proof is exactly Salibra’s, but
with the evident additions to account for η-conversion.

Theorem 7 The sentence:

∀x.Ωxx = Ω ∧ Ω 6= ΩΩ(ΩKI)

is consistent with Tβη but no ppo model of TCL satisfies it.
Proof For the first part note that the equation Ω = ΩΩ(ΩKI) is not in Th. For, if
it were, by Lemma 7 we would have, successively that Ω = ΩKI and K = I were too,
contradicting the consistency of Th. For the second part, one follows the argument in
the proof of Theorem 3.5 of [9] to show that in any ppo model of CL the sentence
Ω = ΩΩ(ΩKI) holds.

We therefore have that consistency fails for quantifier-free sentences and ppo models
for our two λ-calculus theories Tβ and Tβη, and also that Π1-consistency fails for TCL.
The formula:

∀x.Ω1xx = Ω1 ∧ Ω2(Ω1) = T ∧ Ω2(Ω1Ω1(Ω1KI)) = F

might then provide a counterexample to EQ or Π1(EQ)-consistency. The difficulty, as
always, is non-linearity, here of the first equation, and it is an open question as to whether
the sentence is indeed a counterexample.

In [5], Honsell and Ronchi Della Rocca give a consistent λ-theory which is not the
theory of any retract model. One can extract another example, if of narrower scope, from
this work, namely that the following quantifier-free sentence ϕ5 is consistent with Tβ but
has no retract models:

ΩΩ = Ω ∧ λx.Ω(Ωx) = λx.Ωx ∧

λxy.Ω(x(Ωy)Ω)(xΩ(Ωy)) = λxy.Ω(x(Ωy(Ωy)) ∧ Ω 6= λx.Ω

Note that we still have non-linearity. A similar quantifier-free non-linear sentence ϕ′5 can
be found using the work of Manzonetto and Salibra [7]; the sentence in question is to the
effect that Ω is a central element in their sense that differs from both T and F.

5. Concluding Remarks

Considering just the λβη-calculus, an interesting example of a Σ2-sentence true in all
retract models but not in every model is the following:

ϕ6 ≡def ∃a, b, c, d, e. a 6= b ∧ (cd = a) ∧ (ce = b) ∧ (∀x. cx = a ∨ cx = b)

In fact, in any retract model (X,K,S, ·) the function:

x ∈ X 7→ if x ≤ a then ⊥ else a

where a is any element of the model different from the bottom element is continuous,
hence representable. So each retract model satisfies ϕ6. On the other hand, as shown
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in [3], the open term model of λβη satisfies the range property, whereby the range of any
term is either infinite or else the term denotes a constant, so falsifying ϕ6. The question
whether there is an order-extensional ppo, or even cppo, model which satisfies the range
property remains open.

One can relativize the basic notions of this paper. Given two classes of models C ⊆ C′
of a theory T and a set of sentences F , one can enquire if C is F-complete or F-consistent
relative to C′. As an example, the directed ideal constructions show that cppo models of
TCL are consistent relative to ppo models for Σ2(POS). This may fail for Σ2; the sentence
ϕ4 would provide a counterexample if one could show, for example, that Proposition 1
held for Com∗, the least λ⊥-inequational theory including Com.

Another such question is whether one can separate the cppo models from the retract
ones. For example, assuming that all the critical sentences ϕn,m are inconsistent with Tβ ,
are the retract models quantifier-free-consistent relative to the order-extensional ω-cppo
models of Tβ? One of the sentences ϕ5 or ϕ′5 may provide a counterexample.
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