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On hierarchical graphs: reconciling bigraphs,
gs-monoidal theories and gs-graphs?

Roberto Bruni1, Ugo Montanari1, Gordon Plotkin2, and Daniele Terreni1

1 Computer Science Department, University of Pisa, Italy
2 LFCS, School of Informatics, University of Edinburgh, UK

Abstract. Compositional graph models for global computing systems
must account for two relevant dimensions, namely nesting and linking.
In Milner’s bigraphs the two dimensions are made explicit and repre-
sented as loosely coupled structures: the place graph and the link graph.
Here, bigraphs are compared with an earlier model, gs-graphs, based on
gs-monoidal theories and originally conceived for modelling the syntac-
tical structure of agents with α-convertible declarations. We show that
gs-graphs are quite convenient also for the new purpose, since the two
dimensions can be recovered by introducing two types of nodes. With
respect to bigraphs, gs-graphs can be proved essentially equivalent, with
minor differences at the interface level. We argue that gs-graphs have
a simpler and more standard algebraic structure for representing both
states and transitions, and can be equipped with a simple type system (in
the style of relational separation logic) to check the well-formedness of
bounded gs-graphs. Another advantage concerns a textual form in terms
of sets of assignments, which can make implementation easier in rewrit-
ing frameworks like Maude. Vice versa, the reactive system approach
developed for bigraphs needs yet to be addressed in gs-graphs.

1 Introduction

When modelling distributed systems, it is necessary to represent states and their
evolutions. Usually, states are seen as terms of an algebra equipped with cer-
tain structural axioms, and state transitions are defined via conditional term
rewriting rules in the SOS format. A different alternative is to represent states
as graphs and transitions as graph transformations. To have the best of the two
approaches, it is sometimes possible to characterise the terms up to structural
axioms as graphs and the transitions derivable via the SOS inference rules as
graph transformations. A good example is provided by arrows of gs-monoidal
theories, which can be seen as gs-graphs, and transitions, represented as 2/dou-
ble cells of a 2/double category, which can be seen as gs-graph transformations.
The approach has been applied to π-calculus [9], to CCS with localities [9] and
causality [2], to logic programming [3] and to other models of computation.

? Research supported by the EU Integrated Project 257414 ASCENS and by the
Italian MIUR Project IPODS (PRIN 2008).
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Gs-monoidal theories [6, 2] are suitable symmetric strict monoidal cate-
gories [14] that resemble cartesian (Lawvere) theories, but without the two natu-
rality axioms that allow copying shared subterms and garbage collecting unused
terms. In addition, gs-monoidal theories are built out of symbols taken from a
hyper-signature instead of an ordinary signature. The difference is that symbols
in a hyper-signature are not constrained to have single-sorted codomain, but,
like domains, can be a tuple of sorts. The corresponding gs-graphs are a kind of
dags where substructures can be shared due to both ordinary duplicators, as in
term graphs, and hyper-signature symbols (see e.g. Fig. 2(a)). A useful feature
of gs-graphs is that they can be represented in textual form as sets of assign-
ments of the form x, y := f(z, v), where f is a signature symbol that takes two
arguments and returns a pair of results and x, y, z, v are α-convertible names.
Here 2-cells are essentially like term rewriting rules which can be both contextu-
alised and instantiated. Double cells allow one to model synchronisation of local
rewritings.

Recent developments in the area of open-ended systems for global computing
have emphasised the need for hierarchical graph models: they have two relevant
dimensions, namely nesting and linking. The former has to do with the struc-
tural design of processes (e.g., the scoping of a transaction, a compensation, or a
session, or the containment of an ambient, a membrane, or an environment); it
induces a tree-like hierarchy on nodes. The latter concerns interaction capabil-
ities (e.g., for communication, handshaking, or connectivity) that are flat, and
may connect any tree nodes. This is the pure case. The situation is more complex
in the binding case, where a name used for communication is declared at some
level in the tree hierarchy and is usable only below its declaration point. Inspired
by Cardelli and Gordon’s ambients [4] and aiming at defining a general, flexible
and easy to grasp model, Milner defined bigraphs, where the two dimensions are
made explicit and represented as essentially orthogonal structures, called place
graph and link graph. Bigraphs [19, 18, 13, 16] have been studied in depth from
several points of view, in particular as a basis of the reactive system approach,
where a labelled transition system, over which bisimilarity is a congruence, is
synthesised from a reduction semantics. This part of the theory is not covered
for gs-graphs.

Gs-graphs were originally conceived with the syntactical structure of agents
with α-convertible declarations in mind, not the hierarchical structure of global
computing systems. However it turns out that they are also quite convenient for
this new purpose. The nesting and linking structure can be recovered by defining
two types of nodes, black nodes, which represent intermediate places in the tree-
like hierarchy, and white nodes which are communication names/channels.

In this paper, gs-graphs are compared with support equivalent bigraphs. Our
first correspondence result states that the two models essentially coincide in the
pure case. The only difference is in the interface: gs-graphs have an ordered tuple
of connectors and all the names are α-convertible, while bigraph connectors are
decorated with names. The “names versus strings in a free monoid” dichotomy
can already be found in the simple case of equational theories versus Lawvere
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theories, where one has to translate between variables and numbers. On the
one hand, named connectors facilitate the direct representation in bigraphs of
standard process calculi operations; on the other hand, they make the algebraic
structure of bigraphs more complex and less standard: e.g. parallel composition
is partial and sequential composition is associative only up to isomorphism. Also
the rewriting structure does not generate composable cells. On the contrary, gs-
graphs inherit from gs-monoidal theories a variety of well-behaved operations.

Our second correspondence result is concerned with (support equivalent)
binding bigraphs. In the binding case, it is necessary to constrain the composi-
tional structure to generate only legal graphs. For bigraphs [8], additional infor-
mation is inserted in the interface to allow for a complete axiomatisation. In our
approach, we introduce a type system which recognises legal binding gs-graphs.
On gs-monoidal theories the type system is represented by membership sentences
in membership equational logic [15], while on gs-graphs we exploit a quite simple
relational type system (in the style of relational separation logic [21]). When the
gs-graph is pure, no pairs are generated; parallel composition does not add any
pair; and for sequential composition existing pairs are preserved, but new pairs,
possibly leading to inconsistency, are generated. The complexity of the proposed
typing algorithm is O(B ·W ), where B is the number of black nodes and W is
the number of bound white nodes.

The formal assessment of the analogies and differences between the two differ-
ent proposals and the definition of transformations to move from one framework
to the other allows us to conclude that: (i) bigraphs can be presented at a suitable
level of abstraction as arrows of a particular free symmetric monoidal theories,
in a perfectly standard way; and (ii) the gs-graphs representation seems to offer
some advantages over the others.

Structure of the paper. Section 2 recaps the basics of the models we are com-
paring. Section 3 addresses the case of pure signatures, while the binding case
is discussed in Section 4. Finally, Section 5 contains come concluding remarks.

Additional material is concerned with the formal definition of sequential and
parallel compositions of gs-graphs (Appendix A) and of bigraphs (Appendix B),
their preservation via the transformations presented in the paper (Appendix C)
and the technical details of the transformation from binding bigraphs to gs-
graphs (Appendix D).

2 Background on graph-based structures

Notation. For an ordinal n, we write i ∈ n as a shorthand for i ∈ {0, . . . , n−1}
and let [n,m] denote the set {i | n ≤ i ≤ m}. We use the symbol ] for disjoint
union of sets. We let S∗ denote the free monoid over the elements in S, whose
product is juxtaposition and whose unit is denoted by ε. We abbreviate the
juxtaposition of n consecutive objects u by un, with u0 = ε. We overload | � | to
denote the length of a string, the cardinality of a set and the support of place /
link / bigraphs (see Definitions 6–8).
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(ops)
f ∈ Σu,v

f : u→ v
(ids)

u ∈ S∗

idu : u→ u
(bang)

u ∈ S∗

!u : u→ ε
(dup)

u ∈ S∗

∇u : u→ uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u→ v t′ : v → w

t; t′ : u→ w
(par)

t : u→ v t′ : u′ → v′

t⊗ t′ : uu′ → vv′

Fig. 1. Inference rules of gs-monoidal theories

2.1 From signatures to gs-graphs

The gs-monoidal approach is based on representing basic computational entities
and resources as hyperedges and interaction capabilities by the way in which their
tentacles are connected to nodes. (The name gs comes after graph structure.) For
example, nodes can model communication channels and tentacles can express the
capability to perform i/o operations on them.

The idea is to consider a particular class of graphs obtained by selecting a few
basic shapes for hyper-edges (i.e. fix a hyper-signature) and by freely composing
them in series and in parallel to build larger and more complex shapes. Moreover,
it is allowed: 1) to rearrange the wirings of tentacles to connect in series edges
that otherwise are not “adjacent”; 2) to mark nodes as private to a certain
subgraph so that no other tentacle can be attached to them; 3) to attach more
than two tentacles to the same node. As only acyclic structures are allowed,
hyperedges can be stratified along the implicit partial order defined by tentacle
connections.

Definition 1 (hyper-signature). Given a set S of sorts, a hyper-signature
( signature, for short) Σ is a family {Σu,v}u,v∈S∗ of sets of operators such that
each f ∈ Σu,v takes |u| arguments typed according to u and returns a tuple of
|v| values typed according to v.

The expressions of interest are generated by the rules depicted in Fig. 1.
By rule (ops), the basic expressions include one generator for each operator of
the signature. All other basic terms define the wires that can be used to build
our graphs: the identities (ids), the dischargers (bang), the duplicators (dup)
and the symmetries (sym). These are the elementary bricks of our expressions,
and we get the remaining ones by closing them with respect to sequential (seq)
and parallel (par) composition. Every expression t : u → v generated by the
inference rules is typed by a source and by a target sequence of sorts (u and v,
respectively), which are relevant only for the sequential composition, which is a
partial operation. A wiring is an arrow of GS(Σ) which is obtained from the
rules of Fig. 1 without using rule (ops).

Definition 2 (gs-monoidal theory). Given a signature Σ over a set of sorts
S, the gs-monoidal theory GS(Σ) is the (symmetric, strict monoidal) category
whose objects are the elements of S∗ and whose arrows are equivalence classes of
gs-monoidal terms, i.e., terms generated by the inference rules in Fig. 1 subject
to the following conditions
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– identities and sequential composition satisfy the axioms of categories
[identity] idu ; t = t = t ; idv for all t : u→ v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,

– ⊗ is a monoidal functor with unit idε, i.e., it satisfies
[monoid] t⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2)⊗ t3
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1)⊗ (t2 ; t′2) whenever both sides are defined,

– ρ is a symmetric monoidal natural transformation, i.e., it satisfies
[naturality] (t⊗ t′) ; ρv,v′ = ρu,u′ ; (t′ ⊗ t) for all t : u→ v, t′ : u′ → v′

[symmetry]
(idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρuv,w ρε,u = ρu,ε = idu ρu,v ; ρv,u = iduv

– ∇ and ! satisfy the following axioms
[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v
[unit and duplication] !ε = ∇ε = idε ∇u ; ρu,u = ∇u
∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu

Remark 1. We let ⊗ take precedence over ;. We shall focus on two-sorted sig-
natures over S = {•, ◦}, where • nodes are used for locations, while ◦ nodes
for links. Furthermore, for ease of modelling bigraphs, we reverse the sense of
direction for composing arrows, i.e. we take cogs-monoidal theories. As a matter
of notation we swap implicitly the source and target of each arrow, e.g. letting

ρ•,◦ : ◦• → • ◦ ∇• : •2 → • !◦ : ε→ ◦.

Moreover, we assume all signatures include the operator ν : ◦ → ε. Note that
the expression !◦ ; ν : ε → ε denotes a special arrow that is the counterpart of
so-called idle edges in bigraphs jargon. While the axiom !◦ ; ν = idε can be useful
in many situations, we decide not to impose it here, because it is not standard
for gs-monoidal theories. This point is further discussed in Section 5.

Example 1. Let us consider a (cogs) signature with three operators f, h : • → •◦
and g : • → •◦2. Then we can compose, e.g., the expressions below:

e1 , f ⊗ id◦ ; id• ⊗∇◦ : •◦ → •◦
e2 , (!• ; h)⊗ (!• ; h) ; id• ⊗ ρ•,◦ ⊗ id◦ ; ∇• ⊗∇◦ : ε→ •◦
e3 , g ⊗ id◦ ; ρ◦,• ⊗ ρ◦,◦ : •◦ → ◦ • ◦2
e4 , e1 ⊗ (e2 ; e3) ; id• ⊗ (∇◦ ; ν)⊗ id•◦◦ : •◦ → •2◦2

We note that a cogs-monoidal theory is a sm Lawvere theory [11] in which
every sort is a commutative monoid.

The algebraic structure of gs-monoidal theories finds suitable realisation in
graph-based modelling: arrows can be interpreted as concrete acyclic directed
hypergraphs with interfaces, taken up to renaming of their nodes; all such graphs
are represented by some arrow; any two isomorphic graphs whose interfaces
match are represented by the same arrow and are thus equivalent abstract graphs.

We find it convenient to represent concrete gs-graphs as sets of assignments.
We assume V is a denumerable set of S-sorted names, equipped with a total
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order ≤ and such that there are infinitely many names for each sort. Names are
denoted by n1 : s1, n2 : s2, . . . or simply by n1, n2, . . . when the sort is clear from
the context. A name substitution is a sort-preserving morphism σ : V → V .

Remark 2. When the sort S = {•, ◦} is considered, we use p, q, ... for names of
sort • and x, y, z, ... for names of sort ◦. When needed, we assume the order ≤
is induced by subscripts, i.e., that ni ≤ n′j iff i ≤ j.

Definition 3 (assignment, multi-assignment). Let n′i : s′i for i ∈ [1, k], nj :
sj for j ∈ [1, h], u = s′1 . . . s

′
k and v = s1 . . . sh. A proper assignment is written

n′1 . . . n
′
k := f(n1, . . . , nh) where f ∈ Σu,v, When f ∈ Σu,ε the assignment is

written as n′1, . . . , n
′
k := f , while when f ∈ Σε,v it is written f(n1, . . . , nh). An

auxiliary assignment is written either n := n′ (aliasing), with n and n′ having
the same sort, or !(n) (name disposal). A multi-assignment G is a multiset of
(proper and auxiliary) assignments.

When a name appears in the left member of an assignment we say that it
is assigned, when it appears in the right member we say that it is used. For an
auxiliary assignment n := n′ we say n is an inner connection of the interface.
The set of outer connections of a multi-assignment consists of all names that are
used but not assigned. We denote with ic(G) (resp. oc(G)) the list of the inner
(resp. outer) connections of a multi-assignment G (ordered according to ≤). We
say that n <G n′ if G contains an assignment where n is used and n′ is assigned.

Proper assignments define the hyperedges of the graphs, whose tentacles are
attached to nodes named according to their assigned and used names. Node shar-
ing is realised by using the same name more than once. Auxiliary assignments
allow to expose more references to the same node in the interface or to prevent
certain nodes from appearing in the interface.

Definition 4 (gs-graph). A concrete gs-graph is a multi-assignment G s.t.:
(1) every name is assigned at most once; (2) the transitive closure <+

G of <G is
irreflexive; (3) every n ∈ ic(G) is a maximal element of <+

G; (4) for each name
n 6∈ ic(G) (exactly) one assignment !(n) is present. Two concrete gs-graphs G
and H are isomorphic if H can be obtained from G by applying an injective name
substitution that respects the total ordering ≤ of the inner and outer connections.
An abstract gs-graph (or simply gs-graph) is the equivalence class of a concrete
gs-graph modulo isomorphism.

Since gs-graphs are taken up to isomorphism, the exact choice of names is
immaterial. The constraints on gs-graphs allow us to introduce more concise
representation of gs-graphs by: (i) an auxiliary assignment of the form !(n) is
omitted whenever n is used in some other assignment; (ii) an auxiliary assign-
ment n := n′ is omitted if n′ is not an outer connection and it is a maximal
element, except for n, of the partial order v+;

It can be shown that the gs-graphs defined over a signature Σ form a (sym-
metric monoidal) category that is (naturally) isomorphic to the gs-monoidal
theory of Σ (see [9]). The idea is that a gs-graph G whose lists of sorts of inner
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f g

h h

ν

p1 p2 x3 x4

x5

p6

p7

p8 p9

x10

mercoledì 1 agosto 2012 (a) A gs-graph

z

0

x

y

f
0

h h
g

1

(b) A pure bigraph

Fig. 2. Different graphical models for the same structure

connections, ic(G), and outer connection, oc(G) are u and v, respectively, can be
regarded as an arrow G : u→ v. Then we can fix atomic gs-graphs for the basic
building blocks of gs-monoidal theories and define how to compose gs-graphs in
sequence G1;G2 and in parallel G1 ⊗G2 (see Appendix A).

Example 2. The arrow e4 from Example 1 corresponds to the gs-graph G =
{ x5 := ν , p6 := f(p1, x5) , p7 := g(p2, x5, x4) , p8 := h(p7, x3) , p9 :=
h(p7, x3) , x10 := x5 , !(p8) , !(p9) }.

2.2 From signatures to bigraphs

The separation between different concerns is made more explicit in bigraphs,
which are composed by two graphs, the place graph and the link graph, defined
on the same set of nodes. In the literature two main classes of bigraphs have
been developed: the pure bigraphs [12] and the binding bigraphs [17].

In pure bigraphs a node is not allowed to declare a local name, and the nodes
communicate using only their global ports.

Definition 5 (pure signature). A pure signature consists of a set K whose
elements, called controls, specify the role of system nodes and a function ar :
K → N that assigns an arity to each control, i.e. the number of its ports.

A place graph is essentially a forest of unordered trees, and represents the
locality of the nodes, that is where they are placed in the hierarchy.

Definition 6 (place graph). Let K be a pure signature and m,n be a pair of
ordinals, then a place graph P : m→ n is a triple (VP , ctrlP , prntP ) where VP is
a finite set of nodes called the support of P (also denoted |P |), ctrlP : VP → K
is the control map assigning a control to each node and prntP : m]VP → VP ]n
is the parent map that describes the location of the nodes. The parent map is
acyclic in the sense that for each v ∈ V prntk(v) = v implies k = 0.
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A link graph is a graph expressing the connectivity : an edge represent e.g. a
communication medium between attached nodes.

Definition 7 (link graph). Given a pure signature K a link graph L =
(VL, EL, ctrlL, linkL) : X → Y , where X and Y are the sets respectively of
inner and outer names, has finite sets of nodes VL and edges EL, a con-
trol map ctrlL : VL → K and a link map link : X ] PL → EL ] Y with
PL ,

∑
v∈VL

ar(ctrl(v)) the set of ports of L. The support of L is |L| , VL]EL.

The key point of bigraphs is that their place and link graphs are constructed
separately; therefore the locality of a node and its connectivity can not interfere.

Definition 8 (concrete pure bigraph). A concrete (pure) bigraph G =
(VG, EG, ctrlG, prntG, linkG) : 〈m,X〉 → 〈n, Y 〉 consists of a place graph
GP = (VG, ctrlG, prntG) : m→ n and a link graph GL = (VG, EG, ctrlG, linkG) :
X → Y . It is lean if it has no idle edges. We sometimes write G = 〈GP , GL〉
and the support of G is |G| , VG ] EG.

Example 3. An example of pure bigraph is in Fig. 2(b). The place graph is
represented through the nesting of nodes, while the arcs pertain to the link
graph. The interface is given by pairing the interfaces of the place graph and
of the link graph. The outer interface of a place graph specifies the number
of distinct components forming the bigraph; to each component corresponds a
root displayed with an enclosing dashed box. In the example we have two roots
(numbered 0 and 1). The inner interface consists of the holes of the place graph,
called sites, that serve to compose with other place graphs. Our example has one
hole (numbered 0), displayed with a grey box. For the link graph, outer names
are displayed on the top (y and z), and inner names on the bottom (x).

Definition 9 (support equivalence for bigraphs). Given two bigraphs
G,H : 〈m,X〉 → 〈n, Y 〉, a support equivalence ρ : |G| → |H| is a pair of bi-
jections ρV : VG → VH and ρE : EG → EH such that: ctrlH ◦ ρV = ctrlG,
prntH ◦ (Idm ] ρV ) = (Idn ] ρV ) ◦ prntG and linkH ◦ (IdX ] ρP ) = (IdY ] ρE) ◦
linkG, where ρP : PG → PH maps the ports of G in those of H and it is defined
in terms of ρV : for each port (v, i) ∈ PG, ρP ((v, i)) = (ρV (v), i).

We write G l H when G and H are support equivalent, and G m H if
they are support equivalent ignoring their idle edges (lean-support equivalence).
The lean-support quotient yields the (partial) symmetric monoidal category of
abstract bigraphs, denoted by BG(K), and the lean-support quotient functor [�]
maps each concrete bigraph in its corresponding abstract bigraph.

Definition 10 (abstract bigraphs). An abstract bigraph over K is a m-
equivalence class [G] : 〈m,X〉 → 〈n, Y 〉 of a concrete bigraph G.

In binding bigraphs, besides the possibility of having local names, there is
added a scope discipline for limiting the visibility of such local names. In partic-
ular a control may declare some names that only its descendants can use, thus
relaxing in part the assumption of independence of the two graphical structures.
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x

0

0

1

Fig. 3. A binding bigraph

Definition 11 (binding signature). A binding signature has a set of controls
K and an arity function ar : K → N×N. If ar(K) = (h, k), we write K : h→ k
and we call, respectively, h and k the binding arity and the free arity of K and
they index respectively the binding ports and the free ports of K.

Definition 12 (binding interface). A binding interface is a triple I =
〈m, loc,X〉 where the ordinal m and the set of names X are as in pure bigraphs,
and loc ⊆ m ×X is the locality of the interface. If (i, x) ∈ loc we say that i is
a place of x. We denote by Iu = 〈m,X〉 the pure interface underlying I.

Example 4. The approach of the binding bigraphs for avoiding misleading com-
positions consists in enriching the interfaces with a locality relation loc that
establishes to which places, if any, a name belongs to. Fig. 3 denotes a simple
binding bigraph with a single control with a local name and two sites in it; the
locality relation on the inner interface associates the name to the first site. This
restriction prevents controls in the second site from using this name.

Definition 13 (locality relation). Let I = 〈m, locI , X〉 and J = 〈n, locJ , Y 〉
be binding interfaces and consider a pure bigraph Gu : Iu → Ju on the pure
underlying interfaces. Then the locality relation locG ⊆ (m] n] V )× (X ] Y ]
P ] E), is the smallest relation such that:

– if (i, x) ∈ locI then (i, x) ∈ locG (locI ⊆ locG)
– if (j, x) ∈ locJ then (j, x) ∈ locG (locJ ⊆ locG)
– if p is a binding port of a node v then (v, p) ∈ locG
– if p is a free port of a node v then (prnt(v), p) ∈ locG
– if an edge e contains a binding port of v then (v, e) ∈ locG

Definition 14 (binding bigraph). Given two binding interfaces I and J a
concrete binding bigraph G : I → J consists of an underlying pure bigraph
Gu : Iu → Ju such that: (a) any edge has at most one binding port, while an
outer name has none; (b) if linkG(q) = l is a local link then q is also local, and
whenever (w, q) ∈ locG then there exists w′ such that prntkG(w) = w′ for some
k ∈ N and (w′, l) ∈ locG. The condition (b) is called the scoping rule.

3 Characterising Pure Bigraphs

This section shows that pure bigraphs are essentially equivalent to a particular
class of gs-graphs over the sorts {•, ◦}. The word “essentially” means that there
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is a one-to-one relation between the objects of the two models, but only up to
certain bijections over the interfaces. Indeed the main difference lies in the way
through which the two models view the interfaces: for a bigraph an interface is
a pair composed by an ordinal and by a set of names, in a gs-graph instead the
interfaces are strings over the alphabet {•, ◦}. For making them comparable we
need to equip each model with some missing information which is present in the
other model. In a bigraphical interface 〈m,X〉 we must form a list out of the
elements in {0, . . . ,m − 1} and the elements in X. For the gs-graphs instead,
given a string in {•, ◦}∗ we have to assign a name to each element of sort ◦.

The relation between pure bigraphs and gs-graphs can be sketched by looking
at Fig. 2. Places correspond to hyperedges and their hierarchy is built in the
gs-graph by exploiting the nodes of sort •. Connectivity is represented by the
sharing of nodes of sort ◦. Closed links are the ◦ nodes below a restriction ν.
The dashed lines express which nodes are exported to the interfaces.

Interfaces. Given a bigraphical interface 〈m,X〉, every i ∈ m is of sort • while
the names in X are of sort ◦. Nevertheless if we had a gs-graph interface with
exactly m elements of sort • and |X| elements of sort ◦ we would not have an
obvious way to map such interface in 〈m,X〉, because the ◦ elements are ordered
unlike the names in X. Indeed, take for example the interfaces of our running
example u = •2◦2 and 〈2, {y, z}〉; there are two possible bijections from ◦2 to
{y, z} but only one allows to establish a correct correspondence (y must match
the first ◦ and z the second ◦). On the contrary, if we knew that y < z, the
natural way would be that of choosing the right bijection. Thus we introduce a
total order on the names used in the bigraphical interfaces.

Definition 15. Let X be a denumerable infinite totally ordered (by ≤) set of
names. Given a pure signature K, we take bigraphs in which the sets of names
on the interfaces are replaced by lists of names ordered through ≤. Given a list
L we denote by L[j] the (j + 1)th element of the list for each admissible j.

The assumption of having total ordered names makes the two type interfaces
more similar, but it is not sufficient for establishing a bijective relation between
them. Consider the previous example and suppose that in X we have y < x < z.
The interface I can be associated, through the unique monotone bijection, to the
bigraphical interface with the set {y, z}, but nothing prevents one using {x, z}
or {x, y} instead. These considerations lead us to the following definition that
embeds a particular set of names in a gs-graph interface.

Definition 16 (name choice). Let u ∈ {•, ◦}∗ and let #u be the number of
elements of sort ◦ in u. Then a name choice for u is an injective monotone map
σu : #u → X . A gs-graph G : u → v can be equipped with two name choices
σu, σv for the inner and the outer interfaces, written G : (u, σu)→ (v, σv).

Signatures. Both bigraphs and gs-graphs are based on a signature that describes
the allowed operators. Therefore it is necessary to correlate the two typologies
of signature. (In the rest of this section we understand that only pure signatures
are considered and we use the symbol K also for gs-graph signatures.)
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Definition 17 (equating signatures). Consider a pure signature K; the
equivalent gs-graph signature Σ has an operator K : • → •◦h if and only if
the control K of arity h is in K.

Graphs. With the name choices, to a string over {•, ◦} corresponds exactly one
bigraphical interface, but the converse is false. Indeed a bigraphical interface
over ordered names can be viewed as a concatenation of two ordered lists, the
first with elements of sort • and the second with ◦-elements, while in a gs-
graph interface such elements are mixed. Thus given a bigraph we can add two
bijections that “shuffle” these elements as stated below:

Definition 18 (shuffled bigraphs). A shuffled bigraph 〈G : 〈m,X, φin〉 →
〈n, Y, φout〉 consists of a bigraph G : 〈m,X〉 → 〈n, Y 〉 and two bijections, φin :
m+ |X| → m+ |X| and φout : n+ |Y | → n+ |Y |, called shuffle functions, that
preserve the relative order of the elements with the same sort, i.e.:

– ∀i, j ∈ m+|X| if 0 ≤ i ≤ j < m or m ≤ i ≤ j < m+|X| then φin(i) ≤ φin(j)
– ∀i, j ∈ n+ |Y | if 0 ≤ i ≤ j < n or n ≤ i ≤ j < n+ |Y | then φout(i) ≤ φout(j).

From shuffled bigraphs to gs-graphs. The first transformation that we define takes
a shuffled bigraph G = 〈VG, EG, ctrlG, prntG, linkG〉 : 〈m,X, φin〉 → 〈l, Y, φout〉
and returns a gs-graph H = S[[G]] that represents it. The underlying idea is
relatively simple: there is a proper assignment for each node and edge of the
bigraph. In detail the edges cause the creation of assignments with the ν operator,
while the nodes give assignments that describe the position of a control in the
system and the interactions with the other controls, deriving it from the parent
and the link map of the bigraph. In the following we denote withNH the set of all
names appearing inH, which is partitioned inN •H andN ◦H , respectively the set of
all names of sort • and of sort ◦, appearing in H. Let N •H = VG]{s0, . . . , sm−1}]
{r0, . . . , rl−1} and N ◦H = EG ] {x0, . . . , x|X|−1} ] {y0, . . . , y|Y |−1}. Note that
xi and yj are not the names in sets X and Y , but new names used only in
the gs-graph. First we need two auxiliary functions prnt : m ] V → N •H and
link : PG ] X → N ◦H that translate the results of prntG and linkG into the
names of the gs-graph:

prnt(v) ,

{
w if prntG(v) = w ∈ VG
ri if prntG(v) = i ∈ l link(p) ,

{
e if linkG(p) = e ∈ EG
yi if linkG(p) = Y [i]

Next we define the assignments of H: (1) ∀v ∈ VG we let v :=
f(prnt(v), link(v, 0), . . . , link(v, h− 1)) where f = ctrlG(v) and h is the arity of
f ; (2) ∀e ∈ EG we let e := ν; (3) ∀i ∈ m we let si := prnt(i); (4) ∀i ∈ |X| we let
xi := link(X[i]) Note that {s0, . . . , sm−1} ∪ {x0, . . . , x|X|−1} are the inner con-
nections of H while {r0, . . . , rl−1} ∪ {y0, . . . , y|Y |−1} are its outer connections.
The order of these names can be retrieved using the shuffle functions: Define

φ
−1
in : m+ |X| → NH and φ

−1
out : l + |Y | → NH as

φ
−1
in (j) ,

{
si if φ −1in (j) = i < m
xi−m if φ −1in (j) = i ≥ m φ

−1
out (j) ,

{
ri if φ −1out (j) = i < l
yi−l if φ −1out (j) = i ≥ l
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Hence ic(H) = (φ
−1
in (0), φ

−1
in (1), . . . , φ

−1
in (m + |X| − 1)) and oc(H) =

(φ
−1
out (0), φ

−1
out (1), . . . , φ

−1
out (l + |Y | − 1)). Finally, the transformation S[[G]] pro-

duces two name choices: σin(i) , X[i] for i ∈ |X| and σout(i) , Y [i] for i ∈ |Y |.

From gs-graphs to shuffled bigraphs. Let H : (u, σu) → (v, σv) be a gs-graph
over K with name choices and let us take an instance in its isomorphism class.
The first step in transforming the gs-graph H in the corresponding shuffled
bigraph G = B[[H]] consists in defining the shuffle functions φin and φout. For
this purpose let m and l be the number of elements of sort • in the lists u and v
respectively; then for each list, for example u, define a function u• : m→ |u| that
tell us the positions in the list u of the • sort elements, and a similar function
u◦ : (|u| −m) → |u| that do the same thing on the elements of u of sort ◦. For
example if u = • ◦ ◦•, then u• = {0 7→ 0, 1 7→ 3} and u◦ = {0 7→ 1, 1 7→ 2}. With
the aid of this functions we define φin : |u| → |u| and φout : |v| → |v| as:

φin(i) ,

{
u•(i) if 0 ≤ i < m
u◦(i−m) otherwise

φout(i) ,

{
v•(i) if 0 ≤ i < l
v◦(i− l) otherwise

Now recall that in a pure signature for gs-graphs every operator, except ν,
is of the form f : • → •◦h for some h ∈ N, thus every proper assignment
over those operators takes the form n := f(n•, n0, . . . , nh−1) with n, n• of sort
• and the remaining names of sort ◦. Then, the bigraph associated to the gs-
graph H : (u, σu) → (v, σv) is G = B[[H]] = (VG, EG, ctrlG, prntG, linkG) :
〈m,X, φin〉 → 〈l, Y, φout〉 where m, l, φin, φout are defined as above, and:

– X[i] , σu(i) for each admissible i and Y [j] , σv(j) for each admissible j.
– VG , {n ∈ N •H | n /∈ ic(H) and n /∈ oc(H)} is composed by the •-names

that are not visible outside the gs-graph. Thus the names in VG are assigned
exactly once with a proper assignment.

– EG , {n ∈ N ◦H | n := ν ∈ H} comprises all “restricted” names of sort ◦.
– The control map ctrlG : VG → K is defined as follows. Being n ∈ VG let
n := f(n•, n0, . . . , nh−1) the unique assignment of n in H, then ctrlG(n) = f

– The parent map prntG : m ] VG → VG ] l is defined separately for the
elements in VG and m. For each n ∈ VG let n := f(n•, n0, . . . , nh−1) the
unique assignment of n in H, then:

prntG(n) =

{
n• if n• ∈ VG
φ −1out (j) if n• = oc(H)[j] for some j in the list range

Take instead i ∈ m and let si = ic[φ(i)]. Since si is an inner connection,
there exists in H a unique auxiliary assignment si := n.

prntG(i) =

{
n if n ∈ VG
φ −1out (j) if n = oc(H)[j] for some admissible j

– Finally we define linkG : PG ]X → EG ] Y . Take a port (n, i) with n ∈ VG
and let n := f(n•, n0, . . . , nh−1) be the proper assignment of n, then

linkG((n, i)) =

{
ni if ni ∈ EG
Y [φ −1out (j)− l] if ni = oc(H)[j] for some admissible j
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Consider instead a name x = X[i] and let x = ic(H)[φin(m + i)]. The
auxiliary assignment associated to x is x := n. Thus

linkG(x) =

{
n if n ∈ EG
Y [φ −1out (i)− l] if n = oc(H)[j] for some j

We can now present our first main correspondence result:

Theorem 1. Shuffled support-equivalent bigraphs over a pure signature K are
isomorphic to gs-graphs over K with name choices.

The proof shows thatB[[S[[·]]]] is the identity function on shuffled bigraphs and
that S[[B[[·]]]] is the identity function on gs-graphs. Although not stressed here
for space limitation, the transformations S[[·]] and B[[·]] preserve composition and
tensor (see Appendix C), i.e., we can view bigraphs and gs-graphs not only as
“essentially” equivalent formulations, but as “essentially” isomorphic algebras.

4 Characterising Binding Bigraphs

While in the pure case the correspondence can be worked out smoothly, the
case of binding signatures is more challenging. At the signature level, the idea
is just to consider operators of the form K : •◦h → •◦k for h the binding
arity of K and k the free arity of K. Then we can straightforwardly define
an injective transformation from (shuffled) binding bigraphs to gs-graphs as a
suitable extension of the one in Section 3 (see Appendix D). The main difference
is that now the class of gs-graphs freely generated by the signature may contain
some elements that do not correspond to any valid binding graphs, because the
scope discipline is not enforced by the free construction. Thus the transformation
from binding bigraphs to gs-graphs is not surjective. Moreover the set of gs-
graphs that are images of bigraphs is closed under monoidal product, but not
under sequential composition. To see this, consider the gs-graphs in Fig. 4: the
two gs-graphs on the left trivially respect the scope rule, but their sequential
composition links h to the local port x of g despite h and g are siblings.

The main result we present here is the characterisation of “well-scoped” gs-
graphs in terms of a relational type system in the style of relational separation
logic [21]. We start by rephrasing the location principle for the scoping rule in
the context of gs-graphs. We say that a name n is bound to location p if p and
n appears together in the left hand side of some proper assignment in G (i.e. of
the form p, ..., n, ... := ...). Sometimes we say just that n is bound, omitting the
location p to which it is bound. If a name n is not bound then it is free (note
that, for the purpose of this section, if n is assigned by n := ν then it is not
bound and thus it is said free). If a location p is not assigned then we say it is
free. We say that q exploits n if q and n appears together in the right hand side
of some proper assignment in G (i.e. of the form ... := f(q, ..., n, ...)).

Definition 19 (legal gs-graph). A gs-graph G is legal iff for any p, q, n such
that n is bound to p and q exploits n then q <∗G p, where <∗G is the reflexive and
transitive closure of <G.
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Fig. 4. An example of composition that does not respect the scope rule

As a special case, any “pure” gs-graphs is legal because pure signatures forbid
the presence of names bound to locations. Our second main correspondence
result is:

Theorem 2. A gs-graph represents a binding bigraph iff it is legal.

The proof goes by showing that the image of a binding bigraph via the
transformation defined in Appendix D is a legal gs-graph (by contradiction, if
it was not legal, then the scoping rule would have been violated) and then by
giving a converse transformation from legal gs-graphs to binding bigraphs.

Example 5. Let us consider a binding signature with three operators f : • → •,
g : •◦ → •◦2 and h : • → •◦. The gs-graph in Fig. 4 can be defined as G = { p2 :=
f(p1) , p3 := f(p2) , p4, x := g(p2) , p5 := h(p3, x) , !(p4) , !(p5) }, which is not
legal because p3 exploits the node x (by the assignment p5 := h(p3, x)), which
is bound to p4 (by p4, x := g(p2)) and p4 is not an ancestor of p3 (i.e. p3 6<∗Gp4).

We can conveniently characterise the class of legal gs-graphs by exploiting
an elegant type system. The typing relations we are interested in are of the form
“p uses n” and “p misuses n”. We need just three inference rules:

p free p uses n

p misuses n

p, ... := f(q, ..., n, ...) n bound

q uses n

p, n1, ..., nk := f(q, ...) p uses n ∀i. n 6= ni
q uses n

Roughly the rules says that if q exploits n and n is bound to some other
location, say p′, then we must check that q be a descendant of p′. This task
is accomplished by propagating “upward” the dependency through the location
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hierarchy until either we discover that p′ is an ancestor of q (in which case the
propagation stops) or we reach the (free) root location p, in which case the
scoping rule is violated and we assert that p misuses n. In the above example we
have the typing relation { p3 uses x , p2 uses x , p1 uses x , p1 misuses x }.

Proposition 1. A gs-graph is legal iff it induces an empty “misuses” relation.

The proof is divided in two parts. First we show that if the “misuses” relation
is not empty then the gs-graph is not legal. Conversely, we show that if a gs-graph
is not legal, then the “misuses” relation is not empty.

Theorem 3. The typing relation of G1⊗G2 is the union of the typing relations
of G1 and G2. The typing relation of G1;G2 is a superset of the union of the
typing relations of G1 and of G2.

Corollary 1. The parallel composition of two gs-graph is legal iff both are legal.
If a non legal gs-graph is used in a sequential composition the result is non legal.

Note that for computing the typing relation of G1;G2 it is enough to close
the union of the typing relations of G1 and G2 w.r.t. the type inference rules (i.e.
the reasoning is monotonic). The typing rules induce a straightforward quadratic
algorithm for checking if a gs-graph is legal or not (the complexity is O(BG ·WG)
for BG the number of • nodes in G and WG the number of bound ◦ nodes in G).

5 Concluding Remarks

In conclusion, while bigraphs and gs-graphs are equally expressive, we claim
that the presentation of gs-graphs in terms of sets of assignments combines
the expressiveness of name links with the simpler and more standard algebraic
structure of gs-monoidal theories. We believe that the relational type systems
used above to check binding gs-graphs well-formedness may also be useful for
establishing important properties of systems represented as gs-graphs.

A few observations are in place that deserves some future work. First, lean
support equivalence over bigraphs abstract away from idle edges. Roughly,
this corresponds to garbage collect restricted names that are not used and it
is convenient for representing process calculi whenever the structural axiom
(ν x)nil = nil is considered. The corresponding axiom for gs-monoidal theo-
ries would be !◦ ; ν = idε, which has not been considered in this work because it
is not part of the standard theory. At the level of abstract gs-graphs, this would
correspond to require that the underlying multi-assignments G are such that
whenever there is a name x such that G contains both x := ν and !(x), then
there is at least another assignment using x. This is a bit annoying because it
requires some additional bookkeeping and cleansing when composing gs-graphs.
Still, we are confident that our correspondence results will carry over smoothly
to ones between amended gs-monoidal theories / gs-graphs and shuffled lean-
support equivalent (binding) bigraphs.
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Second, the research on bigraphs finds a main motivation in the reactive
system approach mentioned in the introduction, which is based on the existence
of so-called relative push-out (RPO) and idem push-out (IPO) in the category of
bigraphs. RPOs/IPOs serve to distil the labelled transitions from the reduction
rules and derive a bisimilarity equivalence that is guaranteed to be a congruence.
Some preliminary investigation for extending the RPO approach to the case of
term graphs has been reported in [7]. We conjecture that the variant of the
reactive approach based on so-called groupoidal RPOs [20] can be applied to the
category of shuffled bigraphs and hence of gs-graphs. Moreover, we would like to
exploit the gs-monoidal structure and 2-categorical rewriting techniques, along
the lines of [5], to define a reference theory of concurrent rewrites for bigraphs
and gs-graphs, which is currently missing.

Third, the fact that legal gs-graphs do not compose may suggest that their
interfaces miss some additional information. In fact, while we can always repre-
sent binding bigraphs as legal gs-graphs, the interfaces of gs-graphs remain the
ones defined in the encoding for pure bigraphs and thus they are not able to pair
names and the locations they are bound to. One possible solution could be to
fix some convention from which the binding information can be automatically
inferred. For example, we can assume that the names (◦) listed in the interface
are bound to the rightmost location (•) appearing on their right, if any (and
they are free otherwise) and use such hypotheses for checking that the gs-graph
is legal or not. Yet, the information about the sharing of names between two
or more location would get lost. We discarded this approach because, e.g., it
would forbid the composition of legal gs-graphs with many arrows (i.e. symme-
tries like ρ◦,•) that has no effect whatsoever on the essence of the gs-graph, but
would change the hypotheses under which it has been tagged as legal. We plan
to investigate this issue in more detail, as we think it has still many advantages
over other proposals, like [10], which resort to the introduction of a much more
powerful closed monoidal structure for the purpose.

Fourth, we would like to extend the comparison between binding bigraphs
and legal gs-graphs to the algebra of graphs with nesting proposed in [1].
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A Composition of GS-Graphs

Atomic gs-graphs are defined as follows:

(ops) f , {n′1, . . . , n′|u| := f(n1, . . . n|v|)} for any f ∈ Σu,v
(ids) ids , {n2 := n1} for n1, n2 of sort s

(sym) ρs,s′ , {n3 := n2 , n4 := n1} for n1, n4 of sort s′ and n2, n3 of sort s

(dup) ∇s , {n2 := n1 , n3 := n1} for n1, n2, n3 of sort s

(bang) !s , !(n) for n of sort s

Sequential and parallel composition are then defined below.
(seq): Let G1 : u → v and G2 : v → w such that oc(G1) = ic(G2) and that

no other names are shared between G1 and G2. Let A be the set of assignments
in G2 of the form n := n′ and let σ the corresponding name substitution. Their
sequential composition is the gs-graph: G1;G2 , (G1σ) ∪ (G2\A) : u → w with
ic(G1;G2) = ic(G1) and oc(G1;G2) = oc(G2).
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(par): Let G1 : u1 → v1 and G2 : v2 → w2 such that for every name n
in G1 and n′ in G2 we have n ≤ n′. Their parallel composition is the gs-graph
G1⊗G2 : u1u2 → v1v2 = G1∪G2 for which we have ic(G1⊗G2) = ic(G1)ic(G2)
and oc(G1 ⊗G2) = oc(G1)oc(G2).

Note that, if a composition is sound at the level of sorts, it is always possible
to find suitable concrete gs-graphs in the equivalence classes that satisfy the
constraints on names required to define their composition.

B More on (Pure) Bigraphs

B.1 Composition of Place Graphs

Let P : m → n and Q : n → l two concrete place graphs with VP ∩ VQ = ∅,
then their composition is defined as Q ◦ P , (V, ctrl, prnt) : m → l, where
V , VP ] VQ and

– for each v ∈ V ctrl(v) ,

{
ctrlP (v) if v ∈ VP
ctrlQ(v) if v ∈ VQ

– for each v ∈ m]V prnt(v) ,

prntP (v) if v ∈ m ] VP and prntP (v) ∈ VP
prntQ(i) if v ∈ m ] VP and prntP (v) = i ∈ n
prntQ(v) if v ∈ VQ

The identity place graph at m is idm , (∅, ∅K, Idm) : m → m where Idm is
the identity function on the ordinal m.

The tensor product ⊗ on interfaces is the addition of ordinals and the unit
object is 0. For i ∈ {0, 1} let Pi = (VPi

, ctrlPi
, prntPi

) : mi → ni two place
graphs having disjoint supports. Then

P0 ⊗ P1 , (VP0 ] VP1 , ctrlP0 ] ctrlP1 , prntP0⊗P1) : m0 +m1 → n0 + n1

where for each j ∈ m0 +m1

prntP0⊗P1(j) ,

prntP0
(j) if j < m0

prntP1
(j −m0) if j ≥ m0 and prntP1

(j −m0) ∈ VP1

prntP1
(j −m0) + n0 if j ≥ m0 and prntP1

(j −m0) ∈ n1

and for each v ∈ VP0 ] VP1

prntP0⊗P1
(v) ,

prntP0
(v) if v ∈ VP0

prntP1(v) if v ∈ VP1 and prntP1(v) ∈ VP1

prntP1(v) + n0 if v ∈ VP1 and prntP1(v) ∈ n1

Symmetries γm,n have empty support and their effect is to swap sites:

γm,n , (∅, ∅K, prnt(j) =

{
j + n if j < m
j −m if j ≥ m )
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B.2 Composition of Link Graphs

Let L : X → Y and M : Y → Z be two link graphs such that VL ∩ VM = EL ∩
EM = ∅, then their composition is defined as: M ◦L , (V,E, ctrl, link) : X → Z,
where V , VL ] VM , E , EL ] EM and

– for each v ∈ V ctrl(v) ,

{
ctrlL(v) if v ∈ VL
ctrlM (v) if v ∈ VM

– given a point p ∈ X ] PL ] PM of M ◦ L then

link(p) ,

 linkL(p) if p ∈ X ] PL and linkL(p) ∈ EL
linkM (y) if p ∈ X ] PL and linkL(p) = y ∈ Y
linkM (p) if p ∈ PM

The identity link graph at X is idX , (∅, ∅, ∅K, IdX) : X → X, with IdX :
X → X the identity function on the set X.

The product ⊗ is defined only on disjoint link graph interfaces, i.e. on disjoint
sets of names, and it is roughly the disjoint set union. Suppose that for i ∈ {0, 1},
Li = (VLi

, ELi
, ctrlLi

, linkLi
) : Xi → Yi are link graphs with disjoint supports

and with X0 ∩X1 = Y0 ∩ Y1 = ∅. Their product is:

L0⊗L1 , (VL0
]VL1

, EL0
]EL1

, ctrlL0
]ctrlL1

, linkL0
]linkL1

) : X0]X1 → Y0]Y1

The unit object is the empty set ∅ and the symmetries γX,Y are simply

identities on X ] Y : γXY
, idX]Y .

B.3 Composition of Bigraphs

Given two concrete bigraphs G = (VG, EG, ctrlG, prntG, linkG) : 〈m,X〉 →
〈n, Y 〉 and H = 〈HP , HL〉 : 〈l, Z〉 with VG ∩ VH = EG ∩EH = ∅, their composi-
tion is defined componentwise: H ◦G , 〈HP ◦GP , HL ◦GL〉 : 〈m,X〉 → 〈l, Z〉

The identity bigraph at 〈m,X〉 is id〈m,X〉 , 〈idm, idX〉.
Given two bigraph interfaces 〈m,X〉 and 〈n, Y 〉 with X ∩Y = ∅, the product

is defined componentwise: 〈m,X〉⊗ 〈n, y〉 = 〈m⊗n,X ⊗Y 〉. The same happens
on bigraphs: let for i ∈ {0, 1} Gi = 〈GP , GL〉 : 〈mi, Xi〉 → 〈ni, Yi〉 be two
bigraphs with disjoint supports and X0 ∩X1 = Y0 ∩ Y1 = ∅, then

G0 ⊗G1 , 〈GP0 ⊗GP1 , GL0 ⊗GL1 〉 : 〈m0 +m1, X0 ]X1〉 → 〈n0 + n1, Y0 ] Y1〉

The unit object ε is the pairing of the unit objects of the place graph and
link graph products: ε = 〈0, ∅〉. Finally, for a pair of interfaces 〈m,X〉 and 〈n, Y 〉
for which the product is defined, the symmetry is γ〈m,X〉,〈n,Y 〉 , 〈γm,n, γX,Y 〉.

B.4 Discrete Normal Form

Definition 20 (prime and discrete bigraph). A bigraphical interface 〈m,X〉
is prime if m = 1 and we write it 〈X〉. A prime bigraph G : m → 〈X〉 has no
inner names and a prime outer interface. A bigraph D is discrete if it has no
closed links, and its link map is bijective.
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Proposition 2 (discrete normal form). Every bigraph G : 〈m,X〉 → 〈n,Z〉
can be expressed uniquely, up to a renaming on Y , as G = (idn ⊗ λ) ◦D, where
λ : Y → Z is a linking and D : 〈m,X〉 → 〈n, Y 〉 is discrete.

Moreover, every discrete bigraph D may be factorised uniquely, up to a per-
mutation of the sites of each factor, as D = α⊗ ((P0 ⊗ · · · ⊗ Pn−1) ◦ π), with α
a renaming, each Pi prime and discrete, and π a permutation of all the sites.

C Composition Preserving Transformations

Proposition 3 (S[[�]] preserves operations). Suppose that G : 〈m,X, φin〉 →
〈n, Y, ψ〉, and G′ : 〈n, Y, ψ〉 → 〈l, Z, φout〉 are two well formed shuffled bigraphs.
We have that S[[G′ ◦G]] = S[[G]];S[[G′]].

Now consider G0 : 〈m0, X0, φ0〉 → 〈n0, Y0, ψ0〉 and G1 : 〈m1, X1, φ1〉 →
〈n1, Y1, ψ1〉 with X0 < X1 and Y0 < Y1, then S[[G0 ⊗G1]] = S[[G0]]⊗ S[[G1]].

Proposition 4 (B[[�]] preserves operations). Let H : (u, σu) → (v, σv) and
H ′ : (v, σv)→ (w, σw) be gs-graphs with name choices, then B[[H;H ′]] = B[[H ′]]◦
B[[H]].

Consider instead H0 : (u0, σu0
)→ (v0, σv0) and H1 : (u1, σu1

)→ (v1, σv1) gs-
graphs with name choices such that Im(σu0

) < Im(σu1
) and Im(σv0) < Im(σv1).

We have: B[[H0 ⊗H1]] = B[[H0]]⊗B[[H1]].

D Transforming binding bigraphs in gs-graphs

The construction of the gs-graph representing a certain binding bigraph is not so
different from that relative to pure bigraphs. In fact, as previously mentioned, we
can not represent the locality relations in the context of gs-graphs and the trans-
formation is forced to ignore them. Therefore we have to deal only with the added
possibility for controls to declare names. Likewise the pure case, we work with
gs-graphs equipped with name choices on the interfaces and with shuffled binding
bigraphs. The latter are defined exactly like shuffled pure bigraphs (see Defini-
tion 18), except that in place of a pure bigraph we have clearly a binding bigraph.
Let G = (VG, EG, ctrlG, prntG, linkG) : 〈m, locin, X, φin〉 → 〈l, locout, Y, φout〉 be
a shuffled binding bigraph on a signature K and denote with P locG ⊆ PG the set
of all its local ports. In particular given a node v ∈ VG such that its associated
control ctrlG(v) has a positive internal arity, we call (v, locali) the (i+ 1)th local
port declared by v.

In the gs-graph H = Sbind[[G]] the following names will appear:

N •H = VG ] {s0, . . . , sm−1} ] {r0, . . . , rl−1}
N ◦H = EG ] {x0, . . . , x|X|−1} ] {y0, . . . , y|Y |−1}

Note that such sets of names are the same of those defined by the analogous
transformation for the pure case. The difference is in the role played by the
edges since in binding bigraphs they can be attached to local ports. In the
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corresponding gs-graph such local edges are not assigned with the restriction
operator ν, but within the proper assignment of the node that declares the local
port to which it is linked. Since every edge can be attached to at most one
local port (see Definition 14) we are guaranteed that each local edge is assigned
exactly once. In the following we denote with ElocalG the set of all local edges
belonging to the bigraph G.

As in Section 3 the overlined maps prnt : m]V → N •H and link : PG ]X →
N ◦H will help us in having a more concise representation of the assignments of H
and we do not make any change to them. Nevertheless we report their definition
here for a more quick reference.

prnt(v) =

{
w if prntG(v) = w ∈ VG
ri if prntG(v) = i ∈ l link(p) ,

{
e if linkG(p) = e ∈ EG
yi if linkG(p) = Y [i]

Then we give the definitions of the assignments in H.

– ∀v ∈ VG with ctrlG(v) = f we add the assignment

v link(v, local0) . . . link(v, localk−1) := f(prnt(v), link(v, 0), . . . , link(v, k−1))

where k and h are respectively the binding and the free arity of f . Note that
since in binding bigraph a local port can be linked to an outer name, the
link map and its overlined version applied on a local port return always an
edge (that clearly is local).

– ∀e ∈ EG\ElocalG we add e := ν
– ∀i ∈ m we add si := prnt(i)
– ∀x ∈ {x0, . . . , x|X|−1} we add xi := link(X[i])

The inner and the outer connections are {s0, . . . , sm−1}∪{x0, . . . , x|X|−1} and
{r0, . . . , rl−1}∪{y0, . . . , y|Y |−1} respectively and their order is obtained through
the shuffle functions. In particular

ic(H) = (φ
−1
in (0), φ

−1
in (1), . . . , φ

−1
in (m+ |X| − 1))

oc(H) = (φ
−1
out (0), φ

−1
out (1), . . . , φ

−1
out (l + |Y | − 1))

where φ
−1
in and φ

−1
out are defined as in Section 3.

In conclusion the name choices for the interfaces of Sbind[[G]] are σin(i) , X[i]
for i ∈ |X| and σout(i) , Y [i] for i ∈ |Y |.

We can now prove that the gs-graphs produced by Sbind[[�]] effectively repre-
sent binding bigraphs, or better, their bodies. We could not indeed encode the
locality relation on the gs-graph interfaces, but we can show that the internal
structure of a binding bigraph is faithfully represented.

For this purpose we abstract from the locality relation put on the interfaces
and we identify all the binding bigraphs that differ only in these relations. We
write G ≈ G′ if G and G′ are such two bigraphs and it follows immediately that ≈
is an equivalence relation. Furthermore, since Sbind[[�]] does not take into account
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the locality relation, we have that G ≈ G′ implies Sbind[[G]] = Sbind[[G
′]] and

therefore we can give a well-defined mapping on equivalence classes Sbind\≈[[�]]
such that Sbind\≈[[[G]]] = Sbind[[G]], where [G] denote the equivalence class of G.

Proposition 5. The mapping Sbind\approx[[�]] is injective.

Unfortunately this mapping is not surjective. Next proposition guarantees
that in the image of the mapping Sbind[[�]] there are no unacceptable gs-graphs.

Proposition 6. Let G be a binding bigraph. If in Sbind[[G]] there are an as-
signment n . . . := f(v, . . . , e, . . .) and an assignment w . . . e . . . := g(. . .) then
w <+ v.

Finally we show that Sbind[[�]] preserves the operations.

Proposition 7 (Sbind[[�]] preserves operations). Let G : 〈m, locI , X, φin〉 →
〈n, locJ , Y, ψ〉 and G′ : 〈n, locJ , Y, ψ〉 → 〈l, locH , Z, φout〉, be shuffled binding
bigraphs. Then Sbind[[G

′ ◦G]] = Sbind[[G]];Sbind[[G
′]]

Suppose that (G0 : 〈m0, locI0 , X0, φ0〉 → 〈n0, locJ0 , Y0, ψ0〉) and (G1 :
〈m1, locI1 , X1, φ1〉 → 〈n1, locJ1 , Y1, ψ1〉) are shuffled binding bigraphs with X0 <
X1 and Y0 < Y1. Then Sbind[[G0 ⊗G1]] = Sbind[[G0]]⊗ Sbind[[G1]]


