

Edinburgh Research Explorer

Stochastic Games with Lossy Channels
Citation for published version:
Abdulla, PA, Henda, NB, Alfaro, LD, Mayr, R & Sandberg, S 2008, Stochastic Games with Lossy Channels.
in Foundations of Software Science and Computational Structures: 11th International Conference,
FOSSACS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings. vol. 4962, Springer Berlin
Heidelberg, pp. 35-49. DOI: 10.1007/978-3-540-78499-9_4

Digital Object Identifier (DOI):
10.1007/978-3-540-78499-9_4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Foundations of Software Science and Computational Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-540-78499-9_4
https://www.research.ed.ac.uk/portal/en/publications/stochastic-games-with-lossy-channels(ed80cd63-a6de-4cc5-a411-f28bd34e44dc).html

Stochastic Games with Lossy Channels

Parosh Aziz Abdulla1, Noomene Ben Henda1, Luca de Alfaro2,
Richard Mayr3, and Sven Sandberg1

1 Uppsala University, Sweden
2 University of California, Santa Cruz, USA

3 NC State University, USA

Abstract. We consider turn-based stochastic games on infinite graphs
induced by game probabilistic lossy channel systems (GPLCS), the game
version of probabilistic lossy channel systems (PLCS). We study games
with Büchi (repeated reachability) objectives and almost-sure winning
conditions. These games are pure memoryless determined and, under the
assumption that the target set is regular, a symbolic representation of the
set of winning states for each player can be effectively constructed. Thus,
turn-based stochastic games on GPLCS are decidable. This generalizes
the decidability result for PLCS-induced Markov decision processes in
[10].

1 Introduction

Background. It is natural to model a reactive system as a 2-player game between
the “controller” or player 0, who makes nondeterministic choices of the system,
and the “environment” or player 1, who provides malicious inputs to the system.
In this model, each state belongs to one of the players, who selects an outgoing
transition that determines the next state. Starting in some initial state, the
players jointly construct an infinite sequence of states called a run. The winning
condition is specified as a predicate on runs. Verifying properties of the system
corresponds to finding the winner of the game, where the winning condition
depends on the property to check.

Systems that have a probabilistic component give rise to stochastic games.
These are games where some states belong to “player random”, who selects the
next state according to a pre-defined probability distribution. Randomness is
useful to model stochastic loss of information such as unreliable communication,
as well as randomized algorithms.

Previous work on algorithms for stochastic games has mostly focused on
finite-state systems (see, e.g., [26, 14, 16, 12]). However, many systems can only
be faithfully modeled using infinitely many states. A lot of recent research has
therefore been concerned with probabilistic infinite-state models. Probabilistic
versions of lossy channel systems [11, 7] and pushdown automata [18, 19] use
unbounded queues and stacks, respectively. Probabilistic Petri nets [4] model
systems with an unbounded number of processes which run in parallel. The
recently introduced Noisy Turing machines [8] model computer memories subject
to stochastic errors.

We consider infinite-state stochastic games induced by lossy channel systems
(LCS) [1, 10, 24]. LCS consist of finite-state control parts and unbounded chan-
nels (queues), i.e., automata where transitions are labeled by send and receive
operations. They can model communication protocols such as the sliding window
protocol and HDLC [6], where the communication medium is unreliable. In this
paper, we introduce game probabilistic LCS (GPLCS). GPLCS are probabilistic
in the sense that the channels may randomly lose messages; and they are games
in the sense that the next transition in the control part is selected by one of the
players, depending on the current state. We can use player 0 to model nondeter-
minism in a communication protocol and player 1 to model a malicious cracker
trying to break the protocol.

We consider Büchi (repeated reachability) objectives with almost-sure win-
ning conditions. In other words, the goal for player 0 is to guarantee that with
probability one, a given set of target states is visited infinitely many times. In the
example of the malicious cracker, this corresponds to checking that the system
can respond in such a way that it always eventually returns to a “ready state”
with probability 1, no matter how the cracker acts.

Related Work. The work closest to ours is [9] where the authors consider the
same model. They study GPLCS with simple reachability objectives and differ-
ent winning conditions; i.e., almost-sure, with positive probability, etc. However,
they do not consider GPLCS with Büchi objectives. Previous work on LCS con-
siders several types of nondeterministic [20, 6] and probabilistic systems (Markov
chains) [22, 1, 24], as well as Markov decision processes [10] and non-stochastic
games [3]. Of these, the work most closely related to ours is [10], which concerns
LCS where messages are lost probabilistically and control transitions are taken
nondeterministically (i.e., PLCS-induced Markov decision processes). This is a
special case of our model in the sense that the game is restricted to only one
player. It was shown in [10] that such 1-player Büchi-games are decidable (while
coBüchi-games are undecidable). We generalize the decidability result of [10]
for PLCS-induced Markov decision processes to 2-player stochastic games. The
scheme presented in [10] also differs from ours in the fact that the target set is
defined by control-states, while we consider more general regular sets. Thus our
result is not a direct generalization of [10].

Stochastic games on infinite-state probabilistic recursive systems were stud-
ied in [18, 19]. However, recursive systems are incomparable to the GPLCS model
considered in this paper.

In [3], a model similar to ours is studied. It differs in that the system is
not probabilistic, and instead one of the players controls message losses. For
this model, [3] proves that safety games are decidable and parity games (which
generalize Büchi games) are undecidable.

Two-player concurrent (but non-stochastic) games with infinite state spaces
are studied in [17]. Concurrency means that the two players independently and
simultaneously select actions, and the next state is determined by the combina-
tion of the actions and the current state. [17] describes schemes for computing
winning sets and strategies for Büchi games (as well as reachability games and

some more general games). The article characterizes classes of games where the
schemes terminate, based on properties of certain equivalence relations on states.
However, this approach does not work for GPLCS (not even for non-probabilistic
LCS), since LCS do not satisfy the necessary preconditions. Unlike the process
classes studied in [17], LCS do not have a finite index w.r.t. the equivalences
considered in [17].

In [28], a scheme is given to solve non-stochastic parity games on infinite
state spaces of arbitrary cardinality. The parity condition is more general than
the Büchi condition, so the scheme applies to Büchi games too. However, stochas-
tic games are not considered. In fact, if our scheme is instantiated on the special
case of non-stochastic Büchi games, it will coincide with the scheme in [28].
Furthermore, [28] does not suggest any class of infinite-state systems for which
termination is guaranteed.

Our algorithms are related to the algorithms presented in [16, 15] for solving
concurrent games with respect to probability-1 !-regular properties. However,
the proofs in [16, 15] apply only to finite-state games; we will need to develop
entirely new arguments to prove the correctness of our approach for GPLCS.

Contribution. We prove that the almost-sure Büchi-GPLCS problem is decid-
able: we can compute symbolic representations of the winning sets and winning
strategies for both players. The symbolic representations are based on regular
expressions, and the result holds under the assumption that the set of target
states is also regular. The winning strategies are pure memoryless, i.e., the next
state depends only on the current state and is not selected probabilistically.
Our result generalizes the decidability result for PLCS-induced Markov decision
processes (i.e., 1-player games) in [10].

We now give an overview of our method. First, we give a scheme to compute
the winning sets in simple reachability games, where the goal of player 0 is to
reach a regular set of target states with a positive probability. Next, we give
a scheme to construct the winning sets in almost-sure Büchi-games, using the
scheme for reachability games as a subroutine. We prove that for GPLCS, both
schemes terminate and we show how to instantiate them using regular state
languages to effectively represent the infinite sets.

Outline. In Section 2, we define stochastic games. In Section 3, we describe
GPLCS and show how they induce an infinite-state stochastic game. In Section 4,
we show how to construct the winning sets in simple reachability games on
GPLCS. In Section 5, we show how to construct the winning sets in Büchi
games on GPLCS. Due to space limitations, some proofs are omitted and can
be found in [2]; however, the intuitions are given in the main text.

2 Preliminaries

We use R;N for the real and natural numbers. If X is a set then X� and X!
denote the sets of finite and infinite sequences over X , respectively. The empty
word is denoted by ". For partial functions f; g : X * Y which have the same

value when both are defined, we use f [g to denote the smallest function that
extends both f and g.

A probability distribution on a countable set X is a function f : X ! [0; 1]
such that

Px2X f(x) = 1. We will sometimes need to pick an arbitrary element
from a set. To simplify the exposition, we let select(X) denote an arbitrary but
fixed element of the nonempty set X .

Turn-Based Stochastic Games. A turn-based stochastic game (or a game for
short) is a tuple G = (S; S0; S1; SR;�!; P) where:

– S is a countable set of states, partitioned into the pairwise disjoint sets of
random states SR, states S0 of player 0, and states S1 of player 1.

– �! � S � S is the transition relation. We write s�!s0 to denote that
(s; s0) 2 �!. Let Post(s) := fs0 : s�!s0g denote the set of successors
of s and extend it to sets Q � S of states by Post(Q) :=

Ss2Q Post(s).
We assume that games are deadlock-free, i.e., each state has at least one
successor (8s 2 S:Post(s) 6= ;).

– The probability function P : SR � S ! [0; 1] satisfies both 8s 2 SR:8s0 2S:(P (s; s0) > 0 () s�!s0) and 8s 2 SR:Ps02S P (s; s0) = 1. Note that for
any given state s 2 SR, P (s; �) is a probability distribution over Post(s).

For any set Q � S of states, we let Q := S�Q denote its complement. We define
[Q]

R
:= Q \ SR, [Q]

0
:= Q \ S0, [Q]

1
:= Q \ S1, and [Q]

01
:= Q \ (S0 [S1).

A run � in a game is an infinite sequence s0s1 � � � of states s.t. si�!si+1 for
all i � 0. We use �(i) to denote si. A path � is a finite sequence s0 � � � sn of states
s.t. si�!si+1 for all i : 0 � i < n. For any Q � S, we use ΠQ to denote the set
of paths that end in some state in Q.

Informally, the two players 0 and 1 construct an infinite run s0s1 � � � , starting
in some initial state s0 2 S. Player 0 chooses the successor si+1 if si 2 S0, player 1
chooses si+1 if si 2 S1, and the successor si+1 is chosen randomly according to
the probability distribution P (si; �) if si 2 SR.

Strategies. For � 2 f0; 1g, a strategy of player � is a partial function f� : ΠS� *S s.t. sn�!f�(s0 � � � sn) if f� is defined. The strategy f� prescribes for player �
the next move, given the current prefix of the run. We say that f� is total if it
is defined for every � 2 ΠS� .

A strategy f� of player � is memoryless if the next state only depends on
the current state and not on the previous history of the game, i.e., for any
path s0 � � � sk 2 ΠS� , we have f�(s0 � � � sk) = f�(sk). A memoryless strategy of
player � can be regarded simply as a function f� : S� * S, such that s�!f�(s)
whenever f� is defined.

Consider two total strategies f0 and f1 of player 0 and 1. A path � =s0 � � � sn in G is said to be consistent with f0 and f1 if the following holds. For
all 0 � i � n � 1, si 2 S0 implies f0(s0 � � � si) = si+1 and si 2 S1 impliesf1(s0 � � � si) = si+1. We define similarly consistent runs. In the sequel, whenever
the strategies are known from the context, we assume that all mentioned paths
and runs are consistent with them.

Probability Measures. We use the standard definition of the probability mea-
sure for a set of runs [23]. First, we define the measure for total strategies,
and then extend it to general (partial) strategies. We let
s = sS! denote
the set of all infinite sequences of states starting from s. Consider a gameG = (S; S0; S1; SR;�!; P), an initial state s, and total strategies f0 and f1

of player 0 and 1. For a measurable set R �
s, we define Psf0;f1(R) to be

the probability measure of R under the strategies f0; f1. It is well-known that
this measure is well-defined [23]. When the state s is known from context, we
drop the superscript and write Pf0;f1(R). For (partial) strategies f0 and f1 of
player 0 and 1, � 2 f<;�;=;�; >g, and any measurable set R �
s, we definePsf0;f1(R) � x iff Psg0;g1 (R) � x for all total strategies g0 and g1 which are exten-

sions of f0 resp. f1. For a single strategy f� of player �, we define Psf�(R) � x
iff Psf0;f1(R) � x for all strategies f1�� of player (1� �). If Pf0;f1(R) = 1, then

we say that R happens almost surely under the strategies f0; f1.
We assume familiarity with the syntax and semantics of the temporal logic

CTL* (see, e.g., [13]). We use (s j= ') to denote the set of runs starting in s that
satisfy the CTL* path-formula '. We use Pf0;f1(s j= ') to denote the measure
of (s j= ') under strategies f0; f1, i.e., we measure the probability of those runs
which start in s, are consistent with f0; f1 and satisfy the path-formula '. This
set is measurable by [27].

Traps. For a player � 2 f0; 1g and a set Q � S of states, we say that Q is
a �-trap if player (1� �) has a strategy that forces all runs to stay inside Q.

Formally, all successors of states in [Q]
�[[Q]

R
are in Q and every state in [Q]

1��
has some successor in Q.

Winning Conditions. Our main result considers Büchi objectives: player 0 wants
to visit a given set F � S infinitely many times. We consider games with almost-
sure winning condition. More precisely, given an initial state s 2 S, we want to
check whether player 0 has a strategy f0 such that for all strategies f1 of player 1,
it is the case that Pf0;f1(s j= 23F) = 1.

Determinacy and Solvability. A game is said to be determined if, from every
state, one of the players has a strategy that wins against all strategies of the
opponent. Notice that determinacy implies that there is a partitioning W 0;W 1

of S, such that players 0 and 1 have winning strategies from W 0 and W 1, re-
spectively. A game is memoryless determined if it is determined and there are
memoryless winning strategies. By solving a determined game, we mean giving
an algorithm to check, for any state s 2 S, whether s 2W 0 or s 2W 1.

3 Game Probabilistic Lossy Channel Systems (GPLCS)

A lossy channel system (LCS) [6] is a finite-state automaton equipped with a
finite number of unbounded FIFO channels (queues). The system is lossy in the
sense that, before and after a transition, an arbitrary number of messages may
be lost from the channels. Probabilistic lossy channel system (PLCS) [11, 7, 4]

define a probabilistic model for message losses. The standard model assumes
that each individual message is lost independently with probability � in every
step, where � > 0 is a parameter of the system.

We consider game probabilistic LCS (GPLCS), the 2-player game extension of
PLCS. The set of states is partitioned into states belonging to player 0 and 1, and
the transitions are controlled by the players. The player who owns the current
control-state chooses an enabled outgoing transition. However, message losses
occur randomly. While our definition of GPLCS (see below) assumes the same
model of independent message loss as in [11, 7, 4], this is not necessary for our re-
sults. We only require the existence of a finite attractor, in the sense described in
Section 5. In fact, many other probabilistic message loss models (e.g., burst dis-
turbances, where groups of messages in close proximity are more often affected)
satisfy this attractor condition [5].

The players have conflicting goals: player 0 wants to reach a given set of
states infinitely often, and player 1 wants to visit it at most finitely many times.
This is called a Büchi objective.

Formally, a GPLCS is a tuple L =
�
S; S0; S1; C; M; T; �� where S is a finite set

of control-states partitioned into states S0; S1 of player 0 and 1; C is a finite set
of channels, M is a finite set called the message alphabet, T is a set of transitions,

and 0 < � < 1 is the loss rate. Each transition t 2 T is of the form s
op�! s0,

where s; s0 2 S and op is one of c!m (send message m 2 M in channel c 2 C), c?m

(receive message m from channel c), or nop (do not modify the channels).
A GPLCS L =

�
S; S0; S1; C; M; T; �� induces a game G = (S; S0; S1; SR;�!; P),

where S = S�(M�)C�f0; 1g. That is, each state in the game consists of a control-
state, a function that assigns a finite word over the message alphabet to each
channel, and one of the symbols 0 or 1. States where the last symbol is 0 are
random: SR = S� (M�)C �f0g. The other states belong to a player according to
the control-state: S� = S� � (M�)C � f1g. Transitions out of states of the forms = (s; x; 1) model transitions in T leaving state s. On the other hand, transitions
leaving states of the form s = (s; x; 0) model message losses.

If s = (s; x; 1); s0 = (s0; x0; 0) 2 S, then there is a transition s�!s0 in the
game iff one of the following holds:

– s
nop�! s0 and x = x0;

– s
c!m�! s0, x0(c) = x(c)m, and for all c0 2 C� fcg, x0(c0) = x(c0);

– s
c?m�! s0, x(c) = mx0(c), and for all c0 2 C� fcg, x0(c0) = x(c0).

To model message losses, we introduce the subword ordering� on words: x � y iffx is a word obtained by removing zero or more messages from arbitrary positions
of y. This is extended to channel states x; x0 : C ! M� by x � x0 iff x(c) � x0(c)
for all channels c 2 C, and to game states s = (s; x; i); s0 = (s0; x0; i0) 2 S bys � s0 iff s = s0, x � x0, and i = i0. For any s = (s; x; 0) and any x0 such that
x0 � x, there is a transition s�!(s; x0; 1). The probability of random transitions
is given by P ((s; x; 0); (s; x0; 1)) = a ��b � (1��), where a is the number of ways
to obtain x0 by losing messages in x, b is the total number of messages lost in all
channels, and is the total number of messages in all channels of x0.

Every state on the form (s; x; 0) has at least one successor, namely (s; x; 1).
If a state (s; x; 1) does not have successors according to the rules above, then we
add a transition (s; x; 1)�!(s; x; 0), to avoid deadlocks. Intuitively, this means
that the run stays in the same control state and only loses messages.

Observe that the game is bipartite: every transition goes from a player state
to a probabilistic state or the other way around, i.e., �! � ((S0 [S1)� SR) [
(SR � (S0 [S1)).

Problem Statement. We study the problem Büchi-GPLCS, defined as follows.
The game graph is induced by a GPLCS; and we consider the almost-sure Büchi
objective: player 0 wants to ensure that a given target set is visited infinitely
often with probability one.

4 Reachability Games on GPLCS

We consider the reachability game where the winning condition is to reach a
given target set with positive probability. Reachability games on GPLCS (with
this and various other winning conditions) have been studied in [9], where the
winning sets are expressed in terms of the target set in a variant of the �-calculus.

Nevertheless, we give below a more ad-hoc scheme for computing the winning
set, in order to keep the article self-contained. Furthermore, many definitions and
some more detailed results on the structure of the winning sets and strategies
will be needed in the following section on Büchi-games.

We give a scheme for characterizing sets of states from which a player can,
with a positive probability, force the game into a given set of target states, while
preserving a given invariant. We show that the scheme always terminates for
GPLCS, and then give a symbolic representation of the winning sets, based on
regular languages. The symbolic representation is valid under the assumption
that the set of target states is also regular. Finally, we show correctness of the
construction by describing the winning strategies. In fact, we show that if a
player can win, then a memoryless strategy is sufficient to win.

Scheme. Fix a game G = (S; S0; S1; SR;�!; P) and two sets of states F; I � S,
called the target and invariant sets, respectively. For a player � 2 f0; 1g, we give
a scheme for constructing the set Force�(I; F) of states where player � can, with
a positive probability, force the run to eventually reach F , while also preserving
the property that the run will always remain within I (i.e., states outside I are
not visited before F).

The idea of the scheme is to perform backward reachability analysis using

the basic operations Pre� and gPre
�
, defined as follows. Given � 2 f0; 1; Rg and

a set Q � S of states, let Pre�(Q) := fs 2 S� : 9s0 2 Q:s�!s0g denote the
set of states of player � where it is possible to go to Q in the next step. DefinegPre

�
(Q) := S� � Pre�(Q) to be the set of states where player � cannot avoid

going to Q in the next step.

The construction is inductive. For � 2 f0; 1g, we define two sequences fDigi2N :D0 � D1 � � � � and fEigi2N : E0 � E1 � � � � of sets of states as follows:D0 := [F]
R \ I E0 := [F]

01 \ IDi+1 :=
�Di [PreR(Ei)� \ I Ei+1 :=

�Ei [Pre�(Di) [gPre
1��

(Di)� \ I:
We let Force�(I; F) :=

Si�0 Di [Ei. Intuitively, the set Di contains those

states in SR from which player � can force the game to F with positive prob-
ability (while remaining in I) within i steps. The set Ei contains the states inS0 [S1 satisfying the same property1.

Below, we instantiate the above described scheme for GPLCS. In the rest
of this section, we consider the game G = (S; S0; S1; SR;�!; P) induced by a
GPLCS L =

�
S; S0; S1; C; M; T; ��.

Termination. We recall from [21] that the relation � is a well quasi-ordering,
i.e., for each infinite sequence w0; w1; w2; : : : of words over M, there are j < k such
that wj � wk. A set U � M� is said to be upward closed if w 2 U implies thatw0 2 U for each w0 � w. A channel language L is a mapping from C to 2M

�
. In

other words, L maps each channel to a language over M. We say that L is upward
closed resp. regular if L(c) is upward closed resp. regular for each c 2 C. A state
language L is of the form (s; L0) where s 2 S and L0 is a channel language.
We say that L is upward closed (regular) if L0 is upward closed (regular). We
generalize the definitions above to finite sets M of state languages by M upward
closed (regular) if each L 2M is upward closed (regular).

To prove termination of the scheme, we show that sets Di are “almost”
upward closed in the sense that they are closely related to other sets which are
upward closed. More precisely, we consider the sequence D0

0 � D0
1 � � � � of sets of

states where D0
0 := [F]

R
and D0i+1 := PreR(Ei). Since PreR(Q) is upward closed

for any set Q of states, it follows that D0i is upward closed for each i > 0. Upward
closedness, together with the well quasi-ordering of �, implies that there is a j
such that D0j = D0j+1 = � � � . We also observe that Di = (D0

0 [D0
1 [� � � [D0i)\ I .

This means that Dj+1 = Dj and consequently Ej+2 = Ej+1. Hence, we have
the following lemma.

Lemma 1. For any GPLCS and sets F; I � S of states, the sequences fDigi2N
and fEigi2N converge.

Forms of Winning Sets. The above termination argument relied on upward
closedness of the sets D0i. In fact, we can derive more information about the
structure of the winning sets for games induced by GPLCS. Assuming that the
sets F and I are regular state languages, it follows that each set Di or Ei is also
a regular state language. This follows from the fact that regular state languages
are closed under the application of Pre� and the Boolean operations. Since the

1 It is possible to define only one sequence, not separating player states from random
states. In later proofs, it will be technically convenient to have the sequence fDigi2N
defined, since fDigi2Nhas properties not shared by fEigi2N.

scheme terminates (by Lemma 1), the winning set Q := Force�(I; F) is also

regular. Furthermore, if I and F are upward closed then [Q]
R

is also upward
closed. This follows from the fact that PreR(Q) is upward closed for any set Q
and that the class of upward closed sets is closed under intersection and union.
We summarize these properties as properties (1)–(2) of the following lemma.
(Properties (2)–(5) are not needed until the next section).

Lemma 2. Let Q = Force�(I; F). Then:

(1) If F and I are regular then Q is regular.

(2) If F and I are upward closed then [Q]
R

is upward closed.
(3) Let s 2 I � Q. If s 2 S� [SR, then Post(s) � Q. If s 2 S1��, then

Post(s) \Q 6= ;.
(4) Force�(Q;F) = Q.
(5) Force�(S; F) is a �-trap.

Correctness. First, we describe a partial memoryless winning strategy force�(I; F)
for player � from the states in [Force�(I; F)]�. Recall that a memoryless strategy
can simply be described as a function that assigns one successor to each state.
We define a sequence e0 � e1 � e2 � � � � of strategies for player �. Let e0 := ;
and define ei+1 as follows:

– If ei(s) is defined then ei+1(s) := ei(s).
– If ei(s) is undefined and s 2 [Ei+1 �Ei]� then ei+1(s) := select(Post(s) \Di).

Let force�(I; F) :=
Si�0 ei. From the definitions, we derive the following lemma.

Lemma 3. In any GPLCS, for any I; F � S, � 2 f0; 1g, and s 2 Force�(I; F),
there exists an �s > 0 such that Pforce�(I;F)(s j= 3F) � �s. 2

Proof. We recall the construction of the force sets and use induction on i to prove
that 8i 2 N and for any state s 2 (Di [Ei) the following holds: There exists an�s > 0 such that for any extension f� of the force�(I; F) and any strategy f1��
of the opponent, Pforce�(I;F);f1��(s j= 3Q) � �s. Observe that 8i:Di \ Ei = ;.

The base case s 2 (D0 [E0) � F holds trivially (take �s := 1).
Now assume that the claim holds for i 2 N. Consider s to be in Di+1 [Ei+1.

In the case s 2 (Di [Ei) the claim already holds by induction hypothesis. The
remaining cases are described below.

Case s 2 Di+1 �Di: This implies that s 2 PreR(Ei). Thus there is a states0 2 Ei such that s�!s0 and �s0 > 0 by induction hypothesis. We define�s := P (s; s0) � �s0 > 0.
Case s 2 Ei+1 �Ei: This implies one of the following two cases.

– If s 2 [S]� then s 2 Pre�(Di). Thus there is a state s0 2 Di which is
chosen as successor state to s by the force�(I; F) strategy, i.e., s�!s0
and s0 = force�(I; F)(s). By induction hypothesis �s0 > 0. So we obtain�s := �force�(I;Q)(s) = �s0 > 0.

2 The weaker statement, i.e., Pforce�(I;F)(s j= 3F) > 0, suffices for correctness. How-
ever, this stronger version is needed in the sequel.

– If s 2 [S]1�� then s 2 gPre
1��

(Di). It follows that Post(s) � Di. The
set Post(s) is finite, since the system is finitely branching. Furthermore,
by induction hypothesis, �s0 > 0 for all s0 2 Di. Thus we obtain �s :=
mins02Post(s)(�s0) > 0.

The main result follows since for any s 2 Force�(I;Q), there exists a finite
minimal i 2 N such that s 2 (Di [Ei). ut

In the sequel, we use Force�(F) to denote Force�(S; F), i.e., we do not men-
tion I in case it is equal to S. We define force�(F) analogously.

5 Büchi-Games on GPLCS

In this section we consider the Büchi-GPLCS problem. We give a scheme for
characterizing the winning sets in almost-sure Büchi games, and then instanti-
ate the scheme for GPLCS. In a similar manner to Section 4, we first show that
the scheme always terminates for GPLCS, and then describe the winning sets
using a symbolic representation based on regular languages. Again, the symbolic
representation is valid under the assumption that the set of final states is also
regular. We show the correctness of the construction by describing the mem-
oryless winning strategies. Observe that this implies that Büchi-GPLCS are
memoryless determined and solvable. Throughout this section, we fix a GPLCSL =

�
S; S0; S1; C; M; T; �� and the induced game G = (S; S0; S1; SR;�!; P). TakeF � S; we consider the Büchi goal for player 0 consisting in visiting F infinitely

often.

Scheme. We define a sequence fXigi2N : X0 � X1 � � � � of sets of states which
are winning for player 1 with a positive probability. In the definition of fXigi2N,
we use an auxiliary sequence fMigi2N : M0 � M1 � � � � of sets of states. The
construction is inductive where X0 := ;, M0 := S andMi+1 := Force0(Xi; F) Xi+1 := Force1(Mi+1)

for each i � 0. Intuitively, the set Xi consists of states “already classified as
losing for player 0”. We add states iteratively to these sets. We define Mi+1

such that Mi+1 is the set of states where player 0 cannot reach F with positive
probability while staying always in Xi. Finally, we claim that the winning states
for player 0 are given by W 0 :=

Ti�0 Mi, and thus complementarily, the winning

states for player 1 are given by W 1 := W 0 =
Si�0 Xi.

This property holds by the definitions and will be used later in this section.

Lemma 4. X0 �M1 � X1 �M2 � X2 � � � �
The following lemma shows that this construction terminates.

Lemma 5. The sequence fXigi2N converges for any set F � S of states.

Proof. (Sketch; details in [2]) Consider the sequence in Lemma 4. We perform

the proof in four steps; namely, we show that (i) there is a K such that [XK]
R

=

[XK+1]R; (ii) XK+1 = MK+1; (iii) MK+1 = MK+2; (iv) XK+1 = XK+2.

(i) We show that each [Xi]R is upward closed, using induction on i. The
base case is trivial since X0 = ;. For the induction step we let Y :=�Mi+1

�01 [[Xi]R. Using the definitions of Xi, Xi+1, and Mi+1, it can be

shown that Xi+1 = Force1(Y). Since [Xi]R is upward closed by the induc-

tion hypothesis it follows by Lemma 2(2) that [Xi+1]R is upward closed.

From this and well quasi-ordering of �, we get 9K: [XK]
R

= [XK+1]
R

. We
will use K in the rest of the analysis below.

(ii) From Lemma 4 and the fact that [XK]
R

= [XK+1]
R

, we know that [XK]
R

=�MK+1

�R
= [XK+1]R. This is used to show that PreR(MK+1); Pre1(MK+1),gPre

0
(MK+1) � MK+1 which by the definition of XK+1 implies XK+1 �MK+1. Hence, XK+1 = MK+1, by Lemma 4.

(iii) Since MK+2 = Force0(XK+1; F) andXK+1 = MK+1, we have that MK+2 =
Force0(MK+1; F). From Lemma 2(4) and the fact thatMK+1 = Force0(XK ; F),
it follows that MK+2 = MK+1.

(iv) XK+2 = Force1(MK+2) = Force1(MK+1) = XK+1. ut
Forms of Winning Sets. From Lemma 2(1), it follows that if F is regular then
each Xi and Mi is regular. From Lemma 5 we get the following:

Lemma 6. If F is regular then W 0 and W 1 are regular.

Winning Strategy for Player 1. We define a sequence fxigi2N of strategies for

player 1, such that x0 � x1 � � � � . For each i, the strategy xi : [Xi]1 ! S is
memoryless and winning for player 1 from states in Xi. The sequence fxigi2N
converges to a memoryless strategy w1 :=

Si2N xi for player 1 which is winning
from states in W 1. We define the sequence using induction on i. We will also
motivate why the strategy is winning for player 1. Define x0 := ;. For all i � 0, we
define xi+1(s) by case analysis. By Lemma 4, we know that Xi �Mi+1 � Xi+1.
There are three cases, reflecting the membership of s in these three sets:

(i) If s 2 Xi then xi+1(s) := xi(s). Here, we know by the induction hypothesis
that a winning strategy xi for player 1 has already been defined in s.

(ii) If s 2 Mi+1 �Xi then xi+1(s) := select(Post(s) \Mi+1). The idea is that
player 1 uses a strategy which guarantees that any run either (A) will stay
in Mi+1 �Xi; or (B) will eventually enter Xi. In (A), player 1 wins sinceMi+1�Xi does not have any states in F by the definition of Mi+1. In (B),
player 1 wins by the induction hypothesis.
More precisely, we observe that player 1 selects a successor of s which
belongs to Mi+1. Such a successor exists by the following argument. First,
observe that (by set operations) Mi+1�Xi = Xi�Mi+1. The result follows
by instantiating Lemma 2(3) with I = Xi and Q = Mi+1. By the same

argument, for each s0 2 �Mi+1

�R [�Mi+1

�0
, all successors of s0 belong toMi+1. This guarantees that either (A) or (B) holds.

(iii) If s 2 Xi+1 �Mi+1 then xi+1(s) := force1(Mi+1)(s). Since, by definition,Xi+1 = Force1(Mi+1), player 1 can use force1(Mi+1) to take the game with
a positive probability to Mi+1 (Lemma 3). From there, player 1 wins as
described above.

Now, consider a state s 2 W 1. By definition, we know that s 2 Xi for somei � 0. This means that w1 = xi is winning for player 1 from s according to the
above argument. Hence:

Lemma 7. For each s 2W 1, Pw1(s j= :23F) > 0.

Winning Strategy for Player 0. In this paragraph, we define a memoryless strat-
egy w0 and we prove that it is winning.

To describe how w0 is defined, we rely on two auxiliary results on games
induced by GPLCS. First, we recall the definition of an attractor. A set A � S
is called an attractor if P(s j= 3A) = 1 for any s 2 S. In other words, from any
state s 2 S, A is almost surely visited regardless of the strategies of the players.
The following result was shown in [11, 7, 4] for probabilistic LCS, where moves in
the control graph are taken probabilistically instead of by two competing players.
The results straightforwardly generalize to GPLCS.

Lemma 8. Let L =
�
S; S0; S1; C; M; T; �� be a GPLCS and let G be the game

induced by L. The set A = (S� """� f0; 1g) is a finite attractor in G.

The second result follows from Lemma 8 and Lemma 3 as described below.

Lemma 9. Let G = (S; S0; S1; SR;�!; P) be a game induced by a GPLCS. For
any Q; I � S and � 2 f0; 1g, the following holds: For any s 2 Force�(I;Q),Pforce�(I;Q)(s j= 2Force�(I;Q) ^ :23Q) = 0.

Proof. Given Q; I � S, � 2 f0; 1g, and s 2 Force�(I;Q). We assume that
player � uses an extension f� of the force�(I;Q) strategy and player (1� �) uses
a strategy f1��. By Lemma 8, the game has a finite attractor A. By definition
of the attractor, almost all runs must visit A infinitely often. We define A0 :=A \ Force�(I;Q).

If A0 = ;, then Pf�;f1��(s j= 2Force�(I;Q) ^ :23Q) � Pf�;f1��(s j=:3A) = 0, where the inequality follows from the assumption and the equality
from the definition of an attractor.

Consider now the case where A0 6= ;. By Lemma 3 and finiteness of A (and
thus A0), we obtain that � := mins02A0(�0s) > 0. Almost every run in (s j=2Force�(I;Q)^:23Q) must visit A0 infinitely many times, but Q only finitely
many times (and thus have an infinite suffix which never visits Q). Thus,Pf�;f1�� (s j= 2Force�(I;Q) ^ :23Q) � (1� �)1 = 0: (1)

Therefore Pforce�(I;Q)(s j= 2Force�(I;Q) ^ :23Q) = 0. ut

Remark 1. Observe that the inequality (1) holds for any strategy f1�� of the
opponent and any extension f� of the force�(I;Q) strategy. In particular, we
do not require that f1�� is finite-memory. It is possible that f1�� acts quite
differently after each of the (possibly infinitely many) visits to the same state
in the attractor. The crucial fact is that the quantity �s > 0 in Lemma 3 is
independent of f1��.

Now we are ready to describe the winning strategy w0 for player 0. The idea of
the strategy w0 is to keep the run within a force set of F with probability 1. This
implies that F will be visited infinitely often with probability 1, by Lemma 9.
In order to do that, player 0 exploits certain properties of W 0: By Lemmas 5
and 4, there is an i such that Xi = Mi+1 = Xi+1. From this and the definition
of W 0 it follows that W 0 = Xi = Mi+1. From W 0 = Xi and Lemma 2(5)
it follows that W 0 is a 1-trap. From Mi+1 = Force0(Xi; F), it follows thatW 0 = Force0(W 0; F). We define w0 on any state s 2 �W 0

�0
as follows:

– If s 2 W 0 � F then w0(s) := force0(W 0; F)(s). This definition is possible
since W 0 = Force0(W 0; F).

– If s 2 W 0\F then w0(s) := select(Post(s) \W 0). This is possible since W 0

is a 1-trap, and therefore s has at least one successor in W 0.

Consider any run � starting from a state inside W 0, where player 0 follows w0.
Since W 0 is a 1-trap, � will always remain inside W 0 regardless of the strategy
of player 1. This implies that Pw0(s j= 2W 0) = 1. Furthermore, by Lemma 9
and the definitions of w0 and W 0, it follows that Pw0(s j= 2W 0 ^ :23F) = 0,
which gives the following lemma:

Lemma 10. For any s2W 0, Pw0(s j= 23F)=1.

Determinacy and Solvability. Memoryless determinacy of almost-sure Büchi-
GPLCS follows from Lemmas 7 and 10. By Lemma 6, for any state s 2 S, we
can check whether s 2 W 0 or s 2 W 1. This gives the main result:

Theorem 1. Büchi-GPLCS are memoryless determined and solvable, for any
regular target set F .

6 Conclusions and Future Work

We have introduced GPLCS and given a terminating algorithm to compute
symbolic representations of the winning sets in almost-sure Büchi-GPLCS. The
strategies are memoryless, and our construction implies that the games we con-
sider are memoryless determined.

The problem of deciding GPLCS games is not primitive recursive, since it is
harder than the control-state reachability problem for LCS, which was shown to
be non-primitive recursive by Schnoebelen in [25]. (For a given LCS and control-
state q we can construct a GPLCS by defining S0 = ;, S1 = S, making the
state q absorbing and defining F as all configurations where the control-state is

not q. Then player 1 has a winning strategy in the GPLCS iff control-state q is
reachable in the LCS.)

There are five immediate extensions of our result. (1) Each winning strat-
egy w0; w1 wins against any mixed strategy of the opponent (i.e. the opponent
chooses a probability distribution over the successor states rather than one of
them). (2) Our algorithm is easily adapted to almost-sure reachability-GPLCS.
This is achieved by replacing all outgoing transitions of states in F by self-loops,
or, equivalently, replacing the definition of Xi+1 by Xi+1 := Force1(F ;Mi+1).
(3) Our algorithm can be modified to construct symbolic representations of the
winning strategies. A strategy is represented as a finite set fLi; L0igni=0 of pairs of
regular state languages, where all Li are disjoint. Such a finite set represents the
strategy f0 where f0(s) = select(L0i) if s 2 Li. (4) We can extend the scheme to
concurrent games, where the two players move simultaneously, by an appropri-
ate extension of the Pre operator, as in [15]. (5) The algorithm also works when
there are probabilistic control states in the GPLCS (see, e.g., [1] for definitions),
as well as control states owned by the players and probabilistic message losses.

References

1. P. A. Abdulla, C. Baier, P. Iyer, and B. Jonsson. Reasoning about probabilistic
lossy channel systems. In Proc. CONCUR 2000, 11th Int. Conf. on Concurrency
Theory, volume 1877 of Lecture Notes in Computer Science, pages 320–333, 2000.

2. P. A. Abdulla, N. Ben Henda, R. Mayr, S. Sandberg, and L. de Alfaro. Stochas-
tic games with lossy channels. Technical Report 2007-005, Dept. of Information
Technology, Uppsala University, Sweden, Feb. 2007.

3. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. In Proc.
CSL 2003, volume 2803 of Lecture Notes in Computer Science, pages 1–14, 2003.

4. P. A. Abdulla, N. B. Henda, and R. Mayr. Verifying infinite Markov chains with
a finite attractor or the global coarseness property. In Proc. LICS ’05, 21st IEEE
Int. Symp. on Logic in Computer Science, pages 127–136, 2005.

5. P. A. Abdulla, N. B. Henda, R. Mayr, and S. Sandberg. Eager Markov chains.
In Proc. ATVA ’06, 4th Int. Symp. on Automated Technology for Verification and
Analysis, volume 4218 of Lecture Notes in Computer Science, pages 24–38. Springer
Verlag, 2006.

6. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In-
formation and Computation, 127(2):91–101, 1996.

7. P. A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty
communication. In Proc. FOSSACS03, Conf. on Foundations of Software Science
and Computation Structures, volume 2620 of Lecture Notes in Computer Science,
pages 39–53, 2003.

8. E. Asarin and P. Collins. Noisy Turing machines. In Proc. ICALP ’05, 32nd
International Colloquium on Automata, Languages, and Programming, pages 1031–
1042, 2005.

9. C. Baier, N. Bertrand, and P. Schnoebelen. On computing fixpoints in well-
structured regular model checking, with applications to lossy channel systems.
In Proc. LPAR’2006, pages 347–361, 2006.

10. C. Baier, N. Bertrand, and P. Schnoebelen. Verifying nondeterministic probabilistic
channel systems against !-regular linear-time properties. ACM Transactions on
Comp. Logic, 2006. To appear.

11. N. Bertrand and P. Schnoebelen. Model checking lossy channels systems is probably
decidable. In Proc. FOSSACS03, Conf. on Foundations of Software Science and
Computation Structures, volume 2620 of Lecture Notes in Computer Science, pages
120–135, 2003.

12. K. Chatterjee, M. Jurdziński, and T. Henzinger. Simple stochastic parity games.
In Proceedings of the International Conference for Computer Science Logic (CSL),
volume 2803 of Lecture Notes in Computer Science, pages 100–113. Springer Verlag,
2003.

13. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.
14. A. Condon. The complexity of stochastic games. Information and Computation,

96(2):203–224, Feb. 1992.
15. L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In Proc. LICS

’00, 16th IEEE Int. Symp. on Logic in Computer Science, pages 141–156, Wash-
ington - Brussels - Tokyo, June 2000. IEEE.

16. L. de Alfaro, T. Henzinger, and O. Kupferman. Concurrent reachability games. In
Proc. 39th Annual Symp. Foundations of Computer Science, pages 564–575. IEEE
Computer Society Press, 1998.

17. L. de Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In K. G. Larsen and M. Nielsen, editors, Proc. CONCUR 2001, 12th
Int. Conf. on Concurrency Theory, volume 2154 of Lecture Notes in Computer
Science, pages 536–550. Springer Verlag, 2001.

18. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. LICS ’04, 20th IEEE Int. Symp. on Logic in Computer Science,
pages 12–21, 2004.

19. K. Etessami and M. Yannakakis. Recursive Markov decision processes and re-
cursive stochastic games. In Proc. ICALP ’05, 32nd International Colloquium on
Automata, Languages, and Programming, volume 3580 of Lecture Notes in Com-
puter Science, pages 891–903, 2005.

20. A. Finkel. Decidability of the termination problem for completely specified proto-
cols. Distributed Computing, 7(3):129–135, 1994.

21. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2(7):326–336, 1952.

22. P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In TAPSOFT ’97:
Theory and Practice of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 667–681, 1997.

23. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. D Van Nostad
Co., 1966.

24. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In
Proc. ICALP ’03, 30th International Colloquium on Automata, Languages, and
Programming, volume 2719 of Lecture Notes in Computer Science, pages 1008–
1021, 2003.

25. P. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83(5):251–261, 2002.

26. L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, Oct. 1953.

27. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. FOCS ’85, 26th Annual Symp. Foundations of Computer Science, pages
327–338, 1985.

28. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

