

Edinburgh Research Explorer

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets

Citation for published version:
Abdulla, PA & Mayr, R 2009, Minimal Cost Reachability/Coverability in Priced Timed Petri Nets. in
Foundations of Software Science and Computational Structures: 12th International Conference, FOSSACS
2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings. vol. 5504, pp. 348-363. DOI: 10.1007/978-3-642-00596-1_25

Digital Object Identifier (DOI):
10.1007/978-3-642-00596-1_25

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Foundations of Software Science and Computational Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1007/978-3-642-00596-1_25
https://www.research.ed.ac.uk/portal/en/publications/minimal-cost-reachabilitycoverability-in-priced-timed-petri-nets(c2e9b27c-0bc0-424a-8f65-261368264881).html

Minimal Cost Reachability/Coverability in Priced
Timed Petri Nets

Parosh Aziz Abdulla1 and Richard Mayr2

1 Uppsala University, Sweden
2 University of Edinburgh, UK

Abstract. We extend discrete-timed Petri nets with a cost model that assigns to-
ken storage costs to places and firing costs to transitions, and study the minimal
cost reachability/coverability problem. We show that the minimal costs are com-
putable if all storage/transition costs are non-negative, while even the question of
zero-cost coverability is undecidable in the case of general integer costs.

1 Introduction

Petri nets are one of the most widely used models for the study and analysis of concur-
rent systems. Furthermore, several different models have been introduced in [1, 7, 14,
13, 4, 9, 6] which extend the classical model by introducing timed behaviors.

We consider Timed Petri Nets (TPNs) in which each token has an ‘age’ represented
by a natural number [1, 7]. A marking of the net is a mapping which assigns a multiset
of natural numbers to each place. The multiset represents the numbers and ages of the
tokens in the corresponding place. Each arc of the net is equipped with an interval
defined by two natural numbers (or !). A transition may fire iff its input places have
tokens with ages satisfying the intervals of the corresponding arcs. Tokens generated
by transitions will have ages in the intervals of the output arcs. In fact, this model is a
generalization of the one in [7], since the latter only allows generating tokens of age 0.

In parallel, there have been several works on extending the model of timed automata
[2] with prices (weights) (see e.g., [3, 11, 5]). Weighted timed automata are suitable
models for embedded systems, where we have to take into consideration the fact that
the behavior of the system may be constrained by the consumption of different types of
resources. Concretely, weighted timed automata extend classical timed automata with a
cost function C that maps every location and every transition to a nonnegative integer
(or rational) number. For a transition, C gives the cost of performing the transition. For
a location, C gives the cost per time unit for staying in the location. In this manner, we
can define, for each run of the system, the accumulated cost of staying in locations and
performing transitions along the run.

We study a natural extension of TPNs, namely Priced TPNs (PTPNs). We allow
the cost function to map transitions and places of the Petri net into vectors of integers
(of some given length k). Again, for a transition, C gives the cost of performing the
transition; while for a place, C gives the cost per time unit per token in the place. We
consider the cost-optimal problem for PTPNs where, given an initial marking M0 and
a set F of final markings, the task is to compute the minimal accumulated cost of a
run that reaches F from M0. We consider two variants of the problem: the reachability
problem in which F is a single marking; and the coverability problem in which F is
an upward closed set of markings. Since the set of costs within which we can reach a

set F from a set M0 is upward closed (regardless of the form of F), the cost-optimality
problem can be reduced, using the construction of Valk and Jantzen [17], to the cost
threshold problem. In the latter, we are given a cost vector v, and we want to check
whether it is possible to reach F from M0 with a cost that does not exceed v.

We also consider two models related to PTPNs. The first, called Priced Petri Nets
(PPNs), is a priced extension of classical (untimed) Petri nets, and is a special case of
PTPNs. The other model is an (interesting and nontrivial) extension of classical Petri
nets, in which a fixed place p and a fixed transition t are connected by a so called
inhibitor arc. In this case, the transition t can fire only if p is empty. It has been shown
that the reachability problem for Petri nets with one inhibitor arc is decidable [15].

For the above mentioned models, we show a number of (un)decidability results.
First, we recall that the reachability problem is undecidable for TPNs [16], which imme-
diately implies that the cost threshold reachability problem is undecidable for PTPNs.
With this undecidability result in mind, the two natural (and simpler) problems to con-
sider are the cost threshold coverability problem for PTPNs, and the cost threshold
reachability problem for PPNs. We prove that cost threshold coverability problem is
decidable for PTPNs with non-negative costs (where all components of the cost vectors
are non-negative). We show that this gives in a straightforward manner also a proof
of the decidability of the coverability problem for Petri nets with one inhibitor arc.
Furthermore, we show that the cost threshold reachability problem for PPNs and the
reachability problem for Petri nets with one inhibitor arc are reducible to each other.
These results show a close (and surprising) relationship between our models and that of
Petri nets with one inhibitor arc. Finally, we show that if we allow negative costs then
even the cost threshold coverability problem for PPNs becomes undecidable.

2 Preliminaries
2.1 Priced Timed Petri Nets

The timed Petri net model (TPN) defined by Escrig et al. [7, 16] is an extension of
Petri nets where tokens have integer ages measuring the time since their creation, and
transition arcs are labeled with time-intervals (whose bounds are natural numbers or !)
which restrict the ages of tokens which can be consumed and produced. We extend this
model to priced timed Petri nets (PTPN) by assigning multidimensional costs to both
transitions (action costs) and places (storage costs). Each firing of a discrete transition
costs the assigned cost vector. The cost of a timed transition depends on the marking.
Storing k1 tokens for k2 time units on a place with cost vector v costs k1 � k2 � v.

Let N denote the non-negative integers and Nk and Nk
! the set of vectors of dimen-

sion k over N and N [f!g, respectively (! represents the first limit ordinal). We use a
set Intrv of intervals N�N! . We view a multiset M over A as a mapping M : A 7! N.

Given a set A with an ordering � and a subset B � A, B is said to be upward
closed in A if a1 2 B; a2 2 A and a1 � a2 implies a2 2 B. Given a set B � A, we
define the upward closure B " to be the set fa 2 Aj 9a0 2 B : a0 � ag.

Definition 1. A Priced Timed Petri Net (PTPN) is a tuple N = (P; T; In;Out ;C)
where P is a finite set of places, T is a finite set of transitions, In;Out are partial
functions from T � P to Intrv and C : P [T ! Z

k is the cost function assigning

(multidimensional, and possibly also negative) firing costs to transitions and storage
costs to places.

If In(t ; p) (respectively Out(t ; p)) is defined, we say that p is an input (respectively
output) place of t. Let max denote the maximal finite number 2 N appearing on the
time intervals of the given PTPN.

A marking M of N is a finite multiset over P � N. It defines the numbers and
ages of tokens in each place in the net. We identify a token in a marking M by the
pair (p; x) representing its place and age in M . Then, M((p; x)) defines the number of
tokens with age x in place p. Abusing notation, we define, for each place p, a multiset
M(p) over N where M(p)(x) = M((p; x)). We sometimes denote multisets as lists.
For a marking M of the form [(p1; x1) ; : : : ; (pn; xn)] we use M+1 to denote the
marking [(p1; x1 + 1) ; : : : ; (pn; xn + 1)]. For PTPN, let � denote the partial order
on markings given by multiset-inclusion.

Transitions. We define two transition relations on the set of markings: timed and dis-
crete. The timed transition relation increases the age of each token by one. Formally,
M1 !time M2 iff M2 = M+1

1 .
We define the discrete transition relation!D as

S
t2T �!t, where�!t represents

the effect of firing the discrete transition t. More precisely, M1 �!t M2 if the set
of input arcs f(p; I)j In(t ; p) = Ig is of the form f(p1; I1); : : : ; (pk; Ik)g, the set of
output arcs f(p; I)j Out(t ; p) = Ig is of the form f(q1;J1); : : : ; (q`;J`)g, and there
are multisets b1 = [(p1; x1) ; : : : ; (pk; xk)] and b2 = [(q1; y1) ; : : : ; (q`; y`)] over
P � N such that the following holds:
- b1 �M1 and M2 = (M1 � b1) + b2
- xi 2 Ii; for i : 1 � i � k and yi 2 Ji; for i : 1 � i � `

We say that t is enabled in M if such a b1 exists. A transition t may be fired only
if for each incoming arc, there is a token with the right age in the corresponding input
place. These tokens will be removed when the transition is fired. The newly produced
tokens have ages which are chosen nondeterministically from the relevant intervals on
the output arcs of the transition.

We write�!=!time [!D to denote all transitions, �
�! to denote the reflexive-

transitive closure of �! and !+
D to denote the transitive closure of !D. It is easy to

extend �
�! to sets of markings. We define Reach(M) := fM 0 jM

�
�!M 0g as the set

of markings reachable from M .
The cost of computations. A computation � := M1 �! M2 �! : : : �! Mn

is a sequence of transitions, and also denoted by M1
�
�! Mn. The cost of a discrete

transition t is defined as Cost(M �!t M
0) := C(t) and the cost of a timed transition is

defined as Cost(M !time M
+1) :=

P
p2P jM(p)j �C(p). The cost of a computation

� is the sum of all transition costs, i.e., Cost(�) :=
Pn�1

i=1 Cost(Mi �!Mi+1).
If the prices are ignored in PTPN then the model becomes equivalent to the timed

Petri nets of [7, 16], except that we also allow the creation of tokens with nonzero ages.

2.2 Priced Petri Nets.

Priced Petri Nets (PPN) are a simple extension of standard Petri nets (i.e., without token
clocks and time constraint arcs) by adding prices and transition delays. Later we will

show that PPN are a weaker model than PTPN (Lemma 3), but most undecidability
results hold even for the weaker PPN model (Theorem 14).

Definition 2. A Priced Petri Net (PPN) is a tuple N = (P; T; T0; T1; In;Out ;C)
where P is a finite set of places, T = T0] T1 is a disjoint union of the sets of instanta-
neous transitions and timed transitions, In;Out : T ! f0 ; 1gP , and C : P [T ! Z

k

is the cost function assigning (multidimensional) firing costs to transitions and storage
costs to places.

The markings M : P ! N and the firing rules are exactly as in standard Petri nets.
Transition t is enabled at marking M iff M � In(t) (componentwise), and firing t

yields the marking M � In(t) + Out(t).
The cost of an instantaneous transition t 2 T0 is defined as Cost(M1 �!t M2) :=

C(t) and the cost of a timed transition t 2 T1 is defined by Cost(M1 �!t M2) :=
C(t) +

P
p2P M(p) � C(p). As before, the cost of a computation is the sum of all

transition costs in it.

2.3 The Priced Reachability/Coverability Problem

We study the problem of computing the minimal cost for reaching a marking in a given
target set from the initial marking.
COST-THRESHOLD

Instance: A PTPN (or PPN) N with an initial marking M0, a set of final markings F
and a vector v 2 Nk

! .
Question: Does there exist a marking Mf 2 F and a computation M0

�
�! Mf s.t.

Cost(�) � v ?
We call this problem cost-threshold-coverability ifF is upward-closed, and cost-threshold-
reachability if F is a single marking, i.e., F = fMfg for a fixed marking Mf .

Lemma 3. The cost threshold reachability/coverability problem for PPN is polynomial
time reducible to the cost threshold reachability/coverability problem for PTPN.

If all costs are non-negative (i.e., inNk rather than Zk) then the standard componen-
twise ordering on costs is a well-order and thus every upward-closed set of costs has
finitely many minimal elements. Furthermore, if we have a positive instance of cost-
threshold with some allowed cost v then any modified instance with some allowed cost
v0 � v will also be positive. Thus the set of possible costs in the cost-threshold problem
is upward-closed. In this case the Valk-Jantzen Theorem [17] implies that the set of
minimal possible costs can be computed iff the Cost-Threshold problem is decidable.

Theorem 4. (Valk & Jantzen [17]) Given an upward-closed set V � N
k, the finite set

Vmin of minimal elements of V is computable iff for any vector v 2 Nk
! the predicate

v# \ V 6= ; is decidable.

COMPUTING MINIMAL POSSIBLE COSTS

Instance: A PTPN (or PPN) N with C : P [T ! N
k, initial marking M0, and a set

of final markings F .
Question: Compute the minimal possible costs of reaching F , i.e., the finitely many

minimal elements of fv 2 Nk j 9Mf 2 F; �:M0
�
�!Mf ^ Cost(�) � vg

2.4 Petri Nets with Control-states and Petri Nets with One Inhibitor Arc

Several other versions of Petri nets will be used in our constructions. We define Petri
nets with an extra finite control. This does not increase their expressive power, since
they can easily be encoded into standard Petri nets with some extra places. However,
for some constructions, we need to make the distinction between infinite memory and
finite memory in Petri nets explicit.

A Petri net with control-states (cPN) is a tuple N = (P;Q; T; In;Out) where P
is a finite set of places, Q a finite set of control-states, T a finite set of transitions and
In;Out : T ! Q � NP .

A marking is a tuple (q;M) where q 2 Q and M : P ! N. A transition t with
In(t) = (q1 ;M1) and Out(t) = (q2 ;M2) is enabled at marking (q;M) iff q1 = q and
M1 �M . If t fires then the resulting marking is (q2;M �M1 + M2).

The reachability problem for Petri nets is decidable [12] and a useful generalization
to sets of markings was shown by Jančar [10].

Theorem 5. ([10]) Given a cPN, we can use a simple constraint logic to describe prop-
erties of markings (q;M). Any formula � in this logic is a boolean combination of pred-
icates of the following form: q = qi (the control-state is qi), M(pi) � k, or M(pi) � k,
where k 2 N. In particular, the logic can describe all upward-closed sets of markings.
Given an initial marking and a constraint logic formula �, it is decidable if there exists
a reachable marking that satisfies �.

A Petri Net with One Inhibitor Arc [15] is defined as an extension of cPN. We fix
a place p and a transition t, which are connected by a so-called inhibitor arc (p; t), and
modify the firing rule for t such that t can only fire if place p is empty. Decidability of
the reachability problem for Petri nets with one inhibitor arc has been shown in [15].
This result can be extended to the case where one place inhibits several transitions.

Lemma 6. The reachability problem for Petri nets with many inhibitor arcs (p; t1), : : : ,
(p; tk) which all connect to the same place p can be reduced to the reachability problem
for Petri nets with just one inhibitor arc.

3 Decidability for Non-negative Costs

Theorem 7. The cost-threshold coverability problem is decidable for PTPN with non-
negative costs.

Consider an instance of the problem. Let N = (P; T; In;Out ;C) be a PTPN with
C(P [T) � N

k, M0 the initial marking, F an upward-closed target set (represented
by the finite set Fmin of its minimal elements) and v = (v1; : : : ; vk) 2 Nk

! .
First, for every i, if vi = ! then we replace vi by 0 and set the i-th component of

the cost function C of N to 0, too. This does not change the result of the cost-threshold
problem. So we can assume without restriction that v = (v1; : : : ; vk) 2 N

k and let
b := max1�i�k vi 2 N. Let max 2 N be the maximal finite constant appearing on time
intervals of the PTPN N .
Our proof has two parts. In part 1 we construct a cPN N 0 that simulates the behavior of

the PTPN N w.r.t. discrete transitions. In part 2 we define an operation g on markings
of N 0 which encodes the effect of timed transitions in N .
Construction (part 1). We now construct the cPN N 0 = (P 0; Q; T 0; In 0;Out 0) that
encodes discrete transitions of N .

The set of places P = fp1; : : : ; png of N can be divided into two disjoint subsets
P = P1] P0 where 8p 2 P0: C(p) = 0 and 8p 2 P1: C(p) > 0. We call the places in
P0 free-places and the places in P1 cost-places. Let m := jP1j. Without restriction let
p1; : : : ; pm be cost-places and pm+1; : : : ; pn be free-places.

The places of N 0 are defined as P 0 := fp(j; x) j pj 2 P ^ 0 � x � max + 1g.
The index x is used to encode the age of the token. So if in N there is a token of age
x on place pj then in N 0 there is a token on place p(j; x). The number of tokens on
place p(j;max + 1) in N 0 encodes the number of tokens with ages > max on pj in N .
This is because token ages > max cannot be distinguished from each other in N . In the
following we always consider equivalence classes of markings of N by identifying all
token ages > max .

The set of control-states Q of N 0 is defined as a tuple Q = Q0 � R, where Q0 =
f0; : : : ; bgf1;:::;mg�f0;:::;max+1g. The intuition is that for every cost-place p(j; x) of N 0

the number of tokens on p(j; x) is partly stored in the control-state q(j; x) of Q0 up-
to a maximum of b, while only the rest is stored on the place p(j; x) directly. So if
place p(j; x) contains y � b tokens then this is encoded as just y � b tokens on place
p(j; x) and a control-state q with q(j; x) = b. If place p(j; x) contains y � b tokens
then this is encoded as 0 tokens on place p(j; x) and a control-state q with q(j; x) = y.
Furthermore,R = f0; : : : ; bgk and is used to store the remaining maximal allowed cost.

A marking M 0 of N 0 is given as M 0 = ((q; r);M 00) where (q; r) 2 Q and M 00 :
f1; : : : ; ng � f0; : : : ;max + 1g ! N. For every r 2 R we define a mapping fr of
markings of N to markings of N 0. Given a marking M of N , let M 0 = ((q; r);M 00) :=
fr(M) be defined as follows.

– q(j; x) = minfM((pj ; x)); bg for 1 � j � m; 0 � x � max
– M 00(j; x) = maxf0;M((pj ; x))� bg for 1 � j � m; 0 � x � max
– q(j;max + 1) = minf

P
x>max M((pj ; x)); bg for 1 � j � m

– M 00(j;max + 1) = maxf0;
P

x>max M((pj ; x))� bg for 1 � j � m
– M 00(j; x) = M((pj ; x)) for j > m; 0 � x � max
– M 00(j;max + 1) =

P
x>max M((pj ; x)) for j > m

This ensures that token numbers up-to b on cost-places are encoded in the control-state
and only the rest is kept on the cost-places themselves. Free-places are unaffected. The
parameter r 2 R assigns the allowed remaining cost, which is independent of M ,
but also stored in the finite control of M 0. The initial marking M 0

0 of N 0 is defined
as M 0

0 = fv(M0). The upward-closed set of final markings F of N is represented
by the finite set Fmin of its minimal elements. We also represent the upward-closed
set of final markings F 0 of N 0 by the finite set F 0

min of its minimal elements. Let
F 0

min :=
S

0�r�v fr(Fmin), i.e., we take the union over all possibilities of remaining
allowed (unused) cost r.

The Petri net N 0 only encodes the effect of discrete transitions of the PTPN N 0 (the
effect of timed transitions will be handled separately). The set T 0 of transitions of N 0

is defined as follows. Let t 2 T . We say that a pair of functions I;O : f1; : : : ; ng �
f0; : : : ;max + 1g ! f0; 1g are compatible with t iff 8pj 2 P = fp1; : : : ; png

– If In(t ; pj) is defined then 9=1x 2 In(t ; pj) \ f0 ; : : : ;max + 1g s.t. I(j; x) = 1
and I(j; x0) = 0 for every x0 6= x. Otherwise I(j; x) = 0 for all x.

– If Out(t ; pj) is defined then 9=1x 2 Out(t ; pj)\f0 ; : : : ;max +1g s.t. O(j; x) =
1 and I(j; x0) = 0 for every x0 6= x. Otherwise O(j; x) = 0 for all x.

The set of all these compatible pairs of functions represents all possible ways of choos-
ing the age of tokens consumed/produced by t out of the specified time intervals. All
ages > max are lumped together under max +1, since they are indistinguishable in N .

Then for every combination of matrices v1; v3 2 f0; 1gf1;:::;mg�f0;:::;max+1g and
v2; v4 2 f0; 1gf1;:::;ng�f0;:::;max+1g and every pair of functions I;O : f1; : : : ; ng �
f0; : : : ;max +1g ! f0; 1gwhich are compatible with t and every control-state (q; r) 2
Q we have a transition t0 2 T 0 with In(t 0) = ((q ; r); I 0) and Out(t 0) = ((q 0; r 0);O 0)
iff the following conditions are satisfied.

– (v1;0) + v2 = I and (v3;0) + v4 = O

– q � v1
– q0 = q � v1 + v3 2 Q0 (in particular, every component of q0 is � b).
– r0 = r � C(t) � 0 (the cost of t is deducted from the remaining allowed cost).
– I 0(p(j; x)) = v2(j; x) for 1 � j � n; 0 � x � max + 1
– O0(p(j; x)) = v4(j; x) for 1 � j � n; 0 � x � max + 1

The choice of the v1; v2; v3; v4 encodes all possible ways of splitting the effect of the
transition on places between the part which is encoded in the finite control and the part
remaining on the places. Consume v1 from the finite control and v2 from the real places.
Produce v3 in the finite control and v4 on the real places. Note that v1; v3 have a smaller
dimension than v2; v4, because they operate only on cost-places. So v1; v3 are extended
from dimension f1; : : : ;mg�f0; : : : ;max + 1g to f1; : : : ; ng�f0; : : : ;max + 1g by
filling the extra entries (the free places) with zero to yield (v1;0) and (v3;0) which can
be combined with v2; v4. The transitions cannot guarantee that cost-places are always
properly stored up-to b in the finite control. E.g., if b = 7 there could be reachable mark-
ings where a cost-place holds 5 tokens, but only 3 are encoded in the finite control while
2 remain on the place. However, proper encodings as described above are always possi-
ble. Our constructions will ensure that such non-standard encodings as in this example
do not change the final result. Intuitively, the reason is the following. Non-standard en-
codings differ from proper encodings by having more tokens on the real cost-places and
fewer encoded in the finite control. However, at key points (i.e., where timed transitions
happen) our constructions enforce that the real cost-places are empty, thus filtering out
the computations with non-standard encodings. Furthermore, by forcing the cost-places
to be empty, we ensure that all contents of cost-places are encoded in the finite con-
trol and that they are below the bound b. This makes it possible to deduct the correct
place-costs during timed transitions (see Construction (part 2) below).

Lemma 8. Let M1;M2 be markings of N . Then there is a computation � using only
discrete transitions s.t. M1

�
�! M2 with Cost(�) � v if and only if in N 0 there are

computations �0 where fr(M1) �0

�! fr0(M2) for every r; r0 with v � r and r0 =
r � Cost(�) � 0.

Proof. Directly from the construction of N 0 and induction over the lengths of �; �0. ut

Construction (part 2). The cPN N 0 only encodes the behavior of N during discrete
transitions. It does not encode the effect of timed transitions, nor the place-costs of
delays. A crucial observation is that, in computations of N , since the maximal allowed
cost v is bounded by b (componentwise), the maximal number of tokens on any cost-
place must be � b before (and thus also after) every timed transition, or else the cost
would exceed the limit v. Since in N 0 token numbers on cost-places are encoded in
the finite control up-to b, we can demand without restriction that in N 0 all cost-places
are empty before and after every simulated timed transition. These simulated timed
transitions are not encoded into N 0 directly, but handled in the following construction.

We define a (non-injective) function g on markings of N 0 which encodes the effect
of a timed transition. For technical reasons we restrict the domain of g to markings of
N 0 which are empty on all cost-places. Let ((q; r);M) be a marking of N 0 where M is
empty on all cost-places. The marking ((q0; r0);M 0) := g(((q; r);M)) is defined by

– q0(j; 0) = 0 for 1 � j � m. (No token has age 0 after time has passed.)
– q0(j; x + 1) = q(j; x) for 1 � j � m, 0 � x < max . (All tokens age by 1.)
– q0(j;max + 1) = q(j;max) + q(j;max + 1) for 1 � j � m.
– M 0(j; 0) = 0 for 1 � j � n. (No token has age 0 after time has passed.)
– M 0(j; x + 1) = M(j; x) for 1 � j � n, 0 � x < max . (All tokens age by 1.)
– M 0(j;max + 1) = M(j;max) + M(j;max + 1) for 1 � j � n.
– r0 = r �

Pm

j=1
Pmax+1

x=0 q(j; x) � C(pj) (Deduct the correct place costs).
– r � v. (Costs above the limit v are not allowed.)
– M(j; x) = 0 for 1 � j � m. (All cost-places are empty in M and thus also in M 0.)

The last two conditions ensure that g is only defined for r � v and markings where all
cost-places are empty. Also g is not injective, since ages > max are encoded as max+1.

Lemma 9. Let M1;M2 be markings of N . Then M1 !time M2 with Cost(M1 !time
M2) � v if and only if in N 0 we have fr0(M2) = g(fr(M1)) for every r; r0 with v � r

and r0 = r � Cost(M1 !time M2) � 0.

Proof. Since Cost(M1 !time M2) � v, the content of the cost-places in M1 and M2
is below b. Thus the cost places are completely encoded in the finite control in fr(M1)
and fr0(M2), while the cost-places themselves are empty. Therefore the remaining cost
r0 is computed correctly, and depends only on the finite control. The rest follows directly
from the definition of N 0 and g. ut

Lemma 10. The following three conditions are equivalent.

1. The PTPN N with M0, F and v is a positive instance of cost-threshold.
2. There exist markings M1; : : : ;Mj�1 and A1; : : : ; Aj of N with Mi

�i�! Ai+1 and
Ai !time Mi and Aj 2 F where �i consists only of discrete transitions andPj�1

i=0 Cost(�i) +
Pj�1

i=1 Cost(Ai !time Mi) � v.
3. There exist markings M 0

0 = fv(M0) and M 0
1; : : : ;M

0
j�1 and A0

1; : : : ; A
0
j of N 0

with M 0
i

�0

i�! A0
i+1 and M 0

i = g(A0
i) and A0

j 2 F 0.
Proof. Conditions 1. and 2. are equivalent by definition. For the equivalence of 2. and
3. let r0 = v, ai+1 = ri � Cost(�i) and ri = ai � Cost(Ai !time Mi). Then
M 0

i = fri(Mi) and A0
i = fai(Ai). The proof follows directly from Lemmas 8 and 9.

In the following we consider an extended notion of computations of N 0 which con-
tain both normal transitions of N 0 and applications of function g.

Let F i be the set of markings M 0 of N 0 where: (1) M 0 can reach F 0 via an extended
computation that starts with an application of function g and contains i applications
of function g (i.e., i encoded timed transitions), and (2) M 0 is 0 on all cost-places,
i.e., M 0((j; x)) = 0 for 1 � j � m and all x. The set Gi is defined analogously,
except that the extended computation must start with a normal transition of N 0. We
have G0 = fM 0 = (0;x) j M 0 �

�! M 00 2 F 0g and Gi = fM 0 = (0;x) j M 0 �
�!

M 00 = (0;x0) 2 F ig for i > 0, and F i+1 = g�1(Gi) for i � 0.
Since F is upward-closed w.r.t. the (multiset-inclusion) order on markings of N , the

set F 0 is upward-closed w.r.t. the order on markings of N 0. Therefore, all sets F i and
Gi are upward-closed w.r.t. the free-places (i.e., their projection on the free-places),
by monotonicity of Petri nets and the monotonicity of function g. Furthermore, the
markings in F i andGi are all zero on the cost-places. So F i andGi can be characterized
by their finitely many minimal elements. The finitely many minimal elements of G0

(resp. Gi) can be computed from F 0 (resp. F i) by generalized Petri net reachability
(Theorem 5) and the Valk-Jantzen Theorem (Theorem 4) applied to the Petri net N 0.

The step from Gi to F i+1 encodes the effect of a timed transition. Let Gi
min be

the finite set of minimal elements of Gi. We compute the finite set F i+1
min of minimal

elements of F i+1 as F i+1
min := g�1(Gi

min). Even though g is not injective, g�1(Gi
min)

is still finite, because Gi
min is finite and every marking in Gi

min contains only finitely
many tokens. Finally, let H l :=

S
i�l F

i. Now we can prove the main theorem.

Proof. (of Theorem 7) Given the instance of cost-threshold, we construct the Petri N 0

and the sets of markings H l for l = 0; 1; 2; : : : . The markings in H l are all empty
on the cost-places, but the sets H l are upward-closed w.r.t. the free-places. Thus, by
Dickson’s Lemma [8], the construction converges at Hy for some finite index y. By the
construction of F i we obtain that the set Hy contains all markings which are empty
on the cost-places and which can reach F 0 via some extended computation that begins
with an application of function g and costs at most v.

Thus, by Lemma 10, the instance of cost-threshold is positive iff M 0
0 = fv(M0) can

reach Hy[F 0 by normal transitions in Petri net N 0. This is decidable by Theorem 5. ut

It was shown in [15] that reachability, and thus also coverability, is decidable for
Petri nets with one inhibitor arc. However, our result on PTPN also yields a more direct
proof of decidability of the coverability problem.

Corollary 11. Given a Petri net with one inhibitor arc, an initial marking M0 and an
upward-closed set of final markings F , it is decidable if M0 !

� F .

Proof. We reduce the coverability problem for a Petri net with one inhibitor arc N to
the cost threshold problem for a PPN N 0 which is constructed as follows. Let (p; t)
be the inhibitor arc. We remove the inhibitor arc, make t a timed transition and all
other transitions instantaneous transitions. Place p has cost 1 while all other places
and transitions have cost 0. In N 0, any computation with cost 0 has the property that
transition t is only used if place p is empty. Therefore, in N 0 the set F is reachable with
cost 0 iff the set F is reachable in N .

Furthermore, by Lemma 3, the cost threshold problem for PPN is reducible to the
cost threshold problem for PTPN. Since F is upward-closed and all costs are non-
negative the problem is decidable by Theorem 7. ut

Now we consider the cost-threshold reachability problem. This is the case where F
is not upward-closed, but a fixed marking, i.e., F = fMfg.

Theorem 12. The cost-threshold reachability problem is undecidable for PTPN, even
if all costs are zero.

Proof. Directly from the undecidability of the reachability problem for TPN [16]. ut

However, for the simpler PPN model, the cost-threshold reachability problem is
equivalent to the reachability problem for Petri nets with one inhibitor arc. The reduc-
tion from Petri nets with one inhibitor arc to the cost-threshold reachability problem for
PPN is similar to the construction in Corollary 11. Now we show the other direction.

Theorem 13. The cost-threshold reachability problem for PPN is decidable.

Proof. Consider a PPN N = (P; T; T0; T1; In;Out ;C), cost v, initial marking M0
and a target marking Mf . We construct a Petri net N 0 = (P 0; Q; T 0; In 0;Out 0), with
inhibitor arcs (p0; t) (for many different transitions t, but always the same place p0),
an initial marking M 0

0 and markings M 0
f ;
dMf s.t. M 0

0 !
� M 0

f !
dMf in N 0 iff N is a

positive instance of cost-threshold.
Construction. Let v = (v1; : : : ; vk) 2 Nk

! . First, for every i, if vi = ! then we replace
vi by 0 and set the i-th component of the cost function C of N to 0, too. This does not
change the result of the cost-threshold problem. Thus we can assume without restriction
that v = (v1; : : : ; vk) 2 Nk. Let b := max1�i�k vi 2 N.

The set of places P = fp1; : : : ; png of N can be divided into two disjoint subsets
P = P1] P0 where 8p 2 P0: C(p) = 0 and 8p 2 P1: C(p) > 0. We call the places in
P0 free-places and the places in P1 cost-places. Let m := jP1j. Without restriction let
p1; : : : ; pm be cost-places and pm+1; : : : ; pn be free-places.

The set of control-states Q of N 0 is defined as a tuple Q = Q0 � R, where Q0 =
f0; : : : ; bgm. The intuition is that for every cost-place pj the number of tokens on pj is
partly stored in the j-th component of Q0 up-to a maximum of b, while only the rest is
stored on the place directly. So if place pj contains x � b tokens then this is encoded
as just x � b tokens on place pj and a control-state where the j-th component is b. If
place pj contains x � b tokens then this is encoded as just 0 tokens on place pj and a
control-state where the j-th component is x. Furthermore, R = f0; : : : ; bgk and is used
to store the remaining maximal allowed cost of the computation.

Let P 0 := P [fp0g. The extra place p0 will be used to store the sum of all cost-
places. So every marking M 0 of N 0 will satisfy the invariant M 0(p0) =

P
p2P1

M 0(p).
In particular M 0(p0) = 0 , 8p 2 P1:M

0(p) = 0.
The set T 0 of transitions of N 0 is defined as follows. Let t 2 T0. Then for every

combination of vectors v1; v3 2 N
m and v2; v4 2 N

n and every control-state (q; r) 2 Q

we have a transition t0 2 T 0 with In(t 0) = ((q ; r); I) and Out(t 0) = ((q 0; r 0);O)
iff the following conditions are satisfied. (The intuition for the vectors v1; v2; v3; v4 is

to model all possible ways of splitting the consumption/production of tokens by the
transition between tokens encoded in the finite control and tokens present on the real
places; similarly as in Construction (part 1) of the proof of Theorem 7.)

– (v1;0) + v2 = In(t), and (v3;0) + v4 = Out(t)
– q � v1
– q0 = q � v1 + v3 � (b; : : : ; b)
– r0 = r � C(t) � 0
– I(pj) = v2(pj) for j � 1 and I(p0) =

Pm

i=1 v2(pi)
– O(pj) = v4(pj) for j � 1 and O(p0) =

Pm

i=1 v4(pi)

Let t 2 T1. Then for every combination of vectors v1; v3 2 N
m and v2; v4 2 N

n and
every control-state (q; r) 2 Q we have a transition t0 2 T 0 with In(t 0) = ((q ; r); I)
and Out(t 0) = ((q 0; r 0);O) and inhibitor arc (p0; t

0) iff the following conditions hold.

– (v1;0) + v2 = In(t), and (v3;0) + v4 = Out(t)
– q � v1
– q0 = q � v1 + v3 � (b; : : : ; b)
– r0 = r � C(t)�

Pm

i=1 qi � C(pi) � 0
– I(pj) = v2(pj) for j � 1 and I(p0) =

Pm

i=1 v2(pi) = 0
– O(pj) = v4(pj) for j � 1 and O(p0) =

Pm

i=1 v4(pi)

Finally, for every (q; r) 2 Q0, we add another transition t0 to T with In(t 0) = ((q ; r);0)
and Out(t 0) = ((q ;0);0). This makes it possible to set the remaining allowed cost to
zero at any time.

For every r 2 R we define a mapping fr of markings ofN to markings ofN 0. Given
a marking M of N , let M 0 := fr(M) be defined as follows. M 0 = ((q; r);M 00) where
qi = minfM(pi); bg for 1 � i � m and M 00(pi) = maxf0;M(pi)�bg for 1 � i � m

and M 00(pi) = M(pi) for i > m and M 00(p0) =
Pm

i=1 M
00(pi). This ensures that

token numbers up-to b on cost-places are encoded in the control-state and only the rest
is kept on the cost-places themselves. Free-places are unaffected. The parameter r 2 R

assigns the allowed remaining cost, which is independent of M , but also stored in the
finite control of M 0. The initial marking M 0

0 of N 0 is defined as M 0
0 = fv(M0) and the

final marking is defined asdMf = f0(Mf).
Proof of correctness. Assume that there is a computation � of N of the form M0 !
M1 ! M2 ! � � � ! Mf such that Cost(�) � v. Then there is a corresponding
computation �0 in N 0 of the form M 0

0 ! M 0
1 ! M 0

2 ! � � � ! M 0
f !

dMf such that

M 0
i = fri(Mi), where ri = v � Cost(M0 ! � � � ! Mi) and dMf = f0(Mf). The

step M 0
f !
dMf uses the special transition that sets the remaining allowed cost to zero.

The crucial observation is that whenever a timed transition Mi
t

�! Mi+1 is used in �
then the number of tokens on every cost-place pj in Mi is � b, because Cost(�) � v.
Therefore, in M 0

i every cost-place pj is empty, since all the � b tokens are encoded into
the finite control. Thus M 0

i(p0) = 0 and the inhibitor arc (p0; t) does not prevent the
transition from M 0

i

t
�! M 0

i+1. Furthermore, the remaining allowed cost ri is always
non-negative, because, by our assumption, v � Cost(�). Thus the cost restrictions do

not inhibit transitions in �0 either. Finally, we apply the special transition which sets the
remaining allowed cost to zero and thus we reachdMf as required.

In order to show the other direction, we need a reverse mapping g from markings
M 0 of N 0 to markings M of N . For M 0 = ((q; r;M 00) we define M = g(M 0) as
follows. For cost-places pj (with 1 � j � m) we have M(pj) = M 00(pj) + qj . For
free-places pj (with j > m) we have M(pj) = M 00(pj). Assume now that we have a
computation �0 of N 0 of the form M 0

0 ! M 0
1 ! M 0

2 ! � � � ! M 0
f !

dMf . Without
restriction we can assume that the special transition which sets the remaining allowed
cost to zero is used exactly only in the last step M 0

f !
dMf , because the set of possible

computations is monotone increasing in the allowed remaining cost. In the special case
where the remaining allowed cost is already 0 in M 0

f we have M 0
f = dMf . There then

exists a computation � of N of the form M0 ! M1 ! M2 ! � � � ! Mf such that
Mi = g(M 0

i) and Cost(M0 ! � � � ! Mi) = v � ri, where M 0
i = ((q; ri);M 00

i) (for
some q 2 Q0). The crucial argument is about the timed-transition steps M 0

i

t
�!M 0

i+1.
The inhibitor arc (p0; t) in N 0 ensures that M 0

i(p0) = 0. Thus all cost-places pj are
empty in M 0

i and only the part up-to b which is encoded in the finite control part q
remains. Therefore, we deduct the correct cost C(t)+

Pm

i=1 qi�C(pi) from ri to obtain
ri+1 and so we maintain the above invariant by Cost(M0 ! � � � !Mi+1) = v� ri+1.
So we obtain Cost(M0 ! � � � !Mf) = v � rf � 0 and thus Cost(�) � v.

Finally, since all the inhibitor arcs in N 0 connect to the same place p0, the reach-
ability problem for N 0 can be reduced to the reachability problem for some Petri net
with just one inhibitor arc by Lemma 6, and this is decidable by [15]. ut

4 Undecidability for Negative Costs
The cost threshold coverability problem for PTPN is undecidable if negative transition
costs are allowed. This holds even for the simpler PPN and one-dimensional costs.

Theorem 14. The cost threshold problem for PPN N = (P; T; T0; T1; In;Out ;C) is
undecidable even if C(P) � N and C(T) � Z�0 and F is upward-closed.

Proof. We prove undecidability of the problem through a reduction from the control-
state reachability problem for 2-counter machines. We recall that a 2-counter machine
M , operating on two counters c0 and c1, is a triple (Q; �; qinit), where Q is a finite set
of control states, � is a finite set of transitions, and qinit 2 Q is the initial control-
state. A transition r 2 � is a triple (q1; op; q2), where op is of one of the three forms
(for i = 0; 1): (i) ci++ which increments the value of ci by one; (ii) ci�� which
decrements the value of ci by one; or (iii) ci = 0? which checks whether the value of ci
is equal to zero. A configuration
 of M is a triple (q; x; y), where q 2 Q and x; y 2 N.
The configuration gives the control-state together with the values of the counters c0
and c1. The initial configuration cinit is (qinit ; 0; 0). The operational semantics of M is
defined in the standard manner. In the control-state reachability problem, we are given
a counter machine M and a (final) control-state qF , and check whether we can reach a
configuration of the form (qF ; x; y) (for arbitrary x and y) from
init .

Given an instance of the control-state reachability problem for 2-counter machines,
we derive an instance of the cost threshold coverability problem for a PPN with only

q1 t
r
4 p

r
1

�2
t
r
2

t
r
1

2

p
r
3

1

c1�i

q2 t
r
5 p

r
2 t

r
3

Fig. 1. Simulating zero testing in a PPN. Timed transitions are filled. The cost of a place or
transition is shown only if it is different from 0.

non-negative costs on places and only non-positive costs on transitions; and where the
threshold vector is given by (0) (i.e., the vector is one-dimensional, and its only com-
ponent has value 0). We define the PPN N = (P; T; T0; T1; In;Out ;C) as follows. For
each control-state q 2 Q we have a place q 2 P . A token in the place q indicates that M
is in the corresponding control-state. For each counter ci we have a place ci 2 P with
C(ci) = 1. The number of tokens in the place ci gives the value of the corresponding
counter. We define the set F as (qF ; 0; 0) ". Increment and decrement transitions are
simulated in a straightforward manner. For a transition r = (q1; ci++; q2) 2 � there
is a transition r 2 T0 such that In(r) = fq1g, Out(r) = fq2 ; cig, and C(t) = 0.
For a transition r = (q1; ci��; q2) 2 � there is a transition r 2 T0 such that In(r) =
fq1 ; cig, Out(r) = fq2g, and C(t) = 0. The details of simulating a zero testing tran-
sition r = (q1; ci = 0?; q2) are shown in Figure 1. The main idea is to put a positive
cost on the counter places ci and c1�i. If the system ‘cheats’ and takes the transition
from a configuration where the counter value ci is positive (the corresponding place
is not empty), then the transition will impose a cost which cannot be compensated in
the remainder of the computation. Since the other counter c1�i also has a positive cost,
we will also pay an extra (unjustified) price corresponding to the number of tokens in
c1�i. Therefore, we use a number of auxiliary places and transitions which make it
possible to reimburse unjustified cost for tokens on counter c1�i. The reimbursement
is carried out (at most completely, but possibly just partially) by cycling around the to-
kens in c1�i. Concretely, we have three transitions tr1; t

r
2; t

r
3 2 T0 and two transitions

tr4; t
r
5 2 T1. Furthermore, we have three extra places pr1; p

r
2; p

r
3 2 P . The costs are given

byC(tr2) = �2,C(pr3) = 2,C(c1�i) = C(c1�i) = 1; while the cost of the other places
and transitions are all equal to 0. Intuitively, N simulates the transition r by first firing
the transition tr4 which will add a cost which is equal to the number of tokens in ci and
c1�i. Notice that the (only) token in the place qi has now been removed. This means
that there is no token in any place corresponding to a control-state in M and hence the
rest of the net has now become passive. We observe also that tr4 puts a token in pr1. This
token will enable the next phase which will make it possible to reclaim the (unjustified)
cost we have for the tokens in the place c1�i. Let n be the number of tokens in place
c1�i. Then, firing tr4 costs n. We can now fire the transition tr2 m times, where m � n,

thus moving m tokens from c1�i to pr3 and gaining 2m (i.e., paying �2m). Eventually,
tr1 will fire enabling tr3. The latter can fire k times (where k � m) moving k tokens
back to c1�i. The places pr3 and c1�i will now contain m� k resp. n + k �m tokens.
Finally, the transition tr5 will fire, costing 2(m � k) + (n + k � m) = n + m � k,
moving a token to q2, and resuming the “normal” simulation of M . The total cost `
for the whole sequence of transitions is n � 2m + n + m � k = 2n � m � k. This
means 0 � ` and that ` = 0 only if k = m = n, i.e., all the tokens of c1�i are moved
to pr3 and back to c1�i. In other words, we can reimburse all the unjustified cost (but
not more than that). This implies correctness of the construction as follows. Suppose
that the given instance of the control-state reachability problem has a positive answer.
Then there is a faithful simulation in N (which will eventually put a token in the place
qF). In particular, each time we perform a transition which tests the value of counter ci,
the corresponding place is indeed empty and hence we pay no cost for it. We can also
choose to reimburse all the unjustified cost paid for counter c1�i. Recall that all tran-
sitions are instantaneous except the ones which are part of simulations of zero testing
(the ones of the form tr4 and tr5). It follows that the computation has an accumulated
cost equal to 0. On the other hand, suppose that the given instance of the control-state
reachability problem has a negative answer. Then the only way for N to put a token in
qF is to ‘cheat’ during the simulation of a zero testing transition (as described above).
However, in such a case either m < n or k < n. In either case, the accumulated cost
for simulating the transition is positive. Since simulations of increment and decrement
transition have zero costs, and simulations of zero testing transitions have non-negative
costs, the extra cost paid for cheating cannot be recovered later in the computation. This
means that the accumulated cost for the whole computation will be strictly positive, and
thus we have a negative instance of the cost threshold coverability problem. ut

Corollary 15. The cost threshold problem for PTPN N = (P; T; T0; T1; In;Out ;C)
is undecidable even if C(P) � N and C(T) � Z�0 and F is upward-closed.

Proof. Directly from Theorem 14 and Lemma 3. ut

5 Conclusion
We have considered Priced Timed Petri nets (PTPN), which is an extension of discrete-
timed Petri nets with a cost model. We have shown decidability of the priced cover-
ability problem when prices of places and transitions are given as vectors of natural
numbers. On the other hand, allowing negative costs, even the priced coverability prob-
lem becomes undecidable even for the simpler model of Priced Petri Nets (PPNs) which
is an extension of the the classical model of Petri nets with prices.

The (un)decidability results of can be extended in several ways, using constructions
similar to the ones provided in the paper. For instance, if we consider a model where we
allow control-states and where the place-costs depend on the control-state, then the cov-
erability problem is undecidable for PPNs even if there are no costs on the transitions.
In fact, the result can be shown using a simplified version of the proof of Theorem 14.
The idea is to use the control-state to avoid paying wrongly-paid costs for the counter
which is not currently tested for zero. Furthermore, if all place-costs are 0, then the
cost threshold reachability/coverability problem can be encoded into the standard Petri

net problems, even if transition-costs can be negative. Finally, if all places have non-
positive costs then everything is still decidable, even for general integer transition costs.
The reason is that, instead of negative place costs, we could in every time-passing phase
‘cycle’ the tokens on cost-places at most once through negative transitions. Since the
costs are negative, there is an ‘incentive’ to do this cycling fully.

A challenging problem which we are currently considering is to extend our results
to the case of dense-timed Petri nets.

References

1. P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. ICATPN’2001: 22nd Int.
Conf. on application and theory of Petri nets, volume 2075 of Lecture Notes in Computer
Science, pages 53 –70, 2001.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–
235, 1994.

3. R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In HSCC,
pages 49–62, 2001.

4. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Trans. on Software Engineering, 17(3):259–273, 1991.

5. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reachability problem of
weighted timed automata. Formal Methods in System Design, 31(2):135–175, 2007.

6. F. D. J. Bowden. Modelling time in Petri nets. In Proc. Second Australian-Japan Workshop
on Stochastic Models, 1996.

7. D. de Frutos Escrig, V. V. Ruiz, and O. M. Alonso. Decidability of properties of timed-arc
Petri nets. In ICATPN 2000, volume 1825 of Lecture Notes in Computer Science, pages
187–206, 2000.

8. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. J. Math., 35:413–422, 1913.

9. C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A unified high-level Petri net formalism
for time-critical systems. IEEE Trans. on Software Engineering, 17(2):160–172, 1991.

10. P. Jančar. Decidability of a temporal logic problem for Petri nets. Theoretical Computer
Science, 74:71–93, 1990.

11. K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn.
As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In Proc.
13th Int. Conf. on Computer Aided Verification, volume 2102 of Lecture Notes in Computer
Science, 2001.

12. E. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal of
Computing, 13:441–460, 1984.

13. P. Merlin and D. Farber. Recoverability of communication protocols - implications of a
theoretical study. IEEE Trans. on Computers, COM-24:1036–1043, Sept. 1976.

14. R. Razouk and C. Phelps. Performance analysis using timed Petri nets. In Protocol Testing,
Specification, and Verification, pages 561–576, 1985.

15. K. Reinhardt. Reachability in Petri nets with inhibitor arcs. In Proc. RP08, 2nd Workshop
on Reachability Problems, 2008.

16. V. V. Ruiz, F. C. Gomez, and D. de Frutos Escrig. On non-decidability of reachability
for timed-arc Petri nets. In Proc. 8th Int. Workshop on Petri Net and Performance Mod-
els (PNPM’99), 8-10 October 1999, Zaragoza, Spain, pages 188–196, 1999.

17. R. Valk and M. Jantzen. The residue of vector sets with applications to decidability problems
in Petri nets. Acta Inf., 21, 1985.

Appendix

Lemma 3. The cost threshold reachability/coverability problem for PPN is polynomial
time reducible to the cost threshold reachability/coverability problem for PTPN.

Proof. Given a PPN N = (P; T; T0; T1; In;Out ;C), an initial marking M0 a set of
final markings F and a vector v 2 Nk

! , we construct in polynomial time a PTPN N 0 =
(P 0; T 0; In 0;Out 0;C 0), an initial marking M 0

0 and a set of final markings F 0 s.t. N 0, F 0,
v is a positive instance of cost-threshold iff N , F , v is.
Construction. Let P 0 = P] fp0; p1g, T 0 = T] ft1g,

For any instantaneous transition t 2 T0 we have: In 0(t ; p) = [0 : !) if In(t)(p) =
1 . Out 0(t ; p) = [0 : !) if Out(t)(p) = 1 . Furthermore, In 0(t ; p0) = [0 : !) =
Out 0(t ; p0).

For any timed transition t 2 T1 we have: In 0(t1 ; p0) = [0 : !), Out 0(t1 ; p1) =
[0 : 0], In 0(t ; p) = [0 : !) if In(t)(p) = 1 , Out 0(t ; p) = [0 : !) if Out(t)(p) = 1 ,
In 0(t ; p1) = [1 : 1] and Out 0(t ; p0) = [0 : !).

The cost function C 0 is defined by C 0(p) = C(p) for all p 2 P , C 0(t) = C(t) for
all t 2 T , C 0(p0) = C 0(p1) = 0, and C(t1) = 0.

The initial marking M 0
0 is a multiset over P 0 � N which contains (p; 0) exactly n

times iff M0(p) = n. Additionally, M 0
0 contains (p0; 0).

The set of final markings F 0 contains exactly all such multisetsM 0 over P 0�N such
that there is a corresponding marking M 2 F s.t. 8p 2 P:

P
n2NM

0((p; n)) = M(p)
and
P

n2NM
0((p0; n)) = 1 and

P
n2NM

0((p1; n)) = 0. In particular, if F is upward-
closed then so is F 0.
Correctness. The construction ensures that, except for place p1, the age of tokens in N 0

does not matter. Instantaneous transitions of N are simulated directly by a transition in
N 0 while timed transitions are simulated in two steps where the correct delay of exactly
one time unit is enforced by the age of the token on p1. Thus, for every run of N with
a given cost, there is a run of N 0 with the same cost.

On the other hand, N 0 can have some runs with extra delays which do not corre-
spond to any run in N . However, these extra delays do not enable any new transitions,
but only leads to higher costs and/or deadlocks (with a token of age > 1 on p1). Thus if
N does not have a run to reach F within the given cost v then N 0 does not have a run
to reach F 0 within cost v either. ut

Lemma 6. The reachability problem for Petri nets with many inhibitor arcs (p; t1), : : : ,
(p; tk) which all connect to the same place p can be reduced to the reachability problem
for Petri nets with just one inhibitor arc.

Proof. Let N be a Petri net with inhibitor arcs (p; t1); : : : ; (p; tk), initial marking M0
and final marking Mf . We construct a new net N 0 from N as follows. Add two new
places x and y and add x to the input and output places of all transitions, except for
t1; : : : ; tk. Remove all inhibitor arcs (p; t1); : : : ; (p; tk). Add a new transition t with
input place x, output place y and a single inhibitor arc (p; t). For every i 2 f1; : : : ; kg
we add y to the input places of ti and x to the output places of ti. The initial marking
M 0

0 of N 0 is defined by M 0
0(x) = 1, M 0

0(y) = 0 and M 0
0(p0) = M0(p0) for all other

places p0. The final marking M 0
f of N 0 is defined by M 0

f (x) = 1, M 0
f (y) = 0 and

M 0
f (p0) = Mf (p0) for all other places p0. The new net N 0 has just one inhibitor arc

(p; t) and simulates the behavior of N with possibly some additional deadlocks (with a
token on place y). We get that M0 !

� Mf in N iff M 0
0 !

� M 0
f in N 0. ut

