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Aquitaine Institut for Cognitive and Integrative Neuroscience, UMR 5287, Bordeaux, France, 3 Institute for Adaptive and Neural Computation, University of Edinburgh,

Edinburgh, United Kingdom

Abstract

Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder,
pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making
performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may
provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa
gambling task – the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these
rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility,
and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single
behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the
same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly
predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the
combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that
a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient
learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk
options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making
tasks and may predispose to mental disorders with similar symptoms.
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Introduction

Several mental disorders related to poor executive functioning,

such as substance abuse, pathological gambling, attention-deficit

hyperactivity-disorder or mania, share common deficits and

behavioral traits. Impulsiveness, risk taking [1] or inflexible

behavior [2,3,4,5], are often present, suggesting that they may

jointly contribute to pathological behavior. Poor decision making

is a hallmark of these mental disorders as these patients are

commonly impaired in the Iowa Gambling Task (IGT). This task

measures the capacity to balance risks and gains and to resist

immediate gratification in order to receive a larger long-term gain

[6]. Interestingly, within a healthy population, a subset of

individuals described as impulsive and sensation seekers display

poor decision making in this task [7], supporting the notion that a

continuum may exist between normality and pathological

conditions. Accordingly, neuropsychological characteristics lead-

ing to poor decision making in healthy individuals are probably

shared by clinical poor decision makers, and could be a potential

risk factor for developing related mental disorders [8,9].

We have developed a single-session Rat Gambling Task (RGT)

that reproduces the IGT principles [10,11,12]. In this uncertain

and conflicting situation, individuals without prior knowledge of

the outcomes must gradually learn that the less immediately

rewarding options are also less risky and more advantageous in the

long term.

Using lesion studies, we have recently shown that good

performances in the RGT depend of the functional integrity of

several areas of the prefrontal cortex [12]. Like humans, a majority

of rats are good decision makers (good DM) and choose the best

options, whereas a minority prefers the worst options. These inter-

individual differences are stable over time, specific to decision-

making processes and reproducible across groups [11]. We

previously showed that, like humans, rats that are poor decision

makers (poor DM) are risk-prone and more sensitive to reward

than good DM [11]. However, although these traits were clearly

associated with poor decision making in the RGT, they were not

sufficient to dissociate good from poor performers individually, as

some good DM were also risk-takers and/or higher reward

seekers. Therefore, additional factors, such as inflexibility and

impulsivity, could be involved in combination with these traits.

Here, we present an analysis of how inter-individual differences

in clinically relevant behavioral traits may contribute to poor and

good decision making in the RGT. We show that a combination of
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several independent behavioral and cognitive characteristics in

one individual, namely risk-proneness, motivation for reward,

motor impulsivity and behavioral inflexibility, has a cumulative

effect and is highly predictive of performance in the RGT. To

quantitatively explore the impact of these traits on learning and

decision-making, we developed a computational model of the

RGT based on the Temporal Difference (TD) learning algorithm

[13,14,15]. The basic TD framework was extended to take into

account risk seeking, reward seeking and cognitive inflexibility and

to estimate those behavioral traits in individual rats. The model

provides a possible explanation of their impact on learning and

decision-making performances in the RGT.

Materials and Methods

Ethics Statement
All procedures were conducted in strict accordance with the

2010-63-EU and with approval of the Bordeaux University

Animal Care and Use Committee (Permit number: 5012087-A).

Behavior
Subjects. Male Wistar Han rats (n = 29; Charles River, France)

were 12-13 weeks old at the beginning of the experiment. They

were housed in groups of four in a temperature (23uC) and

humidity-controlled room (60%) on an inverted 12 hr light/dark

cycle (lights on at 20:30). Tests were conducted during the dark

phase of the cycle. A week before the beginning of the

experiments, animals were handled every day. Rats had free

access to food and water except during impulsivity and decision-

making tests during which they were moderately food deprived

(95% free feeding weight). The configuration of the apparatus and

the order of testing were chosen to minimize any possible

interference between protocols (see Figure 1 for order and

duration of tests). The whole behavioral testing phase lasted 6

months (178 days).

Decision-making. The RGT requires successive choices

among four options in an operant cage [10,11]. Two of the four

options are associated with a higher immediate gain, but are

disadvantageous in the long run due to higher unpredictable

penalties (time-outs). The experiments were performed in twelve

polyvalent conditioning boxes (Imetronic, Pessac, France;

28630634 cm). Boxes were equipped with four nose-poke holes,

dimly illuminated within the hole with a white LED. These holes

were located on a curved wall on one side of the box, equidistant

to a food magazine situated on the opposite wall. Each hole was

equipped with an infrared detector connected to an external

dispenser delivering food pellets (45 mg, formula P, Sandow

scientific, USA). Data collection was automated using a control

software (Imetronic, Pessac, France) running on a computer

outside the testing room. At least thirty minutes before each

session, the rats were placed in the light-attenuated and

temperature-controlled (23uC) experimental room.

Training: During the training phase, the rats learned to

associate two consecutive nose-pokes in one of the four illuminated

holes with the delivery of one or two food pellets in the magazine.

First, the rats had to associate a single nose-poke in any of the four

illuminated holes with the delivery of one food pellet in the

magazine. After a nose poke, only the selected hole remained

illuminated, but all were inactivated until the rat collected the food

reward. This procedure continued daily until rats obtained 100

pellets within a session (30 min cut-off). Then two consecutive

nose-pokes in the same hole were required to obtain food, to

ensure that the selection of the hole was a voluntary choice. After

reaching the same criterion, rats were submitted to two final 15

min training sessions. In the first session, two pellets were delivered

after a choice was made (maximum 30 pellets). This session

habituated the rats to the quantity of pellets which could be

obtained during the test. A second session followed, delivering only

one pellet at a time (maximum 15 pellets). The number of reward

deliveries was reduced to avoid reduction of sampling and the

development of a preference for a hole. The training phase usually

lasted 5-7 days and tests were performed the following day.

Test: Rats could freely choose between four nose-poke holes (A-

D) during a one-hour test session (or max. 250 pellets obtained).

Choices C and D vs A and B led to the immediate delivery of one

vs two pellets, but choices A and B could be followed by longer,

unpredictable penalties (222 s and 444 s time-outs) compared to

choices C and D (12 s and 6 s). Penalties occurred at a low

probability (J) for choices B and C, and at a high probability (K)

for choices A and D (Figure 2). During the penalty, all lights were

switched off and nose-poke holes were disabled, but the chosen

hole remained illuminated to facilitate association between each

choice and its consequences. A brief extinction of this light (1 sec)

signaled the end of the time-out. The theoretical maximum gain

was the same for advantageous choices C and D, and five times

higher than for disadvantageous choices A and B.

Good and poor decision makers were differentiated on the basis

of the percentage of advantageous choices (.70% and ,30%

respectively) during the last 20 minutes of test. The remaining rats

Figure 1. Order and duration of behavioral tasks. The number of days (d) of each behavioral testing phase (below arrow) and inter-test periods
(grey zones) are indicated. RGT: Rat Gambling task, FI-EXT: multiple fixed-interval/extinction schedules, Emerg. Task: Light-dark emergence task,
FCN16: Fixed consecutive number 16 cue schedule, DDT: Delay discounting task.
doi:10.1371/journal.pone.0082052.g001

Figure 2. Principle of the Rat Gambling Task. Rats can nose-poke
among four different holes (A, B, C and D) in an operant cage, to earn
food reward (1-hour test). The selection of one option is immediately
rewarded, but can also be followed by a penalty (time-out) of variable
duration, according to different probabilities. Two options (C, D) are
equally more advantageous than the other two (A, B), which are equally
disadvantageous in the long term.
doi:10.1371/journal.pone.0082052.g002
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were undecided with intermediate scores (between 30% and 70%

advantageous choices) [10,11,12]. The mean latency to collect

food pellets after a choice was taken as an indicator of the rats

motivation for the food reward [11].

Behavioral flexibility. In a second stage, the contingencies

for A-B and C-D were spatially reversed to assess behavioral

flexibility [11]. To reduce spatial preferences related to the

previous experience in the RGT, animals were first given a new

training session (100 pellets or 30 min cut-off) during which only

one hole at a time, pseudo-randomly, was illuminated and

operating at a time, each nose-poke delivering 1 pellet. The test

in reversed condition was done the following day, in the same

conditions as the RGT, except that options A-B and options C-D

were spatially exchanged.

Performances were calculated as the mean percentage of

choices for the preferred contingency during the RGT. Behaviors

were differentiated on the basis of the time course of choices and

flexibility. The observed behaviors were classified into three

categories: flexible behavior, with progressive reversion towards

the new location of their favorite options (.60% of choices during

last 20 min), undecided behavior (choice between 40% and 60%)

and inflexible behavior with perseveration of previously learned

choices (,40% of choices).

Impulsive actions: anticipatory hyperactivity and
perseveration. The multiple Fixed-Interval/Extinction sched-

ules of reinforcement (FI-EXT) was performed during a single

session in operant chambers equipped with one lever. The

chambers used for this test were different from the ones used in

the RGT [16]. Two periods of fixed-interval schedule of

reinforcement (FI) alternated with two periods of extinction

(EXT) (FI-EXT-FI-EXT). Impulsive responses corresponded to

lever presses during frustrating periods where no reward was

available.

The apparatus consisted of eight sound-insulated light-tight

outer chambers each containing a two lever conditioning box

(Imetronic, Pessac). The boxes (32632622 cm) were constructed

from white plastic panels with a Plexiglas door. They were

equipped with a fan providing a background noise. Each box was

permanently illuminated by a diffuse 2 lux light source located in

the middle of the ceiling (house light). The floor consisted of 5 mm

diameter stainless steel bars spaced 1.5 cm apart. Two stainless

steel levers protruded horizontally 1 cm from the wall situated at

the left of the door, 16 cm apart and 6 cm above the grid floor. A

tray was situated centrally on the opposite wall. Food pellets

(45 mg, formula P, Sandow scientific, USA) were delivered in the

tray by a food dispenser. A program (Imetronic, Pessac) controlled

the chambers and collected the data on a computer situated

outside the testing room.

Training and test: During FI, the house light was on and the

first lever press after a designated time-interval was reinforced by a

food pellet. A light above the lever was on when the pellet was

available until the rat visited the tray. During EXT (5 min), the

house light was off and no pellet was delivered. During each

session, the FI and EXT components operated twice in

alternation. Rats were first trained with four sessions with a 30s

FI-EXT schedule. Then, rats were trained for four sessions on a 1

min FI-EXT schedule followed by three sessions with a 2 min FI-

EXT schedule. A maximum of 7 pellets per FI (14 pellets in total)

were delivered during the 1 and 2 min FI conditions. Finally, rats

were tested for four sessions on a 1 min FI-EXT schedule to assess

adaptability to a change for a shorter FI phase. This latter

condition has been chosen for analysis.

Data measure: The mean number of lever presses during each

FI and each EXT conditions was recorded. As previously

described [16], data from the initial FI after the start of the

session, as well as that from the first interval following the first

EXT were excluded because the behavior during these intervals

might deviate from those during the other intervals. The total

mean number of lever press, the number of visits to the empty tray

as well as the speed in collecting pellets were also measured for FI

and EXT.

Impulsive actions: premature responses. The Fixed

Consecutive Number of 16 lever press schedule (FCN16) measures

behavioral inhibition in operant chambers by testing the rat’s

ability to carry out a long chain of sequential lever presses before

obtaining a reward [17]. The schedule required a fixed minimum

number of 16 responses on one lever (FCN lever), signaled by a

cue light, before a response on the second lever (Reinforcement

lever) resulted in the delivery of one food pellet. Impulsivity was

reflected by the proportion of prematurely ended chains of presses

on the FCN lever. These chains reset the count and were not

rewarded. Chains longer that 16 responses were scored as

perseveration.

The operant chambers used for FCN16 testing were similar to

the ones used for the FI-EXT schedule, except that they had 2

levers situated on the wall opposite to the food magazine. A cue

light above the right lever was also added. The reinforcement

lever, much less used than the FCN lever, was the one previously

used in the FI-EXT schedule.

Training: On the first day, only the reinforcement lever was

available and every press resulted in the delivery of a food pellet in

the tray. The rats quickly obtained at least 100 pellets within 40

min (criterion). The following days, both levers were available and

the light above the FCN lever was turned on and rats were

required to press the FCN lever first and then to press the

Reinforcement lever to obtain food (FCN1). The cue light was

switched off when the rats had completed the number of

consecutive presses required on the FCN lever to obtain food.

The cue light signaled the completion of the response requirement

to avoid confounds related to time estimation [17].

This cue light was turned on again when rats visited the tray. If

the chain was shorter than the number required, the rat had to

start a new chain. If the chain was longer, it had no consequence,

and the pellet was delivered when the rat pressed the reinforced

lever. When 100 pellets were obtained within a session (40 min

cut-off), the FCN requirement was progressively increased to 2, 3,

5, and then 8 and 12 using a less strict criterion (45-min cut-off and

at least 70 pellets) to avoid overtraining. Rats that failed to reach

the criterion in FCN5 after 20 training sessions were excluded

from this task. Training under FCN12 lasted a minimum of two

consecutive 30-min sessions until rats had reached a stable level of

performance.

Test: Rats were tested using the same procedural conditions as

in training but with a FCN requirement of 16 lever presses

(FCN16) during three consecutive sessions (30 min or 100 pellets

cut-off). A rewarded chain of lever presses corresponded to 16 or

more lever presses executed on the FCN lever before pressing the

reinforced lever.

Data measure: Only data from the third session of FCN16 were

analyzed because they revealed the largest inter-individual

behavioral differences between good and poor decision makers.

Impulsivity in this task is reflected by a low percentage of rewarded

chains (,70%). Among rewarded chains, some were just as long as

necessary (16 presses) and reflect high response efficiency, whereas

some others exceeded the number of presses required and reflect

low response efficiency. Thus, response efficiency was estimated by

the number of FCN lever presses divided by the total number of

food pellet consumed. The number of sessions needed to reach the

Elucidating Poor Decision-Making
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test phase (learning score) and response rate (total number of each

lever responses per min) were also considered. The distribution of

the mean number of chain of lever presses according to their

length was analyzed.

Impulsive choice: delay discounting. The Delay Dis-

counting Task (DDT) measures impulsive choice in an operant

chamber by assessing the preference for an immediate small

reward (one pellet, when pressing one of the levers) over a larger

one delivered after a delay (5 pellets, when pressing the other

lever). The delay preceding the delivery of the larger reinforce-

ment was progressively increased between sessions.

The operant chambers were the same as those used for the

RGT, except that the curved wall was replaced by a straight one

equipped with two levers facing the food magazine on the opposite

wall. The house light, two cue-lights above the two levers and one

cue light in the tray of the food magazine were available and could

be turned on and off depending of the procedure.

Training: During training, a press on the right lever (L1)

resulted in the immediate delivery of one food pellet whereas a

press on the left lever (L5) readily delivered five pellets. Given that

the rats were previously trained in the FCN16 schedule that also

used two levers (the previous FCN lever being now the L1 lever), a

training period was conducted in order to obtain stable

performances with no interference from previous requirements.

This training period lasted until the rats made more than 70% L5

selections with less than 15% variation in this score on 2

consecutive sessions (in total, 3 sessions were necessary). Whenever

an operant lever press was made, a light above this lever was

switched on for 1s. Three seconds after food delivery, the

magazine light was turned on for 60s, during which time

additional presses were without consequence (time-out). The end

of this time-out and the beginning of a new trial was signaled by

turning off the food magazine light as well as the house light. The

duration of the time-out was adjusted such that the duration of

each trial was the same whichever lever was chosen.

Test: During the test phase, a press on L1 immediately delivered

one food pellet, and was followed by a 60s time-out, whereas a

delay was inserted between L5 pressing and the delivery of the five

pellets. During this delay, the light above L5 lever remained on

until the pellets were delivered, then a time-out (60s minus the

length of the delay) immediately followed food delivery. The delay

was fixed for a given daily session and increased progressively over

the days by 10s from 0 to 40s according to a criterion of stability:

scores over two consecutive sessions should not vary by more than

10%. All sessions ended when 100 pellets had been delivered.

Data measures: Percentage of L5 choice, total mean number of

lever presses, and presses during the delay and time-out periods

were measured. These parameters were calculated for each delay

as the mean of the last two stable sessions.

Risk taking. The light-dark emergence test allows assessment

of spontaneous risk taking behavior in rats [11]. Exiting from a

dark, safe compartment to a brightly illuminated one is a risky and

stressful situation for a rat. This test was performed in a box

(40640635 cm) with two small equal compartments that limit

exploratory behavior. An aperture (12631 cm) enabled the rats to

pass from one compartment to the other. One was completely

enclosed by black opaque plastic sides, with a lid of the same

material, while the other was white, had no lid, and was

illuminated (560 lux). The rat was placed in the illuminated

compartment facing the wall opposite the door. Rat was free to

explore the two compartments of the apparatus during a single 10

minute session. Rats were tested in the middle of the dark phase

between 10:00a.m and 1:00p.m.

Data measures: From rat first entrance in the dark box, the

latency to emerge from this compartment to the illuminated one

was recorded (600s cut-off). Risk assessments were evaluated by

number of body stretching and by head protruding in the light

compartment, with at least the hind limb remaining in the safe

compartment. Because these two parameters are correlated with

the number of visits of the extremity of the open arms of an

elevated plus-maze, which is the more risky area of this task (see

[11]), we considered them as a measure of risk-taking. Proportions

of visits and time spent in the dark compartment (%) were also

measured.

Analysis of individual differences. For each test, the

proportion of rats with scores above or below the median of the

whole population was recorded. These measures were used to

compare good and poor DM subgroups and to identify behavioral

parameters that could discriminate between the two groups. The

scores measured in each of the four individual tasks in which good

and poor DM differed were ranked and then summed across the

four tasks to produce a global index for each rat.

Statistical analyses of behavioral data. Student’s t-tests

were used to compare subgroup scores in the RGT (mean 6

s.e.m.) with indifference level. Comparisons of scores between

good and poor decision making groups were made using the non-

parametric Mann-Whitney test (U). Correlations between scores

were evaluated using the non-parametric Spearman correlation

test (Statistica, Statsoft 7.1). Comparisons of proportions of

individuals were conducted using the non-parametric Fisher exact

test (StatXact 9).

Computational model
Temporal Difference learning model. The environment

of the RGT was modelled using a Markov decision process. The

four possible choices (actions) in the task lead to different rewarded

states s (i.e. high reward ‘r = 2 food pellets’ for choices A & B or a

low reward ‘r = 1 food pellet’ for choices C & D). Each of these

states is then followed by a probabilistic transition to the penalty

associated with the reward state s (penalty transition probabilities

are K, J, J, K for the A, B, C and D states respectively).

Penalties correspond to time-outs during which no food can be

obtained. In the absence of penalties, rats obtain and consume on

average one food pellet in nine seconds (depisode = 9 s). Therefore,

time-outs of duration dtimeout(s) can be expressed in terms of a gain

loss (in units of food pellets) equivalent to an immediate penalty

defined as:

plty sð Þ~ dtimeout sð Þ
depisode

ð1Þ

This results in penalty values of 250, 225, 24/3, 22/3 food

pellets for the states A, B, C, and D respectively.

The reward received after taking action a in state s is described

by a state-action pair value Q(s,a), which gradually comes to reflect

the ’goodness’ of selecting action a when in state s [22224]. In this

framework, the agent learns the value corresponding to each state-

action pair Q(s,a) by updating its expectations of the reward Q(s,a)

towards the reward received the last time action a was chosen in

state s. This updating is based on the prediction error between the

predicted reward for the state-action pair Q(s,a) and the reward

actually received r:

Elucidating Poor Decision-Making
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Q st,atð Þ/Q st,atð Þza rtz1{Q st,atð Þð Þ ð2Þ

where a is the learning rate parameter, rt+1 is the reward

received after choosing action a, Q(st,at) is the current estimate of

the value of choosing action a in state s at time t [23]. This learning

process causes Q(s,a) to gradually approach the real value of

choosing action a. No temporal discounting parameter was

introduced in this model as individual trials were considered to

be independent each of them leading to immediate reward

consumption as well as possible penalties.

Learning model with behavioral traits. We have

extended this basic framework to account for risk seeking, reward

seeking, and cognitive inflexibility.

Modeling cognitive inflexibility. The cognitive inflexibility trait

is modelled for simplicity by adjusting the learning rate parameter

a: a is split into two separate components, an initial learning rate

parameter a 0 and an exponential decay with time constant t0,

which gradually reduces the learning rate across the session:

a/a0
:e

{ t
t0 ð3Þ

Parameter a0 is comprised between 0 (no learning) and 1.

Parameter t0 determines how quickly the agent stops learning and

becomes insensitive to the reward prediction error. Each rat is

described by particular values of a 0 and t0 and is thus

characterised by a unique learning rate profile. Individuals with

low a0 and/or low t0 describe rats that are inflexible. A further

global index of flexibility is given by the integration of a over time.

We are aware that recent modelling studies have suggested using a

state-splitting mechanism [18,19] to account for the commonly

observed rapid recovery of performances during re-instatement of

learned contingencies after extinction. However, our experiments

did not address the recovery of the initial RGT conditions after the

reversal. Therefore, implementing the state-splitting mechanism

would have greatly increased the model complexity (i.e. number of

free parameters) without improving the fit to the data.

Modeling reward seeking behavior. The reward seeking trait is

introduced as a modulation of the magnitude of the actual rewards

rt by a multiplicative weight:

rt/v:rt ð4Þ

Values of v . 1 correspond to the agent representing the

reward values as higher than they really are. It was shown

experimentally that poor decision makers were able to perform

optimally, similar to the good decision makers, in a penalty-only

version of the RGT. Therefore, sensitivity to penalty was left

constant across animals. In the RGT, rewards are equal to either

one or two. Therefore, modelling reward seeking as a multipli-

cative weight on the true reward provides the simplest way to

describe the transformation from objective to subjective reward

values [20].

Modeling risk seeking. Following previous work [21], the

behavioral trait of risk seeking (or risk aversion) is implemented

by adding a positive (or negative) component to the reward that is

proportional to the risk level of the action. We define the risk level

associated with an action a as the standard deviation of penalty

values experienced by the agent each time it has taken action a:

splty st,að Þ~ 1

n{1

Xn

i~1

plty si,að Þ{plty s,að Þ
� �2

 !1
2

ð5Þ

where n denotes the number of times the action a was taken

from the start of the session and plty s,að Þ is the average of past

penalties:

plty s,að Þ~ 1

n

Xn

i~1

plty si,að Þ ð6Þ

Therefore, the combination of reward seeking and risk seeking

is modelled replacing the reward by:

rt/v:rtzr:splty st,að Þ ð7Þ

where r controls the strength of the risk seeking trait and is

unique to each individual rat. A positive value denotes risk-seeking

while a negative value corresponds to risk aversion. We choose to

model risk in this form, in contrast to some other methods

[22,23,24], as the present form requires only one parameter and

allows learning to reach larger asymptotic values in risky

situations.

Final learning model. The resulting model is a TD learning

algorithm where risk seeking and reward seeking traits affect the

value of rewards, while cognitive inflexibility controls the rate of

learning. Putting all the traits together, the learning rule is:

Q(st,at)/Q(st,at)z

a0
:e

{ t
t0 r:splty st,að Þzv:rt{plty st,að Þ
� �

{Q(st,at)
� � ð8Þ

All actions values are initialised to zero prior to learning.

Decision-making. Actions are selected according to a Softmax

process, by assigning a probability of selection to each available

action p(st,a) depending on the value of all available states:

p st,að Þ~ e
Q(st ,a)

ePn
i e

Q(st ,i)
e

ð9Þ

where e is a temperature parameter which controls the amount

of exploration. A high level of exploration is imposed to all subjects

during the first 10 min of simulation to ensure that all the options

are initially sampled (by analogy with the behavioural procedures).

Parameter estimation & model fitting. The performance of this

model during the RGT is fitted to the performance profile of each

individual rat using Maximum Likelihood, in order to extract a set

of parameters that best describes the rat’s behavior (i.e. a set of

four parameters influencing learning a 0, t, v, r and one

parameter influencing the exploration/exploitation trade-off e):

ĥhmle~argmax‘ hjx10, � � � ,x60ð Þ ð10Þ
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where ‘ hjx10, � � � ,x60ð Þdenotes the likelihood of the data under

the model, h are the model parameters, and x10 to x60 are the

experimental performance levels (percentage of advantageous

choices) of the rat over successive 10 min blocks. The likelihood is

computed by running the RGT model 50 times for a given set of

parameters. Using the performance profiles extracted for each

model iteration, we calculate the probability distribution of getting

an advantageous choice at every 10 minutes time-bin. The

maximum likelihood is the set of parameters that gives the highest

probability of resulting in the observed rat performance profile at

each of the 10 minutes time-bin.

Model comparison. We used the Likelihood Ratio Test and the

Bayesian Information Criterion to test whether simpler models

including only 1 or 2 behavioral traits could be as predictive of

poor decision making as the full model.

Data analysis. The significance of the observed correlation

coefficient between the experimental measures and the modeled

behavioral traits was tested using Monte Carlo permutations.

Monte Carlo permutation test. This method performs random

permutations to mix the paired values (i.e. modelled trait

parameter values and the experimental analogue values) and

measure the new correlation coefficients for each new permuta-

tion. Doing so a large number of times (i.e. 100000 iterations)

provides a distribution of correlation coefficients for random

permutations of values so as to test the null hypothesis.

Group correlation measure. This correlation measure was used

to assess whether the model parameters and experimental

measures agreed on the classification of individual rats as having

a low or high score for each trait. For each behavioral trait, rats

received a score of ’-1’ (lower than median value for the behavioral

trait) or ’+1’ (higher than median). This was done both for the

experimental measures and the estimated parameters. The

correlation coefficient between the experimental and theoretical

pairs of scores was then computed and the p-value was extracted

using the Monte Carlo permutation test.

Individual correlation measure. We also measured whether the

estimated model parameters correlated with the experimental

measures of reward sensitivity, cognitive inflexibility and risk

seeking.

Results

Behavior
Decision-making in the RGT. The RGT measures, across

successive trials, the ability to make the most advantageous

choices. In this task, the contingencies associated with a higher

immediate gain are disadvantageous in the long run due to higher

unpredictable penalties. Decision-making could not be properly

measured in six rats because they immediately demonstrated a

preference without sampling the different options at the beginning

of the test. These rats were discarded from the analysis. Three rats

did not display preference for any particular option (undecided

subgroup). Because of the small size of this group they were also

discarded from our analyses. Among the remaining rats (n = 20),

behavior during the test was not influenced by prior spatial

preference: proportions of individuals with analogous choices

during training and testing did not significantly differ from chance

(Chi-square test, x2 = .438; p = .33; ns).

As observed previously, typical good and poor decision makers

can be distinguished within a normal group of rats. Because this

task measures a preference between two kinds of options, two

subgroups can be easily distinguished, as shown by the bimodal

distribution of RGT scores (see meta analysis on Figure 3). Good

DM first choose randomly and then gradually orient most of their

choices toward the advantageous options (Figure 4A). By contrast,

poor DM sample the different options and rapidly orient their

choices toward the disadvantageous options (within 10 minutes).

During the last 20 minutes, percentages of choices for advanta-

geous options could be divided into two main subgroups: a

majority of good DM (n = 14; 61%, with scores above 70%) and a

minority of poor DM (n = 6; 26%, with scores below 30%) that

preferred the disadvantageous options (n.b. scores for the

remaining undecided subjects were 38%, 54% and 63%).

Decision-making and reward seeking. Poor DM showed

a shorter latency to collect their reward than good DM, as

previously observed [11] (Figure 4B). All poor DM scores (100%)

were below the median vs 36% for good DM (Fisher exact test,

p = .032; group medians, 1.12 and 1.26 s respectively; U = 16, p

= .07). However, the global activity of the two groups, reflected by

the total number of visits to the nose poke holes, did not

statistically differ (median scores: 1025 and 857 for good vs poor

DM respectively; U = 20, ns).

Behavioral flexibility. Reversing contingencies in the RGT

measures the rats’ adaptation when advantageous/disadvanta-

geous outcomes are spatially exchanged. Persistence to choose the

same location reveals cognitive inflexibility (flexibility ,35%),

whereas shifting choices reflects detection of the change and

behavioral flexibility. All poor DM vs only a third (36%) of good

DM were inflexible (Fisher exact test, p = .014; Figure 4C). Among

the remaining good DM, 36% gradually reoriented their choices

toward the new location of advantageous options, and 28%

distributed their choices between all options (Figure 4D).

Decision-making and risk seeking. In the light-dark

emergence test, poor DM took more risks than good DM. They

emerged more rapidly from the dark compartment than good DM

(medians, 35 and 416 sec respectively; U = 13.5, p,.02). A

majority of poor DM (83%) vs 36% of good DM had a score below

the median. Poor DM also made much fewer risk assessments than

good DM before the first exit (100% vs 29% below the median;

Fisher exact test, p = .0007; Figure 4E). The median number of

risk assessments were 1.5 and 11.2 for poor vs good DM

respectively (U = 1.5, p,.001). Poor DM also tended to make

Figure 3. Meta analysis of the RGT data. This analysis is based on
12 distinct experiments (n = 228) using the same protocol. It reveals a
bimodal distribution of RGT scores (% of favourable choices during the
last 20 min) with a majority of good decision makers (good DM, with
scores above 70%), a minority of poor decision makers (poor DM, with
scores below 30%) and the remaining, undecided rats with intermediate
scores.
doi:10.1371/journal.pone.0082052.g003
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more visits to the bright compartment than good DM (U = 20.5,

p,.07).

Decision-making and impulsivity. Impulsivity is a multi-

factorial trait encompassing both impulsive actions (inability to

delay a response, i.e. premature responses, or to withhold a

response, i.e. anticipatory hyperactivity and perseveration) and

impulsive choices (inability to wait for a delayed greater benefit)

[25].

Impulsive actions: premature responses and compulsive-like

behavior. The FCN16 measures response inhibition through the

ability to complete a long sequence of lever presses on a first lever

(FCN lever) before moving on to another lever (reward lever) that

provides a reward [17,26]. Both groups learned the task at the

same rate (learning scores, U = 36, ns). Poor DM did not exhibit

any deficit in inhibitory control (i.e. premature switches to the

reward lever). The chain length distribution curve of both good

and poor DM showed a peak for the optimal chain length (Figure

5A). Both groups predominantly performed rewarded chains (i.e.

of length . = 16, Figure 5A-insert). However, poor DM made a

higher proportion of long chains of responses (.16), leading to a

lower response efficiency (Figure 5B) (U = 8, p,.01). The

occurrence of very long chains of presses was occasional. For

instance, the number of chains longer than 22 presses was 1% of

the total number of chains for good DM, and 3% for poor DM.

However, all poor DM displayed at least one such very long chain

during the test vs only 6 out of the 14 good DM. Moreover, whilst

the number of presses on the FCN lever did not differ between

groups (U = 28, ns), poor DM were more active on the

reinforcement lever (U = 18, p,.05), making short bursts of

presses instead of a single press. These perseverative behaviors, not

accompanied by an attempt to collect the reward even when a

clear signal announces its availability, are reminiscent of excessive

and compulsive behavior. All poor DM had scores on or above the

median vs 43% for the good DM, which had scores below the

median (Fisher exact test p = .018) (Figure 5C).

Impulsive actions: anticipatory hyperactivity and perseveration.

The FI-EXT task assesses reward anticipation and sensitivity to

context during frustrating periods without reinforcement [16,27].

Lever press activity is measured either during a delay before a

lever press can deliver the reward (FI) or during an extinction

phase (EXT) where no reward can be obtained (light house off).

During the 1-min FI and 5-min EXT, 83% of poor DM had a

Figure 4. Animal’s performance on the Rat Gambling Task (RGT), RGT-reversed version and the light-dark emergence test. Grey lines
represent the median used to compute proportions of high and low scores in good and poor decision makers (DM). (A) Time-course of advantageous
choices (%) of good and poor DM on the RGT and individual scores during the last 20 min of good (n = 14) and poor (n = 6) DM. (B) Relationship
between individual RGT scores and the mean latency to collect food pellets (one missing value) during the RGT. (C) Relationship between individual
RGT scores and flexibility (final scores in the RGT-reversed version). (D) Time-course of advantageous choices of flexible (FG), undecided (UG) and
inflexible (IG) good DM and inflexible (IP) poor DM groups on the RGT-reversed version. Comparison with the indifference level, dotted line, t-test: *
and u p,.05 at least. (E, F) Relationship between individual RGT scores and (E) the number of risk assessments before the first emergence in the risky
compartment, or (F) the individuals’ sum of the score ranks for each behavior.
doi:10.1371/journal.pone.0082052.g004
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Figure 5. Decision-making and impulsivity. Good and poor decision makers (DM) performances in the (FCN16) Fixed Consecutive Number of 16
lever press schedule (A-C), in the multiple fixed-interval (FI) and extinction (EXT) schedules (D-F) and in the (DDT) delay-discounting task (G-H). Grey
lines represent the median used to compute proportions of high and low scores in good and poor DM. (A) Frequency distribution (%) of chain length
in the two groups. Optimal chain length (16) is indicated by the vertical dotted line. Inset: Percentage of rewarded chains for good and poor DM
(Mean 6 SEM). (B,C) Relationship between individual scores in the RGT and (B) response efficiency or (C) the number of reinforcement lever presses.
(D,E,F) Relationship between individual scores in the RGT and (D) the mean number of lever presses during the 1-min FI or (E) during the 5-min EXT. (F
top panel) Mean number of lever presses of good and poor DM during one 1-min FI component as a function of time. (F lower panel) Mean number
of lever presses during the 5-min EXT component as a function time. (G) Percentage of choice for the large, delayed reinforcement as a function of
delay in the two groups. (H) Relationship between individual scores in the RGT and the mean number of lever press during DDT training. Dotted line
represents chance level.
doi:10.1371/journal.pone.0082052.g005
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motor activity equal to or higher than the median score, vs 43% for

the good DM (Figure 5D and 5E). Overall, poor DM tended to

perform more lever presses than good DM both during FI,

(medians, 178 and 98 respectively; U = 23, p = .1) and during

EXT (medians, 111 and 55; U = 21, p = .08), suggesting both

anticipation and perseveration. Both groups exhibited the typical

pattern of activity during each interval of the FI, namely a

progressive increase in rate as reinforcement availability ap-

proached, with poor DM reaching a score 1.5 times higher than

good DM. During EXT, poor performers exhibited both a larger

and longer episode of increased activity (Figure 5F). The latency to

collect rewards did not significantly differ between groups (U

= 31.5), nor did the number of visits to the empty tray (U = 35 and

30, ns). The mean number of lever presses during FI and EXT

were positively correlated (r = .69, p,.001).

Impulsive choice: delay discounting. The DDT assesses the

ability to tolerate a delay when a choice between an immediate

small reward and a delayed larger reward is given. It indicates for

each individual the subjective value of the large reward as a

function of the delay and the delay at which both rewards are

perceived to be of equal value. Under the no-delay condition, good

and poor DM preferentially chose the larger reward (Figure 5G)

and poor DM overall performed more lever presses than good DM

(U = 16, p,.05, Figure 5H). When the delay increased, both

groups shifted to the immediate reward at the same delay,

suggesting that they displayed similar reward discounting and

tolerance to delay (Figure 5G).

Correlation between behavioral parameters. As shown

in Table 1, no correlation was observed between reward-seeking,

risk seeking and behavioral flexibility. A positive correlation was

found between impulsive actions and perseverative responses in

different experimental contexts. These parameters (except FI

activity) were positively correlated with risk taking, and were

independent from inhibitory control capacities (FCN schedule)

and impulsive choice (DDT). We decided to model all indepen-

dent traits (risk, reward and flexibility) excluding motor impulsivity

since impulsivity/perseveration measures were correlated with risk

seeking (see Table 1).

A combination of behavioral traits is highly predictive
of poor decision-making. Poor DM consistently displayed

above median scores for each of the following behaviors (Table 2),

except one poor DM missing motor impulsivity): motor impulsiv-

ity/perseveration, risk proneness, reward seeking and behavioral

inflexibility. They obtained a lower global index when these

behavioral traits were combined (sum of the ranks) compared to

good DM (Figure 4F). By contrast, no good DM ever expressed

high scores for more than two of these particular behaviors. Thus,

in healthy individuals, the combination of these traits more than

any particular one was highly predictive of poor decision making

in the RGT. The association of cognitive inflexibility and risk

taking behavior or motor impulsivity was never observed in good

DM and thus may be a particularly relevant combination of risk

factors for impaired decision-making.

Computational analysis
The TD model was fitted to each rat’s performances in the

RGT to estimate the five free parameters describing each rat: two

parameters for cognitive inflexibility, one for risk seeking, one for

reward seeking and one for the exploration of the environment (see

Methods). Partial models with fewer parameters were also tested

(see below).

Decision-making in the RGT. The model was able to

reproduce the distinct performance profiles observed during the

RGT session for poor and good DM (Figure 6A). This suggests

that differences in risk-proneness, reward seeking behavior and

cognitive inflexibility can collectively account for the variability of

performance profiles observed experimentally. Moreover, based

on the performance of the rats during the RGT, the model could

successfully predict the performance profile of all poor DM and of

half of the good DM during reversal conditions (Figure 6D).

Table 1. Correlations within and between different measures of decision making, flexibility, impulsivity and risk-taking behaviours.

Reward-
seek. Flexibility Risk-taking

Inhib.
cont. Motor impulsivity/perseverations

Reward-seeking RGT mean latency to
collect food

1 -

Behavioral flexibility RGT-reversal flexibility index (%) 2 0.09 -

Risk-taking Emergence Mean latency
to emerge

3 0.11 0.22 -

Task number of risk
assessments

4 20.24 0.11 ***0.69 -

Inhibitory control FCN16 rewarded chains (%) 5 20.27 0.00 20.35 0.22 -

Motor impulsivity/
perseverations

FCN16 reinforcement lever
presses

6 0.14 20.36 **20.51 *0.45 20.10 -

FI total lever presses 7 0.22 0.02 20.28 20.34 0.09 ***0.68 -

EXT total lever presses 8 20.08 20.07 **20.5 20.52 0.07 **0.53 ***0.69 -

DDT total lever presses
(training)

9 0.2 20.18 **20.61 20.53 0.22 **0.5 0.40 **0.57 -

Impulsive choices DDT 20s-delayed
choice (%)

10 20.23 0.12 20.26 20.22 **0.5 20.10 20.056 20.19 0.07

The three behavioral processes included in the model, reward and risk seeking, behavioral flexibility, were unrelated. Impulsive actions and perseverative responses in
different experimental contexts were positively correlated. These parameters (except FI activity) were positively correlated with risk taking, and were independent from
inhibitory control capacities (FCN schedule) and impulsive choice (DDT). Significant correlations are shown in bold. RGT: rat gambling task; FCN16: fixed consecutive
number schedule of reinforcement; FI: fixed- interval; EXT: extinction: DDT: delay discounting task. Pearson’s correlation test; *, p,.05; **, p,.01; ***, p,.001.
doi:10.1371/journal.pone.0082052.t001
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Decision-making and flexibility. Cognitive inflexibility was

implemented as a gradual decrease of the learning rate over the

course of the experimental session controlled by two parameters

a0, the initial learning rate and t0 the decay (see Methods). The

initial learning rate parameter a0, extracted from a fit of the RGT

session alone was positively correlated with the experimental

measure of flexibility during reversal (r = .3303, group correlation

MC permutation test p = .0266). The model predicted an

inflexible learning behavior in all modeled poor DM (poor

DMm) (Figure 6C), as observed experimentally (Figure 4C). When

both the RGT and reversal conditions were used to estimate all

model parameters, all flexibility parameters (a0, t0 and the area

under a) correlated positively with the experimental measure of

flexibility (e.g. for a r = 2.73, MC permutation test p = .0002, see

Figure 6D).

Decision-making and reward seeking. Reward seeking

behavior was modeled by allowing the perceived magnitude of the

rewards to be greater than the actual reward. In the model,

consistent with experimental data (Figure 4B), all poor DMm

except one showed high reward seeking, whereas less than 29% of

modeled good DM (good DMm) showed this trait (Figure 6B). The

reward seeking parameter estimated from the model correlated

significantly with the corresponding behavioural measure of

reward sensitivity (r = 2.4014, MC permutation test p = .0479,

see Figure 7E).

Decision-making and risk seeking. Risk seeking was

implemented by adding a risk-related reward contribution [28] to

the actual rewards (see Methods). In the model, as in the

experiments (Figure 4E), poor DMm were characterized by higher

levels of risk sensitivity than good DMm (Figure 6E). The risk

parameter extracted from the model significantly correlated with

the two behavioural measures of risk seeking (i.e. mean latency for

the first visit in the light compartment and risk assessments, r =

2.5370 and 2.5555; MC permutation test p = .0043 and p

= .0051 respectively, see Figure 7F).

Combination of behavioral traits. Finally, when all the

different behavioral traits are taken into account (Figure 6F), poor

DMm exhibited a combination of high levels for the modeled

behavioral traits as observed in behavioural measures. The global

index (sum of the ranks of each behavior) of each modeled rat was

highly correlated with the global index derived from experimental

measures (r = .7420, MC permutation test p = .0003, see Figure

7C). Furthermore, similarly to the experimental data (Table 2 and

Figure 6H), the model showed that the combination of high

cognitive inflexibility, reward and risk seeking is particularly

discriminative of poor DMm (Figure 6G), since good DMm almost

never expressed more than one of those traits (Table 3).

Influences of combined behavioral traits on Learning. To

understand why good and poor DM show different choice

preferences, we analysed how well good and poor DMm evaluated

advantageous and disadvantageous actions. The Q-values repre-

senting the valuation of each choice at the end of the RGT session

were extracted for all rats, using the TD-learning model.

Figure 7B illustrates the mean Q-values assigned to the

disadvantageous choices (A & B) and advantageous choices (C &

D) by poor and good decision makers. Poor DMm vastly over-

estimated the value of all states rather than just disadvantageous

options. The over-estimation was more important for disadvan-

tageous choices in comparison to the advantageous ones. By

contrast, good DMm stopped exploring disadvantageous choices

early in the RGT session due to their negative value.

In the model, high scores in risk seeking, reward seeking or

inflexibility lead to an altered estimation of the true value of all

states. High scores in a combination of traits lead to a shift in the

valuation of the state-action pairs, where disadvantageous choices

appear to be more valuable than advantageous ones.

Comparison with simpler models. Model comparison was

also performed in order to address whether simpler models with

fewer behavioural traits could have accounted for the experimen-

tal data just as well. We tested simpler versions of our model with

either only one or two behavioural traits and compared the fit of

these models to the experimental data. We used the Likelihood

Ratio Test and the Bayesian Information Criterion to assess the fit

of the models while penalizing for added complexity. The

likelihood ratio test revealed that the full model (including reward

sensitivity, risk seeking and cognitive inflexibility) was significantly

better (p,0.0001) than any other simpler model, suggesting that

all behavioral traits are necessary to describe the experimental

data. Similar results were obtained using the Bayesian Information

Criterion (See Figure 7A).

Discussion

Like the IGT in humans, the RGT probably involves a number

of cognitive processes, and separating their relative contribution is

a challenge. However, our purpose was not to focus on one specific

executive function involved in choice, but rather to identify the

whole complex phenotype sustaining poor decision making in

Table 2. Summary of individual behavioral profiles of poor and good DM.

Poor decision makers Good decision makers

rats 3 8 32 15 28 9 subjects (%) 2 4 24 33 6 31 1 17 19 29 12 30 27 26 subjects (%)

motor impulsivity/persev. X X X X X 83 X X X X X X X 43

X X X X X X X X X X X

risk-taking X X X X X 83 X X X X X 14

X X X X X X X X X X

reward-seeking X X X X X mis. 100 X X X X X 36

inflexibility X X X X X X 100 X X X X X 36

Number of high scores 4 4 4 4 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0

Motor impulsivity/perseverative responses correspond to high activity scores in both fixed-interval (FI) and extinction (EXT) schedules of reinforcement. Risk taking is
indicated by a short latency to emerge and a low number of risk assessment in the dark-light box test, reward seeking by a short latency to collect food in the RGT, and
inflexibility by performance in the RGT reversed condition. A cross indicates a high score (with respect to the median) for a given parameter. Last line shows the total
number of high scores displayed by each rat. Proportions of subjects demonstrating high score in each group are also given. Mis. : missing value.
doi:10.1371/journal.pone.0082052.t002
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Figure 6. Model’s performance on the RGT, reversal conditions and estimates of individual behavioral levels when fitted to the
experimental performance profile of each rat. Grey lines represent the median used to compute proportions of high and low scores in good
and poor decision makers (DM). (A) Simulated time-course of advantageous choices (%) of good and poor DM on the RGT. (B) Relationship between
simulated individual RGT scores and the estimated reward seeking parameters during the RGT + Reversal. (C) Relationship between simulated
individual RGT scores and the estimated flexibility parameters affecting the learning rate. (D) Simulated time-course of advantageous choices of
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conflictual and risky situations, as observed in real life. Indeed, a

complex interplay between independent behavioral domains is

more likely to reflect the complexity of human phenotype and

disorders [29,30,31].

In the present study, we confirm this hypothesis as we establish a

clear link between separate behavioral traits in a normal sample of

rats and decision-making in the RGT. Although each trait

considered separately has a poor predictive value, both the

behavioral and the modeling analyses indicate that poor decision

making can be accurately predicted when these traits are

considered in combination.

While integrating multiple cognitive abilities, the RGT offers

the advantage to assess the time-course of the decision making

process within a single session. It is particularly suitable for

identifying inter-individual differences in decision making, and

notably for identifying poor decision-makers because choices are

made readily and lead to two opposed decisions: either a

preference for advantageous options or a preference for the

disadvantageous ones [11]. As shown by the meta-analysis of

several experiments in the RGT, these behaviors are reproducible.

Importantly, poor decision-making does not result from a slower

learning. We have previously shown that repeating the RGT on

three consecutive days does not change the rats’ preferences (data

not shown). Additionally, acquiring information about the value of

the options separately before the test does not change the behavior

of poor and good decision-makers, nor does it change their relative

numbers [11].

We show that poor decision making is expressed by individuals

presenting excessive scores for a combination of behavioral and

cognitive traits: risk taking, higher reward seeking behavior, motor

impulsivity and behavioral inflexibility, expressed simultaneously.

This contrasts with good DM which present a wider range of

scores and only express up to two of these characteristics (Table 2).

The various traits that we examined were largely independent

flexible (FG), undecided (UG) and inflexible (IG) good DM and inflexible (IP) poor DM groups on the RGT-reversed version. (E) Relationship between
simulated individual RGT scores and the estimated risk seeking parameters. (F) The sum of the simulated score ranks for each modelled behavior. (G)
3-D representation of model parameters for the simulated traits of individual rats. (H) 3-D representation of behavioral measures of the behavioral
traits of individual rats.
doi:10.1371/journal.pone.0082052.g006

Figure 7. Model comparison and correlations between estimated parameters and behavioral traits. (A) Bayesian Information Criterion
scores for each model (a low score is better). Models based on two traits fare uniformly better than models based on a single trait. Models with two
traits including cognitive inflexibility have better scores than equivalent or simpler models. The model with all three simulated traits provides the best
fit to the data even when penalizing for the increased model complexity (number of free parameters). (B) Learned Q-Values for advantageous and
disadvantageous choices by both Good and Poor DM. Bars represent the mean Q-values assigned to the disadvantageous choices (A & B; dark-
grey) and advantageous choices (C & D; light-grey) averaged over all poor or good decision makers at the end of an RGT session. Error bars
represent 95% CI around the mean Q-value for all the rats of the population of interest. Poor decision makers vastly over-value disadvantageous
choices in comparison to advantageous choices. (C-F) Scatter plot illustrating the correlation between: (C) The sum of ranks for all the behavioral traits
measured experimentally (x-axis) and those estimated by the model (y-axis); (D) The measure of cognitive inflexibility (x-axis) and the estimated
inflexibility parameter (area under a; y-axis); (E) The measured reward sensitivity (x-axis) and the estimated reward sensitivity (y-axis). (F) The
measured risk seeking (latency to emerge in light compartment; x-axis) and the estimated risk-seeking parameter (y-axis). All estimated parameters
correlated significantly with their behavioral counterpart.
doi:10.1371/journal.pone.0082052.g007
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from one another. A noteworthy exception was the relationship

between motor impulsivity/ perseveration and risk taking (see

Table 1).

Poor DM are characterized by risk and reward seeking, which

have been found to be associated with trait dominance in rats and

humans, and could be necessary for the development and

maintenance of social structure [32,33]. Interestingly, risk and

reward seeking, in combination with impulsivity, are hallmarks of

poor decision making related mental disorders such as ADHD

[34], personality disorders, substance abuse [28,35], pathological

gambling [36] or mania [37]. Poor DM are also characterized by

behavioral inflexibility as well as perseverative and compulsive-like

behaviors. Their inflexibility was particularly noticeable in the

RGT reversal procedure, which requires redirecting choices on

the basis of new response-reward contingencies [38], but also in

the FCN schedule with perseverative responses. Indeed, persev-

erative responses in the FCN have similarly been observed

following amphetamine administration (0.8 mg/kg), in a similar

procedure [39]. These effects of the psychomotor stimulant are

likely to reflect compulsivity, especially at this dose, given that only

low doses of amphetamine (0.25 mg/kg) are known to reduce

impulsivity in this task [17,26], whereas higher doses (0.5 mg/kg

or above) increase impulsive responses. Perseverative behavior,

typically observed after acute administration of psychostimulants

[39], inflexible and compulsive behavior can be seen in drug

addiction [40,41], pathological gambling [2] and in obsessive-

compulsive disorder (OCD) [1]. Inappropriate compulsive behav-

iors [25] may result from attributing excessive incentive value to

reward associated stimuli [42,43]. This could explain bursts of

activity on the reinforcer level in the FCN schedule, as well as

hyperactivity in the FI-EXT schedule. Compulsive behavior could

also result from a quicker switch from initial voluntary goal-

directed behavior to an habitual, automatic process with loss of

control, as observed in drug addiction and OCD [44,45].

Interestingly, poor decision-makers do not have more impulsive

tendencies compared to good DM in terms of intolerance to

delayed gratification and of inhibitory control. Still, we cannot

exclude that more demanding tasks (e.g. the stop-task [46]) could

reveal differences in inhibition between both phenotypes. More-

over, the higher sensitivity of poor DM may have influenced the

performance in this task. However, a recent meta-analysis also

concluded that inhibition and decision-making in the IGT are

dissociated [47].

Previous studies have shown that individual behavioral traits

can be related to maladaptive behavior in animal models of mental

disorders (i.e. novelty-seeking in depression [48]; impulsivity,

novelty preference in drug self-administration [49,50,51]). How-

ever, the cumulative effect of several symptoms in one individual,

as systematically observed in mental disorders [1], has rarely been

considered in an animal model [29]. Here, we show that a

complex phenotype is highly predictive of poor decision-making,

since it only describes poor performers. Each of the traits identified

participates to this phenotype that leads to the inability to adapt to

the situation because of a distorted representation of the balance

between reward and risk, and an inflexible/compulsive behavior

precluding readjustment of behavior. This complex phenotype

reflects well the relevance of the concept of ‘‘domain-interplay’’ to

explore the basis of maladaptive behavior [29,30]. Although we

cannot conclude that the different observed phenotypes observed

represent innate or acquired differences, it is noteworthy that

dominant rats are natural risk takers and display increased

motivation for food reward [32,33], two characteristics of poor

decision makers in the RGT. This social parameter could be well

related to performance in the RGT, a hypothesis that remains to

be elucidated.

Recent experiments based on lesion studies have shown that

good performances in the RGT depend of the functional integrity

of the prefrontal cortex, notably the prelimbic, cingulate and

orbitofrontal cortices [12]. Moreover, the brain networks differ-

entially activated during adaptive and maladaptive decision-

making reveal striking differences that can be related to the

behavioral and cognitive traits identified (manuscript submitted)

[52].

Building on the expanding literature indicating that behavioral

traits such as risk seeking affect learning and the prediction error

signal [20,53], we used a reinforcement learning model of the

RGT to investigate the relationship between the traits and the

decision making performances. First, we used the model to address

whether the behavioral traits could collectively account for the

variety of performances observed in the decision-making task (i.e.

Can excessive behavioral traits lead to poor and/or undecided

decision-making?). Secondly, we used the model to explore the

interaction between the behavioral traits on learning and decision-

making (i.e. How and why do excessive traits lead to poor decision-

making?). The computational model, based on a TD-learning

algorithm [54,55,56] was modified to include the behavioral traits

of risk seeking, reward sensitivity and behavioral inflexibility.

The model reveals how risk seeking, reward sensitivity and

behavioral inflexibility jointly contribute to the learning and the

decision-making process. The model of the RGT fits the

experimental data very closely (Figure S1), and demonstrates that

behavioral traits of high risk seeking, high reward seeking and

cognitive inflexibility can be derived from the performance of

individuals in the RGT. Importantly, all the parameters used to

model the behavioral traits successfully correlated with the

experimental measures for each trait, validating the assumptions

made during the implementation. This suggests that the mathe-

matical formalization of all the behavioral traits and their

independent influence on learning in the RGT were valid.

Interestingly, we found that individual traits were insufficient to

Table 3. Summary of individual modeled behavioral traits of poor and good DM.

Poor decision makers Good decision makers

rats 3 8 32 15 28 9 subjects (%) 2 4 24 33 6 31 1 17 19 29 12 30 27 26 subjects (%)

risk-taking X X X X X X 100 X X X X X X X 50

reward-seeking X X X X X 83 X X X X X X X 50

inflexibility X X X X X X 100 X X X X 29

Number of high scores 3 2 3 3 3 3 1 1 1 1 1 1 1 2 2 2 2 1 1 1

Same representation as in Table 2 for modeled behavioral traits: risk taking, reward seeking and inflexibility parameters.
doi:10.1371/journal.pone.0082052.t003
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lead to poor performances at the task (Table 3). Rather, poor

decision-making required specific combinations of at least two of

the behavioral traits, namely inflexible learning and risk seeking or

inflexible learning and reward seeking. This suggests that single

excessive behavioral traits may be compensated for in good

decision makers. Yet, such potential compensatory processes may

fail when a combination of traits are involved.

Importantly, the computational study is based on the assump-

tion that a failure in decision-making occurs through an altered

internal representation of the values in the environment (Figure

7B), as is customary in computational modeling of psychopathol-

ogy [57,58]. We investigated the difference in valuation of the

different choices by poor and good decision makers. Surprisingly,

we found that poor DMm vastly over-estimate the value of all

choices, but especially those corresponding to disadvantageous

options. According to their inflated valuation of disadvantageous

choices, poor DM appear to behave optimally according to their

inaccurate value-map of the environment, rather than sub-

optimally according to the objective outcome of the task. Our

findings are in line with recently suggested mechanisms of

psychopathology such as addiction [53].

Our model accounts for the role of behavioral traits in learning

and decision-making, using a basic TD-learning framework using

minimal assumptions. Other formalisms such as win-stay loose-

shift, Bayesian models or more elaborate TD models could also be

explored [18,19,20,22,23,24]. However, the present model offers a

straightforward way to implement the traits of interest and allows a

quantitative assessment of the impact of individual differences on

the overall decision-making performances. In particular, we show

that simple models incorporating fewer discriminative traits have

less predictive value than the full model. More biologically

targeted versions of this model could be developed [59,60,61]

and investigated with regard to the cortical- subcortical interplay

specific to good and poor DM [52].

In conclusion, poor decision making in the RGT is predicted by

a complex phenotype of cumulated behavioral and cognitive

characteristics including risk seeking, reward seeking and inflex-

ibility, combined with motor impulsivity and perseverative/

compulsive-like behaviors. This approach, based on the identifi-

cation of high scores for these behavioral traits expressed

spontaneously and in a comparable way as to those observed in

the clinic, demonstrates that rat behavior can reliably model

dimensions found in humans [8,62]. This work emphasizes the

need to use ‘‘integrative’’ animal models to mimic the complexity

of the clinically relevant phenotype [30]. Our findings are also in

line with the recent proposal by Robbins et al. [31] to undertake a

more objective description of psychiatric disorders through

predisposing traits and neurocognitive endophenotypes, thereby

explaining the high level of comorbidities between mental

disorders. By integrating multiple behavioral measures, combined

with computational modeling, our work provides a promising

framework for revealing the neuropsychological determinants of

poor decision-making as a potential risk factor for developing

related mental disorders [8,9] and for exploring its neurobiological

substrates.

Supporting Information

Figure S1 Models’ best fit to individual rat performanc-
es. Each graph shows the performance of the rat (dashed-line) in

terms of % of advantageous choices (y-axis) over time (x-axis). The

model mean performance (continuous line) and standard deviation

(grey area) is represented on the same graph for each rat.

(TIF)
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