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Anogenital Distance Plasticity in Adulthood:
Implications for Its Use as a Biomarker of Fetal
Androgen Action

Rod T. Mitchell, Will Mungall, Chris McKinnell, Richard M. Sharpe,
Lyndsey Cruickshanks, Laura Milne, and Lee B. Smith

MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute,
Edinburgh, EH16 4TJ, United Kingdom

Androgen action during the fetal masculinization programming window (MPW) determines the
maximum potential for growth of androgen-dependent organs (eg, seminal vesicles, prostate,
penis, and perineum) and is reflected in anogenital distance (AGD). As such, determining AGD in
postnatal life has potential as a lifelong easily accessible biomarker of overall androgen action
during the MPW. However, whether the perineum remains androgen responsive in adulthood and
thus responds plastically to perturbed androgen drive remains unexplored. To determine this, we
treated adult male rats with either the antiandrogen flutamide or the estrogen diethylstilbestrol
(DES) for 5 weeks, followed by a 4-week washout period of no treatment. We determined AGD and
its correlate anogenital index (AGI) (AGD relative to body weight) at weekly intervals across this
period and compared these with normal adult rats (male and female), castrated male rats, and
appropriate vehicle controls. These data showed that, in addition to reducing circulating testos-
terone and seminal vesicle weight, castration significantly reduced AGD (by �17%), demonstrating
that there is a degree of plasticity in AGD in adulthood. Flutamide treatment increased circulating
testosterone yet also reduced seminal vesicle weight due to local antagonism of androgen recep-
tor. Despite this suppression, surprisingly, flutamide treatment had no effect on AGD at any time
point. In contrast, although DES treatment suppressed circulating testosterone and reduced sem-
inal vesicle weight, it also induced a significant reduction in AGD (by �11%), which returned to
normal 1 week after cessation of DES treatment. We conclude that AGD in adult rats exhibits a
degree of plasticity, which may be mediated by modulation of local androgen/estrogen action. The
implications of these findings regarding the use of AGD as a lifelong clinical biomarker of fetal
androgen action are discussed. (Endocrinology 156: 24–31, 2015)

The most common male reproductive disorders that
manifest at birth (cryptorchidism and hypospadias) or

in adulthood (low sperm counts and testicular germ cell
cancer) may be increasing in prevalence and may have a
common origin in fetal life (1). Establishing whether fetal
events have negatively affected the reproductive health of
men is challenging because it requires a means of “seeing
back in time” (2); until recently thishasproven impossible.

However, it has been long established in rodents that ano-
genital distance (AGD) (the measured distance between
theanusand thegenitals) reflects fetal androgenaction (3);
AGD in males is approximately double that of females.
What has generated renewed interest in AGD has been the
discovery that it reflects fetal androgen exposure only
within a discrete “masculinization programming win-
dow” (MPW), which also determines the adult size of the
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testis, prostate, seminal vesicles, and penis (4–7). More-
over, disorders such as hypospadias and cryptorchidism
are also linked to reduced androgen action during the
same MPW, such that AGD in adulthood could provide a
snapshot of androgen action during this critical period in
fetal life (reviewed in Ref. 8).

AGD has several attractive properties in terms of its
potential clinical use, because it is easily accessible and
noninvasive. The rodent studies on AGD and MPW out-
lined above have prompted several clinical studies of
whether AGD is associated with similar reproductive phe-
notypes in boys/men; these have identified associations
between reduced AGD and hypospadias (9, 10), cryp-
torchidism (10–13), and penis size in both boys (10, 13,
14) and men (15, 16), as well as with lower sperm counts/
infertility in normal young men and andrology clinic pa-
tients (17, 18). The association between AGD and several
clinical manifestations has meant that use of AGD as a
clinically useful biomarker has gained some traction, al-
though many questions remain unanswered. Data are only
just emerging regarding the natural variation in AGD
across the normal population (14), and this is restricted to
early postnatal life. If AGD is to be used in patients as a
reliable biomarker of fetal androgen action in the MPW,
more understanding about how AGD might be (second-
arily) influenced during postnatal life through to adult-
hood is needed.

Whereas the initial studies on rodents described the
utility of AGD as a lifelong indicator of androgen action
during fetal development and specifically in the MPW,
they also established that this only held true if the andro-
gen-dependentpostnatal growthpotentialwasmaximized
(4, 5, 19). Failure to expose the perineum (AGD) and re-
productive organs to normal concentrations of androgens
in postnatal life reduced the final size of these tissues (20–
22). These data suggest that there might be a degree of
plasticity in adult AGD, at least if ambient androgen levels
are subnormal, such as in hypogonadism. This possibility
has not previously been tested in longitudinal studies in
either rodents or humans, nor has the possibility that al-
terations of the androgen-estrogen balance might affect
the size of the already established AGD.

To address this, we have determined whether AGD
demonstrates bidirectional plasticity in adulthood in rats
by treatment with either the antiandrogen flutamide or the
potent estrogen diethylstilbestrol (DES). Our findings
demonstrate that significant hormone-dependent reduc-
tions in AGD are achievable in adulthood, which has im-
plications for the potential use of AGD as a lifelong clinical
biomarker of fetal androgen action.

Materials and Methods

Ethics statement
Rats were housed and bred under standard conditions of care.

Experiments were conducted, after local ethical approval, under
UK Home Office license number PPL 60/4200.

Treatments

Castration
Rats were anesthetized by inhalation of isoflurane and cas-

trated using a scrotal incision. Analgesia consisted of buprenor-
phine (45 �g/kg) at the time of surgery followed by carprofen (1
ml/L) in the drinking water for 24 hours postsurgery.

DES
Rats were treated by subcutaneous injection, every 3 days

with a final concentration of 100 �g/kg DES (Sigma-Aldrich) in
0.001% ethanol in corn oil (Sigma-Aldrich) or vehicle.

Flutamide
Rats were treated by daily oral gavage with a final concen-

tration of 100 mg/kg/d flutamide (Sigma-Aldrich) in 2.5% di-
methylsulfoxide (Sigma-Aldrich) in corn oil; or vehicle.

Experimental design
To determine AGD plasticity, 84 adult Wistar rats (6 groups

of n � 12 males/group; 1 group of n � 12 randomly cycling
females) (all 9 weeks of age) were separated into 1 of 3 cohorts:
(1) intact male, castrated male, and female; (2) DES-exposed and
vehicle (for DES)-exposed; and (3) flutamide-exposed and vehi-
cle (for flutamide)-exposed. AGD was measured as the distance
between the base of the phallus and the anterior margin of the
anus using digital calipers (Faithfull Tools). To prevent bias, all
males within each cohort were randomly allocated to treatment
groups, and the individuals measuring AGD were blinded to
treatments. Body weight and AGD of each individual were de-
termined weekly for a period of 9 weeks, beginning 1 week after
commencement of treatment. Those groups receiving treatments
were treated for 5 weeks, followed by a 4-week washout period.
Three individuals from each group were culled at the end of week
5 to confirm that treatments were successful. The remaining 9
individuals were culled at the end of week 9.

Measurements of Testosterone and LH
Sera were separated and stored at �20°C. Serum testosterone

was determined using an RIA as described previously (23); the av-
erage intra-assay coefficient of variation was 6.1% with a limit of
detection of 45 pg/mL. The antibody has very low cross-reactivity
with other hormones (dihydrotestosterone, 1%; nortestoster-
one, �1%; SHBG, 0.5%; and progesterone and other ste-
roids, �0.01%). LH was determined as described previously (24).
In brief, the LH assay was a sandwich ELISA using an anti-LH
�-chainmonoclonalantibody(code518B7;J.F.Roser,Department
ofAnimalScience,UniversityofCalifornia,Davis,Davis,CA)asthe
capture antibody. The signal antibody was biotinylated anti–�-
chain LH monoclonal antibody (code 5303; Medix Biochemica).
The lower limit of detection was 50 pg/mL, and the cross-reactivity
was �0.01% against mouse FSH and TSH. The Between-batch
percent coefficient of variation was �10%.
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Statistical analysis and figures
Data were analyzed using one-way or two-way ANOVA as

appropriate using GraphPad Prism (version 6; GraphPad Soft-
ware Inc). Values are expressed as means � SEM. Figures were
compiled using Adobe Illustrator CS6 (Adobe System Inc.).

Results

To determine whether AGD exhibits plasticity in adulthood
and whether sex hormones play a significant role in this, a
cohort of adult male rats were castrated and compared with

intact control adult males and intact control adult females
over a 9-week period. Circulating testosterone was signifi-
cantly reduced when measured 4 weeks and 7 weeks after
castration, falling to levels equivalent to those of control fe-
males (Figure 1A). Consistent with this finding, castration
resulted in a significant increase in circulating LH when as-
sayedatweeks2and8(Figure1B)andasignificantreduction
in seminal vesicle weight (a biomarker of systemic androgen
action) when determined at weeks 5 and 9 (Figure 1C).

Although male rats entered the study when reproduc-
tively mature, a steady increase in body weight was ob-
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Figure 1. Castration reduces AGD in the adult rat. A, Circulating testosterone from male, castrated male, and female rats assayed at baseline,
week 4, and week 7 of the study. B, Circulating LH from male, castrated male, and female rats assayed at weeks 2 and 8 of the study. C, Seminal
vesicle (SV) weights of males vs castrated males at week 5 and week 9 of the study. D, Body weight of the 3 groups across the 9 weeks of the
study. E, AGD of the 3 groups across the 9 weeks of the study. BL, baseline. F, AGI (calculated by dividing AGD by body weight) of the 3 groups
across the 9 weeks of the study. G, AGI (calculated by dividing AGD by the cube root of body weight) of the 3 groups across the 9 weeks of the
study. A, B, and C, one-way ANOVA; D, E, F, and G, two-way ANOVA. ****, P � .0001.
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served in control males throughout the 9-week period of
study (Figure 1D), consistent with the published literature
(25). One week after castration, the body weight of cas-
trated males had fallen to female values (possibly as a
response to undergoing surgery, in addition to loss of the
androgen drive) but thereafter increased steadily to con-
trol male values at week 3 after castration, which were
maintained for the remainder of the study (Figure 1D).

AGD is reduced after castration of adult male rats
Control males demonstrated a small but progressive

increase in AGD throughout the 10-week period of study,
whereas, in contrast, females showed no increase in AGD
throughout the experiment (Figure 1E). Castrated males
showeda significant reduction (�17%) inAGDcompared
with that of control males at all time points examined.
However, the AGD of castrated males never reduced to a
size close to that of AGD in females (Figure 1E). To allow
for changes in body weight, we calculated the anogenital
index (AGI) using the 2 well-established methods: (1) di-
viding AGD by body weight and (2) dividing AGD by the
cube root of body weight. Both measures gave broadly
similar results (Figure 1, F and G). Castrated males
showed a significant difference in AGI compared with
control males. However, this was generated as a compos-
ite value, reflecting changes in both body weight and
AGD. The findings in castrated males suggest that, in such
extreme circumstances, adult AGD does exhibit a degree
of plasticity.

AGD plasticity in adulthood is unresponsive to
suppression of androgen signaling

To determine the mechanism underpinning adult AGD
plasticity, a cohort of intact adult male rats was treated
with the potent androgen receptor (AR) antagonist flut-
amide for 5 weeks, followed by a 4-week washout period
of no treatment. These animals were compared with a
similar cohort treated with vehicle. Flutamide treatment
significantly increased circulating testosterone levels com-
pared with those of controls when measured at week 5
(Figure 2A), because of inhibition of negative feedback at
the level of the hypothalamus/pituitary, reflected in a sig-
nificant increase in circulating LH (Figure 2B); both LH
and testosterone returned to normal levels at week 8 (dur-
ing the washout period) (Figure 2, A and B). Despite the
flutamide-triggered increase in circulating testosterone,
seminal vesicle weight was significantly reduced at 5
weeks, demonstrating that the flutamide had successfully
functioned as an AR antagonist in peripheral tissues (Fig-
ure 2C). Seminal vesicle weight had returned to normal by

week 9, demonstrating that the washout period success-
fully relieved antagonism of AR (Figure 2C).

Male rats treated with vehicle showed a profile of in-
creasing body weight similar to that of intact control an-
imals (Figure 2D). In contrast, although body weight in-
creased in flutamide-treated males, it was significantly
reduced compared with that of vehicle controls at weeks
1 and 4 of treatment (Figure 2D), with full recovery from
weeks 5 to 9 (washout). Despite perturbation of AR sig-
naling in peripheral tissues, AGD did not differ between
flutamide-treated males and controls at any time point
(Figure 2E). Consequently, calculation of AGI, which did
show a significant difference between vehicle- and flut-
amide-treated animals at weeks 1 and 4 of treatment, was
entirely the result of changes in body weight (Figure 2, F
and G).

AGD plasticity in adulthood is affected by
estrogens

Because AGD plasticity was not mediated by a reduc-
tion in androgen action, we next examined whether excess
estrogen signaling could modulate AGD in adulthood. A
separate cohort of male rats was treated with DES for 5
weeks, followed by a 4-week washout period of no treat-
ment. These animals were compared to a similar cohort
treated with vehicle. DES treatment significantly reduced
circulating testosterone concentrations when measured at
week 5 of treatment, but levels had returned to normal
when measured at week 8 (washout) (Figure 3A). Circu-
lating LH was unchanged at both week 2 (although there
was a trend toward increased LH (P � .0849) and week 8
(Figure 3B). Consistent with the DES-induced reduction in
testosterone levels, seminal vesicle weight was also signif-
icantly reduced at week 5, but also returned to normal by
week 9 in the washout period (Figure 3C).

Male rats treated with vehicle (for DES) showed a pro-
file of increasing body weight comparable to that of intact
control animals (Figure 3D). In contrast, although body
weight also increased in DES-treated males, it was reduced
significantly compared with that of vehicle controls at
weeks 1 to 6 of treatment, but was similar to that of con-
trols by week 7 (Figure 3D).

Male rats treated with DES showed a significant reduc-
tion in AGD at weeks 3, 4, and 5 of treatment (Figure 3E).
Cessation of treatment resulted in a return to control AGD
size 1 week later, which was maintained for the remainder
of the study (Figure 3E). AGI was significantly different
between DES-treated and vehicle control animals, dem-
onstrating that although DES affected both body weight
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and AGD, the correlation between body weight and AGD
was not linear (Figure 3, F and G).

Discussion

Androgen exposure during the MPW determines the maxi-
mum “potential” adult size to which androgen-dependent

reproductive organs and AGD can grow (8). However, an-
drogens are also important drivers of this growth (4, 5, 19),
and although previous studies have implied that AGD could
exhibit plasticity postnatally (20–22), the concept of AGD
plasticity in adulthood has not previously been explored
directly. In the first longitudinal study of its type, we
now show that AGD exhibits a degree of plasticity, even
in adulthood.
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Castration of male rats led to a significant reduction in
AGD 1 week later. This provided the first evidence that
AGD could also be actively reduced in adulthood by
changes in steroid hormone action. We initially presumed
that the castration effect was the result of androgen with-
drawal, but when we treated intact adult rats with the AR
antagonist flutamide, we found no such effect on AGD,
despite confirming (via seminal vesicle weight reduction
and increased circulating LH (indicative of inhibition of
androgen/AR feedback in the brain) that peripheral an-
drogen action had been considerably attenuated. How-

ever, 1 difference between the 2 approaches (castration vs
AR suppression) is in the intactness of the hypothalamic-
pituitary-gonadal axis. Thus, although LH levels were sig-
nificantly increased after flutamide treatment, levels did
not climb as high as LH levels after castration. This dif-
ference is probably explained by the intact compensatory
homeostatic mechanisms in flutamide-exposed males (flu-
tamide treatment induces a compensatory increase in tes-
tosterone production, which would itself attenuate LH
production in the flutamide-treated rats). Together these
data suggest that flutamide-mediated suppression of an-
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drogen signaling was not as complete as that after castra-
tion, raising the possibility that the lack of impact on AGD
simply reflects a failure to sufficiently suppress androgen
action.

Whether this lack of effect on AGD is mechanistic (the
perineum is unresponsive to androgen suppression per se)
or dosage-related (the perineum is unresponsive to andro-
gen suppression at this dose) requires further investiga-
tion, but whichever explanation is correct, the lack of im-
pact of flutamide on AGD at the high doses used in this
study supports our proposition that suppression of an-
drogen action via AR is not a primary mechanism under-
pinning AGD plasticity in adulthood.

In support of this proposition, we note that DES treat-
ment also reduces circulating testosterone levels (consis-
tent with the published literature [26]) and thus attenuates
androgen signaling. With the use of seminal vesicle weight
as an accepted biomarker of peripheral androgen action,
the level of suppression of androgen signaling (revealed by
similar seminal vesicle weights) was comparable in flut-
amide- and DES-treated rats (but not as complete as that
after castration). Despite this similarity, a reduction in
AGD (�11%) was only found in the DES-treated animals,
suggesting that a relative increase in estrogen signaling is
the primary mechanism underpinning AGD plasticity in
adulthood.

There are 2 possible explanations for the DES-induced
reduction in AGD: first, that excess estrogen signaling per se
explains the DES-induced reduction in AGD; or second, that
it results from alteration of the normal androgen-estrogen
balance. Because increased estrogen signaling cannot ac-
count for the castration-induced decrease in AGD, we pro-
pose that a high androgen-low estrogen profile may be nec-
essary to maintain/achieve maximal-sized AGD. Put another
way, the presence of abundant androgens is sufficient to sup-
press aberrant estrogen signaling, and suppression of estro-
gen signaling is the key factor in ensuring that AGD is max-
imized; by inference, failure to sufficiently oppose estrogen
signaling leads to a reduction in AGD. Whether this is indeed
the case, and whether this also applies to other androgen-
responsive reproductive organs requires significant further
investigation.OurfindingswithDESraise thepossibility that
other compounds with weaker estrogenic activity might be
similarly capable of altering AGD in adult male rats. This
possibility remains tobeexplored,butweconsider itunlikely
because weakly estrogenic compounds, such as alkylpheno-
lic or bisphenolic compounds, do not cause suppression of
either endogenous testosterone or of AR expression even at
high (milligram) doses compared with the potent estrogen
DES (this study and Refs. 27, 28). In addition, our study did
not explore whether treatment with androgens could alter
AGD in adulthood. However, in a pilot short-term (10-day)

study involving high-dose testosterone treatment, we found
no significant change in AGD despite a profound increase in
seminal vesicle weight (unpublished data, R.M.S., L.B.S.,
R.T.M.), so we consider it unlikely that similar treatment for
a longer period of 5 weeks, as in the present studies, would
induce any major change in AGD.

Although this study used high doses of flutamide and
DES to investigateAGDplasticity ina ratmodel, as aproof
of concept study, these data support several important and
novel observations. (1) AGD is not irrevocably fixed by
adulthood, but changes to a small but progressive extent
throughout adulthood in rats dependent upon age. (2)
Consequently, comparison of AGD between rats of dif-
ferent adult ages could result in misleading conclusions, an
importantobservation for futureanalysis of endocrinedis-
ruptors in the rat. (3) AGD exhibits a small degree (11%–
17%) of plasticity in adulthood and can be altered by sex
steroid manipulations, at least when these are extreme. (4)
Both flutamide and DES perturb normal gain of body
weight, which acts as a confounder for the utility of AGI.
(5) The correlation between body weight and AGD (AGI)
is not linear, even in untreated animals, and, therefore,
AGI determination in rats may be a poor compensator for
differences in body weight. (6) The current presumption
that AGD provides a lifelong readout of androgen expo-
sure during the MPW in rats may not be tenable in situ-
ations in which major/extreme alterations in circulating
blood androgens and/or estrogens occur.

In conclusion, although this study used extreme ma-
nipulations of sex steroid exposure in adult rats to induce
AGD changes, in a clinical setting it may be prudent to
consider that, when changes in androgen-estrogen balance
have occurred (eg, obesity, aging, and late-onset hypogo-
nadism), secondary changes in AGD may also have oc-
curred. This concept necessitates further investigation in
human cohorts.
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