

Edinburgh Research Explorer

XPath Node Selection over Grammar-Compressed Trees

Citation for published version:
Maneth, S & Sebastian, T 2013, XPath Node Selection over Grammar-Compressed Trees. in Proceedings
Second International Workshop on Trends in Tree Automata and Tree Transducers, TTATT 2013, Hanoi,
Vietnam, 19/10/2013.. Cornell University Press, pp. 38-48. DOI: 10.4204/EPTCS.134.5

Digital Object Identifier (DOI):
10.4204/EPTCS.134.5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings Second International Workshop on Trends in Tree Automata and Tree Transducers, TTATT 2013,
Hanoi, Vietnam, 19/10/2013.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.4204/EPTCS.134.5
https://www.research.ed.ac.uk/portal/en/publications/xpath-node-selection-over-grammarcompressed-trees(33dab85d-e435-411e-96ae-e1cf22010e11).html

S. Maneth (Ed.): Workshop on Trends in Tree
Automata and Tree Transducers (TTATT 2013).
EPTCS 134, 2013, pp. 38–48, doi:10.4204/EPTCS.134.5

c© S. Maneth, T. Sebastian
This work is licensed under the
Creative Commons Attribution License.

XPath Node Selection over Grammar-Compressed Trees

Sebastian Maneth
School of Informatics

University of Edinburgh
UK

smaneth@inf.ed.ac.uk

Tom Sebastian
Innovimax and

Links Project (INRIA and LIFL, Lille)
FR

tom.sebastian@inria.fr

XML document markup is highly repetitive and therefore wellcompressible using grammar-based
compression. Downward, navigational XPath can be executedover grammar-compressed trees in
PTIME: the query is translated into an automaton which is executed in one pass over the grammar.
This result is well-known and has been mentioned before. Here we present precise bounds on the
time complexity of this problem, in terms of big-O notation.For a given grammar and XPath query,
we consider three different tasks: (1) to count the number ofnodes selected by the query (2) to ma-
terialize the pre-order numbers of the selected nodes, and (3) to serialize the subtrees at the selected
nodes.

1 Introduction

An XML document represents the serialization of an ordered node-labeled unranked tree. These trees
are typically highly repetitive with respect to their internal node labels. This was observed by Buneman,
Koch, and Grohe when they showed that the minimal DAGs of suchtrees (where text and attribute values
are removed) have only 10% of the number of edges of the trees [2]. The DAG removes repeating sub-
trees and represents each distinct subtree only once. A nicefeature of such a “factorization” of repeated
substructures, is that many queries can be evaluated directly on the compressed factored representation,
without prior decompression [2, 6]. The sharing of repeatedsubtrees can be generalized to the sharing of
repeated (connected) subgraphs of the tree, for instance using the sharing graphs of Lamping [9], or the
straight-line (linear) context-free tree (SLT) grammars of Busatto, Lohrey, and Maneth [3]. The recent
“TreeRePair” compressor [11] shrinks the (edge) size of typical XML document trees by a factor of four,
with respect to the minimal unranked DAG (cf. Table 4 in [11]).

It was shown by Lohrey and Maneth [10] that tree automata and navigational XPath can be evaluated
in PTIME over SLT grammars, without prior decompression. This is used to build a system for selectivity
estimation for XPath by Fisher and Maneth [5]. Roughly speaking, the idea is to translate the XPath
query into a certain tree automaton, and to execute this automaton over the SLT grammar. In this paper
we make these constructions more precise and give complexity bounds in terms of big-O notation. We
use the “selecting tree automata” of Maneth and Nguyen [13] (see also [1]), in their deterministic variant.
Similar variants of selecting tree automata have been considered in [15, 16, 17]. We explain how XPath
queries containing the child, descendant, and following-sibling axes can be translated into our selecting
tree automata. It is achieved via a well-known translation of such XPath queries into DFAs, due to Green,
Gupta, Miklau, Onizuka, and Suciu [7]. We then study three different tasks: (1) to count the number of
nodes that a deterministic top-down selecting tree automaton selects on a tree represented by a given SLT
grammar, (2) to materialize the pre-order numbers of the selected nodes, and (3) to serialize, in XML
syntax, the depth-first left-to-right traversal of the subtrees rooted at the selected nodes. The first problem
can be solved inO(|Q||G|) whereQ is the state set of the automaton, andG the SLT grammar. The second

http://dx.doi.org/10.4204/EPTCS.134.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Maneth, T. Sebastian 39

and third problem can be solved in timeO(|Q||G|+ r) and timeO(|Q||G|+ s), respectively, wherer is
the number of selected nodes ands is the length of the serialization of the selected subtrees.Note that the
lengthscan be quadratic in the size of the tree represented byG (e.g., if every node is selected). Thus,s
is of length(2|G|)2 if G compresses exponentially. We show how to obtain a compressed representation
of this serialization by a straight-line string grammarG′ of sizeO(|Q||G|r).

Most of the constructions of this paper are implemented in the “TinyT” system. TinyT and a detailed
experimental evaluation is given by Maneth and Sebastian [14].

2 Preliminaries

XML trees. XML defines several different node types, such as element, text, attribute, etc. Here we
are only concerned with element nodes. Our techniques can easily be applied to other types of nodes.
An unranked XML treeis a finite node-labeled ordered unranked tree. The node labels are non-empty
words over a fixed finite alphabetU. Thefirst-child next-sibling encodingof an unranked XML treet is
the binary tree obtained fromt as follows: if a node int has a first child, then this first child becomes
the left child in the binary tree. If a node has a next sibling in t, then this next sibling becomes the
right child in the binary tree. If a node has no first child (resp. next sibling) then in the binary tree its left
(resp. right) child is a leaf labeled with the special label. There is a one-to-one correspondence between
unranked XML trees and binary trees with internal nodes labeled in U+ and leaves labeled(and with a
root whose right child is a-leaf). We only deal with such binary trees from now on, and refer to them as
XML trees. Figure 1 shows an unranked XML tree on the left (albeit a binary tree itself), and is first-child
next-sibling encoded tree on the right.

Tree grammars. A ranked set consists of a setA together with a mappingrank which associates
the non-negative integerrank(a) to eacha∈ A. We fix a special set of symbolsY = {y1,y2, . . .} called
parameters.

A straight-line (linear) tree grammar(for short,SLT grammar) is a tupleG= (N,S,P) whereN is a
finite ranked set of nonterminals,S∈N is the start nonterminal of rank 0, andP maps eachA∈ N of rank
k to an ordered finite treet. In t there is exactly one leaf labeledyi , for each 1≤ i ≤ k, and they1, . . . ,yk

appear in pre-order oft. Nodes int are labeled by nonterminals inN, by words inU+, and by the special
leaf symbol . If a node is labeled by a nonterminal of rankk, then it has exactlyk children. If a node
is labeled by a word inU+ then it has exactly two children. IfP(A) = t then we also writeA → t or
A(y1, . . . ,yk)→ t and refer to this assignment as a “production” or a “rule”. Werequire that the relation
HG, called thehierarchical order of G, and defined as

HG = {(A,B) ∈ N×N | B occurs inP(A)}

is acyclic and connected. The grammarG produces exactly one tree, denoted byval(G). It can be
obtained by repeatedly replacing nonterminalsA ∈ N by their definitionP(A), starting with the initial
treeP(S). Replacements are done in the obvious way: a subtreeA(t1, . . . , tk) is replaced by the treeP(A)
in which yi is replaced byti for 1 ≤ i ≤ k. We define therank of the grammar as the maximum of the
ranks of all its nonterminals. We extend the mapping val to nonterminalsA and defineval(A) as the tree
obtained fromA(y1, . . . ,yk) by applying the rules ofG (and treating theyi as terminal symbols). The tree
val(A) is a binary tree with internal nodes inU+ and leaves labeledor yi . Eachyi with 1≤ i ≤ k occurs
once, andy1, . . . ,yk occur in pre-order ofval(A).

Thesize of an SLT grammar Gis defined as the sum of sizes of the right-hand side trees of all rules.
Thesize of a treeis defined as its number of edges.

40 XPath Node Selection over Grammar-Compressed Trees

library

book book

title authortitle author

library

book

title book

author title

author

Figure 1: Unranked XML tree and its encoded binary tree.

Example. Consider the SLT grammarG1 with three nonterminalsS, B, andT, of ranks zero, one,
and zero, respectively. It consists of the following productions:

S → lib(B(B()),)
B(y1) → book(T,y1)
T → title(,author(,))

It should be clear that the treeval(G1) produced by this grammar is the binary tree shown on the rightof
Figure 1.

3 XPath to Automata

We consider XPath querieswithout filters. In Section 5 we explain how filters can be supported. Such
queries are of the form

Q= /a1 :: t1/a2 :: t2/ · · ·/an :: tn

whereai ∈ {child,descendant, following-sibling} andti ∈ {∗}∪U+. Thus, we support two types of node
tests (i) a local (element) name and (ii) the wildcard “*”, and support three axes: child, descendant, and
following-sibling. For a queryQ and XML treet we denote byQ(t) the set of nodes thatQ selects ont.
We do not define this set formally here.

It was shown by Green, Gupta, Miklau, Onizuka, and Suciu [7] that any XPath queryQ containing
only the child and descendant axes can be translated into a deterministic finite state automaton DFA(Q).
Note that their queries and automata also allow to compare text and attribute values against constants.
The DFA constructed for a given query, is evaluated over the paths of the unranked XML input tree.
When a final state is reached at a node, then this node is selected by the query. Their translation is
a straightforward extension of the “KMP-automata” for string matching, explained for instance in the
chapter on string matching in [4]. If there are no wildcards in the query, then Green et al show that the
size of the obtained DFA is linear in the size of the query. In the presence of wildcards, the DFA size is
exponential in the maximal number of *’s between any two descendant steps (see Theorem 4.1 of [7]).
To understand their translation, consider the following example query:

Q1 = //a/∗/b//c/d

where “//” denotes the descendant axis (more precisely, it denotes the query string “/descendant ::”),
and “/” denotes the child axis. The corresponding automaton DFA(Q1) is shown in Figure 2. For a
sequence of children steps, the idea is similar to KMP [8]: when reading a new symbol that fails, we
compute the longest current postfix (including the failed symbol; this is the difference to KMP) that is

S. Maneth, T. Sebastian 41

0 1

2

3

4 5 6
a

a
¬a
¬b

¬a

a

b

b

c

¬c

d

c

¬c

¬a

a

¬a,¬b

¬c c

Figure 2: DFA for the XPath queryQ1 = //a/∗/b//c/d..

a prefix of the query string and add a transition to the corresponding state. Care has to be taken for
wildcards, because then (in general) we need to remember thesymbol read; in the example (at state 1) it
suffices to know whether it is ana, or not.

Selecting Tree Automata

Selecting tree automataare like ordinary top-down tree automata operating over binary trees. They use
special “selecting transitions” to indicate that the current node should be selected. In this paper we
use deterministic selecting automata. Similar such nondeterministic automata have been considered by
Maneth and Nguyen [13]. Since the XML trees may contain arbitrary labels inU+, we require that each
state of the automaton has onedefault rule. The default rule is applied if no other rule is applicable.

Definition 1 A deterministic selecting top-down tree (DST) automatonis a triple A = (Q,q0,R) where
Q is a finite set of states, q0 ∈ Q is the initial state, and R is a finite set of rules. Each rule is of one of
these forms:

(q,w) → (q1,q2)
(q,w) ⇒ (q1,q2)

where q,q1,q2 ∈Q and w∈ {%}∪U+. The symbol% is a special symbol not inU. Let q∈Q. We require
that (1) there is exactly one rule in R with left-hand side(q,%), called thedefault rule ofq, and (2) for
any w∈ U+ there is at most one rule in R with left-hand side(q,w).

A rule of the first form is callednon-selecting ruleand of the secondselecting rule. The semantics
of a DST automaton should be clear. It starts reading a treet in its initial stateq0 at the root node oft. In
stateq at a nodeu of t labeledw∈ U+ it moves to the left child into stateq1 and to the right child into
stateq2, if there is a rule(q,w)β (q1,q2) with β ∈ {→,⇒}. If β =⇒, i.e., the rule is selecting, thenu is
a result node. IfA has no such rule, then the default rule is applied (in the sameway). The unique run
of A on the treet determines the setA (t) of result nodes.

Assume we are given an XPath queryQ with child and descendant axes only and consider its trans-
lated automaton DFA(Q). It is straightforward to translate the DFA into a DST automaton. If the DFA
moves fromq to q′ upon reading the symbola, then the DST automaton has the transition(q,a)→ (q′,q);
this is because the right child corresponds to the next sibling of the unranked XML tree, and at that node
we should still remain in stateq and not proceed toq′. The DST automaton that corresponds to the DFA

42 XPath Node Selection over Grammar-Compressed Trees

of Figure 2 is:
(q0,a) → (q1,q0) (q4,c) → (q5,q4)
(q0,%) → (q0,q0) (q4,%) → (q4,q4)
(q1,a) → (q2,q1) (q5,c) → (q5,q5)
(q1,%) → (q3,q1) (q5,d) ⇒ (q6,q5)
(q2,a) → (q2,q2) (q5,%) → (q4,q5)
(q2,b) → (q4,q2) (q6,c) → (q5,q6)
(q2,%) → (q3,q2) (q6,%) → (q4,q6)
(q3,a) → (q2,q3)
(q3,b) → (q4,q3)
(q3,%) → (q3,q3)

Consider now a general XPath query in our fragment, i.e., onethat contains child, descendant,andthe
following-sibling axes. Consider each maximal sequence offollowing-sibling steps. We can transform
it to a DFA by simply treating them as descendant steps and running the translation of Green et al.
The obtained DFA is transformed into a DST automaton by simply carrying out the recursion on the
second child only, i.e., if the DFA moves formq to q′ on input symbola, then the DST automaton has
the transition(q,a) → (dead,q′), where “dead” is a sink state. We merge the resulting automata in the
obvious way to obtain one final DST automaton for the query. E.g. for XPath query

/a/following-sibling ::b/c

we obtain the following DST automaton:

(0,a) → (dead,1)
(0,%) → (dead,0)
(1,b) → (2,1)
(1,%) → (dead,1)
(2,c) ⇒ (dead,2)
(2,%) → (dead,2)
(dead,%) → (dead,dead)

Theorem 1 For an XPath query Q we can construct a DST automatonA such thatA (t) = Q(t) for
every tree t. The size ofA can be bounded according to Theorem 4.1 of [7]. In particular, if there are
no wildcards, then the size|A | of A is in O(|Q|).

4 Automata over SLT Grammars

This section describes how to perform counting, materialization, and serialization for the set of nodes
A (t) selected by the DST automatonA on the treet = val(G) given by the SLT grammarG. Note that
the case of counting was already described by Fisher and Maneth [5]; they consider queries with filters
and containing more axes than in our fragment (e.g., supporting the following axes), and therefore obtain
higher complexity bounds (cf. Section 5).

4.1 Counting

We build a “count evaluator” which executes in one pass over the grammar, counting the number of result
nodes of the given XPath query. The idea is to memoize the “state-behavior” of each nonterminal of the
SLT grammar, plus the number of nodes it selects.

S. Maneth, T. Sebastian 43

Theorem 2 Given an SLT grammar G and a DST automatonA = (Q,q0,R), and assuming that oper-
ations on integers of size≤ |val(G)| can be carried out in constant time, we can compute the number
|A (val(G))| of nodes selected byA on val(G) in time O(|Q||G|).

Proof. Let G= (N,S,P) and letHG be its hierarchical orderHG = {(A,B)∈N×N |B occurs inP(A)}.
We compute a mappingϕ in one pass through the rules ofG, in reverse order ofHG, i.e., starting with
those nonterminalsA for which P(A) does not contain nonterminals. For each nonterminalA of rankk
and stateq ∈ Q we defineϕ(A,q) = (q1, . . . ,qk,n) whereqi ∈ Q andn is a non-negative integer. The
qi are chosen in such a way that if we runA on P(A) then we reach theyi-leaf in stateqi , andn is the
number of selected nodes of this run. We start in stateq at the root node ofP(A), and set our result
counter for this run to zero. If we meet a nonterminalB during this run, say, in stateq′, then itsϕ value
is already defined; thus,ϕ(B,q′) = (q′1, . . . ,q

′
m,n

′). We continue the run at stateq′i at thei-th child of this
nonterminal inP(A). We also increase our result counter forq andA by n′. If we meet a selected terminal
node, then we increase the result counter by one. The final result count is stored as the numbern in the
last component of the tuple inϕ(A,q). Finally, when we are at the start nonterminalS, we compute its
entryϕ(S,q0) = (n). This numbern is the desired value|A (G)|. Since we process|Q|-times each node
of a right-hand side of the rules ofG, we obtain the stated time complexity. �

4.2 Materializing

Here we want to produce an ordered list of pre-order numbers of those nodes that are selected by a given
DST automaton over an SLT grammarG. Clearly, this cannot be done in timeO(|Q||G|) because the list
can be of length|val(G)|.

First we produce a new SLT grammarG′ that represents the tree obtained fromval(G) by marking
each node that is selected by the automatonA . For each occurrence of a nonterminalB in the right-
hand sides of the rules ofG, there is at most one new nonterminal of the form(q,B,q1, . . . ,qk), where
q,q1, . . . ,qk are states ofA . The construction is similar to the proof of Theorem 2: instead of computing
ϕ(A,q) = (q1, . . . ,qk,n), we construct a rule of the new grammarG′ of the form(q,A,q1, . . . ,qk) → t,
where t is obtained fromP(A) by replacing every nonterminalB met in stateq′ by the nonterminal
(q′,B,q′1, . . . ,q

′
m) whereϕ(B,q′) = (q′1, . . . ,q

′
k,n) for somen. When during such a run a selecting rule of

A is applied to a terminal symbola, then we relabel it by ˆa. Finally, to be consistent with our definition
of SLT grammars (which does not allow non-reachable (useless) nonterminals because the hierarchical
order is required to be connected), we remove all non-reachable nonterminals in one run throughG′.

Lemma 1 Let G be a k-SLT grammar andA a DST automaton. An SLT grammar G′ can be constructed
in time O(|Q||G|) so thatval(G′) is the relabeling ofval(G) according toA .

Note that in Theorem 5 of [10] it is shown that membership of the treeval(G) with respect to a
deterministic top-down tree automaton (dtta) can be checked in polynomial time. The idea there is to
construct a context-free grammar for the “label-paths” ofval(G); for a tree with root nodea and left child
leaf b, a1b is a label path. It then uses the property that the label-pathlanguage of a dtta is effectively
regular.

Example. Figure 3 shows an SLT grammarG with val(G) = (aa)8(e) and the DST automatonA
for the XPath query

Q2 = //∗[count(ancestor:: *) mod 3= 2].

While we do not translate queries using count and ancestor, the automaton for this particular query is easy
to construct: it uses three statesq1,q2,q3 to count the number of nodes modulo three. For simplicity the

44 XPath Node Selection over Grammar-Compressed Trees

SLT grammarG: DST automatonA :
A0 → A1(A1(e))
A1(y)→ A2(A2(y))
A2(y)→ A3(A3(y))
A3(y)→ a(a(y))

q1,%→ q2

q2,%→ q3

q3,%⇒ q1

relabeling SLT grammarG′:
〈q1,A0〉 → 〈q1,A1,q3〉(〈q3,A1,q2〉(e))
〈q1,A1,q3〉(y) → 〈q1,A2,q2〉(〈q2,A2,q3〉(y))
〈q1,A2,q2〉(y) → 〈q1,A3,q3〉(〈q3,A3,q2〉(y))
〈q1,A3,q3〉(y) → a(a(y))
〈q3,A3,q2〉(y) → â(a(y))
〈q2,A2,q3〉(y) → 〈q2,A3,q1〉(〈q1,A3,q3〉(y))
〈q2,A3,q1〉(y) → a(â(y))
〈q3,A1,q2〉(y) → 〈q3,A2,q1〉(〈q1,A2,q2〉(y))
〈q3,A2,q1〉(y) → 〈q3,A3,q2〉(〈q2,A3,q1〉(y))

Figure 3: A relabeling SLT grammarG′ with start production〈q1,A0〉, for a given SLT grammarG with
respect to a DST automatonA for queryQ2.

example is on a monadic tree, not an XML tree; therefore the rules ofA are of the formq,%→ q′, i.e.,
the right-hand side contains only one state instead of two. The figure also shows the SLT grammarG′,
representing the relabeling according to Lemma 1. One can verify that G′ produces the correct relabeled
tree, by computingval(G′) :

(q1,A0)→ 〈q1,A1,q3〉(〈q3,A1,q2〉(e))→
〈q1,A2,q2〉(〈q2,A2,q3〉(〈q3,A2,q1〉(〈q1,A2,q2〉(e))))→
〈q1,A3,q3〉(〈q3,A3,q2〉(〈q2,A3,q1〉(〈q1,A3,q3〉(
〈q3,A3,q2〉(〈q2,A3,q1〉(〈q1,A3,q3〉(〈q3,A3,q2〉(e)...)→
a(a(â(a(a(â(a(a(â(a(a(â(a(a(â(a(e)...)

Theorem 3 Let G be an SLT grammar andA be a DST automaton. Let r= |A (val(G))|. We can
compute an ordered list of pre-order numbers of the nodes inA (val(G)) in time O(|Q||G|+ r).

Proof. Let G= (N,S,P). By Lemma 1 we obtain in timeO(|Q||G|) an SLT grammarG′ whose tree
val(G′) is the relabeling ofval(G) with respect toA . The list of pre-order numbers is constructed during
two passes through the grammarG′. First we compute bottom-up for each nonterminalA (of rankk) the
off-sets of all relabeled nodes that appear inP(A). An offset is a pair of integers(c,o) where 0≤ c≤ k
is a chunk number, ando is the position of a node within a chunk. Achunkis the part of the pre-order
traversal ofP(A) that is before, between, or after parameters. I.e. whenA is of rankk, then there are
k+1 chunks: the chunk of the traversal from the root ofP(A) to the first parametery1 which has chunk
number 0, the chunks of the traversal between two parametersyi andyi+1 (with numberi), and the chunk
after the last parameteryk with numberk. We construct a mappingϕ that maps a nonterminalA, a stateq,
and a chunk numberc to a pair(n,L) wheren is the total number of nodes in the chunk andL is the list of
off-sets, in order. We now do a complete pre-order traversalthrough the grammarG′, while maintaining

S. Maneth, T. Sebastian 45

the current-preorder numberu in a counter. When we meet a nonterminalA in chunkc with a non-empty
list L of off-sets, we addu to each offset and append the resulting list to the output list. �

4.3 Serialization

Here we want to output the XML serialization of the result subtrees rooted at the result nodes of a query
(given by a DST automaton). Again, we want the output in pre-order.

Theorem 4 Let G be an SLT grammar andA a DST automaton. Let s be the sum of sizes of all subtrees
rooted at the nodes inA (val(G)). We can output all result subtrees ofA (val(G)) in time O(|Q||G|+s).

Proof. The proof is similar to the proof of Theorem 3 in that it runs intwo passes over grammar
G′ whose treeval(G′) is the relabeled one according to Lemma 1. During the bottom-up run through the
grammar, we construct a mappingϕ that maps a nonterminalA, a stateq, and a chunk numberc to a
sequenceSof opening and closing brackets of the pre-order traversal corresponding toA, q, andc. Then
during the complete pre-order traversal thoughG′ we construct a sequenceS′ of opening and closing
brackets containing only result subtrees ofA (val(G)) and pointers to marked elements for nested result
nodes. At a nonterminalA, in a stateq, and a chunkc we first start appending toS′ if ϕ(A,q,c) contains a
marked node. Then when meeting nonterminalsA, in stateq, and chunkc inside marked nodes subtrees
we always appendϕ(A,q,c) to S′, and we store pointers to marked nodes. Finally, based on theobtained
sequenceS′, the selected subtrees are serialized by following the|A (val(G))| pointers to their roots in
S′. �

We can do better, if we are allowed to output a compressed representation of the concatenation of all
result subtrees. In fact, the result stated in Theorem 4, follows from Theorem 5.

We can construct a straight-line string grammar (SLP) in time O(|G|) that generates the pre-order
traversal of the treeval(G), see Figure 4 for an example. But, what about an SLP that outputs the
concatenation of all pre-order traversals of themarked subtrees? What is the size of such a grammar? If
every node is marked, and the original tree hasN nodes, then the length of the represented string is in
O(N2).

Theorem 5 Given an SLT grammar G and a subset R of the nodes ofval(G), an SLP P for the concate-
nation of all subtrees at nodes in R (in pre-order) can be constructed in time O(|G||R|).

Proof. We assume that the nodes inR are given as pre-order numbers. Let us first observe that for a
given SLT grammarH, an SLP grammar of the pre-order traversal ofval(H), using opening and closing
labeled brackets (for instance in XML syntax) can be constructed in time and spaceO(|H|), following
the proof of Theorem 3 of [3] (they stateO(|G|k) because they count the number of nonterminals of the
SLP). In one preprocessing pass throughG we compute the length of every chunk of every nonterminal.
Let nowu be a pre-order number inR. Using the information of the chunk lengths, we can determine,
starting at the right-hand side of the start nonterminal, which nonterminal generates the nodeu. We keep
the respective subtree of the right-hand side, and continuebuilding a larger sentential tree, until we obtain
a sentential form that has the desired terminal node ofu at its root. The obtained sentential treet is of
sizeO(|G|). We introduce a new nonterminalSu with ruleSu → t. This process is repeated for each node
in R. Finally we construct a new start rule which in its right-hand side has the concatenation of allSu’s

46 XPath Node Selection over Grammar-Compressed Trees

S → 〈113,0〉〈312,0〉<e></e>〈312,1〉〈113,1〉
〈113,0〉 → 〈122,0〉〈223,0〉
〈312,0〉 → 〈321,0〉〈122,0〉
〈312,1〉 → 〈122,1〉〈321,1〉
〈113,1〉 → 〈223,1〉〈122,1〉
〈122,0〉 → 〈133,0〉〈332,0〉
〈122,1〉 → 〈332,1〉〈133,1〉
〈223,0〉 → 〈231,0〉〈133,0〉
〈223,1〉 → 〈133,1〉〈231,1〉
〈321,0〉 → 〈332,0〉〈231,0〉
〈321,1〉 → 〈231,1〉〈332,1〉
〈133,0〉 → <a><a>
〈133,1〉 →
〈332,0〉 → < â><a>
〈332,1〉 → </â>
〈231,0〉 → <a>< â>
〈231,1〉 → </â>

Figure 4: SLP grammarG′′ for the pre-order traversal ofval(G′) of Figure 3, where〈i jk, l〉 is a new
nonterminal ofG′′ denoting the pair of a nonterminal〈qi ,A j ,qk〉 of G′ andl the number of its chunk.

with u∈ R. The size of the resulting grammar isO(|G||R|). Finally, we produce the SLP for the traversal
strings, as mentioned above. �

Let us consider milder tree compression via DAGs [2], by 0-SLT grammars that do not use parameters
y j . In this case we can improve the result of Theorem 5 as follows.

Theorem 6 Given a0-SLT grammar G and a subset R of the nodes ofval(G), an SLP G′ for the concate-
nation of all subtrees at nodes in R (in pre-order) can be constructed such that G′ is of size O(|G|+ |R|).

Proof. We first bring the grammarG into “node normal form”. This means that the right-hand sideof
each rule contains exactly one terminal symbol. Note that this may increase the number of nonterminals,
but does not change the size of the grammar. Now, each subtreeof val(G) is represented by a unique
nonterminal. The grammarG′ is obtained fromG by consideringG as a string grammar in the obvious
way, and then changing the start production such that its right-hand side is the concatenation (in pre-
order) of the nonterminals corresponding to nodes inR. � It is easy to

extend Theorem 6 to slightly more general compression grammars: the hybrid DAGs of Lohrey, Maneth,
and Noeth [12]. A hybrid DAG of an unranked tree is obtained byfirst building the minimal unranked
DAG, then constructing its first-child next-sibling encoding (seen as a grammar), and then building the
minimal DAG of this grammar. The hybrid DAG of an unranked tree is guaranteed smaller (or equal
to) the minimal unranked DAG and the minimal binary DAG (= DAGof first-child next-sibling encoded
binary trees). Theorem 6 is extended by bringing the unranked DAG into node normal form.

S. Maneth, T. Sebastian 47

5 XPath Filters

An XPath filter (in our fragment) checks for the existence of apath, starting at the current node. It is
written in the form[./p] wherep is an XPath query as before. For instance, the query

//b[.//c/d/e][./a/b]/ f/g

first selects thoseb-nodes that have somewhere below the path c/d/e, and which also have ana-child
that has ab-child. Starting from suchb-nodes, the query selects thef -children, and then theg-children
thereof.

It is well-known that such filters can be evaluated usingdeterministic bottom-up tree automata. For
each filter pathp in the query we build one bottom-up automaton (this construction is very similar to
our earlier construction of DST automata), in time linear tothe size of thep. We then build the product
automatonA of all the filter automata. The size of this automaton is the product of the sizes of all filter
paths in the query. If we run this automaton over a given inputtree, then it will tell us for each node
of the tree, which filter paths are true at that node. Thus, fora given SLT grammarG, if we build the
intersection grammar with our bottom-up filter automatonA , then the new nonterminals (and terminals)
are of the form

(p,A, p1, . . . , pm)

wherem is the rank ofA andp, p1, . . . , pm aren-tuples of filter states. Such a tuplep tells us the states of
each filter automaton and hence the truth value of all the filters.

Given an XPath query with filters, we first build the combined filter automatonA . We then build for
a given SLT grammarG, the bottom-up intersection grammarGA . We remove the filters from the query
and build the DST automatonB as before. However, now we annotate the rules of this automaton, by
information about filters: if at a step of the query that corresponds to stateq of theB the filters f1, . . . , fm
appear in the query, then theq-rule is annotated by these filters; when we evaluate top-down we check
whether the filters are true, using the annotated information of the intersection grammarGA . It is shown
in Theorem 1 of [10] that for a bottom-up automaton and ak-SLT grammar, the intersection grammar
can be produced in timeO(|Q|k+1|G|).

Theorem 7 Let G be an SLT grammar andA a DST automaton with filter automata F1, . . . ,Fn; the sets
of states are Q,Q1, . . . ,Qn, respectively. Let r= |A (val(G))| and k be the rank of G. We can construct a
grammar G′ which representsval(G) with all result nodes marked, in time O(|Q|(|Q1| · · · |Qn|)

k+1|G|).

The complexity stated in Theorem 7 is rather pessimistic andwe believe that it can be improved.
We are applying a result about deterministic bottom-up automata from [10]. We do want to execute our
filter automata bottom-up, but, they are indeed deterministic top-down automata. In future research we
would like to improve the worst-case complexity stated in the theorem above by taking this into account.
Consider filters over the child axis only, e.g.,[./a/b/c]. Instead of using a bottom-up automaton for the
filter and constructing an intersection grammar according to [10] in time O(|Q|k+1|G|), we use a top-
down automaton for the “relative” query./a/b/c; it can be constructed similar as our DST automata.
Via Lemma 1 we obtain a marking grammarG′ in time O(|Q||G|). We now want to transform this
grammar so that instead of thec-nodes, their grandparenta-nodes are marked. How expensive is this
transformation? It seems n the worst case that each occurrence of a nonterminal inG′ must be changed
into a distinct copy (and recursively for the new right-handsides). This would run in timeO(|G′|2). Can
it be improved? How can be handle other axes such as descendant? In which cases is this solution more
efficient than the one of Theorem 7?

48 XPath Node Selection over Grammar-Compressed Trees

References

[1] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro, K. Nguyen, J. Sirén & N. Välimäki (2010):
Fast in-memory XPath search using compressed indexes. In: ICDE, pp. 417–428, doi:10.1109/ICDE.2010.
5447858.

[2] P. Buneman, M. Grohe & C. Koch (2003):Path Queries on Compressed XML. In: VLDB , pp. 141–152.

[3] G. Busatto, M. Lohrey & S. Maneth (2008):Efficient memory representation of XML document trees. Inf.
Syst.33(4-5), pp. 456–474, doi:10.1016/j.is.2008.01.004.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein (2001): Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company.

[5] D. K. Fisher & S. Maneth (2007):Structural Selectivity Estimation for XML Documents. In: ICDE, pp.
626–635, doi:10.1109/ICDE.2007.367908.

[6] M. Frick, M. Grohe & C. Koch (2003):Query Evaluation on Compressed Trees (Extended Abstract). In:
LICS, pp. 188–197, doi:10.1109/LICS.2003.1210058.

[7] T J. Green, A. Gupta, G. Miklau, M. Onizuka & D. Suciu (2004): Processing XML streams with deterministic
automata and stream indexes. ACM Trans. Database Syst.29(4), pp. 752–788, doi:10.1145/1042046.
1042051.

[8] D. E. Knuth, J. H. Morris Jr. & V. R. Pratt (1977):Fast Pattern Matching in Strings. SIAM J. Comput.6(2),
pp. 323–350, doi:10.1137/0206024.

[9] J. Lamping (1990):An Algorithm for Optimal Lambda Calculus Reduction. In: POPL, pp. 16–30, doi:10.
1145/96709.96711.

[10] M. Lohrey & S. Maneth (2006):The complexity of tree automata and XPath on grammar-compressed trees.
Theor. Comput. Sci.363(2), pp. 196–210, doi:10.1016/j.tcs.2006.07.024.

[11] M. Lohrey, S. Maneth & R. Mennicke (2013):XML Tree Structure Compression using RePair. Information
Systems38(8), pp. 1150–1167.

[12] M. Lohrey, S. Maneth & E. Noeth (2013):XML compression via DAGs. In: ICDT, pp. 69–80, doi:10.1145/
2448496.2448506.

[13] S. Maneth & K. Nguyen (2010):XPath Whole Query Optimization. PVLDB 3(1), pp. 882–893.

[14] S. Maneth & T. Sebastian (2010):Fast and Tiny Structural Self-Indexes for XML. CoRRabs/1012.5696.

[15] A. Neumann & H. Seidl (1998):Locating Matches of Tree Patterns in Forests. In: FSTTCS, pp. 134–145,
doi:10.1007/978-3-540-49382-2_12.

[16] F. Neven & T. Schwentick (2002):Query automata over finite trees. Theor. Comput. Sci.275(1-2), pp.
633–674, doi:10.1016/S0304-3975(01)00301-2.

[17] J. Niehren, L. Planque, J.-M. Talbot & S. Tison (2005):N-Ary Queries by Tree Automata. In: DBPL, pp.
217–231, doi:10.1007/11601524_14.

http://dx.doi.org/10.1109/ICDE.2010.5447858
http://dx.doi.org/10.1109/ICDE.2010.5447858
http://dx.doi.org/10.1016/j.is.2008.01.004
http://dx.doi.org/10.1109/ICDE.2007.367908
http://dx.doi.org/10.1109/LICS.2003.1210058
http://dx.doi.org/10.1145/1042046.1042051
http://dx.doi.org/10.1145/1042046.1042051
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1016/j.tcs.2006.07.024
http://dx.doi.org/10.1145/2448496.2448506
http://dx.doi.org/10.1145/2448496.2448506
http://dx.doi.org/10.1007/978-3-540-49382-2_12
http://dx.doi.org/10.1016/S0304-3975(01)00301-2
http://dx.doi.org/10.1007/11601524_14

	1 Introduction
	2 Preliminaries
	3 XPath to Automata
	4 Automata over SLT Grammars
	4.1 Counting
	4.2 Materializing
	4.3 Serialization

	5 XPath Filters

