

Edinburgh Research Explorer

Discovering Conditional Functional Dependencies

Citation for published version:
Fan, W, Geerts, F, Lakshmanan, LVS & Xiong, M 2009, Discovering Conditional Functional Dependencies.
in Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009 -
April 2 2009, Shanghai, China. IEEE, pp. 1231-1234. DOI: 10.1109/ICDE.2009.208

Digital Object Identifier (DOI):
10.1109/ICDE.2009.208

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2
2009, Shanghai, China

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICDE.2009.208
https://www.research.ed.ac.uk/portal/en/publications/discovering-conditional-functional-dependencies(d6ca07e4-633c-41bd-a968-0d6e69e04a72).html

Discovering Conditional Functional Dependencies
Wenfei Fan 1,2, Floris Geerts 1, Laks V.S. Lakshmanan 3, Ming Xiong 2

1University of Edinburgh, UK 2Bell Laboratories, USA 3University of British Columbia, Canada
{wenfei,fgeerts}@inf.ed.ac.uk {wenfei,xiong}@research.bell-labs.com laks@cs.ubc.ca

Abstract— This paper investigates the discovery of conditional
functional dependencies (CFDs). CFDs are a recent extension of
functional dependencies (FDs) by supporting patterns of seman-
tically related constants, and can be used as rules for cleaning
relational data. However, finding CFDs is an expensive process
that involves intensive manual effort. To effectively identify data
cleaning rules, we develop techniques for discovering CFDs from
sample relations. We provide three methods for CFD discovery.
The first, referred to as CFDMiner, is based on techniques
for mining closed itemsets, and is used to discover constant
CFDs, namely, CFDs with constant patterns only. The other
two algorithms are developed for discovering general CFDs. The
first algorithm, referred to as CTANE, is a levelwise algorithm
that extends TANE, a well-known algorithm for mining FDs.
The other, referred to as FastCFD, is based on the depth-
first approach used in FastFD, a method for discovering FDs.
It leverages closed-itemset mining to reduce search space. Our
experimental results demonstrate the following. (a) CFDMiner
can be multiple orders of magnitude faster than CTANE and
FastCFD for constant CFD discovery. (b) CTANE works well
when a given sample relation is large, but it does not scale well
with the arity of the relation. (c) FastCFD is far more efficient
than CTANE when the arity of the relation is large.

I. INTRODUCTION

Conditional functional dependencies (CFDs) [1] were re-
cently introduced for data cleaning. They extend standard
functional dependencies (FDs) by enforcing patterns of se-
mantically related constants. CFDs have been proven more
effective than FDs in detecting and repairing inconsistencies
(dirtiness) of data [1], [2], and are expected to be adopted
by data-cleaning tools that currently employ standard FDs
(e.g., [3], [4], [5]; see [6], [7] for a survey of such tools).

However, for CFD-based cleaning methods to be effective
in practice, it is necessary to have techniques in place that can
automatically discover, profile, or learn CFDs from sample
data, to be used as data cleaning rules. As indicated in [8],
profiling of data cleaning rules is critical to commercial data
quality tools.

This practical concern highlights the need for studying the
discovery problem for CFDs: given a sample instance r of a
relation schema R, it is to find a canonical cover of all CFDs
that hold on r, i.e., a set of CFDs that is logically equivalent to
the set of all CFDs that hold on r. To reduce redundancy, each
CFD in the canonical cover should be minimal, i.e., nontrivial
and left-reduced (see [9] for nontrivial and left-reduced FDs).

The discovery problem is, however, highly nontrivial. It is
already hard for traditional FDs since, among other things,
a canonical cover of FDs discovered from a relation r is
inherently exponential in the arity of the schema of r, i.e., the
number of attributes in R. Since CFD discovery subsumes FD

discovery, the exponential complexity carries over to CFD dis-
covery. Moreover, CFD discovery requires mining of semantic
patterns with constants, a challenge that was not encountered
when discovering FDs, as illustrated by the example below.

Example 1: The following relation schema cust is taken
from [1]. It specifies a customer in terms of the customer’s
phone (country code (CC), area code (AC), phone number
(PN)), name (NM), and address (street (STR), city (CT), zip
code (ZIP)). An instance r0 of cust is shown in Fig. 1.

Traditional FDs that hold on r0 include the following:
f1: [CC, AC] → CT
f2: [CC, AC, PN] → STR

Here f1 requires that two customers with the same country-
and area-codes also have the same city; similarly for f2.

In contrast, the CFDs that hold on r0 include not only the
FDs f1 and f2, but also the following (and more):

φ0: ([CC, ZIP] → STR, (44, ‖))
φ1: ([CC, AC] → CT, (01, 908 ‖ MH))
φ2: ([CC, AC] → CT, (44, 131 ‖ EDI))
φ3: ([CC, AC] → CT, (01, 212 ‖ NYC))

In φ0, (44, ‖) is the pattern tuple that enforces a binding
of semantically related constants for attributes (CC, ZIP, STR)
in a tuple. It states that for customers in the UK, ZIP uniquely
determines STR. It is an FD that only holds on the subset of
tuples with the pattern “CC = 44”, rather than on the entire
relation r0. CFD φ1 assures that for any customer in the US

(country code 01) with area code 908, the city of the customer
must be MH, as enforced by its pattern tuple (01, 908 ‖ MH);
similarly for φ2 and φ3. These cannot be expressed as FDs.

More specifically, a CFD is of the form (X → A, tp), where
X → A is an FD and tp is a pattern tuple with attributes in X
and A. The pattern tuple consists of constants and an unnamed
variable ‘ ’ that matches an arbitrary value. To discover a CFD
it is necessary to find not only the traditional FD X → A but
also its pattern tuple tp. With the same FD X → A there are
possibly multiple CFDs defined with different pattern tuples,
e.g., φ1–φ3. Hence a canonical cover of CFDs that hold on
r0 is typically much larger than its FD counterpart. Indeed,
as recently shown by [10], provided that a fixed FD X → A
is already given, the problem for discovering sensible patterns
associated with the FD alone is already NP-complete. �
Prior work. The discovery problem has been studied for
FDs for two decades [11], [12], [13], [14], [15], [16], [17],
[18], [19] for database design, data archiving, OLAP and data
mining. It was first investigated in [13], which shows that
the problem is inherently exponential in the arity |R| of the
schema R of sample data r. One of the best-known methods

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.208

1231

CC AC PN NM STR CT ZIP
t1: 01 908 1111111 Mike Tree Ave. MH 07974
t2: 01 908 1111111 Rick Tree Ave. MH 07974
t3: 01 212 2222222 Joe 5th Ave NYC 01202
t4: 01 908 2222222 Jim Elm Str. MH 07974
t5: 44 131 3333333 Ben High St. EDI EH4 1DT
t6: 44 131 4444444 Ian High St. EDI EH4 1DT
t7: 44 908 4444444 Ian Port PI MH W1B 1JH
t8: 01 131 2222222 Sean 3rd Str. UN 01202

Fig. 1. An instance r0 of the cust relation.

for FD discovery is TANE [14], a levelwise algorithm that
searches an attribute-set containment lattice and derives FDs
with � + 1 attributes from sets of � attributes, with pruning
based on FDs generated in previous levels. TANE takes linear
time in the size |r| of input sample r, and works well when the
arity |R| is not very large. Another algorithm, referred to as
FastFD [15], explores the connection between FD discovery
and the problem of finding minimal covers of hypergraphs,
and employs the depth-first strategy to search minimal covers.
It takes (almost) linear-time in the size of the output, i.e., in
the size of the FD cover. It scales better than TANE when the
arity is large, but it is more sensitive to the size |r| (it is in
O(|r|2 log |r|) time, data complexity).

Recently two sets of algorithms have been developed for
discovering CFDs [10], [20]. For a fixed traditional FD fd,
[10] showed that it is NP-complete to find useful patterns
that, together with fd, make high quality CFDs. They provide
efficient heuristic algorithms for discovering patterns from
samples w.r.t. a fixed FD. An algorithm for discovering CFDs,
including both traditional FDs and their associated patterns,
was presented in [20], which is an extension of TANE. The
CFDs discovered by the TANE extensions may, however,
contain redundant patterns, as elaborated in [21].

Constant CFD discovery is related to association rule mining
(e.g., [22]) and in particular, closed and free itemsets mining
(e.g., [23], [24]). There is an intimate connection between left-
reduced constant CFDs and non-redundant association rules,
which can be found from closed and free itemsets.

Contributions. The key contributions of our work include
the following. (1) We propose a notion of minimal (frequent)
CFDs based on both the minimality of attributes and the
minimality of patterns. (2) Our first algorithm, CFDMiner,
discovers constant CFDs. It explores the connection between
minimal constant CFDs and closed and free itemsets. (3) Our
second algorithm, CTANE, extends TANE to discover general
CFDs based on an attribute-set/pattern tuple lattice. (4) Our
third algorithm, FastCFD, discovers general CFDs. It hereby
employs a depth-first search strategy instead of following the
levelwise approach. A novel pruning technique is introduced
by leveraging constant CFDs found by CFDMiner. (5) Our
final contribution is an experimental study of the effectiveness
and efficiency of our algorithms, based on real-life data and
synthetic datasets.

Organization. Section II reviews CFDs, defines minimal and
frequent CFDs, and states the discovery problem. Section III
presents CFDMiner, CTANE, FastCFD, and a summary of our
experimental results. Finally, Section IV concludes our work.

II. CFDS AND CFD DISCOVERY
In this section we first review the definition of CFDs [1].

We then formalize the notions of minimal CFDs and frequent
CFDs. Finally, we state the discovery problem for CFDs.

A. Conditional Functional Dependencies
Consider a relation schema R defined over a fixed set

of attributes, denoted by attr(R). For each attribute A ∈
attr(R), we use dom(A) to denote its domain.

CFDs. A conditional functional dependency (CFD) ϕ over R
is a pair (X → A, tp), where (1) X is a set of attributes in
attr(R), and A is a single attribute in attr(R), (2) X → A
is a standard FD, referred to as the FD embedded in ϕ; and
(3) tp is a pattern tuple with attributes in X and A, where for
each B in X∪{A}, tp[B] is either a constant ‘a’ in dom(B),
or an unnamed variable ‘ ’ that draws values from dom(B).

We denote X as LHS(ϕ) and A as RHS(ϕ). If A also occurs
in X , we use AL and AR to indicate the occurrence of A in the
LHS(ϕ) and RHS(ϕ), respectively. We separate the attributes
in X and A in a pattern tuple with ‘ ‖ ’.

Standard FDs are a special case of CFDs. Indeed, an FD
X → A can be expressed as a CFD (X → A, tp), where
tp[B] = for each B in X ∪ {A}.

Semantics. To give the semantics of CFDs, we define an order
≤ on constants and the unnamed variable ‘ ’: η1 ≤ η2 if either
η1 = η2, or η1 is a constant a and η2 is ‘ ’.

The order ≤ naturally extends to tuples, e.g., (44, “EH4 1DT”,
“EDI”) ≤ (44, ,) but (01, 07974, “Tree Ave.”) �≤ (44, ,). We
say that a tuple t1 matches t2 if t1 ≤ t2. We write t1 � t2 if
t1 ≤ t2 but t2 �≤ t1, i.e., when t2 is “more general” than t1.
For instance, (44, “EH4 1DT”, “EDI”) � (44, ,).

An instance r of R satisfies the CFD ϕ (or ϕ holds on r),
denoted by r |= ϕ, iff for each pair of tuples t1, t2 in r, if
t1[X] = t2[X] ≤ tp[X] then t1[A] = t2[A] ≤ tp[A].

Intuitively, ϕ is a constraint defined on the set rϕ = {t | t ∈
r, t[X] ≤ tp[X]} such that for any t1, t2 ∈ rϕ, if t1[X] =
t2[X], then (a) t1[A] = t2[A], and (b) t1[A] ≤ tp[A]. Here
(a) enforces the semantics of the embedded FD on the set rϕ,
and (b) assures the binding between constants in tp[A] and
constants in t1[A]. That is, ϕ constrains the subset rϕ of r
identified by tp[X], rather than the entire instance r.

Example 2: The instance r0 of Fig. 1 satisfies CFDs f1, f2

and φ0–φ3 of Example 1. It does not satisfy the CFD ψ =
([CC, ZIP] → STR, (, ‖)). Indeed, t1 and t4 violate ψ since
t1[CC, ZIP] = t4[CC,ZIP] ≤ (,), but t1[STR] �= t4[STR]. Nor
does r satisfy ψ′ = (AC → CT, (131‖ EDI)) since t8 violates
ψ′: t8[AC] ≤ (131) but t8[CT] �≤ (EDI). From this one can see
that while two tuples are needed to violate an FD, CFDs can
be violated by a single tuple. �

We say that an instance r of R satisfies a set Σ of CFDs
over R, denoted by r |= Σ, if r |= ϕ for each CFD ϕ ∈ Σ.

For two sets Σ and Σ′ of CFDs defined over the same
schema R, we say that Σ is equivalent to Σ′, denoted by
Σ ≡ Σ′, iff for any instance r of R, r |= Σ iff r |= Σ′.

Classification of CFDs. A CFD (X → A, tp) is called a
constant CFD if its pattern tuple tp consists of constants only,

1232

i.e., tp[A] is a constant and for all B ∈ X , tp[B] is a constant.
It is called a variable CFD if tp[A] = , i.e., the RHS of its
pattern tuple is the unnamed variable ‘ ’.

B. The Discovery Problem for CFDs
Below we first formalize the notions of minimal CFDs and

frequent CFDs. We then state the discovery problem for CFDs.

Minimal CFDs. A CFD ϕ = (X → A, tp) over R is said to
be trivial if A ∈ X . If ϕ is trivial, then either it is satisfied
by all instances of R (e.g., when tp[AL] = tp[AR]), or it is
satisfied by none of the instances in which there is a tuple t
such that t[X] ≤ tp[X] (e.g., if tp[AL] and tp[AR] are distinct
constants). In the sequel we consider nontrivial CFDs only.

A constant CFD (X → A, (tp ‖ a)) is said to be left-
reduced on r if for any Y � X , r �|= (Y → A, (tp[Y] ‖ a)).

A variable CFD (X → A, (tp ‖)) is left-reduced on r if
(1) r �|= (Y → A, (tp[Y] ‖)) for any proper subset Y � X ,
and (2) r �|= (X → A, (t′p[X] ‖)) for any t′p with tp � t′p.

Intuitively, these assure the following: (1) none of its LHS
attributes can be removed, i.e., the minimality of attributes, and
(2) none of the constants in its LHS pattern can be “upgraded”
to ‘ ’, i.e., the pattern tp is “most general”, or in other words,
it assures the minimality of patterns.

A minimal CFD ϕ on r is a nontrivial, left-reduced CFD
such that r |= ϕ. Intuitively, a minimal CFD is non-redundant.

Example 3: On the sample r0 of Fig. 1, φ2 of Example 1
is a minimal constant CFDs, and f1, f2 and φ0 are minimal
variable CFDs. However, φ3 is not minimal: if we drop CC

from LHS(φ3), r0 still satisfies (AC → CT, (212 ‖ NYC)) since
there is only one tuple (t3) with AC = 212 in r0. Similarly, φ1

is not minimal since CC can be dropped. �
Frequent CFDs. The support of a CFD ϕ = (X → A, tp)
in r, denoted by sup(ϕ, r), is defined to be the set of tuples
t in r such that t[X] ≤ tp[X] and t[A] ≤ tp[A], i.e., tuples
that match the pattern of ϕ. For a natural number k ≥ 1, a
CFD ϕ is said to be k-frequent in r if sup(ϕ, r) ≥ k. For
instance, φ1, φ2 of Example 1 are 3-frequent and 2-frequent,
respectively. Moreover, f1, f2 are 8-frequent.

Problem statement. A canonical cover of CFDs on r w.r.t. k
is a set Σ of minimal, k-frequent CFDs in r, such that Σ is
equivalent to the set of all k-frequent CFDs that hold on r.
Our CFD discovery problem is to find a canonical cover of
CFDs on r w.r.t. k.

III. DISCOVERING CFDS: ALGORITHMS AND RESULTS

In this section, we present high-level descriptions of our al-
gorithms for CFD profiling and a summary of our experimental
results. Readers are referred to [21] for more details.

A. CFDMiner: Discovering Constant CFDs

Given an instance r of R and a support threshold k, our
algorithm for constant CFD profiling, i.e., CFDMiner, finds a
canonical cover of k-frequent minimal constant CFDs of the
form (X → A, (tp ‖ a)).

Free and closed itemsets. An itemset is a pair (X, tp), where
X ⊆ attr(R) and tp is a constant pattern over X . The

support of (X, tp) in an instance r, denoted by supp(X, tp, r),
is defined as the set of tuples in r that match with tp on
the X-attributes. We say that (Y, sp) is more general than
(X, tp), denoted by (X, tp) � (Y, sp), if Y ⊆ X and
tp[Y] = sp. Clearly, if (X, tp) � (Y, sp) then supp(X, tp, r) ⊆
supp(Y, sp, r). For a natural number k ≥ 1, we say that an
itemset (X, tp) is k-frequent if |supp(X, tp, r)| ≥ k.

An itemset (X, tp) is called closed in r if there is
no itemset (Y, sp) such that (Y, sp) � (X, tp) for which
supp(Y, sp, r) = supp(X, tp, r). For an itemset (X, tp), we
denote by clo(X, tp) the unique closed itemset that extends
(X, tp) and has the same support in r as (X, tp). Similarly,
an itemset (X, tp) is called free in r if there exists no itemset
(Y, sp) such that (X, tp) � (Y, sp) for which supp(Y, sp, r) =
supp(X, tp, r). The connection between k-frequent free and
closed itemsets and k-frequent left-reduced constant CFDs
forms the basis for CFDMiner, which is shown below.

Proposition 1: For an instance r of R, there is a k-frequent
left-reduced constant CFD ϕ = (X → A, (tp ‖ a)) such that
r |= ϕ iff (i) the itemset (X, tp) is free, k-frequent and it does
not contain (A, a); (ii) clo(X, tp) � (A, a); and (iii) (X, tp)
does not contain a smaller free set (Y, sp) with this property,
i.e., there exists no (Y, sp) such that (X, tp) � (Y, sp), Y �

X , and clo(Y, sp) � (A, a). �

B. CTANE: A Levelwise Algorithm
We next present CTANE, a levelwise algorithm for discover-

ing minimal, k-frequent CFDs. It is an extension of the TANE
algorithm [14] for discovering FDs. CTANE mines CFDs by
traversing an attribute-set/pattern lattice L in a levelwise way.
More precisely, the lattice L consists of elements of the form
(X, tp), where X ⊆ attr(R) and tp is pattern tuple over X .
In contrast to the itemsets in Section III-A, the patterns now
consist of both constants and unnamed variables (). Given
a level � in L, we denote by L� the collection of elements
(X, sp) at this level, in which (X, sp) has size �, i.e., |X | = �.

CTANE starts from L1, i.e., singleton sets (A, α) for A ∈
attr(R) and α ∈ dom(A) ∪ { }. It then proceeds to larger
attribute-set/pattern levels in L in a levelwise way. Similar
to TANE, CTANE derives CFDs in L�+1 from L� with prun-
ing based on CFDs generated in previous levels. When the
algorithm considers (X, sp), it tests for CFDs of the form
(X \ {A} → A, (sp[X \ {A}] ‖ sp[A])), where A ∈ X .
This guarantees that only non-trivial CFDs are considered.
Furthermore, CTANE maintains for each considered element
(X, sp) a set, denoted by C+(X, sp), that is used to determine
whether (X \ {A} → A, (sp[X \ {A}] ‖ sp[A])) is minimal.
The set C+(X, sp), as explained in [21], can be maintained
during the levelwise traversal. Apart from testing for mini-
mality, C+(X, sp) also provides an effective pruning strategy,
making the levelwise approach feasible in practice.

C. FastCFD: A Depth First Approach
In contrast to CTANE, FastCFD discovers k-frequent mini-

mal CFDs in a depth-first way. It is inspired by FastFD [15],
a depth-first algorithm for discovering FDs.

1233

Consider X ⊆ attr(R) and an attribute A in attr(R) \X .
We denote by fixlhs(X, A, r, k) the set of all CFDs ϕ =
(Y → A, tp) such that Y ⊆ X , ϕ is minimal, and moreover
sup(ϕ, r) � k. All k-frequent CFDs in r can thus be found
by computing

⋃
A∈attr(R) fixlhs(attr(R) \ {A}, A, r, k). Al-

gorithm FastCFD does exactly this: for each A ∈ attr(R), it
calls a procedure FindCover that computes fixlhs(attr(R) \
{A}, A, r, k). To compute fixlhs(attr(R) \ {A}, A, r, k) in a
depth-first way, we use difference sets as in [15].

For each subset X ⊆ attr(R)\{A}, FindCover maintains a
list of possible k-frequent free itemsets Patt(X) together with
its set of difference sets not covered yet. For an itemset tcp in
Patt(X), we denote by rtc

p
the set of tuples in r that match tcp.

For each itemset tcp in Patt(X), FindCover inspects the subsets
of attr(R) \ {A} in a depth-first, left-to-right fashion based
on an ordering of attributes on attr(R) \ {A} for all tuples
in rtc

p
. A candidate CFD ϕ = (X → A, (tp ‖)), where tcp

is the constant part of tp, is produced if none of the variables
(i.e.,’ ’) in tp[X] can be removed, i.e., ϕ is minimal in rtc

p
.

Then FindCover also ensures that the minimality conditions
are checked for all subset itemsets of tcp in Patt(X) such that
none of the constants in tp[X] can be removed or upgraded
to ’ ’. This guarantees that tp[X] is the most general in r.

We implemented two approaches for computing the dif-
ference sets. The first one, called NaiveFast, is inspired by
the stripped partition-based approach used by FastFD [15].
The second approach, denoted by FastCFD, relies on the
availability of Closed2(r), i.e., all 2-frequent closed itemsets
in r. Given (X, tp), Closed2(r) can be used to infer for any
two tuples in rtp on which attributes they agree. Indeed, this
set of attributes is given by the attributes in those itemsets in
Closed2(r) that match with tcp (the constant part of tp).

D. Summary of Experimental Results
From our experiments based on real-life data, i.e.,

Wisconsin breast cancer and chess datasets from UCI

(http://archive.ics.uci.edu/ml/), and synthetic datasets gener-
ated from data scraped from the Web, we find the following:
(a) CFDMiner can be multiple orders of magnitude faster than
CTANE and FastCFD for constant CFD profiling. (b) CTANE
usually works well when the arity of a sample relation is
small and the support threshold is high, but it scales poorly
when the arity of the relation increases. (c) NaiveFast and
FastCFD are far more efficient than CTANE when the arity
of the relation is large. (d) Our optimization technique based
on closed-itemset mining is effective: FastCFD significantly
outperforms NaiveFast, especially when the arity is large.

IV. CONCLUSIONS

We have developed and implemented three algorithms for
discovering minimal CFDs: (1) CFDMiner for mining minimal
constant CFDs, a class of CFDs important for both data
cleaning and data integration; (2) CTANE for discovering
general minimal CFDs based on the levelwise approach; and
(3) FastCFD for discovering general minimal CFDs based on a
depth-first search strategy, and a novel optimization technique
via closed-itemset mining. As suggested by our experimental

results, these provide a set of tools for users to choose from
for different applications.

There is naturally much to be done. First, we are currently
experimenting with various datasets collected from real life.
Second, we are studying how to discover minimal CFDs from
a dataset r when both its arity and size are large. Third, while
we have employed in FastCFD techniques for mining closed
itemsets, we expect that other mining techniques may also shed
light on improving the performance of discovery algorithms.
Fourth, we plan to explore the use of CFD inference in
discovery, to eliminate CFDs that are entailed by those CFDs
already found. Finally, a topic for future work is to assess
various quality measures for CFDs.

REFERENCES

[1] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional func-
tional dependencies for capturing data inconsistencies,” TODS, vol. 33,
no. 2, june 2008.

[2] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in VLDB, 2007.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki, “Consistent query answers
in inconsistent databases,” TPLP, vol. 3, no. 4-5, pp. 393–424, 2003.

[4] J. Chomicki and J. Marcinkowski, “Minimal-change integrity mainte-
nance using tuple deletions,” Information and Computation, vol. 197,
no. 1-2, pp. 90–121, 2005.

[5] J. Wijsen, “Database repairing using updates,” TODS, vol. 30, no. 3, pp.
722–768, 2005.

[6] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques. Springer, 2006.

[7] E. Rahm and H. H. Do, “Data cleaning: Problems and current ap-
proaches.” IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.

[8] Gartner, “Forecast: Data quality tools, worldwide, 2006-2011,” 2007.
[9] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison-Wesley, 1995.
[10] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “On generat-

ing near-optimal tableaux for conditional functional dependencies,” in
VLDB, 2008.

[11] P. Brown and P. J. Haas, “BHUNT: Automatic discovery of fuzzy
algebraic constraints in relational data,” in VLDB, 2003.

[12] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga, “Automatic
discovery of correlations and soft functional dependencies,” in SIGMOD,
2004.

[13] H. Mannila and K.-J. Räihä, “Dependency inference,” in VLDB, 1987.
[14] Y. Huhtala, J. Kärkk ainen, P. Porkka, and H. Toivonen, “TANE: An

efficient algorithm for discovering functional and approximate depen-
dencies,” Comput. J., vol. 42, no. 2, pp. 100–111, 1999.

[15] C. M. Wyss, C. Giannella, and E. L. Robertson, “FastFDs: A heuristic-
driven, depth-first algorithm for mining functional dependencies from
relation instances - extended abstract,” in DaWak, 2001.

[16] P. A. Flach and I. Savnik, “Database dependency discovery: A machine
learning approach,” AI Commun., vol. 12, no. 3, pp. 139–160, 1999.

[17] S. Lopes, J.-M. Petit, and L. Lakhal, “Efficient discovery of functional
dependencies and armstrong relations,” in EDBT, 2000.

[18] T. Calders, R. T. Ng, and J. Wijsen, “Searching for dependencies at
multiple abstraction levels,” TODS, vol. 27, no. 3, pp. 229–260, 2003.

[19] R. S. King and J. J. Legendre, “Discovery of functional and approximate
functional dependencies in relational databases,” JAMDS, vol. 7, no. 1,
pp. 49–59, 2003.

[20] F. Chiang and R. Miller, “Discovering data quality rules,” in VLDB,
2008.

[21] Full version, http://www.lfcs.inf. ed.ac.uk/research/
database/publications/profiling.pdf.

[22] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo,
“Fast discovery of association rules,” in Advances in Knowledge Dis-
covery and Data Mining, 1996.

[23] M. J. Zaki, “Mining non-redundant association rules,” Data Min. Knowl.
Discov., vol. 9, no. 3, pp. 223–248, 2004.

[24] J. Li, G. Liu, and L. Wong, “Mining statistically important equivalence
classes and delta-discriminative emerging patterns,” in KDD, 2007.

1234

