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Abstract
Singleton Tree Grammars (STGs) have recently drawn considerable attention. They generalize
the sharing of subtrees known from DAGs to sharing of connected subgraphs. This allows to
obtain smaller in-memory representations of trees than with DAGs. In the past years some
important tree algorithms were proved to perform efficiently (without decompression) over STGs;
e.g., type checking, equivalence checking, and unification. We present a tool that implements
an extension of the unification algorithm for STGs. This algorithm makes extensive use of
equivalence checking. For the latter we implemented two variants, the classical exact one and a
recent randomized one. Our experiments show that the randomized algorithm performs better.
The running times are also compared to those of unification over uncompressed trees.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.51

Category System Description

1 Introduction

Trees are a basic and very common data structure in computer science. In many applications,
trees are stored in memory for fast processing. Some recent applications deal with very
large trees. For instance, the nowadays ubiquitous data exchange format XML stores
data in the form of unranked trees; typically, each data item is accompanied by several
XML tree nodes describing its structure. This results in huge trees, often consisting of
many millions of nodes. The problem arises that such trees do not fit into main memory,
especially if stored as conventional (machine) pointer data structure. Therefore, compressed
in-memory representations have been developed; for instance, succinct trees (see, e.g., [20]),
or grammar-compressed trees [4, 17].

Here we deal with grammar-compressed trees. Grammar compression was invented for
strings in the 1990s, see [19] for a survey. The idea is to find a small grammar that generates
only the given string. It is a form of dictionary compression where grammar nonterminals
represent repeated substrings. For instance, a smallest context-free (cf) grammar that
generates a given string can be (at most) exponentially smaller than the given string.
Finding a minimal cf grammar is NP-complete, but several well-behaved approximation
algorithms exist [5]. While in general algorithms run slower when executed over a compressed
representation, there are certain special algorithms which can execute in one pass (without
decompression) through the grammar. This induces a speed-up that is proportional to the
compression. For instance, testing whether two cf grammars generate the same string can be
performed in cubic time with respect to the sizes of the grammars [13].

The idea of grammar-compression was generalized from strings to trees in [4], where they
present an approximation algorithm that finds a small cf tree grammar. We call a cf tree
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52 First-Order Unification on Compressed Terms

grammar that generates only one tree, a Singleton Tree Grammar (STG). Note that the
classical idea of representing a tree by its minimal unique DAG is an instance of grammar
compression: the DAG is equivalent to the minimal regular tree grammar of the tree. For
typical XML documents, DAGs allow to shrink their tree structures to about 12% of the
original number of edges [3]. The algorithm of [4] finds STGs that contain only 4% of the
original edges. The new grammar compressor “TreeRePair” [15] compresses even further
(< 3%) and runs almost as fast as building a minimal DAG.

Examples of algorithms that run efficiently (without decompression) over STGs are tree
automata evaluation [14], XPath query processing [17], and equivalence testing [4, 21]. STGs
have also been used for complexity analysis of unification algorithms [12]. Recently, first-order
unification was shown to be solvable in polynomial time over STGs [9, 10]. Note that an
application domain for which unification over compressed terms can be useful are logic-
programming languages for XML. Examples of such languages are Xcerpt [2] (it uses a form
of asymmetric unification called “simulation) and Xcentric [6] (it uses the unification studied
in [11]). Here, we present an implementation of the unification and matching algorithms
of [10]. The algorithms run a variant of Robinson’s standard unification algorithm [18] over
two given STGs; it builds string grammars for the preorder traversals of the grammars, and
then applies equivalence checking for singleton cf string grammars, while instantiating the
encountered variables. For the equivalence check we implemented two competing algorithms:
(1) the exact algorithm due to Lifshits [13], and (2) the recent randomized algorithms by
Schmidt-Schauß and Schnitger [21]. Our tool is integrated with TreeRePair: it takes as
input two terms represented in XML syntax and runs TreeRePair to build STGs. It then
runs the unification algorithm. Through experiments we evaluate the performance of the
resulting three unification algorithms and compare them to an implementation of a classical
unification algorithm over uncompressed terms. Roughly speaking, unification over STGs
is more efficient than over uncompressed terms, whenever the terms are well-compressible
and larger than 100,000 nodes. At www.lsi.upc.edu/~agascon/unif-stg our system can
be tested online. All our code is open source and will be available over the same web page.

2 Preliminaries

A ranked alphabet is a set F together with a function ar : F → N. Members of F are called
function symbols, and ar(f) is called the arity of the function symbol f . Function symbols
of arity 0 are called constants. Let X be a set disjoint from F whose elements have arity
0. The elements of X are called first-order variables. The set T (F ∪ X ) of terms over F
and X , also denoted T (F ,X ), is defined to be the smallest set having the property that
α(t1, . . . , tm) ∈ T (F ∪ X ) whenever α ∈ (F ∪ X ), m = ar(α) and t1, . . . , tm ∈ T (F ∪ X ).
A substitution is a mapping σ : X → T (F ,X ) relating first-order variables to terms.
Substitutions can also be applied to arbitrary terms by homomorphically extending them by
σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)).

The size |t| of a term t is the number of occurrences of variables and function symbols
in t. The height of a term t, denoted height(t), is 0 if t is a constant or a first-order
variable, and 1 + max{height(t1), . . . ,height(tm)} if t = α(t1, . . . , tm), with m ≥ 1. The
set Pos(t) of positions of t is defined by Pos(t) = {λ} if t is a constant or a variable, and
Pos(t) = {λ} ∪ {1 · p | p ∈ Pos(t1)} ∪ . . . ∪ {m · p | p ∈ Pos(tm)} if t = α(t1, . . . , tm), where
m ≥ 1, λ denotes the empty sequence and p · q, or simply pq, denotes the concatenation of
p and q. If t is a term and p a position, then t|p is the subterm of t at position p. More
formally defined, t|λ = t and α(t1, . . . , tm)|i·p = ti|p. We denote by Pre(t) the preorder
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traversal (as a word) of a term t. It is recursively defined as Pre(t) = t, if t has arity 0, and
Pre(t) = α · Pre(t1) · . . . · Pre(tm), if t = α(t1, . . . , tm).

I Definition 2.1. A Singleton (String) Grammar (SG) G is a tuple 〈N ,Σ, R〉, where N is a
finite set of non-terminals, Σ is a finite set of symbols (a signature), and R is a finite set of
rules of the form N → α where N ∈ N and α ∈ (N ∪Σ)∗. The sets N and Σ must be disjoint,
and each non-terminal X appears as a left-hand side of just one rule of R. Let N1 >G N2
for two non-terminals N1, N2, iff (N1 → α) ∈ R, and N2 occurs in α. The SG must be
non-recursive, i.e. the transitive closure >+

G must be terminating. The word generated by
a non-terminal N of G, denoted by wG,N or wN when G is clear from the context, is the
word in Σ∗ reached from N by successive applications of the rules of G. SGs are also called
Straight Line Programs.

With SG words of exponential length can be represented in linear space.

I Example 2.2. Let G be an SG with set of rules {A0 → a,A1 → A0A0, . . . , An →
An−1An−1}. Then, wAn = a2n .

Let us fix a countable set Y = {y1, y2, . . .} whose elements are function symbols of arity
0 called parameters. Given a ranked alphabet F , we assume that Y and F are disjoint and
define T (F ∪ Y) analogously to how T (F ∪ X ) was defined in the preliminaries. We call the
elements of T (F ∪ Y) term patterns.

I Definition 2.3. A Singleton Tree Grammar (STG) G is a 4-tuple 〈N ,Σ, R, S〉, where
N is a ranked alphabet whose elements are called non-terminals.
Σ is a ranked alphabet called signature.
R is a finite set of rules of the form N → t where N ∈ N , t ∈ T (F ∪N ∪{y1, . . . , yar(N)}),
t 6∈ Y, and each of the parameters {y1, . . . , yar(N)} appears in t.
S is the initial non-terminal of rank 0.

The sets N and Σ must be disjoint, each non-terminal N appears as a left-hand side of
just one rule of R. Let N1 >G N2 for two non-terminals N1, N2, iff (N1 → α) ∈ R, and
N2 occurs in α. The STG must be non-recursive, i.e., the transitive closure >+

G must
be terminating. The depth of G is the maximal length of a chain in >+

G. We define the
derivation relation⇒G on T (F ∪N ∪Y) as follows: t⇒G t′ iff there exists (A→ s) ∈ R with
ar(A) = n, t = C(A(t1, . . . , tn)) and t′ = C(σ(s)), where σ = {y1 → t1, . . . , yn → tn} and C
is a context, i.e. a term in T (F ∪N ∪ Y ∪ •) such that • appears only once in the positions
of C, and C(A) is simply the replacement of • by A in C. The term pattern generated by a
non-terminal N of G, denoted by tG,N or tN when G is clear from the context, is the term
pattern in T (F ∪ Y) such that N ⇒∗G tN .

Note that the rules of our grammars will always have ≤ 2 occurrences of non-parameter
symbols in their right-hand sides. This is not a loss of generality since every STG can be
efficiently normalized to satisfy this constraint (see [16]). Hence, we define the size of an
STG/SG G, denoted |G|, as its number of nonterminals. An STG is linear if, for every rule
(N → t), the term t is linear in Y. An STG is called k-bounded if every non-terminal has
arity ≤ k. Finally, an STG is called monadic if it is 1-bounded. As shown by the next
examples, STGs can represent terms of exponential height.

I Example 2.4. Let G be a monadic (and linear) STG with the following set of rules.
{Aa → a,A0(y1) → f(y1), A1(y1) → A0(A0(y1)), A2(y1) → A1(A1(y1)) . . . , An(y1) →
An−1(An−1(y1)), S → An(Aa)}. Then tS generates a monadic tree f(f(. . . (a) . . .)) of size
2n + 1.

RTA’11



54 First-Order Unification on Compressed Terms

It is not difficult to prove that, for any linear STG G = (N ,Σ, R, S), it holds that |tS | ≤
2O(|G|). STGs can be considered as a generalization of directed acyclic graphs in which not
only repeated subterms are shared but also repeated term patterns. In fact, DAGs can be
seen as 0-bounded STGs.

In this work, STGs are used in the context of first-order unification. Hence, we want
to represent terms containing first-order variables. From the point of view of the grammar,
every first-order variable X initially is just a terminal symbol. As will be explained in the
next section, they will be transformed in non-terminals as soon as they get instantiated due
to the unification process by adding a rule of the form X → A, where A is a non-terminal of
rank 0. We call this kind of rules λ rules.

3 First-order unification and matching

Consider a ranked alphabet F and a set of first-order variables X . The first-order unification
problem consists of, given two terms s, t ∈ T (F ∪X ), finding a substitution σ such that σ(s)
and σ(t) are syntactically equal. The first-order matching problem is a particular case of
first-order unification in which only one of the terms given as input may contain variables.
Both first-order unification and matching are common problems in areas like functional and
logic programming, automated deduction, deductive databases, and compiler design.

Our tool Unif-STG offers three algorithms for solving first-order unification where the
input terms s, t are represented compressed using STGs. Moreover, as a yardstick for
comparison we implemented a variant of Corbin-Bidoit [7] that uses directed acyclic graphs
for term representation. All four algorithms correspond, essentially, to the schema presented
in Figure 1. Note that in this schema we consider indexes in the preorder traversal words
of terms instead of just positions. This is not relevant for the algorithm that works on
uncompressed terms but will make a difference in the compressed case. Note that two
arbitrary different trees may have the same preorder traversal, but when they represent
terms over a fixed signature where the arity of every function symbol is fixed, the preorder
traversal is unique for every term. Thus, we can recursively define the mapping iPos(t, i)→
Pos(t) relating positions in a term with indexes in its preorder traversal word as follows:
iPos(α(t1, . . . , tm), 1+ |t1|+ . . .+ |ti−1|+k) = i.iPos(ti, k) for 1 ≤ k ≤ |ti| and iPos(ti, 1) = λ.
This observation was crucial in [10] to improve the algorithm of first-order unification with
STGs since positions of a term represented with an STG G may have exponential size w.r.t.
|G| and need to be compressed which makes the computation of subterms inefficient. On
the other hand, computing a subterm t|iPos(t,i) given the index i can be done in a much
more efficient way. It is important to remark that XML trees are unranked in general and
hence two different trees may have the same preorder traversal. Hence, it is important to
transform XML trees to ranked trees (terms) to apply the approach mentioned above. Note
that the basic operations in that schema are to decide equality between two terms, apply a
substitution, compute the preorder traversal word of a term, compute a subterm of a term
given an index of its preorder traversal word, find the first different positions of two words,
and check whether a certain symbol occurs within a term. In the setting of Unif-STG, the
input terms s, t are represented using STGs. Since STGs can represent terms of exponential
size, the difficulty of applying that schema to compressed terms relies on being able to solve
all these subproblems in polynomial time with respect to the size of the input STG. In [9],
this problem was solved in time O(|V |(m + |V |n)4), where m represents the size of the
input STG, n represents its depth, and V represents the set of different first-order variables
occurring in the input terms. Then this result was improved in [10] to O(|V |(m+ |V |n)3).
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Unify(s : term, t : term):
σ: substitution
σ := ∅
While (σ(s) 6= σ(t)):

Look for the first position k such that Pre(σ(s))[k] 6= Pre(σ(t))[k].
If both Pre(σ(s))[k] and Pre(σ(t))[k] are function symbols, Then

Return false (clash)
// Assume w.l.g that Pre(σ(s))[k], is a variable x.
If x occurs in σ(t)|p, where p = iPos(σ(t), k), Then

Return false (occur-check)
σ := σ ∪ {x 7→ σ(t)|p}

EndWhile
Return true

Figure 1 General schema for first-order unification

From [10], we know that the following problems can be solved in linear time:
Given a SG/STG G, compute the number |tN |/|wN | for every non-terminal N of G.
Given a STG G and a non-terminal N , construct an SG of linear size for Pre(tG,N ).
Given an STG G, a non-terminal N of G, and an integer k, compute an extension G′ of
G such that G′ generates tG,N |iPos(tG,N ,k).

Also from [10], we know that, given two words compressed with SGs, we can find the first
position in which they differ in linear time using a data structure computed by Lifshit’s
algorithms for checking equality. This problem can also be solved probabilistically in linear
time as sketched in the following subsection. Moreover, an application of a substitution
{X → t} is simulated by transforming X from a terminal to a non-terminal of the grammar
and adding the rule X → N , where the non-terminal N generates t. In this way, the
grammar may be extended with at most n new non-terminals after each variable assignment
as proved in [10]. Hence, the final size of the grammar is bounded by m+ |V |n. Thus, the
resulting running time corresponds to decide equality for STGs |V | times on a grammar of
size O(m+ |V |n). In [10], the problem of deciding equality between two terms represented
by STGs is reduced to equality between words represented by SGs. Lifshits’ algorithm [13]
is, with respect to big-O complexity, the most efficient known exact algorithm for checking
equality between two words represented by SGs. It is cubic with respect to the sizes of the
input SGs. Our three implementations of first-order unification with STGs correspond to
different algorithms for solving this subproblem. Unif-STG allows the user to choose among
Lifshits’ algorithm and two of the recent randomized algorithms by Schmidt-Schauß and
Schnitger [21]. Since our implementation of the randomized algorithms runs in linear time,
the cost of first-order unification is O(|V |(m+ |V |n)) when they are used. See below where
we describe these equality testing algorithms.

With respect to first-order matching with STGs, an algorithm with cost O((m+ |V |n)3)
was presented also in [10]. The improvement with respect to the unification case relies in the
fact that, in contrast to unification schema presented in Figure 1, in the matching case we
just need to look for the index of first occurrence of a variable in Pre(s) instead of looking
for the index of the first difference between Pre(s) and Pre(t) and do the corresponding
assignment until every variable is replaced. At the end we just perform equivalence testing
once. For the details of that algorithm we refer the reader to [10]. Using the randomized
algorithms of [21] first-order matching can be solved in O(m+ |V |n).

Note that in [9] and [10] only monadic grammars were considered. This is not a loss of
generality since every linear STG can be transformed in polynomial time into a monadic (and
linear) one [16]. However, their algorithm is rather involved and difficult to implement. We

RTA’11



56 First-Order Unification on Compressed Terms

therefore extended the unification algorithm of [10] to unbounded grammars. This mainly
consists of generalizing the construction for the computation of a subterm to unbounded
grammars. The solutions implemented in Unif-STG for the rest of the subproblems are
straightforward adaptations of those in [10] and are not further discussed here.

Equality testing. Given an SG G = (N ,Σ, R) and two non-terminals A, B, equality
testing consists of deciding whether wA = wB. Let us assume that |wA| = |wB | since
otherwise inequality is easily stated in linear time. As commented above, the fastest known
exact algorithm for equality testing for SGs is Lifshits’ algorithm [13]. In Unif-STG we
implemented, in addition to Lifshits’ algorithm, two new algorithms of [21]. These algorithms
run faster than Lifshits’ by using a randomized approach. They work by considering an
SG to generate a natural number, in addition to a word. The number coded by wA = w′a,
where w′ ∈ Σ∗ and a ∈ Σ, is defined in terms of a fixed mapping f : Σ→ {0, . . . , |Σ| − 1}, as
code(wA) = code(w′) ∗ |Σ|+ f(a). The main idea of the algorithm is very simple. If we want
to check whether A and B represent the same word, we choose a natural number m satisfying
certain properties, and compute α = code(wA) mod m and β = code(wB) mod m. If α 6= β

then the words are obviously different. Otherwise, it is possible that wA 6= wB, but α = β.
In this case we do not detect inequality. In [21], two upper bounds for the choice of the
m that guarantee that we detect inequality with a probability ≥ 1

2 for any pair of words
are given: either m ≤ |wA|2 ∗ c or m ≤ |wA| ∗ c if m is prime, for a certain constant c. We
implemented both options in Unif-STG. By repeating the test k times the probability of not
detecting inequality is < 1

2k . In Unif-STG the value of k is set to 10 by default.
In order to assure that the chosen m is prime we implement a simple algorithm: generate

a random number, and test primality. If the number is not prime, then generate another
number, and so on. We test primality with the Fermat primality test, checking if ap−1 ≡ 1
mod p for a ∈ {2, 3, 5, 7}. Due to the Prime number theorem, the average number of times
we generate a number until getting a prime is the logarithm of m, and hence linear in |G|,
and the Fermat primality test is also performed in logarithmic time.

We also need an algorithm to compute if wA is a prefix of wB , in order to find the first
difference between two words represented with SGs (see Figure 1). This problem can be
reduced to computing code(wB[1 . . . |wA|]) and applying the probabilistic algorithm. To
perform this task in linear time it is enough to precompute, for each non-terminal A of the
grammar, the numbers code(wA) and |wA|, and to compute code(wB [1 . . . |wA|]) recursively.

Finally, it is important to remark a certain peculiarity of the version of the probabilistic
algorithms implemented in Unif-STG. They run in linear time thanks to the fact that |wA|
is limited by default to

√
L where L = 264, the maximum value for a long long int, in the

case of the algorithm using primes; and to 4
√
L, in the algorithm using natural numbers.

Otherwise, computing code(wA) modulo m is not guaranteed to run in linear time. The
current implementation allows bigger values, but then does not guarantee an error probability
of less than 1

2 for every possible instance of the problem. In our experiments we never
encountered a false reply by the probabilistic algorithm.

Note that Unif-STG has been built to work with arbitrary arithmetic; the size limitation
has been added for efficiency reasons only and can be removed at any time.

4 Unif-STG

Unif-STG is written in C++ using the standard template library. The system implements
three algorithms for solving the equality testing with SGs: Lifshits’ exact algorithm, plus two
versions of the randomized algorithm by Schmidt-Schauß and Schnitger (one with integers and
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one with primes). We refer to the corresponding three versions of the unification algorithm
for STG grammars by STG-exact, STG-rand, and STG-rand-prime. Our implementation
of unification over uncompressed terms is denoted “tUnif”. As commented before, this is a
variant of the Corbin-Bidoit algorithm. We refer the reader to Chapter 8, Section 2.3 of [1]
for the details of this algorithm. Note that Unif-STG outputs a compressed representation
of the solution (again compressed with STGs).

5 Experiments

Experimental Setup. All tests are executed on a machine with Intel Xeon Core 2 Duo,
3 Ghz processor, with 4GB of RAM. We use the Ubuntu Linux 9.10 distribution, with kernel
2.6.32 and 64 bits userland. Our implementation was compiled using g++ 4.4.1. We used
TreeRePair (build data 01-19-2011) which was kindly made available to us by Roy Mennicke.
It is essentially the version available at http://code.google.com/p/treerepair, with the
only difference that it allows to compress without prior applying a binary tree encoding. We
run TreeRePair with the switches “-multiary -bplex -c -nodag -optimize edges” and default
value (4) for maxbound. The latter means that only 4-bounded STGs are generated.

Protocol. Each test is executed three times, and the fastest time of the three runs is
reported. We only measure the pure unification time, i.e, we ignore loading time and setup
of basic data structures, etc.

Design of the Experiments. Instead of trying to find instances of unification problems
with large terms that are realistic and likely to appear in practice, we present results over
artificial examples. The idea behind these examples is to test the behaviour of our algorithms
in the different extreme corner cases. The main aspects that make up these cases are (a)
are the terms well-compressible by TreeRePair? (b) do they unify or not? (c) how many
variables? (d) is it only matching; how much copying of variables? For question (a) we
need to distinguish further: (a1) is the “top-matching part”, i.e., parts where both terms
do not have variables (and therefore must match exactly) well-compressible? And (a2) is
the “binding part”, that is, parts that will be bound to variables during unification well
compressible? We constructed a family of instances that allows to test many of these aspects.
First we show two simple examples which compress well.

Bin and Mon. For a natural number n, let fn(a, b) denote a full binary tree with leaf
sequence ababab . . . . Given a natural number n, Bin(n) consists of the pair of trees

Bin(n) = (g(g(fn(a, b), fn(a, b)), g(fn(a, b), fn(a, b))), g(g(X,X), g(X, fn(a, Y )))).

Similarly, fn(a) denotes a monadic tree of height n with internal nodes labeled f and leaf a.
The second example, called Mon(n) consists of this pair of trees

Mon(n) = (h(fn(X), fn(Y ), Y ), h(T,Z, T )).

Clearly, both Bin and Mon are unifiable for every n. Moreover, they are well compressible
with TreeRePair. To see this, consider the right part of Table 1 which shows the compression
time, the number of edges in the original tree and in the STG grammar, plus the file sizes of
the original tree (in XML format) and of the grammar (in text format). It also shows the
file size of the grammar in CNF in the special format that our unification program uses.

For both Bin and Mon, the TreeRePair algorithms achieves exponential compression
rates. As can be seen, for n > 20000, the STG-rand algorithm is the fastest. Interestingly,
for such small grammars we are punished for using prime numbers and STG-rand-prime is
slower than STG-rand. This is different for larger grammars as the later examples show.

RTA’11
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Runtime (in ms) Input
STG- STG- STG- compr.

n/1000 tUnif randp rand exact edges time STG edges CNF file
5 2 8 8 24 10008 (69K) 55ms 38 (388B) 1K

10 5 10 8 28 20008 (137K) 62ms 40 (398B) 1.1K
20 11 11 9 30 40008 (157K) 140ms 42 (420B) 1.1K
50 44 11 9 30 100T (684K) 341ms 45 (434B) 1.2K
100 107 12 10 31 200T (1.4M) 681ms 47 (457B) 1.3K
200 232 13 10 32 400T (2.7M) 1387ms 49 (467B) 1.3K

Table 1 The example Mon(n)

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

10 3 18 19 78 20484 (111K) 62 (578B) 1.9K
11 7 20 20 96 40964 (221K) 66 (596B) 2.1K
12 16 22 22 108 81924 (441K) 70 (638B) 2.2K
13 35 23 23 131 163844 (881K) 74 (656B) 2.3K
14 72 26 25 146 327684 (1.8M) 78 (698B) 2.4K
16 290 30 28 (*) 1310724 (6.9M) 86 (758B) 2.7K

(*) STG-exact ran out of (int) bounds.

Table 2 The example Bin(n)

Note that here the exact algorithm still shows reasonable performance. This will not be
the case for larger grammars. Note that, in terms of XML, Mon is actually quite relevant:
a long list of items usually becomes a long list of siblings in XML. Using the common
“first-child/next-sibling”-encoding of unranked into binary trees, such a list becomes a long
path, similar to Mon.

Bad Instances for STG-Unif. Here consider instances where the STG-based uni-
fication algorithm does not perform well. In general, this is the case when the terms are
not well compressible (see below). But, there are even simpler reasons for this to happen.
Consider unifying the trees f(t) and g(t′) for large (arbitrary) terms t and t′. The run time of
tree-based unification is only 0.005ms for this instance. While, even for highly compressible
t = t′, STG-Unif will take >15ms. This is due to the fact that STG-Unif always needs to
traverse the whole grammar to find the position of the first difference between f(t) and g(t′)
and tUnif traverses the input tree only until the position of the first difference is reached.

Meta. We now define a highly configurable example instance. Consider the pair of
trees (t1, t2), where both t1 and t2 are full binary trees (with internal nodes labeled f)
of height n. At the leaves of t1 and t2 appear monadic trees of random height h, with
minHeight ≤ h ≤ maxHeight. These monadic trees are identical in t1 and t2. Now,
t1 contains variables as leaves of the monadic trees, randomly chosen from a given set
Vars of variables. While t2 contains random trees at those leaf positions, chosen over a
given signature Σ, and maximal size of up to randSize. Moreover, a Boolean determines
whether at variable copies we force the random trees in t2 to be equal (which will guar-
antee that the instance is unifiable). Thus, the specification of an instance is as follows:
Meta(n,minHeight,maxHeight,Vars, randSize,Σ,Bool U).

Number of Variables. Using Meta, we experimented with the number of different
unification variables. The results were convoluted and no clear trends were observable;
both algorithms seemed similarly impacted by the number of variables. For instance,
for n = 4, maxHeight = minHeight = 1000, randSize = 1 and |Σ| = 3 we obtain, for
3 variables: 3ms/18ms (tUnif/STG-rand-prime), for 5 variables: 7ms/32ms, and for 10
variables: 10ms/44ms.

Incompressible Terms. An interesting case is if large incompressible terms appear
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at positions that will instantiate variables. In terms of Meta, it suffices to take n = 1, and
to use large random trees. For the other parameters we use minHeight = maxHeight = 0,
Vars = {X,Y }, Σ = {g(2), f (1), a(0)}, and Boolean U set to true. As Table 3 shows, STG-Unif
is indeed about 100-times slower than tree-based unification. The difference in speed seems
to get slightly smaller for very large inputs. As comparison, if we add a larger binary tree
on top of t1, i.e., use a larger n, then the tree becomes more compressible and therefore
STG-based unification becomes efficient. This is shown in the right of Figure 2, where we
pick randSize = 20000, but now use monadic trees of size 0–1000.

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

1000 0.1 21 34 222 981 (5.9K) 214 (1.5K) 6.6K
5000 0.6 78 116 2430 4778 (29K) 774 (15K) 25K

20000 2.4 405 598 43632 26114 (157K) 3308 (21K) 107K
50000 12 1396 2074 (*) 94280 (564K) 9975 (63K) 327K

200000 43 5464 8036 (*) 334586 (2M) 30740 (196K) 1.1M

Table 3 Incompressible Terms in Substitution Positions

With respect to unifiability, we observed that changing a few nodes to make the input
non-unifiable, causes STG-rand to take ca. twice the time given in Table 3, while tUnif gets
slightly faster.

There are also examples where the solution consists of deeper trees than the input. This
works well for the uncompressed algorithm too. But, we can see the effect of compression:
consider t1 = h(X,Y, Z) and t2 = h(s1, s2, s3), where s1 is a full binary tree (over f ’s) of
height n with all leaves labeled Y , s2 is a full binary tree (over f ’s) of height n with all leaves
labeled Z, and s3 the same but with leaves labeled X. Note that X will be assigned to s1.
Hence, all the X’s in s3 will be replaced by s1. Then, Y will be replaced by s2 everywhere
(also in s3). So finally t′ = Y → s2(X → s1(s3)) will be compared to Z. Note that t′ is the
complete tree of depth 3 ∗ 20 whose leaves are all labeled Z. Since Z occurs in t′ unification
fails. This example is called “3-Stack” and timings are shown in Figure 2.

n tUnif STG-rp STG-r STG-e
18 99 7 9 35
19 200 8 9 38
20 401 8 10 (*)

n tUnif STG-rp STG-r STG-e
7 369 1694 2130 (*)
8 688 1726 2149 (*)
9 1730 2391 2982 (*)

Figure 2 The example 3-Stack (left) and randSize=20000 of Table 3 (right)

6 Conclusion and Further Work

Besides the rather immediate application of our work to logic programming with XML
(mentioned in the Introduction), it might also be possible to apply compressed terms within
theorem provers. The latter do not usually store very large trees, but store many trees. Of
course, many small trees could be combined into one large tree, prior to grammar compression.
However, this might induce extra costs for referencing those trees. In future work it should
be studied how unification and matching (and other operations needed in theorem provers)
can be applied to a set of trees represented by a cf tree grammar. Moreover, efficient updates
need to be supported over such grammars. Updates on STGs have been considered in [8],
but have not been implemented in any large system yet.

RTA’11
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