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1 Introduction

To unlock the huge potential in video-rate range image analysis,
arguably one the most significant hurdles to overcome is that of
accurately recovering motion over a given sequence. For a single
object, this largely amounts to uncovering the isomorphism under-
gone by the object’s surface from a set of point sample observations
in each frame. Unfortunately even with 3D data this is a highly
challenging task, since in the absence of salient 3D structure (e.g.
the region around a person’s cheek or a section of cloth), motion
cannot be resolved over the manifold (much like the aperture af-
fect in 2D.) To alleviate this, we must impose assumptions about
the object’s deformation and/or appearance sub-space a priori (a
concept well established in 2D image analysis). In 2D these pri-
ors must be extremely broad to account for the nonlinear, unknown
and largely irrecoverable interaction between the object’s deformed
state and it’s appearance in 2D. In general, the best we can do is to
use extremely broad assumptions about smooth 2D motion, which
has been demonstrated time again to be insufficient to adequately
constrain the registration/tracking tasks.

By contrast, in our work we have focused on investigating general
classes of deformation priors in 3D, where the story is very differ-
ent. In 3D we can directly reason in terms of true 3D dynamics,
and our assumptions on the underlying isomorphism can lead to
very well defined registration problems. So well defined in fact that
we show here how to go beyond mere registration (i.e. matching
each frame to a particular template) to the harder problem of au-
tomatically recovering a complete, registered 3D model given only
limited deformed observations. Solutions to this would find con-
siderable application in the computer vision and graphics commu-
nities, where it is desirable to obtain object models that undergo
non-rigid motion (e.g. a flying flag or a deforming body), under-
going occlusion (both self and external), never fully observable and
present in cluttered scenes.

In this work our attention is focused on one important class of de-
forming objects; those whose surfaces undergo isometric or near-
isometric deformations. These are a particular kind of isomorphism
which relates a surface’s embedding in 3D space (i.e. a Riemannian
manifold) by a transformation preserving distances on the manifold
(geodesics). Qausi-isometric transformations describe well the de-
formations undergone by a large range of real-world objects, such
as many fabrics, paper, plastics, articulated objects and, to an ex-
tent, facial expressions. Robust methods for detecting and regis-
tering objects of this class therefore have uses in several fields in-
cluding computer graphics, such as texture extraction, texture map-
ping, deformation transfer and video augmentation; computer vi-
sion, such as unsupervised deformable object learning, tracking,
and deformation analysis.

2 Method Overview and Contribution

From a sequence of range observations our overarching goal is to
automatically reconstruct the surfaces of deforming objects appear-
ing in the sequence. This task is nontrivial for a number of rea-
sons. Firstly, occlusion boundaries in range images, particularly

those generated by stereo, cannot be reliably used for segmenta-
tion. Occlusion cues rely on depth discontinuities, which are often
smoothed by the stereo algorithm, or not present if the occluding
object is in contact with the surface. Without reliable segmenta-
tion, any priors on the isomorphism (including isometry or smooth-
ness assumptions) are not valid (and thus detrimental) over regions
which contain occlusion zones. The second problem that of global
nonrigid alignment. Even if given a correct segmentation, matching
pairs of range segments involves locally solving the non-rigid reg-
istration task. Without correspondences known a priori, this gen-
erally results in motion models with dense Jacobian and Hessian
matrices. Scaling this up to a global alignment readily becomes
intractable using numerical optimisation, yet this is highly desir-
able since local methods tend to result in global misalignments (as
demonstrated in, for example 2D panorama stitching.)

However, we can obtain a foothold to the problem by consider-
ing certain deformation-invariant properties over the deforming sur-
face. Here we present a global method for nonrigidly aligning sur-
face segments located in range data that mutually agree with respect
to the assumed isomorphism model. For near-isometry, this is the
preservation of geodesic lengths on the manifold. We essentially
perform surface model completion by embedded mosaicing, where
a composite is formed in the surfaces intrinsic coordinate space.
This has the desirable property that deformed segments are now re-
latable by far simpler transformations. For quasi-developable sur-
faces (i.e. isometric surfaces with very low Gaussian curvature such
as cloth), isometry reduces to near-Euclidean transformations.

The key stages to our approach for automatic deformable surface
reconstruction are shown in figure 1, and a brief overview of each
stage is described in the following sections.

Figure 1: Deformable model recovery and registration framework

Since video rate range sequences contain a vast amount of redun-
dant surface information, we would prefer to sample those frames
which convey the most new surface information with which to build
the model. Initially this set is selected using simple strategies (e.g.
every nth frame or random selection) from the range sequence, with
further frame being added and included in the model based on (i)
agreeing with the current model and (ii) revealing unseen sections
of the surface.

2.1 Robust Feature Correspondence

Point correspondences are often key components in registration
tasks largely for guiding the registration towards global optima.
Typically, feature matchers in 2D (e.g. SIFT) and 3D (e.g. spin
images) will misalign, so some form of correspondence annealing



Figure 2: Deformable surface reconstruction from multiple range observations. TL: Regions matched and extracted from several range
images (some of which are shown in TR. BL the resulting reconstruction comparing (left) the true surface texture, (middle) rigidly aligned
patches and (right) the nonrigidly aligned and stitched model. BL: An example distortion map for a particular segment.

Figure 3: Robust point correspondence between range pairs using spectral clustering. From left to right: Correspondences matched by SIFT;
Robust correspondence and clustering using our method; Spectral embedding of matches (green indicates outliers); Another example.

is often employed. We instead establish correspondence by appeal-
ing to the isometric assumption; that is mutual point distances on
the manifold (geodesics) should be preserved. We establish a mea-
sure of isometric conformity between all pairs of candidate corre-
spondences , and the optimal solution is the subset set of matches
with maximal mutual agreement. In our method we find an effi-
cient inexact solution to this using spectral methods to find strongly
connected clusters in a compatibility graph whose nodes represent
matches and edges weighted by their mutual match scores. Since
occlusion zones (undetected or otherwise) break geodesic agree-
ments, multiple clusters may exist in the graph which are each
bounded by an occlusion zone. Thus, we use k-way spectral cluster-
ing to jointly recover the correct matches and segmentation (Figure
3.) Currently, we extract features based only on intensity, since 3D
features on smooth developable surfaces are almost entirely am-
biguous.

2.2 Quasi-Developable Surface Segmentation

Given a set of segmented high-quality feature correspondences, we
proceed to extract the surrounding region agreeing with our as-
sumption of developabliy. Although zero Gaussian curvature char-
acterises perfectly developable surfaces, its computation is often
too unstable to derrive a segmentation. Furthermore, for real sur-
faces low Gaussian curvature is usually present. Instead, from
our matched features we grow a region over the range image such
that the distortion (angular and stretch) induced by flattening it is

bounded by some tolerance. Once grown, we further refine the
region using other segmentation cues (i.e. strong intensity/depth
gradients and colour histograms), combined proabablistically and
solved using graph cuts.

2.3 Global Nonrigid Segment Alignment

Given multiple surface segments, from multiple range images, we
bring them into nonrigid alignment by minimising two error cri-
teria related to (i) mutual feature distances between matched seg-
ments and (ii) mutual feature distances over each segment. The
first enforces the alignment of matched features whilst the second
preserves the system’s rigidity. Since (ii) is very nonlinear (quadric
in position), we settle for a slightly weaker interpretation which en-
forces conformality rather than rigidity over a segment (i.e. angle
preservation.) This is quadratic in position and results in a full-rank
least squares system that can be solved in closed form using sparse
linear least squares. The second stage propagates the transforma-
tions from the features through each segment. Since our underly-
ing assumption is of near-rigidity on the 2D plane, we use an as-
rigid-as-possible transformation similar to that proposed recently
by [Schaefer et al. 2006] used in interactive shape manipulation.

2.4 Low-Distortion Surface Texture Recovery

Our final stage of recovering the surface model is to generate a ren-
dering of the surface’s texture. Given the match correspondences,



shading artifacts can be removed using standard techniques. To
generate the render, blending techniques used in image mosaicing
are not suitable, due to residual ghosting from small misalignments.
Instead we are driven by the goal of a low-distortion rendering. In
our method we greedily select and stitch those regions which were
were transformed onto the plane with the least distortion. Given an
initial patch (i.e. the one least distorted), we treat the addition of a
second patch as a binary labeling problem, combining a distortion
penalty with a seam cost, and solve this incrementally using graph
cuts.

2.5 Registration

In order to fit the model to the rest of the data, we adopt an en-
ergy minimisation process which penalises states that diagree in
data evidence (i.e. 3D distance to the point cloud and feature corre-
spondence), and a quadratic isometric within-plane bending model
[Bergou et al. 2006]. For all other frames, we perform the same
strategy but initialise the model to its deformed state in the pre-
vious frame. Global drift is avoided by using hard feature con-
straints between the model and scan as described in section 2.1. The
newly registered instances can then be further incorporated into our
model, along with new neighbouring regions agree with respect to
the model’s isomorphism prior.

3 Results
We have tested our approach on several sequences capturing de-
forming paper and fabrics. Figures 2 and 3 show examples of some
good results attained on a seqeunce of a deforming magazine cover.
In the near future we aim to further validate our methods for other
sequences. We also aim to extend our work by better modelling
the relationship between mesh distortion and nonrigid deformation
constraints on the 2D plane, and will be investigating our frame-
work for recovering other classes of deforming surfaces.
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